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Abstract

A combinatorial auction is an auction where the bidders have the choice to bid on bundles of items. The
Winner Determination Problem (WDP) in combinatorial auctions is the problem of finding winning bids that
maximize the auctioneer’s revenue under constraint, where each item can be allocated to at most one bidder.
WDP is known as an NP-hard problem with practical applications like electronic commerce, production
management, games theory, and resource allocation in multi-agent systems. This has motivated the quest for
efficient approximate algorithms in terms of both the solution quality and computational time. This paper
proposes a hybrid Ant Colony Optimization with a novel Multi-Neighborhood Local Search (ACO-MNLS)
algorithm for solving WDP in combinatorial auctions. Our proposed MNLS algorithm uses the fact that
using various neighborhoods in local search can generate different local optima for WDP and that the global
optima of WDP is a local optima for a given neighborhood. Therefore, the proposed MNLS algorithm
simultaneously explores a set of three different neighborhoods to get different local optima and to escape
from the local optima. The comparisons between ACO-MNLS, Genetic Algorithm (GA), Memetic
Algorithm (MA), Stochastic Local Search (SLS), and Tabu Search (TS) on various benchmark problems
confirm the efficiency of the ACO-MNLS algorithm in terms of both the solution quality and computational
time.

Keywords: Winner Determination Problem, Combinatorial Auctions, Ant Colony Optimization, Multi-
Neighborhood Local Search, Combinatorial Optimization.

1. Introduction

Auctions play a significant role in multi-agent
systems, where the auction mechanisms are used
for task distribution and resource allocation. The
items that are auctioned range from network
bandwidth to radio frequencies, and pollution
rights. Combinatorial Auction (CA) is a sort of
auctions in which bidders (agents) can place bids
on combinations of items (goods) rather than only
the individual ones. Buyers offer their bids to
auctioneer, each bid being defined by a subset of
items with a price (bidder’s valuation). Two bids
are conflicting if they share at least one item. The
main advantage of combinatorial auction is that it
produces a high economic efficiency [1].

The Winner Determination Problem (WDP) in
combinatorial auctions is defined as finding a
conflict-free allocation of items that maximize the

auctioneer’s revenue. WDP is equivalent to the
weighted set packing problem, a well-known NP-
hard problem [2-4]. From a practical viewpoint,
WDP has many applications in electronic
commerce, production management, game theory,
and resource allocation in multi-agents systems
[5-8].

The computational challenge of WDP and its wide
practical applications have motivated a variety of
algorithms. These algorithms can be classified as
either “exact” or “approximate”. Exact algorithms
can obtain optimal solutions and guarantee their
optimality for every instance of WDP. However,
it has been shown that for optimization problems
that are NP-hard, no polynomial time algorithm
exists unless P = NP [3,9]. Therefore, exact
algorithms for WDP require exponential time, and
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this makes them impractical for most real-world
applications. In contrast to exact algorithms,
approximate algorithms do not guarantee the
optimality of the solutions obtained. In these
algorithms, the optimal solution is sacrificed for
the sake of obtaining good solutions in a
reasonable time [10-12].

Approximate algorithms may be classified into
three classes: approximation algorithms, problem-
specific heuristics, and metaheuristics. Unlike
problem-specific heuristics and metaheuristics,
approximation algorithms provide a provable
solution quality and run-time bounds. Problem-
specific heuristics are problem-dependent and are
designed for a particular problem, whereas
metaheuristics represent more general
approximate algorithms and are applicable to a
large variety of optimization problems.
Metaheuristics solve complex optimization
problems by “exploring” the large solution space
and achieve this goal by effectively reducing the
size of this space and “exploiting” the reduced
space efficiently [10,11,13]. This class of
algorithms includes Evolutionary Computation
(EC) [14], Ant Colony Optimization (ACO) [15],
Greedy Randomized Adaptive Search Procedure
(GRASP) [16], Tabu Search (TS) [17], Variable
Neighborhood Search (VNS) [18], Iterated Local
Search (ILS) [19], Particle Swarm Optimization
(PSO) [20], Gravitational Search Algorithm
(GSA) [21], etc.

In this paper, we propose a hybrid Ant Colony
Optimization with Multi-Neighborhood Search
(ACO-MNLS) algorithm for solving WDP. The
experimental results obtained by the proposed
algorithm are compared with the results of
Genetic Algorithm (GA), Memetic Algorithm
(MA), Stochastic Local Search (SLS), and Tabu
Search (TS). The comparisons confirm the
efficiency of ACO-MNLS in terms of solution
quality and computational time.

The rest of the paper is organized as what follows.
In Section 2, we present the formal definition of
WDP and provide an overview of the existing
algorithms for WDP. Section 3 provides a review
of ACO. In Section 4, the proposed ACO-MNLS
algorithm for WDP is presented. Section 5
contains the experimental part of the paper, in
which the performance of the proposed approach
is evaluated. Finally, in Section 6, conclusion is
given.
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2. Winner Determination Problem and existing
algorithms

2.1. Winner Determination Problem

In this section, we discuss WDP and winner
determination  algorithms for combinatorial
auctions. Let us say that the auctioneer has a set of
items, M = {1, 2, ..., m}, to sell, and the buyers
propose a set of bids, B = {by, b, ..., by}. A bid is
a tuple bj = (5j, py), where S; =M s a set of

items and p; >0 is price of bj, which is a

positive real number that shows the value the
buyer is willing to pay for bundle S;. Further,
consider a matrix am«n having m rows and n
columns, where a;; = 1 if item i belongs to S;, aj; =
0, otherwise. Finally, the decision variables are
defined as follow: x; = 1 if bid b; is accepted (a
winning bid), and x; = 0 otherwise (a losing bid).

WDP is the problem of finding the winning bids
that maximize the auctioneer’s revenue under the
constraint that each item can be allocated to the

most bidder. WDP can be modeled as the

following integer optimization problem [22]:

Maximize . p,x;, 1)
j=1

Subjectto > a;x; <1, ie{l,..,m}, (2
j=1

x, <{0,1}, 3)

where, the objective function given in (1)

maximizes the auctioneer’s revenue that is
computed as the sum of prices of the winning
bids. The constraints given in (2) mean that the
item can be allocated to at most one bidder. The
inequality (ajj x; < 1) allows that some items could
be left uncovered. This is due to the free disposal
assumption.
Example 1: Consider a combinatorial auction
with a set of five items M = {1, 2, 3, 4, 5} to be
auctioned and a set of five bids B = {b1, by, bs, ba,
bs} that are the following:

b: = ({1, 3},5.5)

b, = ({1, 3, 4}, 15)

bs = ({2}, 1)
bs = ({2, 4}, 12)
bs = ({4}, 8)

bs = ({4, 5}, 10).

Note that the combined value of the two bids for
the individual items 2 and 4 is lower than the
value of the bundle bid for both (bs), which
reflects the complementarity of these items. Let us
consider the allocations A; = {b,, bs} and A, = {bs,
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ba}. While A; is feasible, A; is infeasible because
b, and ba both require item 4. The value for A; is
17.5, which is the maximum value over all
possible feasible allocations for this problem
instance. Under the optimal allocation Ay, bids by
and bs win, with items 1 and 3 assigned to b; and
items 2 and 4 assigned to bs. Note that item 5
remains unassigned under this allocation; there is
a feasible allocation that assigns all items to bids
(As = {ba, bs, be}) but its value is lower than 17.5.

2.2. Existing algorithms

Attempts to exactly solve WDP (under the name
of set packing) can be found as early as in the
beginning of 1970s [23]. Many studies have
appeared ever since. Most exact algorithms are
based on the general branch-and-bound (B&B)
technique. Some examples include the
combinatorial auction structural search (CASS)
[2], Combinatorial Auction Multi-Unit Search
(CAMUS) [24], BOB algorithm [25], CABOB
algorithm [26], and linear programming-based
B&B algorithm [27]. Other interesting exact
methods for WDP are a branch-and-price
algorithm based on a set packing formulation [28],
a branch-and-cut algorithm [29], and a dynamic
programming algorithm [30]. The general integer
programming approach based on CPLEX has been
intensively studied in [31,32], showing an
excellent performance in many cases. In [33], a
clique-based branch-and-bound approach has been
introduced for WDP, which relies on a
transformation of WDP into the maximum weight
clique problem. To ensure the efficiency of the
proposed search algorithm, specific bounding and
branching strategies using a dedicated vertex
coloring procedure and a specific vertex sorting
technique has been proposed. In [34], Complete
Set Partitioning problem captures the special case
of WDP in combinatorial auctions, where bidders
place bids on every possible bundle of goods, and
the goal is to find an allocation of goods to
bidders that maximizes the profit of the
auctioneer.

On the other hand, given the intrinsic intractability
of WDP, various heuristic algorithms have been
devised to handle problems whose optimal
solutions cannot be reached by exact approaches.
For instance, Casanova [35] is a well-known
stochastic local search algorithm that explores the
space of feasible allocations (non-overlapping
subsets of bids) by adding at each step an
unallocated bid and removing from the allocation
the bids that are conflicting with the added bid.
The selection rule employed by Casanova takes
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into consideration both the quality and history
information of the bid. Casanova has been shown
to be able to find high quality solutions much
faster than the CASS algorithm [2]. WDP is also
modeled as a set packing problem and is solved
by a simulated annealing algorithm (SAGII) with
three different local move operators: an embedded
branch-and-bound move, greedy local search
move, and exchange move [32]. SAGII
outperforms dramatically Casanova and the
CPLEX 8.0 solver for realistic test instances. A
memetic algorithm has been proposed by [36],
which combines a local search component with a
specific crossover operator. The local search
component adds at each iteration either a random
bid with a probability p or a best bid with the
largest profit with probability 1-p, and then
removes the conflicting bids from the allocation.
This hybrid algorithm reaches excellent results on
the tested realistic instances. Other interesting
heuristics include greedy algorithm [37], a tabu
search algorithm [38], an equilibrium-based local
search method [39], and a recombination-based
tabu search algorithm [40]. In [41], a new
mathematical formulation for WDP (under the
name of set packing) and an efficient method for
generating near-optimal solution have been
proposed. In [42], a mathematical model that aims
to maximize the expected economization of
procurement has been established and a solution
algorithm based on genetic algorithm (GA), where
an order encoding scheme is designed and a
special repair method is employed to accomplish
the translation from the individual encoding to the
corresponding solution of WDP, has been
proposed. In [43], a stochastic hyper-heuristic
(SHH) for combining heuristics for solving WDP
has been proposed, in which a new idea is
developed for hyper-heuristics by combining
choice function and randomness strategies. In
[44], an agent learning approach has been
proposed for solving WDP, in which a Lagrangian
relaxation approach is used to develop an efficient
multi-agent learning algorithm. In [45], the
authors have presented a metaheuristic approach
for the bi-objective WDP, which integrates the
greedy randomized adaptive search procedure
with a two-stage candidate component selection
procedure, large neighborhood search, and self-
adaptive parameter setting in order to find a
competitive set of non-dominated solutions.

From the above-mentioned review, we observe
that the existing (exact and heuristic) methods
follow two solution strategies. The first one is to
consider directly WDP and design dedicated
algorithms. This is the case for most of the
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reviewed methods. The second one is to recast
WDP as another related problem P and then
solved with a solution method designed for P.
Examples have been given in [23,32], where
WDP is modeled as the set packing problem and
in [26, 31], where WDP is reformulated as an
integer programming problem and solved by the
general CPLEX solver.

2.3. Disadvantages of existing algorithms

The existing exact algorithms to solve WDP [23-
34] have an exponential time complexity, and this
makes them impractical for most real-world
instances of WDP. On the other hand, although
heuristic algorithms used to solve WDP [35-45]
have a polynomial time complexity, they have a
low efficiency and a low effectiveness. To the
best of our knowledge, the best results of direct
heuristic methods come from a Memetic
Algorithm (MA) proposed by [34]. In Section 5,
we will see that the proposed ACO-MNLS
algorithm outperforms the GA, MA, SLS, and TS
algorithms in terms of the computational time, and
overcomes the GA, TS, MA, and SLS algorithms
in terms of the solution quality in most problems,
whereas in the case of other problems, both ACO-
MNLS and other algorithms get the same results.

3. Ant Colony Optimization

Ant Colony Optimization (ACQO) algorithms are
constructive stochastic metaheuristics that make
use of a pheromone model and heuristic
information on the problem being tackled in order
to probabilistically construct solutions. A
pheromone model is a set of pheromone trail
parameters whose numerical values can be
obtained by a reinforcement type of learning
mechanism and show the search experience of the
algorithm. Therefore, the pheromone model can
be used to bias the solution construction over time
towards the regions of the solution space
containing high quality solutions. Note that the
stochastic procedure in ACO permits the ants to
explore a much larger number of solutions;
meanwhile, the use of heuristic information
guides the ants towards the most promising
solutions.

Several ACO algorithms for NP-hard problems
have been proposed in the literature. Ant System
(AS) was proposed as the first ACO algorithm for
the well-known Traveling Salesman Problem
(TSP) [49]. The Ant Colony System (ACS) [50]
and the MAX-MIN Ant System (MMAS)
algorithm [51] are among the most successful
ACO variants in practice. In order to provide a
unifying view to identify the most important

aspects of these algorithms, [52], put them in a
general framework by defining the ACO
metaheuristic. The template of this ACO
metaheuristic has been shown in Algorithm (1).
After initializing parameters and pheromone trails,
the metaheuristic iterates over three phases. At
each iteration, a number of solutions are
constructed by the ants; these solutions are then
improved through a local search (this step is
optional), and finally, the pheromone trails are
updated.

Algorithm (1): Template of Ant Colony Optimization.

Set parameters;
Initialize the pheromone trails;
Repeat
For each ant Do
Solution construction using the pheromone trail;
Solution improvement using local search;
Update the pheromone trails:
Evaporation ;
Reinforcement ;
Endfor
Until stopping criteria are satisfied.
Output: Best solution found.
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The solution construction is done by a
probabilistic rule. Each artificial ant can be
considered as a stochastic greedy algorithm that
constructs a solution probabilistically by adding
solution components to partial ones until a
complete solution is derived. This stochastic
greedy algorithm takes into account the
followings:

Pheromone trails that memorize the patterns of
“good” constructed solutions, and will guide the
construction of new solutions. The pheromone
trails change dynamically during the search to
store the obtained knowledge of problem.
Heuristic information that gives more hints
about most promising solutions to ants in their
decisions to construct solutions.

The solution improvement is a local search
method that starts with an initial solution and
follows moves from the current solution to a
neighbor. Many strategies can be used in the
selection of a neighbor such as: (1) Best
improvement selection strategy, in which the best
neighbor (i.e. the neighbor that improves the
objective function the most) is selected, (2) First
improvement selection strategy, which consists of
choosing the first improving neighbor that is
better than the current solution, and (3) Random
selection strategy, in which a random selection is
applied to the neighbors of the current solution.
The process of exchanging the current solution
with a neighbor is continued until the stopping
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criteria are satisfied [53]. Note that solution
improvement is an optional component of ACO,
although it has been shown that it can improve the
performance of ACO when static combinatorial
optimization problems are considered. An
explanation of the good performance of a
combination of ACO with local search can be
found in the fact that these two search methods
are complementary. An ACO algorithm usually
performs a rather coarse-grained search.
Therefore, it is a good idea to try and improve its
solutions locally.

The pheromone update is done using the
constructed solutions. A good pheromone
updating rule is used in two phases:

An evaporation phase that decreases the
pheromone trail value. The goal of the
evaporation is to escape from premature
convergence toward “good” solutions and then to
encourage the exploration in the solution space.

A reinforcement phase that updates the
pheromone trail using constructed solutions.
Three different strategies can be used [54]: off-
line pheromone update [55], online step-by-step
pheromone update [50], and online delayed
pheromone update [56]. Among these strategies,
the off-line pheromone update is the most popular
approach, in which different strategies can be
applied: quality-based pheromone update [49],
rank-based pheromone update [57], worst
pheromone update [58], and elitist pheromone
update [51].

4. Proposed for  winner
determination

In this section, we present a hybrid ant colony
optimization and multi-neighborhood search
(ACO-MNLS) algorithm for solving WDP. In
addition to common search components in all
metaheuristics (e.g. representation of solutions
and definition of the objective function), the main
components of the proposed ACO-MNLS are
pheromone information, solution construction,
local search, and pheromone update.

algorithm

4.1. Solution representation

To design a metaheuristic, representation is
necessary to encode each solution of the problem.
The representation used in the proposed ACO-
MNLS is the binary representation [11]. For a
WDP of n bids, a vector X={xi, X2, ..., Xn} Of
binary variables x; may be used to represent a
solution:

173

1 if bj is in solution

Vje{l2,...n}, xj:{o O

In other words, a solution will be encoded by a
vector X of n binary variables, where the jth
decision variable of X denotes the presence or
absence of the jth bid in the solution. For
example, consider a set of five bids B = {b1, b2, bs,
bs, bs} and the feasible allocation A1 = {ba, bs} in
which bids b; and b, are won. Figure 1 illustrates
a binary representation used by ACO-MNLS for a
solution.

X |0 1 0 1 0
XX B X4 X%

Figure 1. A candidate solution in proposed ACO-MNLS
for a WDP with five bids.

4.2. Fitness evaluation

Each metaheuristics must use a fitness evaluation
function that associates with each solution of the
search space a numeric value that describes its
quality. An effective fitness evaluation function
must yield better evaluations to solutions that are
closer to the optimal solution than those that are
farther away. The fitness evaluation function for a
given problem is chosen by the problem solver,
and it is not given with the problem but is directly
related to the specifications for that problem.
Fortunately, the definition of fitness evaluation
function for WDP is straightforward. It specifies
the originally formulated objective function. The
objective function defined in (1) is used to
measure the quality of a candidate solution X.
Thus for a candidate solution X, its quality is just
equal to the sum of the valuations of the winning
bids [48]:

Fitness(X)= . p;x;, )
j=L

where, X={X1, X2, ..., X} IS @ 1xn matrix, and

P={p1, p2, ..., pn} IS @ 1xn matrix in which p;j is

the price of b;.

4.3. Pheromone information

Pheromone information consists of defining a
vector of model parameters z called pheromone
trail parameters, where pheromone values 7 € ¢
should give the relevant information for solution
construction. Here, a pheromone 7 is associated
with each bid j (i.e. b;). Therefore, the pheromone
information is represented by a 1xn matrix =z,
where each element z; of the matrix says the
desirability to have the b; in the solution. The
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pheromone matrix is initialized by the same
values. During the search, the pheromone is
updated to estimate the utility of any bid.
4.4. Solution construction
In addition to the pheromone trails, the main
guestion in the solution construction is concerned
with the definition of the problem-specific
heuristic to be used in guiding the search. As
stated in Section 3, artificial ants can be
considered as stochastic greedy algorithms that
construct a solution in a probabilistic manner by
considering two important parameters: pheromone
trails  and problem-dependent  heuristic
information.
Given an initial arbitrary solution A, we define set
C composed of each bid b; = (S;, p;) such that
sjﬂ(Usi)z(p . In this case, an ant selects the
ieA

next bid b; € C with the probability:

a B

pj:%, (6)
Z(Tk) x (1)
keC

where:

e p,en is the value of problem-specific
heuristic for bj. The problem-specific

heuristic information is represented by a 1xn
matrix 7 , where the value for each element

n; of the matrix is equal to the normalized

price of by, i.e. p, = p; Zn:pk :
k=1

e o« and S are the parameters representing the
relative influence of the pheromone values
and the problem-specific heuristic values.
The ACO algorithm will be similar to a
stochastic greedy algorithm if we have a = 0.
In this case, the bids with a large price are
more likely to be selected. If g = 0, only the
pheromone trails will guide the search
direction. In this case, stagnation may occur,
in which all ants will construct similar
solutions. Hence, a suitable balance must be
done in using this kind of information [11].

Note that the process of adding a new bid to the

current solution A is repeated until set C is not

empty.

4.5. Local search: Multi-Neighborhood Local
Search (MNLYS)

Definition of the neighborhood space is the
common search concept for all local search
algorithms. The neighborhood space is defined by
an undirected graph H=(N, E) associated with the
solution space of the problem, where the nodes in
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N correspond to candidate solutions and the edges
in E correspond to moves in the neighborhood
space, ie. (i,j)ee if and only if
ieN,jeN, jeN(@), and ieN(j), where N(y)
denotes the neighbors of a solution yeN. The
structure of the neighborhood depends on the
target optimization problem. A neighbor solution
y’ for a given solution y is constructed by
applying a move m to the solution y using a move
operator @, denoted by y’ = y®m. The
neighborhood space is called single-neighborhood
if for constructing it we use only a one-move
operator, and is called multi-neighborhood if for
constructing it we use several-move operators
[11].

A local search may be seen as a walk in the
neighborhood space. A walk is performed by
move operators that move from the current
solution to another one in the neighborhood space.
Here, we define three basic move operators for
WDP, denoted by ADD, EXCHANGE, and
REMOVE. Suppose an initial arbitrary allocation
A composed of some non-conflicting bids.

The ADD(b;) move operator consists of adding to
A a bid bj = (S;, p;) from the set of bids that are
excluded from the A and have no conflict with
bids in A. In example 1, let us consider the
feasible allocation A = {bs, bs}. There are only
two bids bs and bs that are excluded from the A
and have no conflict with bids in the A. Note that
after the ADD(b;) move, the change in the fitness
of solution is +p;. Since the value for pj is always
positive, the move gain is always positive for an
ADD move, and therefore, such a move always
leads to an improved neighboring solution.
EXCHANGE(bi, b;) move operator consists of
exchanging a bid b; = (S;, pi) (from the set of bids
that are excluded from the A and have no conflict
with bids in set A-b; ) with only bid b; of A that
have conflict with bi. In example 1, let us consider
the feasible allocation A = {bs, bs}. Bid b is a
candidate bid to exchange with bid bs, and bid b
is a candidate bid to exchange with bid bs. The
move gain of the EXCHANGE(bi, bj) move
operator is pi - p;. Note that the move gain can be
either positive or negative for an EXCHANGE
move. Hence, we can see that an EXCHANGE
move can increase or decrease the fitness of A.
The REMOVE(b;) move operator removes a bid b;
= (S, p;) from the A. The move gain of the
removed bid b is -p;. Note that the move gain is
always negative for a REMOVE move because p;
is always positive. Hence, we can see that a
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REMOVE move always leads to a decrease in the
fitness of A.

For the three move operators ADD, ECXHANGE,
and REMOVE, there is no absolute dominance of
one operator over the other ones. Therefore, the
best move operator to be applied depends on the
current situation. These facts lead us to generate a
combined neighborhood space H, which
corresponds to the union of the three
neighborhoods Hi, H., and Hs, denoted by
H=H,UH,UH,. Using this multi-
neighborhood, our local search algorithm, i.e.
Multi-Neighborhood Local Search (MNLS), at
each iteration selects the move with the largest
gain among all the ADD, ECXHANGE, and
REMOVE moves if the move gain is positive, and
selects a random move among all possible moves
if the move gain is negative. Note that the MNLS
algorithm simultaneously explores a set of three
neighborhoods Hi, Hz, and H; to get different
local optima and to escape from local optima.
MNLS uses the fact that wusing various
neighborhoods in local search can generate
different local optima and that the global optima is
a local optima for a given neighborhood. The
template of the MNLS algorithm is shown in
Algorithm (2).

Algorithm (2): Template of Multi-Neighborhood Local Search
algorithm for WDP.

Input: X as the initial solution, and maxiter as the maximum
iteration of MNLS algorithm.
For i = 1 to maxiter Do
Generate candidate neighbors to X by three move operators
ADD, ECXHANGE, and REMOVE;
X’ = the best neighbor of X;
If Fitness(X’)-Fitness(X) >0 Then
X=X
Else
X = a random neighbor of X;
Endif
Endfor
Output: Best solution found.

4.6. Pheromone update
As stated in Section 3, a general pheromone
updating strategy is used in two phases:
evaporation phase and reinforcement phase.
Here, we use the classical evaporation method for
the pheromone trails so that each pheromone
value is reduced by a fixed proportion. For each
b;, its pheromone z; will evaporate as follows:

(7)

7 =(1—p)rj, Vjedl,...n},

where, p € [0, 1] shows the reduction rate of the
pheromone.

Now the pheromone update method has to be
specified. Here, we use elitist pheromone update

[35], in which the best solution found so far will
increment the pheromone matrix to reinforce
exploitation ability of the search. This operation is
done by (8):

T, =1, +A, |if bj is a winner bid,

(8)

where, A =Fitness(X)/ > p, » and P={ps, pz, ...,
k=1

pn} is a 1xn matrix, in which p is the price of bx.

4.7. General framework of ACO-MNLS

The pseudo-code of ACO-MNLS is described in
Algorithm (3). At first, the initial values for the
parameters are determined. After initialization, the
main search loop is entered. It is repeated until a
maximum number of iterations is satisfied. In the
main loop itself, four important phases exist:
Solution construction, Solution improvement,
pheromone  evaporation, and  pheromone
reinforcement.

Algorithm (3): Template of ACO-MNLS.

Set the value of below parameters:
the number of ants;
the initial value of pheromone matrix ;
the relative influence of the pheromone values, i.e. o,
the problem-dependent parameter B;
the reduction rate of the pheromone, i.e. p ;
the maximum number of iterations;
the maximum iteration of MNLS algorithm;
Repeat
For each ant Do
Solution construction using the pheromone trail;
Solution improvement using MNLS algorithm;
Pheromone evaporation using Eq. (7);
Pheromone reinforcement using Eq. (8);
Endfor
Until maximum number of iterations are satisfied.
Output: Best solution found.
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5. Experimental results

In this Section, the performance of the proposed
algorithm is measured on several benchmark
instances. In order to show the effectiveness of
our approach, we compared the ACO-MNLS
algorithm with four different approaches for
solving the WDP reported in [48], i.e. Stochastic
Local Search (SLS), Tabu Search (TS), Genetic
Algorithm (GA), and Memetic Algorithm (MA).
The structure of this section is as what follows.
First we describe the characteristics of the
selected benchmarks. Then we present the results
obtained from ACO-MNLS for benchmark
instances. Finally, we present a comparison of
ACO-MNLS with the other four metaheuristics.

5.1. Benchmarks
To evaluate the performance of algorithms on the
WDP problem, [59] has created the program
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Combinatorial Auction Test Suite (CATS) to
generate benchmarks. Recently, [37] has provided
new benchmarks of various sizes consisting of up
to 1500 items and 1500 bids. The CATS instances
are easily solved by CPLEX and CABoB [60]. In
this paper, we use the realistic benchmarks by
[37] for which CPLEX cannot find the optimal
solution in a reasonable period of time. These
benchmarks include 500 instances, and are
available at the Zhuyi’s home page
(http://logistics.ust.hk/~zhuyi/instance.zip). These
benchmarks are divided into five groups of
problems, where each group contains 100
instances given in table 1. In this table, m is the
number of items and n is the number of bids.

5.2. Results and comparisons

In this section, the performance of the proposed
ACO-MNLS is measured by applying the
proposed algorithm to solve different benchmarks.
The proposed ACO-MNLS was implemented in C
language and run on a PC with an Intel 2.2 GHz
CPU. The ACO-MNLS parameters are fixed on
the following values: the number of ants is set to
100, the initial value of pheromone matrix is set to
10, the relative influence of the pheromone
values, i.e. a parameter, is set to 0.5, the relative
influence of the problem-dependent heuristic
values, i.e. f parameter, is set to 5, the reduction
rate of the pheromone, i.e. p parameter, is set to
0.1, the stopping criterion of ACO-MNLS is
satisfied after 200 iterations, and the maximum
iteration of MNLS algorithm is set to 50. All of
these values for the parameters are obtained
experimentally.

Tables 2-6 present the computational results of
the ACO-MNLS algorithm in comparison with
different metaheuristics reported in [48]. Each
table is designed to one of the 5 groups of the
REL benchmarks.

In these tables, the first column shows the name
of the instance, columns with sol caption
correspond to the maximum revenue obtained by
each algorithm, and columns with time caption

correspond to CPU time in seconds for each
algorithm.

From tables 2-6, it can be observed that the ACO-
MNLS algorithm outperforms the GA, MA, SLS,
and TS algorithms in terms of computational time
in all the REL instances. Also ACO-MNLS
outperforms GA in terms of the solution quality in
all REL instances and overcomes the TS, MA, and
SLS algorithms in most instances, whereas in the
case of other instances, both the ACO-MNLS and
other algorithms get the same results. The
proposed ACO-MNLS is ranked in the first place
among five metaheuristics in terms of both the
solution quality and computational time. In order
to determine the statistical significance of the
advantage of ACO-MNLS, t-test (all
compared with ACO-MNLS) is applied. In
the first row of each table, the symbols + and
~ represent that other methods are statistically
inferior to or equal to the proposed algorithm,
respectively. The last three rows of each table
summarize how many cases ACO-MNLS
perform better, similar or worse than the other
algorithms. From these results, we can conclude
that the ACO-MNLS algorithm dominates the GA
[48], MA [48], SLS [48], and TS [48] algorithms
in terms of both the solution quality and
computational time.

Note that from an optimization viewpoint, ACO-
MNLS combine global and local search using
ACO to perform exploration, while the MNLS
algorithm performs exploitation. ACO ensures
that ACO-MNLS can explore new bids that may
have not been seen in the search process yet. In
fact, ACO makes the entire search space
reachable, despite the finite population size.
Furthermore, the MNLS algorithm was able to
enhance the convergence rate of ACO-MNLS by
finely tuning the search on the immediate area of
the landscape being considered.

Table 1. Main characteristics of benchmarks used.

Description

Benchmarks m n
REL-1000-500 500 1000
REL-1000-1000 1000 1000
REL-500- 1000 1000 500
REL-1500-1000 1000 1500
REL-1500-1500 1500 1500

100 instances from in 101 to in 200
100 instances from in 201 to in 300
100 instances from in 401 to in 500
100 instances from in 501 to in 600
100 instances from in 601 to in 700
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Table 2. Experimental results of proposed ACO-MNLS, GA, MA, SLS, and TS on some instances of REL-1000-500.

Instances ACO-MNLS GA MA SLS TS

sol time sol time sol time sol time sol time
in101 69840.07 16.84  42100.71* 336.90 67101.93% 129.62 66170.61" 2351 66170.61* 57.86
in102 70897.46 16.02 39641.22* 432.76  67797.61" 132.18  65466.95" 23.89 64716.31* 63.43
in103 69791.25 15.36  43376.54* 338.89 66350.99" 133.34  66350.99* 24.79  66350.99* 128.68
in104 67268.71 15.64  42790.65* 376.37 64618.41" 135.14 67268.71% 2292  62524.23* 120.56
in105 69834.28 17.14  40841.21* 331.31 66376.83" 153.96 67268.717 2292  62524.23* 120.56
in106 66436.08 13.48  41770.07* 385.43  65481.647 14096 63479.26" 22.37  64591.70% 129.42
in107 69182.25 14.28 38781.82* 379.15 66245.70" 146.40 66245.70* 23.18 63972.62* 128.51
in108 74588.51 16.14 43881.51* 337.35  74588.51% 161.03  71505.66" 2401 68776.34* 119.84
in109 66239.28 13.56  42001.62* 336.89 62492.66" 14471  61751.22* 22,20 64343.077 80.98
in110 67395.07 14.28  38632.49* 320.84 65171.197 149.01  64083.64* 23.25 60275.66* 115.31
Average 69147.30 15.28 41381.78 357.59 66622.55 142.64 65959.15 23.30 64424.58 106.52
Rank 1 1 5 5 2 4 3 2 4 3
Better - - 10 - 6 - 8 - 8 -
Similar - - 0 - 4 - 2 - 2 -
Worse - - 0 - 0 - 0 - 0 -

Table 3. Experimental results of proposed ACO-MNLS, GA, MA, SLS, and TS on some instances of REL-1000-1000.

Instances ACO-MNLS GA MA SLS TS
sol time Sol time Sol time sol time sol time
in201 81557.74 6.10 56640.60" 697.65 77499.82* 98.26 56640.60" 697.65 77499.82* 98.26
in202 90464.19 7.32 59029.76* 693.14 90464.19% 106.68 59029.76* 693.14 90464.19% 106.68
in203 86239.21 7.00 59476.80" 562.29 86239.21% 102.28 59476.80* 562.29 86239.21% 102.28
in204 87075.42 6.98 57671.10* 732.71 81969.05* 97.40 57671.10* 732.71 81969.05* 97.40
in205 82469.19 6.16 59915.07* 573.98 82469.19° 91.26 59915.07* 573.98 82469.19% 91.26
in206 86881.42 6.32 58674.13" 627.01 86881.42% 93.99 58674.13* 627.01 86881.42% 93.99
in207 91033.51 6.38 60383.29* 667.75 91033.51% 100.90 60383.29* 667.75 91033.51% 100.90
in208 91782.20 7.22 63052.38* 646.34 83667.76* 101.29 63052.38* 646.34 83667.76* 101.29
in209 81966.65 6.82 59333.98* 655.09 81966.65% 96.42 59333.98* 655.09 81966.65% 96.42
in210 87569.19 6.52 64762.35* 547.09 85079.98% 97.78 64762.35* 547.09 85079.98% 97.78
Average 86703.87 6.68 59893.95 640.31 84727.08 98.63 59893.95 640.31 84727.08 98.63
Rank 1 1 4 4 2 2 4 4 2 2
Better - - 10 - 3 - 10 - 3 -
Similar - - 0 - 7 - 0 - 7 -
Worse - - 0 - 0 - 0 - 0 -
Table 4. Experimental results of proposed ACO-MNLS, GA, MA, SLS, and TS on some instances of REL-500-1000.
Instances ACO-MNLS GA MA SLS TS
sol time sol time sol time sol time sol time
in401 77417.48 3.52 56437.68* 1193.89 72948.07* 37.07 72948.07* 5.67 68485.81* 44,14
in402 74469.07 3.94 56637.00* 1272.06 71454.78* 37.20 71454.78* 5.79 72820.03% 23.57
in403 74843.96 3.80 57024.78* 1299.01 74843.96% 38.81 74843.96% 6.01 74843.96% 34.15
in404 78761.68 3.84 61123.14* 1088.39 78761.68% 38.78 78761.68% 6.12 73385.62* 16.85
in405 74899.12 4.02 58852.75* 1030.96 72674.25° 39.29 72674.25° 6.04 72674.25% 15.90
in406 71791.03 3.56 58714.53* 1318.40 71791.03° 38.09 71791.03° 5.87 71791.03% 37.12
in407 73935.28 4.16 58239.19* 1021.79 73935.28% 40.95 73278.66~ 6.35 71578.48* 15.57
in408 77018.73 3.98 59185.08* 1348.82 72580.04* 39.07 72580.04* 5.95 70144.19* 27.37
in409 73188.62 3.36 54950.59* 1342.28 68724.53* 36.28 67177.35* 5.48 67177.35* 25.48
in410 73791.66 4.24 59764.76* 1005.54 71791.57* 41.90 71791.57* 6.37 72791.68% 14.01
Average 75011.66 3.84 58092.95 1192.11 72950.52 38.74 72730.14 5.97 71569.24 25.42
Rank 1 1 5 5 2 4 3 2 4 3
Better - - 10 - 5 - 5 - 5 -
Similar - - 0 - 5 - 5 - 5 -
Worse - - 0 - 0 - 0 - 0 -
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Table 5. Experimental results of proposed ACO-MNLS, GA, MA, SLS, and TS on some instances of REL-1500-1000.

Instances ACO-MNLS GA MA SLS TS
sol Time sol time sol time sol time sol time
in501 84165.23 6.28 64961.36* 1624.84 79132.03* 107.82 77140.72* 15.62 82216.35% 98.71
in502 83163.66 6.16 56954.75* 1707.18 80340.76* 108.71 78574.26* 15.98 74127.61* 120.82
in503 83277.71 5.98 59161.13* 1450.79 83277.717 114.15 79554.65* 15.99 77005.81* 114.11
in504 83947.13 5.66 59691.51* 1662.53 81903.02% 116.11 81903.02% 16.48 81903.02% 155.54
Average 83638.43 6.02 60192.19 1611.34 81163.38 111.70 79293.16 16.02 78813.20 122.30
Rank 1 1 5 5 2 3 3 2 4 4
Better - - 4 - 2 - 3 - 2 -
Similar - - 0 - 2 - 1 - 2 -
Worse - - 0 - 0 - 0 - 0 -

Table 6. Experimental results of proposed ACO-MNLS, GA, MA, SLS, and TS on some instances of REL-1500-1500.

Instances ACO-MNLS GA MA SLS TS
sol time sol time sol time sol time sol time
in601 105286.68 5.88 73665.13*  1489.40 99044.32*  110.62 96255.53* 15.54 97473.85* 100.76
in602 101150.89 5.22 76006.38*  1810.56 98164.23*  114.18 95328.21* 15.71 93873.31* 155.34
in603 96628.98 5.22 71585.28*  1685.07 94126.96  110.71 94126.96 15.48 92568.61* 137.95
in604 106127.19 5.50 71958.50*  1627.37 103568.86"  110.60 103568.86* 15.59 92869.78* 96.70
in605 106273.50 6.02 71348.06*  1634.68 102404.76*  122.40 98799.71* 17.36 95787.59* 175.14
in606 105218.21 5.42 72505.09*  1656.29 104346.07*  107.79 104346.07 15.60 104346.07% 334.12
in607 105869.44 5.52 72162.60*  1625.37 105869.44  113.26 100417.40% 15.89 98674.39* 267.79
in608 99541.75 5.38 76189.79*  1625.46 95671.77*  109.15 95671.77* 15.26 91554.61* 95.62
in609 104602.39 5.26 71664.87*  1581.18 98566.94*  111.12 98566.94* 16.76 96652.44* 103.10
in610 109008.35 6.12 72393.14*  1572.06 102468.60*  120.17 99975.09* 17.57 99975.09* 146.03
Average 103970.70 5.54 72947.88  1630.74 100423.20  113.00 98705.65 16.08 96377.57 161.26
Rank 1 1 5 5 2 3 3 2 4 4
Better - - 10 - 7 - 7 - 9 -
Similar - - 0 - 3 - 3 - 1 -
Worse - - 0 - 0 - 0 - 0 -

6. Conclusions

A hybrid Ant Colony Optimization with a novel
Multi-Neighborhood Local Search (ACO-MNLS)
algorithm was proposed for solving Winner
Determination Problem (WDP) in combinatorial
auctions. Our proposed MNLS algorithm used the
fact that using various neighborhoods in local
search could generate different local optima for
WDP and that the global optima of WDP was a
local optima for a given neighborhood. Therefore,
in the proposed MNLS algorithm, a set of three
different neighborhoods was simultaneously
explored to get different local optima and to
escape from local optima. To the best of our
knowledge and the research in the literature, no
study has been done to solve WDP with

combining  general-purpose  Ant  Colony
Optimization (ACO) metaheuristic and problem-
specific  Multi-Neighborhood Local Search
(MNLS) algorithm.

The performance of the proposed algorithm was
evaluated in terms of solution quality and
computational time by several well-known
benchmarks. Its performance was compared with
four different metaheuristics for solving WDP, i.e.
Stochastic Local Search (SLS), Tabu Search (TS),
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Genetic Algorithm (GA), and Memetic Algorithm
(MA). The experimental results confirmed that the
proposed ACO-MNLS outperformed the current
best performing WDP metaheuristics in terms of
both the solution quality and computational
efficiency.

A first step toward extending this paper would be
to hybrid the proposed MNLS algorithm in other
swarm and evolutionary algorithms. Secondly, the
MNLS algorithm could be changed to
simultaneously explore a set of other different
neighborhoods. Finally, the proposed approach
could be adopted for solving Multi-objective
WDP (MOWDP) [45].
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