

Journal of AI and Data Mining

Vol 5, No 2, 2017, 149-167

Evaluation of Classifiers in Software Fault-Proneness Prediction

 F. Karimian and S. M. Babamir*

Department of Computer Engineering, University of Kashan, Kashan, Iran.

Received 29 April 2016; Revised 12 June 2016; Accepted 30 October 2016

*Corresponding author: babamir@kashanu.ac.ir (Babamir).

Abstract

Reliability of a software counts on its fault-prone modules. This means that the less the software consists of

fault-prone units, the more we may trust it. Therefore, if we are able to predict the number of fault-prone

modules of a software, it will be possible to judge its reliability. In predicting the software fault-prone

modules, one of the contributing features is software metric, by which one can classify he software modules

into the fault-prone and non-fault-prone ones. To make such a classification, we investigated 17 classifier

methods, whose features (attributes) were software metrics (39 metrics), and the mining instances (software

modules) were 13 datasets reported by NASA.

However, there are two important issues influencing our prediction accuracy when we use data mining

methods: (1) selecting the best/most influential features (i.e. software metrics) when there is a wide diversity

of them, and (2) instance sampling in order to balance the imbalanced instances of mining; we have two

imbalanced classes when the classifier biases towards the majority class. Based on the feature selection and

instance sampling, we considered 4 scenarios in appraisal of 17 classifier methods to predict software fault-

prone modules. To select features, we used correlation-based feature selection (CFS), and to sample

instances, we implemented the synthetic minority oversampling technique (SMOTE).The empirical results

obtained show that suitable sampling software modules significantly influences the accuracy of predicting

software reliability but metric selection does not have a considerable effect on the prediction. Furthermore,

among the other data classifiers, bagging, K*, and random forest are the best ones when we use the sampled

instances for training data.

Keywords: Software Fault Prediction, Classifier Performance, Feature Selection, Data Sampling, Software

Metric, Dependent Variable, Independent Variable.

1. Introduction

The software fault prediction methods use

software metrics and faulty modules to guess

fault-prone modules for the next software version.

Hereafter, a software module indicates an

instance, and a software metric does a feature.

When we aim to classify software modules into

the faulty and non-faulty ones, the software

metrics are considered as predictor (independent)

variables (features), and the faulty/non-faulty

modules are done as the outcome (dependent)

variable. Software metrics measure/quantify

software characteristics such as line of code

(LOC).

The software fault prediction models have been

investigated since 1990s. According to [1], the

probability of detection (PD) (71%) of the robust

fault prediction models may be higher than that

for software reviews (60%). According to [1],

Fagan claimed that inspections can find 95% of

defects before testing was not defended at the

IEEE Metrics 2002 conference, and this detection

ratio was about 60%.One member of the review

team may examine 8-20 software lines of code in

a minute. Thus, compared to the software reviews,

the software fault prediction methods are more

cost-effective to recognize software faults. The

advantages of a robust software fault prediction

are [2]:

 Reach a dependable system;

 Improving test process by concentrating

on the fault-prone modules;

mailto:babamir@kashanu.ac.ir

Babamir & Karimian / Journal of AI and Data Mining, Vol 5, No 2, 2017.

150

 Improving quality by improving test

procedure.
Software quality engineering uses various

methods and processes for producing high quality

softwares. One efficient method is to apply the

data mining techniques to software metrics for

detection of the potential fault-prone modules.

Through these techniques, we employed

classification to predict program modules as fault-

prone (fp) or not-fault-prone (nfp) [3-5], in which

two noteworthy issues, the feature selection and

class imbalance problems, were considered.

The class imbalance problem is raised if the fp

instances are much less than the nfp ones. The

imbalance problem can cause an undesirable

conclusion; however, researchers often do not

care about it [3, 5]. The efficiency of the software

fault prediction models is affected by two

significant numbers: (1) software metrics, and (2)

software fp modules. The software quality

prediction model without balancing up classes

will not produce efficient fault predictors.

Before investigating the classifier methods to

predict the fault proneness of software modules,

we presented 4 scenarios consisting of an

informed combination of two data preprocessing

steps, feature selection (for selecting the

important software metrics), and instance

sampling (for the class imbalance problem),

according to the Shepperd’s work [6].

Some researchers have considered the feature

reduction techniques such as principal component

analysis (PCA) to improve the performance of the

prediction models [7]. We used the correlation-

based feature selection (CFS) [8] technique to

obtain the relevant metrics, and the synthetic

minority over-sampling technique (SMOTE) [9]

for instance sampling (fp/nfp modules). We used

(1) the SMOTE technique because it chooses

samples through a non-random way [10, 11], and

(2) CFS because, according to Catal et al. [12], it

has a high performance. Considering the use of

the SMOTE and CFS techniques for the selection

of samples and features, figure 1 shows our

approach.

The process of using feature (metric) selection

and instance(module) sampling concurrently gives

4 scenarios, furnishing 4different training datasets

for building the prediction models (classifiers).We

made the software metric selection on the (1)

sampled and (2) original modules, providing2

different metric subsets. Note that we will obtain

different metrics if we use a feature selection

method on the sampled or original modules.

Having selected the features, we dealt with

training the prediction model using the original or

sampled modules separately. Accordingly, 4

possible scenarios may be considered:

Figure 1. Our approach phases.

- First, to make use of the original modules

for feature (metric) selection, and then training

the classifiers based on the (1) original or (2)

sampled instances.

- First, to make use of the sampled modules

for feature (metric) selection, and then training

the classifiers based on the (3) original or (4)

sampled instances.

The research goal of our work was to compare the

performance of the fault prediction models based

on each of these scenarios, and to detect the best

classification model. To this end, we exploited 13

public NASA datasets from PROMISE repository

that were created in 2005 [13].

The remainder of this paper is organized as what

follows. Section 2 discusses the related works.

Section 3 explains the feature selection and

sampling methods. Section 4 deals with the

classifier methods and techniques applied in this

paper. Section 5 deals with our empirical

evaluation. Finally, in Section 6, we summarize

our conclusions and provide suggestions for the

future works.

2. Related works

Various methods have already been applied for

software fault prediction. Catal et al. [12, 14, 15]

have expanded and validated some artificial

immune system-based models in the software

fault prediction. Elish et al. [16] have compared

the performance of support vector machines

(SVMs) with the performance of logistic

regression, multi-layer perceptron, Bayesian

belief network, naive bayes (NB), random forests

(RFs), and decision trees, and have finally

concluded that the performance of SVMs is better

Data refinement

Under 4 scenarios

Software Metrics:

(independent variables)

fault-proneness:

(dependent variable)

Feature selection by CFS

and
Sampling by SMOTE

Prediction using

classification

Classifier and scenario

Investigation using AUC

Database

Babamir & Karimian / Journal of AI and Data Mining, Vol 5, No 2, 2017.

151

than or (at least the same as) the other methods in

the context of 4 NASA datasets. Kanmani et al.

[17] have used probabilistic neural network

(PNN) and back-propagation neural network

(BPN) with a dataset obtained from the project of

graduate students to compare their results with the

results of statistical methods. They stated that

PNN provided a better performance. Gondra [18]

has shown that SVMs have a higher performance

over the artificial neural networks (ANNs)in

software fault prediction. Menzies et al. [1] have

stated that although it is a very simple algorithm,

naive Bayes is the best software prediction model.

The area under the ROC (receiver operating

characteristic) curve (called AUC, and explained

in section 5.4) has been applied to evaluate the

fault prediction models [3, 5]. Malhotra et al. [19]

have shown that, based on AUC, LogitBoost is the

highest method among the machine learning

techniques ANN, RF, two boosting algorithms

(LogitBoost, AdaBoost), NB, KStar, and bagging

and logistic regression; their dataset was some

open source software.

Catal et al. [2] have studied machine-learning

methods such as RFs and artificial immune

systems in the context of public NASA datasets,

i.e. the PROMISE repository. They focused on the

effects of dataset size, metrics set, and feature

selection techniques. They showed (1) RFs had

the best prediction performance for large datasets,

(2) NB was the best prediction algorithm for small

datasets based on AUC, and (3) the parallel

implementation of artificial immune recognition

systems (AIRS2Parallel) was the best artificial

immune system paradigm-based algorithm when

the method-level metrics were used.

A survey of the feature selection algorithms has

been explained in [20]. Typically, the feature

selection techniques fall into 2 categories, the

wrapper-based and filter-based approaches. The

former trains a learner during the feature selection

process, whereas the latter does not depend on

training a learner and applies the natural

characteristics of instances (which is based on the

given metrics) to the feature selection. The latter

is computationally faster than the former.

Hall et al. [21] have validated 6 feature selection

techniques producing ranked lists of features, and

have applied them to 15 datasets in the UCI

repository. The experimental results obtained

showed that no one approach was the best for all

situations. However, if computational complexity

is eliminated as a factor, a wrapper-based

approach has the best accuracy for a feature

selection scheme.

Saeys et al. [22] have perused the use of an

ensemble of feature selection techniques; this

means that the multiple feature selection methods

are combined for the feature selection process.

They have stated that the ensemble approach

provides subset of features more robust than a

single feature selection technique.

Khoshgoftar et al. [23] have studied 2 types of

feature selections for software defect prediction:

(1) individual, and (2) repetitive and sampled with

learning processes (boosting vs. plain learner).The

former denotes that the feature ranking algorithm

is used individually on the original data and once.

The latter also uses only one feature ranking

algorithm but it creates a sample dataset using an

under-sampling or over-sampling technique. They

applied 6 feature ranking techniques and 2

learners to build classification models (multi-layer

perceptron and support vector machine). Their

results have shown that the latter enjoys a better

performance over the former. Moreover, the

ensemble learning (boosting) approach enjoys a

better classification performance over the plain

learning process, which uses no boosting.

Gao et al. [24] have used 9 filter-based feature-

ranking techniques for feature selection with

random under-sampling data through 3 scenarios:

(1) the features were selected based on the

sampled data, and the training data was based on

the original data, (2) the features were selected

based on the sampled data, and the training data

was based on the sampled data, and (3) the

features were selected based on the sampled data,

and the training data was based on the original

data. The SVM classifier was applied to build the

classification model, and the eclipse dataset of the

PROMISE repository was used. The results

obtained demonstrated that the first scenario was

better than Scenarios 2 and 3, and the AUC

feature-ranking technique performed better than

the other approaches.

Similar to their earlier work, Gao et al. [25]

applied the three scenarios but they used CFS for

feature selection and 5 classifiers (SVM, MLP,

LR, KNN, and NB) for constructing the model.

The results showed that the 1st scenario performed

better than the others, and SVM presented the best

performance.

In [26], Gao et al. have applied (1) 6 filter-based

feature-ranking techniques before and after the

ensemble sampling methods RUSBoost and

SMOTEBoost, and (2) 5 different classification

algorithms for a group of datasets from real-world

software systems. The results obtained

demonstrated that feature selection after ensemble

sampling was better, and RUSBoost performed

Babamir & Karimian / Journal of AI and Data Mining, Vol 5, No 2, 2017.

152

better than SMOTEBoost. Among the 6 ranking

techniques, RF (Random Forest) and RFW

(random forest walk)enjoyed more performance

over the others.

Wang et al. [27] investigated different feature-

selection techniques consisting of filter-based and

wrapper-based methods, and showed that the

efficiency of the classification models improved;

however, there was no efficiency when over 85%

of the features were removed from the original

datasets. The experiments carried out by Catal et

al. [12] showed a high performance of the CFS

method.

The class imbalance problem have been

investigated in various areas [28-30], and various

techniques have been developed to overcome the

difficulties of learning from imbalanced data. In a

binary classification, under-sampling the majority

class and over-sampling the minority class [31-

33] are the main approaches for solving the class

imbalance problem. Since in this work, the

majority and minority classes are non-faulty and

faulty modules, respectively, we used under-

sampling the non-faulty module class and over-

sampling the faulty module one.

Riquelme et al. [11] have shown that the

balancing techniques such as SMOTE improve

the AUC parameter (see section 3.2.1). They

applied the 2 balancing techniques SMOTE and

resample, with 2 common classification

algorithms, NB and J48, on 5 open public datasets

from the PROMISE repository. In the current

study, we considered the SMOTE method to

resolve the class imbalance problem in fault

prediction modeling.

Considerable works have been done on feature

selection and data sampling separately but a few

studies have been presented for considering both

of them simultaneously, particularly in the

software engineering field.

Chen et al. [34] considered data sampling and

feature selection in the context of software

cost/effort estimation but did not focus on the

class imbalance problem, and used data sampling

prior to feature selection. Furthermore, their

classification model was for non-binary problems.

Liu et al. [35] have introduced the active feature

selection in their sampling approach. However,

their goal of data sampling was dataset size

reduction instead of addressing the class

imbalance problem.

Khoshgoftaar et al. [36] presented feature

selection and data sampling together for software

fault prediction. They viewed 6 commonly used

feature-ranking techniques [27] for feature

selection and the random under-sampling [33]

technique for data sampling. However, they used

just the SVM and KNN classifiers for building the

software prediction models and their dataset; their

results were different from ours. In this paper, we

used 4 scenarios consisting of 4 significant

synthesis of feature selection and data sampling.

Each synthesis was used as a data preprocessing

step for the training phase of 17 classifiers in the

context of 13 public and cleaned NASA datasets

from PROMISE repository.

3. Feature selection and sampling methods

In this section, we address the feature selection

and sampling methods exploited in our work.

3.1. Correlation-based feature selection

In machine learning, feature selection is the

process of selecting a subset of relevant features

for the construction of a prediction model.

Instances may contain redundant or irrelevant

features, where the former does not provide

additional information and the latter provides no

useful information.

Elimination of redundant features from a set of

features is called filtering. The filtering process

may be considered for all or correlated features.

For predict models that use machine learning

techniques, it is important to determine relevant

and significant features. In this work, we used a

filter-based method called the correlation-based

feature selection (CFS) to identify relevant

metrics. This method begins with a null set, and at

each stage, adds the features having the highest

correlation with the class but not have high

correlation with the already included features in

the set.

3.2. Sampling methods

Sampling is a pre-processing method

implemented to balance a given imbalanced

dataset by increasing or decreasing the modules

(cases) in the dataset before building the

prediction model. Usually a dataset consists of a

large number of “normal” (unconcerned)

instances with just a small number of “abnormal”

(concerned) ones. In this work, the normal and

abnormal classes were the non-fault prone and

fault-prone classes, respectively.

There are 2 types of samplings, over-sampling

and under-sampling. In a binary classification, the

former tries to increase the minority (abnormal)

class, while the latter tries to decrease the

majority (normal) one. Although under-sampling

increases the sensitivity of a classifier to the

minority class, a combination of over-sampling

and under-sampling leads to a better performance

Babamir & Karimian / Journal of AI and Data Mining, Vol 5, No 2, 2017.

153

over just under-sampling. Accordingly, prediction

of the minority class is improved by correcting the

imbalance problem.

Another sampling concern is that over-sampling

may lead to over-fitting and under-sampling may

lead to elimination of useful instances. Therefore,

we used the synthetic minority over-sampling

technique (SMOTE).

3.3. SMOTE

Chawla et al. [9] have proposed SMOTE,

producing new instances based on K-nearest

neighbor (KNN).To produce sample modules, we

used SMOTE through the following steps:

1. Normalizing software metrics as the predictor

variables. The normalization was used to fit a

variable into a specific range. Among the others,

the Min-Max normalization maps the metric value

mti,j to nval(mti,j), fitting in the range [0,1] “(1)”.

The nval(mti,j) value indicates the normalized

value for metric mti of module j, where val(mti,j) is

the current value for the metric of module j, and

min(mti,j) and max(mti,j) indicate the max. and

min. values for the metric of module j,

respectively.

 
 

   
i,j i,j

i,j

i,j i,j

val(mt)- min mt
nval mt =

max mt -min mt
 (1)

2. Choosing a sample module, say ms, from the

fault-prone class.

3. Computing the KNN value forms based on the

similarity (we considered K=5). Among 5

neighbors, the most similar module to ms is the

one that has the least Euclidian distance to ms.

Given that each module consists of n metrics,

“(2)” shows the Euclidean distance between ms

and another module (similarity ms to another

module), say mb, where n indicates the number of

metrics of the module.

 
n

2

s b i,s i,b

i=1

sim m ,m = [nval(mt)-nval(mt)]

(2)

Having calculated the similarity of module ms to

others, we selected 5 modules having the

minimum Euclidian distance to ms. These

modules are called the 5 NNs of module ms.

4. Choosing one of the 5 neighbors randomly, say

mr, and adding to the minority (fault-prone) class.

5. Generating the synthetic module. (a) The

difference between each ms metric value and the

corresponding mr metric was computed as follows

(n is the number of metrics):

, i,s i,rd = val(mt)-val(mt), i=1..ni s
 (3)

(b) di,s is multiplied by a random number between

0 and 1, and added to the corresponding ms metric

value.

i,s i,s i,sval(mt)=val(mt)+rand[0,1]*d , i=1,n (4)

Step 5 leads to the generality of the decision

region of the fault-prone class.

4. Classifiers

We evaluated the statistical and machine learning

classifiers [37-39] for software fault prediction. In

what follows, we briefly explain them.

4.1. Logistic regression (LR)

LR is widely applied as a statistical technique. A

detailed explanation of the LR analysis could be

obtained from Hosmer et al. [34] and Basili et al.

[11]. It is called ridge regression, which is the

most commonly used regularization method for

the not well-posed problems, meaning that the

solution is highly sensitive to changes in data. In

this work, we used the multinomial logistic

regression model using the ridge estimator [40].

4.2. Bagging

Bagging (bootstrap aggregating), introduced by

Breiman [41], improves the classification

performance using the bootstrap aggregation,

meaning that it produces various similar sets of

training data and applies a new method to each

set. It is an ensemble classifier, and provides an

aggregation of predictions of some independent

classifiers with the goal of improving the

prediction accuracy. An ensemble classifier uses

the multiple classification algorithms and

averages their predictions. To this end, it uses

random samples with replacement and/or random

predictor (feature) sets to generate diverse

classifications. Therefore, each training set is a

bootstrap sample because of using sampling with

replacement. The ensemble methods are used to

address the class imbalance problem.

The bagged classifier makes a decision by the

majority of the prediction results returned by each

classification. According to [41, 42], the benefits

of bagging are (1) a better classification accuracy

over the other classifiers,(2) the variance

reduction, and (3) avoidance of over-fitting.

4.3. Random forest (RF)

RF was proposed by Breiman [43], and similar to

bagging, it is an ensemble method. It produces a

forest of decision trees at the training time. Each

tree is produced based on the values for a random

vector; these vectors are sampled with the same

distribution and independently for all trees of the

Babamir & Karimian / Journal of AI and Data Mining, Vol 5, No 2, 2017.

154

forest. The result of the output class is known as

the mode of output classes obtained from the

individual trees [42].

According to [41, 42, 44], the features of RF are:

(1) simplicity and robustness against noises, (2)

ability of accurate classification for various

datasets, (3) ability of fast learning, (4) having

efficiency on large datasets, (5) ability of

estimation of important variables in the

classification, (6) ability of estimating missing

data and maintaining accuracy in missing a large

proportion of the data, and (7) having methods for

balancing unbalanced datasets.

4.4. Boosting techniques

Similar to bagging and random forest, boosting is

a machine-learning ensemble meta-algorithm. It

uses a decision tree algorithm for producing new

models. Unlike bagging, which assigns an equal

vote to each classifier, boosting assigns weights to

classifiers based on their performance. The

boosting methods use a training set for each

classifier based on the performance of the earlier

classifiers.

There are various boosting algorithms present in

the literature. In this work, we used AdaBoost(AB)

[45] and LogitBoost(LB) [46] for classification.

The features of boosting are its ability to (1)

reduce bias and variance in supervised learning,

and (2) convert weak learners to strong ones[47].

A weak/strong learner is a classifier that is ill-

correlated/well-correlated with the true

classification.

4.5. DECORATE

DECORATE (diverse ensemble creation by

oppositional relabeling of artificial training

examples) is a meta-learner, exploiting a strong

learner for constructing classes. To this end,

DECORATE artificially builds random examples

for the training phase. This is why DECORATE

provides a high accuracy on the training data to

build efficient various classes in a simple way.

The class labels of these artificially constructed

examples are in inverse relation to the current

classes, and therefore, it increases diversity when

a new classifier is trained on the additional data.

The problem with the boosting and bagging

classifiers is that they restrict the amount of the

ensemble diversity they can get when the training

set is small. This is because the boosting and

bagging classifiers provide the diversity by re-

weighting the existing training examples, while

the DECORATE classifier ensures variety on a

large set of additional artificial examples.

In the case of class imbalance, identifying

samples from the minority class is usually more

significant and dearer than the majority class.

Therefore, some ensemble methods have been

presented to resolve it. According to [48], adding

variety to an ensemble method improves the

performance of a learning method in case of the

class imbalance. Haykin and Network have dealt

with the influence of diversity on the performance

of the minority and majority classes [48]. They

have presented good and bad patterns in

imbalanced scenarios, and have obtained 6

different situations of the influence of the

diversity through theoretical analysis.

Furthermore, they have carried out experimental

studies on the datasets consisting of highly

skewed class distributions. Then they have come

into the conclusion that there is a strong

correlation between diversity and performance,

and that diversity has a good influence on the

minority class.

4.6. Multi-layer perceptron (MLP)

MLP uses biological neurons to construct a

model, and is applied to model complex

relationships between inputs and outputs and

search patterns in datasets [48]. MLP could be

considered as a binary classifier with multiple

layers. An MLP feed forward network includes

one input layer, one or more hidden layers, and

one output layer. Each layer consists of nodes that

are connected to their immediate preceding layers

as the input and the immediate succeeding layers

as the output. The back-propagation method is the

most commonly used learning algorithm in order

to train the multi-layer feed forward networks,

and includes 2 passes, forward and backward.

Through the forward pass, a training input dataset

is used, and a set of outputs is created as the

actual response. In this pass, the network weights

are fixed and their effect is propagated through

the layers of the network [48]. Through the

backward pass, an error, which is the difference

between the actual and desired output of the

network, is computed. The computed error is

propagated backward through the network, and

the weights are re-adjusted in order to reduce the

gap between the actual and desired responses.

4.7. Radial basis function (RBF) network

RBF is a function whose value depends only on

the distance (normally the Euclidean distance)

from the origin. The RBF network, proposed by

Broomhead and Lowe [49], is an artificial neural

network (ANN) applying RBF as an activation

function. Among others such as function

Babamir & Karimian / Journal of AI and Data Mining, Vol 5, No 2, 2017.

155

approximation and time series prediction, the RBF

networks could apply to the classification.

The RBF networks often consist of 3 layers: input

layer, non-linear RBF hidden layer, and linear

output layer, where the input layer is a vector of

real numbers, 𝑥 ∈ ℝ𝑛, and the output layer is a

scalar function of the input vector (Relation 5). In

fact, we have 𝜑: ℝ𝑛 ⟶ ℝ.
N

i i

i=1

φ(x)= a ρ(|x-c |) (5)

where, N is the number of neurons in the hidden

layer, 𝑐𝑖 is the center vector, and 𝑎𝑖 is the weight

of neuron 𝑖 in the output layer. All inputs are

connected to each hidden neuron. The RBF

network consisting of enough hidden neurons can

approximate any continuous function with a

desired accurate [50]. The RBF networks could

be normalized; in this work, we used the

normalized Gaussian RBF network.

4.8. Naïve bayes (NB)

The NB classifier is a probabilistic classifier

based on the Bayes theorem, assuming that there

is a strong (naive) independency between the

features [51]. When NB equips with an

appropriate preprocessing, it classifies as well as

some advanced methods such as the support

vector machine (SVM).

Instead of the expensive iterative approximation,

which is used by many classifiers, the NB

classifier uses maximum-likelihood (i.e. without

Bayesian methods), and training is performed

through assessing a closed-form expression in the

linear time.

A feature value is independent from the other

feature values in the NB classifier. Accordingly,

the NB classifier considers each feature

independently in the sample classification,

regardless of the correlations with other features

of the sample.

The NB classifiers can be trained efficiently using

the supervised learning for some types of

probability models, and their advantage is that

they require a small amount of training data for

the classification process.

4.9. Bayes network (BN)

A Bayesian network is a probabilistic graphical

model that shows relationships among the subsets

of variables. Unlike the NB classifier, this method

considers dependencies between variables, and

determines joint conditional probability

distributions. The advantages of a BN model are:

(1) it easily handles the missing data because of

representing dependencies between variables, (2)

it could provide a graphical model of causal

relationships, and hence could be used to predict

the consequences of intervention, and (3) since it

has both the causal and probabilistic semantics, it

is ideal for incorporating prior knowledge (which

typically comes in the causal form) [52].

4.10. Support vector machines (SVM)

SVM, proposed by Vapnik [53], is a supervised

learning method creating a hyper-plane or

collection of hyper-planes, and can be used for

classification and regression. When a hyper-plane

has the largest distance to the nearest training data

of any class (called functional margin) a good

separation is obtained because a larger margin

leads to a smaller error of the classifier. SVM

could be used for the ill-posed problems, meaning

that the solution is highly sensitive to the changes

in a dataset.
The main problem with SVM is that it is not

possible to separate the datasets linearly in a finite

dimensional space. Accordingly, the original

finite-dimensional space is mapped into a higher-

dimensional space so that we can separate the

datasets [54]. The hyper-planes in the higher-

dimensional space are the set of points whose dot

product with a vector in that space is constant.

Another problem with SVM is that despite a good

performance in the pattern, recognition field does

not consider the problem domain knowledge;

moreover, the classification speed is considerably

slower than that of the neural networks.

4.11. K*

K* is an instance-based learning method, using

the entropy distance to compute the distance

between instances [55]. Learning based on

instances means that the instance classification is

carried out through comparing the instances with

a dataset of pre-classified examples. Such a

learning is based on the fact that similar instances

have similar classifications. The similarity

between 2 instances is determined according to a

distance function, and a classification function is

used to exploit the instance similarity for the

classification of the new instances. The entropy

distance manages (1) symbolic attributes, (2) real-

valued features, and (3) missing values.

4.12. DecisionStump (DS)

DS is a binary classifier, and has a one-

level decision tree with one root node connected

to the terminal nodes (leaves) [56]. The prediction

through DS is carried out based on the value for a

single input attribute. DS is often used as a

http://en.wikipedia.org/wiki/Linear_separability
http://en.wikipedia.org/wiki/Decision_tree_learning

Babamir & Karimian / Journal of AI and Data Mining, Vol 5, No 2, 2017.

156

component of the ensemble methods such as

bagging and boosting.

4.13. J48

J48 is a Java implementation of the C4.5

algorithm [57], and is a decision tree-based

classifier. A decision tree is a machine-learning

predictor that predicts the dependent variable

value based on the attribute values of the existing

data. The dependent variable is the attribute that

should be predicted. The independent variables

are other attributes, which are used to predict the

dependent variable value.

A decision tree has internal nodes, indicating

different attributes, where the attribute values for

the observed samples are shown on branches

between the nodes. The final values for the

dependent variables are shown by the tree leaves.

To classify a new sample, the J48 decision tree

classifier creates a decision tree based on the

attribute values of the training dataset.

Afterwards, the order of attribute selection is

followed based on the tree. The target value of a

new instance is predicted through checking values

of all attributes against the corresponding values

in the decision tree model.

4.14. AN alternating decision tree (ADTree)

The ADTree classifier combines decision trees

with the prediction accuracy of the boosting

classifier in a set of classification rules. The

ADTree classifier consists of decision and

prediction nodes [58], where the former is used to

determine conditions and contains both the root

and leaf nodes. The latter nodes have a single

number. Classifying a sample by an ADTree is

different from classifying it by the binary

classification trees such as C4.5 because a sample

follows only one path in tree in C4.5, while in

ADTree, a sample follows all paths for which the

decision nodes are true; then all the prediction

nodes visited in these paths were considered. A

variation in ADTree is the multi-class ADTree

[59].

4.15. PART

PART is a Java implementation of the C4.5

algorithm [60]. PART is a partial decision tree

algorithm, applying the divide-and-conquer

method, builds a partial C4.5 decision tree in a

number of iterations, and adds the best leaf to a

rule. The main feature of the PART classifier is

that it needs no global optimization, while C4.5

does such an optimization.

5. Empirical evaluation

This section aims to represent the empirical study

results to evaluate the ability of classifiers in

predicting fault-prone software modules. We used

the weka toolkit with default settings.

5.1. Datasets

We used cleaned versions of the datasets of 13

mission critical NASA software projects (Table 1)

in this work; they were available from the

PROMISE repository. The software metrics were

considered as the independent variables (the

predictor variables), and the faulty-prone and non-

faulty-prone classes were considered as the

dependent variables (the predicted variables).

Table 1. NASA PROMISE datasets.

Legends: NSM: #software metrics, NI: #instances,

%DI: %defective instances (modules).
 Dataset Language NSM NI %DI

1 CM1 C 21 439 10.47

2 JM1 C 22 7782 20.71

3 KC1

KC2

KC3

C++

Java

Java

22

22

40

1183

334

325

21.4

27.84

12.92

4

5

6 MC1

MC2

C & C++

C

39

40

1988

157

1.81

32.48 7

8 MW1 C 38 379 7.38

9 PC1

PC2

PC3

PC4

PC5

C

C++

22

37

38

38

39

946

1391

1436

1287

1711

6.65

1.50

10.44

13.67

26.82

10

11

12

13

5.2. Independent variables

We considered 39 software metrics as the

independent variables. They were quantitative

values indicating the software features. The

metrics are explained briefly below, and are of 3

types: (1) module-level called McCabe metrics

[61, 62], (2) Halstead, and (3) enumerated

metrics.

The module-level metrics consisting of metrics 1-

4, 24, 26, 28, 30, 31, 33, and 37 were considered

using flow-graph of a module, the Halstead

metrics consisting of metrics 6-12 and 32 were

used for the experimental verifications of a

module, and the enumerated metrics consisting of

metrics 5, 13-23, 25, 27, 29, 34-36, 38, and 39

indicate the number of comments, instructions,

delimiters, and blank lines of a module. The

Babamir & Karimian / Journal of AI and Data Mining, Vol 5, No 2, 2017.

157

abbreviations used at the beginning of the metrics

are used by the PROMISE dataset.

Loc: total number of lines

1. v(g): cyclomatic complexity= p+1, where p

denotes the predicate (branch) of the module;

2. ev(g): essential complexity, denoting

unstructured codes of a module, and used to

compute the effort prediction for the module

maintenance;

3. iv(g): design complexity: number of calls

directly performed by a module or number of

modules directly call a module;

4. n: parameter count: number of parameters of a

module;

5. v:volume = length log2(1+2),where 1 and

2denote the number of distinct operators and

operands of a module, respectively;

6. l:length = N1 + N2, where N1 and N2denote the

total number of operands and operators of a

module, respectively;

7. d: difficulty = (1/2)* (N2/2), parameters 1,

N2, and 2 were explained above. This metric

denotes the module understanding;

8. i: content = levelvolume, where program level

ranges between zero and one, and level=1 denotes

that a module has been composed at the highest

possible level (i.e. with a minimum size);

9. e: effort = difficultyvolume; the effort

estimated for development of a module; difficulty

is computed as D=1/level. As the module volume

increases, its level and difficulty decreases and

increases, respectively;

10. error_est: error estimation=(effort2/3)/3000;

the number of errors is estimated to code a

module;

11. prog_time: effort/18 seconds; the required

time to program;

12. LOCode: number of instructions of a module;

13. LOComment: number of comment lines of a

module;

14. LOBlan: number of blank lines of a module;

15. uniq_op:number of unique operators of a

module;

16. uniq_opnd: number of unique operands of a

module;

17. total_op: total number of operators of a

module;

18. total_opnd: total number of operands of a

module;

19. branch_count: number of branches of a

module;

20. call_pairs: number of invocations by a

module;

21. loc_code_and_comment: number of

instructions and comment lines of a module;

22. condition_count: number of condition points

of a module;

23. cyclomatic_density = v(g) / (LOCode +

LOComment);

24. decision_count: number of decision points of

a module;

25. design_density:iv(g)/v(g);

26. e: edge_count: number of edge flow graph of

a module;

27. essential_density: (ev(g)-1)/(v(g)-1);

28. loc_executable: number of lines of executable

code of a module;

29. gdv(g):global_data_complexity = v(g)/n (see

Parameter 4 for n);

30 global_data_density: gdv(g)/v(g);

31. L: halstead_level = 2*2/(1*N2);

32. maintenance_severity =ev(g)/v(g);

33. modified_condition_count: effect of changing

a condition on a decision outcome;

34. multiple_condition_count: number of multiple

conditions of a module;

35. node_count: number of nodes of flow graph of

a module;

36. normalized_cylomatic_complexity: v(g)/loc;

37. number_of_lines: number of lines of a

module;

38. percent_comments: percentage of comment

lines of a module.

The PROMISE calculated metrics 1-20 for

datasets 1-4 and 9 in table 1, and all metrics for

datasets 5-8 and 10-13. However, because some

independent variables might be highly correlated,

we used a correlation-based feature selection

technique (CFS) [8] to select the best predictors of

the original and sampled data (Table 2).

Table 2. Metrics selection using CFS method for original

and sampled data.
Selected metrics

of sampled data

Selected metrics of original

data

Dataset #

3-4-9-13-14-15-16 1-4-9-14-16-17 CM1 1

3-4-14-15-22-16 1-4-9-13-14-15-22-16-17 JM1 2
3-4-14-15-17 6-7-8-9-14-15-17-20 KC1 3

2-3-9-13-14-15-22-

17-19

1-3-9-15-22-18-19 KC2 4

22-31-30-6-37-39 7-22-15 KC3 5

15-21-22-14-26-3-

30-31-33-38-39

21-38-39 MC1 6

14-26-4-3-31-8-10-

11-7

15-14-4-28-31-8-10-11-36-18 MC2 7

15-21-14-24-4-26-
27-35-18-38

15-14-4-27-9-32-34-36-17 MW1 8

3-4-9-14-22-15-19 9-14-22-15-17 PC1 9

14-4-26-29-33-16-
39

20-22-14-26-9-8-18-39 PC2 10

1-21-22-14-25-3-5-

9

15-22-14-9-33-37-17 PC3 11

3-24-26-4-28-5-39 22-23-3-39 PC4 12

15-21-3-24-4-3-5-

30-31

21-22-24-4-3-30-9-8-10-34-16-

36-1

PC5 13

Babamir & Karimian / Journal of AI and Data Mining, Vol 5, No 2, 2017.

158

5.3. Dependent variable

This work focuses on the prediction of being

fault-prone a module. Therefore, our dependent

variable was a boolean variable consisting of true

or false values, indicating that the module was

fault-prone (fp) or non-fault-prone (nfp).

Predicting the number of faults is a possible future

work if such data is accessible.

5.4. Performance metrics

Since the area under the ROC (receiver operating

characteristic) curve (called AUC) is used to

evaluate the fault prediction models (classifier

methods) [3, 5], we used AUC in this work. The

ROC curve shows sensitivity against specificity,

where the sensitivity and specificity denote the

probability of true fault detection and the

probability of false alarm, respectively. We did

not have a good performance when the AUC value

was less than 0.7. (1-.9 = excellent, .9-.8 = good,

.8-.7 = fair, .7-.6 = poor, less than .6 = fail).

If the fp and nfp modules are regarded as the

positive and negative cases, the ROC curve will

show rates of the true positive (i.e. correct

prediction in fault-proneness of a module) against

the false positive (i.e. incorrect prediction of a

non-fault-prone module as a fault-prone module).

An ROC curve shows the classifier performance,

lying between 0 and 1 (the value 1 indicates a

perfect classifier) [47].

5.5. Environment setting

The parameters of the experimental environment

were set for the classifiers, as follow:

Logistic Regression: (1) maxIts=-1 (maximum

number of iterations to be performed. Value -1

means until convergence), (2) ridge=10-8 (ridge

value in the log-likelihood).

Bagging: (1) classifier: RepTree, (2)

bagSizePercent=100 (Size of each bag, as a

percentage of the training set size).

Random Forest: (1) maxDepth=0 (maximum

depth of the trees, 0 for unlimited), (2)

numFeatures=0 (number of attributes to be used

in random selection, zero means log2

(number_of_attributes) + 1 is used), (3)

numTrees=10 (number of trees to be generated).

Boosting: (1) classifier: DecisionStump, (2)

likelihood Threshold=-1.7976931348623157E308

(threshold on likelihood improvement), (3)

numRuns = 1 (number of runs for internal cross-

validation), (4) weightThreshold=10 (weight

threshold for weight pruning).

Decorate: (1) artificialSize=1.0 (number of

artificial examples to use during training), (2)

classifier: J48, (3) desiredSize=15 (number of

classifiers in this ensemble. Decorate may

terminate before the size is reached (depending on

the value for num Iterations), (4)

numIterations=50 (maximum number of iterations

to be run).

Multilayer Perceptron: (1) hiddenLayers =

(attribs+ classes)/2, (2) learningRate=0.3 (amount

that the weights are updated), (3) momentum=0.2

(momentum applied to the weights during

updating).

Radial Basis Function: (1) clusteringSeed=1

(random seed to pass to K-means), (2)

minStdDev=0.1 (minimum standard deviation for

clusters), (3) numClusters=2 (number of clusters

for K-Means to be generated), (4) ridge=10-8

(ridge value for logistic or linear regression).

Naïve Bayes: (1) KernelEstimator=false (kernel

estimator for numeric attributes rather than a

normal distribution), (2) SupervisedDiscretization

=false (supervised discretization to convert

numeric attributes to the nominal ones).

Bayes Network: (1) Estimator= SimpleEstimator

(Estimator algorithm for finding the conditional

probability tables of the Bayes network), (2)

search Algorithm=k2 (selected method to search

the network structures).

Support Vector Machine: (1) c=10 (complexity

parameter C), (2) epsilon=0.001 (epsilon for

round-off error), (3) kernel: radial basis

function(kernel to be used).

K*: (1) entropicAutoBlend=false (entropy-based

blending is not used), (2) globalBlend=20

(parameter for global blending), (3) missingMode:

average column entropy curves (to determine how

missing attribute values are treated).

J48: (1) confidenceFactor=0.25 (confidence factor

for pruning), (2) minNumObj=2 (minimum

number of instances in per leaf), (3)

subtreeRaising=true (subtree raising operation is

considered in pruning).

ADTree: (1) numOfBoostingIterations=10

(number of boosting iterations to be performed),

(2) saveInstanceData=false (tree does not save

instance data), (3) searchPath: expand all paths

(type of search to be performed when it builds the

tree. It will do an exhaustive search).

PART: (1) minNumObj=2 (minimum number of

instances per rule), (2) confidenceFactor=0.25.

5.6. Cross-validation

A 10-fold cross-validation [63] was used to

validate the prediction models. Each dataset was

randomly partitioned into 10 folds of the same

size.

For 10 times, 9 folds were selected to train the

models, and the remaining fold was used to test

Babamir & Karimian / Journal of AI and Data Mining, Vol 5, No 2, 2017.

159

the models, with each time leaving out a different

fold. All the preprocessing steps (feature selection

and data sampling) were done on the training

dataset. The processed training data was then

applied to build the classification model, and the

resulting model was used for the test fold. This

cross-validation was repeated 10 times; each fold

was used exactly once at the test data.

5.7. Discussion of results

In this section, we aim to show the effect of

feature selection techniques in combination with

data sampling using 4 scenarios. The scenarios

(see Figure 2) include all the possible situations

when feature selection and data sampling are used

simultaneously to create the training dataset.

Figure2. Feature selection and data sampling scenarios.

Scenario 1 (S1): using CFS, we select features

from the original data, and create the training

dataset based on the original data;

Scenario 2 (S2): using CFS, we select features

from the original data, and create the training

dataset based on the sampled data;

Scenario 3 (S3): using CFS, we select features

from the sampled data, and create the training

dataset based on the original data;

Scenario 4 (S4): using CFS, we select features

from the sampled data, and create the training

dataset based on the sampled data.

5.7.1. Investigation using AUC performance

As stated in Section 5.4, the AUC value denotes

the method performance. In other words, if h and

g are 2 classifiers, then AUC(h) > AUC(g) means

that classifier h has a better average performance

over classifier g.

We classified the 13 datasets stated in table 1

using 17 classifiers and the 4 scenarios, and then

calculated the AUC values. For brevity, we

showed just the results of classifying the datasets

MC1, MC2, JM1, and KC2 (the datasets 6, 7, 2,

and 4 in Table 1) obtained by 17 data classifiers

under the 4 scenarios.

According to table 1, MC1 consists of the Min.

percent of faulty modules (1.81%), many metrics

(39 from 40), and comparatively many instances

(1988).

Against MC1, MC2 consists of the max. percent

of faulty modules (32.48%) and the min. number

of instances (157). Similar to MC1, MC2 contains

the max. number of metrics (40). Against MC2,

JM1 has the max. number of instances (7782) and

the nearly min. numbers of metrics (22 from 40).

Finally, KC2 lacks about half of the metrics (18)

and comparatively, does not have many instances

(324).

We then proceeded to evaluate the 17 classifiers

for classifying the 4 datasets mentioned above.

Figures 3-6 show the evaluation under the 4

scenarios for the datasets MC1, MC2, JM1, and

KC2. The figures show two issues: (1) method

performance with the 4 scenarios, and (2)

comparison between the performances of the

methods.

The 1st issue shows that with scenarios 2 and 4,

we have a higher AUC (performance) than

scenarios 1 and 3. The 2nd issue shows that there

are agreements and disagreements on the

performance of the methods (Table 3). This table

shows that the figures agree on the best

performance of the random forest and LogitBoost

classifiers (predictors), and the worst performance

of SVM and LADTree.

With the 4 scenarios, we obtained 4 different

AUC performance values for each classifier in the

classification of the 13 datasets. Then we

calculated the mean (average) values for the 4

ACU values obtained and standard deviation of

the scenarios from the mean (Relation 6,  is the

mean) for each classifier.
4

2

i

1

1
s= (scenario -m)

4
 (6)

A low mean (less than 0.5) and a high standard

deviation indicate inappropriate values.

A low standard deviation means that the data is

very close to the mean, while a high standard

deviation does that data scatter over a wider range

of values.

Babamir & Karimian / Journal of AI and Data Mining, Vol 5, No 2, 2017.

160

Figure 3. Performance evaluation of 17 data classifiers for MC1 dataset.

Figure 4. Performance evaluation of 17 data classifiers for MC2 dataset.

Figure 5. Performance evaluation of 17 data classifiers for JM1 dataset.

0/45

0/55

0/65

0/75

0/85

0/95

A
U

C
MC1

S1

S2

S3

S4

0/4
0/45

0/5
0/55

0/6
0/65

0/7
0/75

0/8
0/85

0/9

A
U

C

MC2

S1

S2

S3

S4

0/4
0/45
0/5
0/55
0/6
0/65
0/7
0/75
0/8
0/85
0/9

A
U
C

JM1

S3

S4

S1

Babamir & Karimian / Journal of AI and Data Mining, Vol 5, No 2, 2017.

161

Figure 6. Performance evaluation of 17 data classifiers for KC2 dataset.

Table 3. Performance of classifiers under scenarios.

Figure 7. AUC mean value with 4 scenarios and deviation

from mean value in MC1 dataset classification.

Figure 7 shows (1) the mean AUC value obtained

with 4 scenarios, and (2) standard deviation of

scenarios from the mean for the 17 classifiers in

the classification of the MC1 dataset. According

to figure 7, the worst (least) mean of the AUC

value with the 4 scenarios is that of the SVM

predictor; therefore, totally, it is not a good

prediction method for the MC1 dataset, while the

best (most) mean of the AUC value with the 4

scenarios is that of LogitBoost, Bagging and

Kstar. However, the deviation in the SVM,

Logistic, Naïve Bayes, LogitBoost, and Bagging

classifiers from the mean is the lowest; this means

that they are stable against the class imbalance

problem. By contrast, the deviation of the

Decorate, J48, and LADTree classifiers from the

mean is the worst (most). This means that they are

more unstable for the class imbalance problem

over others. Overall, figure 7 shows that Logistic,

Bagging, and LogitBoost are better predictors than

the others with view of the mean and deviation.

Figure 8 shows the mean AUC value obtained

using the 4 scenarios, and the standard deviation

of the scenarios from the mean for the 17

classifiers in the classification of the MC2 dataset.

Figure 8. AUC mean value with 4 scenarios and deviation

from mean in MC2 dataset classification.

Similar to the classification used for the MC1

dataset, Figure 8 shows that the worst (least) value

of the mean AUC with the 4 scenarios is that of

the SVM predictor; therefore, totally, it is not a

good prediction method for the MC2 dataset; by

contrast, the best (most) value of the mean AUC

0/45
0/5

0/55
0/6

0/65
0/7

0/75
0/8

0/85
0/9

0/95

A
U

C
KC2

S1

S2

S3

S4

Dataset Best classifier under

 scenario 2/4

Worst classifier

 under scenario 2/4

MC1 Random Forest, LogitBoost SVM

MC2 Random Forest, logitBoost SVM

DecisionStump
JM1 BayesNet, Decorate,

Random Forest

LADTree

KC2 KStar, Bagging, Decorate,
LogitBoost, Random Forest

LADTree

Babamir & Karimian / Journal of AI and Data Mining, Vol 5, No 2, 2017.

162

with the 4 scenarios is that of Decorate, Bagging,

and Random Forest. However, the deviations in

Naïve Bayes and Decision Stump from the mean

are the least. This means that they are stable

against imbalanced data. Overall, figure 8 shows

that ADTree and AdaBoost predict better than the

others with view of the mean and deviation.

Figure 9 shows the AUC mean value obtained

with the 4 scenarios and standard deviation of

scenarios from the mean for the 17 classifiers

used for classification of the JM1 dataset. Similar

to the classification used for the MC1 and MC2

datasets, figure 9 shows that the worst (least)

mean AUC value with the 4 scenarios is that of

the SVM predictor. Therefore, totally, it is not a

good prediction method for JM1; moreover,

deviation in the SVM classifier from the mean

value is the worst (most). By contrast, the best

(most) mean AUC value with the 4 scenarios is

that of the BayesNet, Bagging, and Part

predictors.

Figure 9. AUC mean value with 4 scenarios and deviation

 from mean in JM1 dataset classification.

Deviation of the Logistic, RBF, MLP, Naïve

Bayes, and DecisionStump predictors from the

mean value is the least (best).This means that they

are stable against the class imbalance problem.

Figure 10 shows the mean AUC value obtained

with the 4 scenarios and standard deviation of

scenarios from the mean for the 17 classifiers

used for classification of the KC2 dataset.

Again, similar to the three previous experiences,

Figure 10 shows that the worst (least) mean AUC

value with the 4 scenarios is that of the SVM

predictor; therefore, totally, it is not a good

prediction method for KC2; moreover, similar to

the JM1 dataset, deviation of SVM from the mean

value is the worst.

Figure 10. AUC value mean with 4 scenarios and

deviation from mean value in KC2 dataset classification.

However, the mean AUC value of about 10

classifiers is high, and their deviation from the

mean value is low. Moreover, the deviation of all

classifiers but SVM from the mean is low. This

means that all predictors but SVM are stable

against the imbalanced data.

5.8. Overall evaluations

Figures 11 and 12 show the AUC values obtained

for the classifiers in classifying all the datasets

with: (1) scenarios 2 and 4, and (2) all the

scenarios, respectively.

Furthermore, the figures show the deviation of the

classifiers from the mean value. With scenarios 2

and 4, figure 11 shows that the best performance

is that of Bagging and Random Forest, while the

worst performance is that of the SVM classifier.

Figure 11. AUC mean value with scenarios 2 and 4 and

deviation from mean for classification of all

datasets.

Babamir & Karimian / Journal of AI and Data Mining, Vol 5, No 2, 2017.

163

Figure 12. AUC mean of all scenarios and deviation from

mean for classification of all datasets.

Based on all scenarios, figure 12 shows that the

best performance is that of the BayesNet,

LogitBoost, and Bagging, while the worst one is

that of the SVM predictor. Moreover, the deviation

of the J48 classifier from the mean value is the

worst. Based on Figs. 10 and 11, we came into

this conclusion that the performance of the

classifiers for software fault prediction is

according to table 4.

To show the impact of the 4 scenarios on the

prediction models, we classified all of the 13

datasets to faulty and non-faulty modules using

the 17 classifiers, and obtained the mean value of

the classifiers for each scenario. Then we

calculated the impact mean value of the scenarios

and the deviation of each scenario from the mean

value.

We used one-way analysis of variance (ANOVA)

F-test [64] to determine the statistical difference

between the 4 scenarios. There are 2 possible

hypotheses: (1) null hypothesis, meaning that

means of all groups of the population (scenarios)

are the same, and (2) alternate hypothesis,

meaning that at least one pair of mean values are

different.

To show the statistical difference between the

mean values of groups of population, the

significance level (indicated by probability value

or p-value) was computed by ANOVA. The

difference between some of the means are

statistically significant if p-value≤0.05.

Otherwise, we have not enough evidence to reject

the null hypothesis, meaning that the means are

equal. Therefore, for p-value≤0.05, we concluded

that the alternate hypothesis should be accepted,

and the means of at least 2 scenarios are

significantly different from each other. We used

MATLAB [65] to compute the p-value (Table 5).

Table 5. ANOVA results for 4 scenarios.

The p-value=0.0014 indicates that the scenarios

are different. Source means "the source of the

variation in the data" and Scenario shows groups

of the population whose p-values to be compared.

Error means "the variability within the groups" or

"unexplained random error." Parameters m=4 and

n=68 denote the number of scenarios and data,

respectively.

After rejecting the null hypothesis, a multiple

comparison called Tukey’s test was used to

compare the difference between the mean values

pair wise. Figure 13 displays the multiple

comparisons for the 4 scenarios with 95%

confidence interval. As the figure shows, these

intervals have no overlap; therefore, the mean

values are significantly different. Considering

figure 13, we understand that scenarios 2 and 4

significantly show a better performance over

scenarios 1 and 3.

As figure 14 shows, the performance of the fault

prediction of the models based on the training

sampled data (i.e. scenarios 2 and 4) is better than

the training original data (i.e. scenario 1 and 3),

regardless of selection of the features from the

sampled or original data.

In addition, scenario 4 (i.e. training sampled data

and selection of features from the sampled data)

shows the most mean value of performance using

all datasets. If we call the impact of a scenario as

the mean value for the performance of all

classifiers using all datasets, the deviation of

scenario 2 (i.e. training the sampled data and

selection of features from the original data) from

the impact mean is the best (least).

Overall, scenario 2 achieves better than the others.

Therefore, considering figure 14, we came into

this conclusion that the impact of the scenarios on

the performance of the classifiers is 3<1<2<4 if

we consider the mean value, and 2<4<1<3 if we

do the standard deviation value.

Table 4. Software fault prediction performance of

classifiers.

Scenario Value Method Performance

2 and 4 Mean Kstar> Bagging > RF > Decorate

>BayesNet
1,2,3,4 Mean Bagging >BayesNet>LogitBoost>Kstar>

RF

1,2,3,4 Standard
Deviation

DecisionStump> Naïve Bayes
>BayesNet

Source sum of

squares

degree of

square

mean sum

of squares

F-test p-value

Scenario 0.08573 m-1=
4-1=3

0.08573/3
=0.02858

0.02858/
/0.00489

=5.84

P[F(3,64)
≥ 5.84]

<0.0014

Error 0.31313 n-m=
68-4=64

0.31313/64
=0.00489

Total 0.39886 64+3=67 0.00489 +

0.02858

Babamir & Karimian / Journal of AI and Data Mining, Vol 5, No 2, 2017.

164

Figure 13. Multiple comparison for four scenarios.

Figure 14. Mean value of performance of all classifiers

(impact) for each scenario and deviation of scenarios

from their impact using all datasets.

6. Conclusions and future work

This paper experimentally evaluated the ability of

17 classifiers in predicting fault-prone software

modules with 4 scenarios in the context of 13

cleaned NASA datasets.

In a given classification problem, an important

challenge is the choice of the convenient features

when the underlying data is imbalanced. To deal

with this problem, we discussed the different

combinations of the feature selection and data

sampling to create the training data for

construction of a software fault prediction model.

This study answered these research questions: (1)

for which of the original or sampled data should

feature selection be used? (2) given a set of picked

features, based on which type of data (the original

or sampled), we create the training data? (3)

which of the classifiers have a better

performance?

The results obtained showed that feature selection

based on sampled or original data is not affected

in the performance of the fault prediction models.

Furthermore, the performance of the fault

prediction models is better when the training data

is created using the sampled data over the original

data. In addition, Bagging, Random Forest, and

K* have the best performance in the mean for all

datasets with scenarios 2 and 4.

A future work may conduct the additional

experimental studies on the other datasets, feature

selection, and sampling methods, and may use

additional in dependent variables (i.e. features)

such as coupling and cohesion metrics.

Another new idea that may be considered as the

future work is thinking of the fault prediction of

the concurrent programs such as the multi-thread

programs. For such programs, metrics such as the

number of concurrent and sequential threads

should be considered. Two significant classes for

such programs are (1) execution sequences of a

concurrent program leading to deadlock, and (2)

those not leading to deadlock. We have an

experience on fault prediction of concurrent

programs using the NARX neural network, where

executions are classified into deadlock-prone and

non-deadlock-prone [66]. However, this

classification was based on the runtime (dynamic)

behavior of the concurrent programs, and not the

use of software static metrics.

Another future work may apply sample reduction

to training phase inspired by [67]. In [67], authors

addressed an instance reduction method to discard

irrelevant instances from the training set.

References
[1] Menzies, T., Greenwald, J., & Frank, A. (2007).

Data mining static code attributes to learn defect

predictors. IEEE transactions on software engineering,

vol. 33, no. 1, pp. 2-13.

[2] Catal, C., & Diri, B. (2009). Investigating the effect

of dataset size, metrics sets, and feature selection

techniques on software fault prediction

problem.Information Sciences, vol. 179, no. 8, pp.

1040-1058.

[3] Jiang, Y., Lin, J., Cukic, B., & Menzies, T. (2009).

Variance analysis in software fault prediction models.

In the 20th International Symposium on Software

Reliability Engineering, pp. 99-108.

[4] Khoshgoftaar, T. M., Rebours, P., & Seliya, N.

(2009). Software quality analysis by combining

multiple projects and learners. Software quality

journal, vol. 17, no. 1, pp. 25-49.

[5] Lessmann, S., Baesens, B., Mues, C., & Pietsch, S.

(2008). Benchmarking classification models for

software defect prediction: A proposed framework and

0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86

4

3

2

1

AUC

s
c
e
n
a
ri
o
s

Babamir & Karimian / Journal of AI and Data Mining, Vol 5, No 2, 2017.

165

novel findings. IEEE Transactions on Software

Engineering, vol. 34, no. 4, pp. 485-496.

[6] Shepperd, M., Song, Q., Sun, Z., & Mair, C.

(2013). Data quality: Some comments on the NASA

software defect datasets. IEEE Transactions on

Software Engineering, vol. 39, no. 9, pp. 1208-1215.

[7] Khoshgoftaar, T. M., Seliya, N., & Sundaresh, N.

(2006). An empirical study of predicting software

faults with case-based reasoning. Software Quality

Journal, vol. 14, no. 2, pp. 85-111.

[8] Hall, M. A. (1999). Correlation-based feature

selection for machine learning (Doctoral dissertation,

The University of Waikato),

www.cs.waikato.ac.nz/~mhall/thesis.pdf, Access date:

11/21/2016.

[9] Chawla, N. V., et al. (2011). SMOTE: synthetic

minority over-sampling technique. Journal of Artificial

Intelligence Research, vol. 16, pp. 321-357.

[10] Kamei, Y., Monden, A., Matsumoto, S.,

Kakimoto, T., & Matsumoto, K. I. (2007). The effects

of over and under sampling on fault-prone module

detection. In the 1st International Symposium on

Empirical Software Engineering and Measurement, pp.

196-204.

[11] Riquelme, J. C., Ruiz, R., Rodríguez, D., &

Moreno, J. (2008). Finding defective modules from

highly unbalanced datasets. In the Workshops of the

Conference on Software Engineering and

Databases, vol. 2, no. 1, pp. 67-74.

[12] Catal, C., & Diri, B. (2007). Software defect

prediction using artificial immune recognition system.

In the 25th conference on IASTED International Multi-

Conference: Software Engineering, pp. 285-290.

[13] Shirabad, J. S., & Menzies, T. J. (2005). The

PROMISE repository of software engineering

databases. http://promise.site.uottawa.ca/SERepository,

Access date: 11/21/2016.

[14] Catal, C., & Diri, B. (2008). A fault prediction

model with limited fault data to improve test process.

In International Conference on Product Focused

Software Process Improvement, pp. 244-257.

[15] Catal, C., & Diri, B. (2007). Software fault

prediction with object-oriented metrics based artificial

immune recognition system. In International

Conference on Product Focused Software Process

Improvement, pp. 300-314.

[16] Elish, K. O., & Elish, M. O. (2008). Predicting

defect-prone software modules using support vector

machines. Journal of Systems and Software, vol. 81,

no. 5, pp. 649-660.

[17] Kanmani, S., Uthariaraj, V. R., Sankaranarayanan,

V., & Thambidurai, P. (2007). Object-oriented

software fault prediction using neural networks.

Information and software technology, vol. 49, no. 5,

pp. 483-492.

[18] Gondra, I. (2008). Applying machine learning to

software fault-proneness prediction. Journal of

Systems and Software, vol. 81, no. 2, pp. 186-195.

[19] Malhotra, R., & Singh, Y. (2011). On the

applicability of machine learning techniques for object

oriented software fault prediction. Software

Engineering: An International Journal, vol. 1, no. 1, pp.

24-37.

[20] Liu, H., & Yu, L. (2005). Toward integrating

feature selection algorithms for classification and

clustering. IEEE Transactions on knowledge and data

 engineering, vol. 17, no. 4, pp. 491-502.

[21] Hall, M. A., & Holmes, G. (2003). Benchmarking

attribute selection techniques for discrete class data

mining. IEEE transactions on knowledge and data

engineering, vol. 15, no. 6, pp. 1437-1447.

[22] Saeys, Y., Abeel, T., & Van de Peer, Y. (2008).

Robust feature selection using ensemble feature

selection techniques. In Joint European Conference on

Machine Learning and Knowledge Discovery in

Databases, pp. 313-325.

[23] Khoshgoftaar, T. M., Gao, K., & Napolitano, A.

(2014). Improving software quality estimation by

combining feature selection strategies with sampled

ensemble learning. In the 15th IEEE International

Conference on Information Reuse and Integration, pp.

428-433.

[24] Gao, K., & Khoshgoftaar, T. M. (2011). Software

Defect Prediction for High-Dimensional and Class-

Imbalanced Data. In the 23rd International Conference

on Software Engineering & Knowledge Engineering,

pp. 89-94.

[25] Gao, K., Khoshgoftaar, T. M., & Napolitano, A.

(2015). Combining feature subset selection and data

sampling for coping with highly imbalanced software

data. In the 27th International Conference on Software

Engineering and Knowledge Engineering, pp. 439-444.

[26] Gao, K., Khoshgoftaar, T. M., & Wald, R. (2014).

Combining Feature Selection and Ensemble Learning

for Software Quality Estimation. In the 27th

International Florida Artificial Intelligence Research

Society Conference.

[27] Wang, H., Khoshgoftaar, T. M., Gao, K., &

Seliya, N. (2009). Mining data from multiple software

development projects. In IEEE International

Conference on Data Mining Workshops, pp. 551-557.

[28] Engen, V., Vincent, J., & Phalp, K. (2008).

Enhancing network based intrusion detection for

imbalanced data. International Journal of Knowledge-

Based and Intelligent Engineering Systems, vol. 12, no.

5- 6, pp. 357-367.

[29] Kamal, A. H., Zhu, X., Pandya, A. S., Hsu, S., &

Shoaib, M. (2009). The impact of gene selection on

Babamir & Karimian / Journal of AI and Data Mining, Vol 5, No 2, 2017.

166

imbalanced microarray expression data. In the 1st

International Conference on Bioinformatics and

Computational Biology, pp. 259-269.

[30] Zhao, X. M., Li, X., Chen, L., & Aihara, K.

(2008). Protein classification with imbalanced

data. Proteins: Structure, function, and

bioinformatics, vol. 70, no. 4, pp. 1125-1132.

[31] Chawla, N. V., Bowyer, K. W., Hall, L. O., &

Kegelmeyer, W. P. (2002). SMOTE: synthetic minority

over-sampling technique. Journal of Artificial

Intelligence Research, vol. 16, pp. 321-357.

[32] Cieslak, D. A., Chawla, N. V., & Striegel, A.

(2006). Combating imbalance in network intrusion

datasets. In the IEEE International Conference

on Granular Computing, pp. 732-737.

[33] Seiffert, C., Khoshgoftaar, T. M., & Van Hulse, J.

(2009). Improving software-quality predictions with

data sampling and boosting. IEEE Transactions on

Systems, Man, and Cybernetics-Part A: Systems and

Humans,vol. 39, no. 6, pp. 1283-1294.

[34] Chen, Z., Menzies, T., Port, D., & Boehm, D.

(2005). Finding the right data for software cost

modeling. IEEE software,vol. 22, no. 6, pp. 38-46.

[35] Liu, H., Motoda, H., & Yu, L. (2004). A selective

sampling approach to active feature selection. Artificial

Intelligence, vol. 159, no. 1, pp. 49-74.

[36] Khoshgoftaar, T. M., Gao, K., & Seliya, N.

(2010). Attribute selection and imbalanced data:

Problems in software defect prediction. In 22nd IEEE

International Conference on Tools with Artificial

Intelligence, vol. 1, pp. 137-144.

[37] Dietterich, T. G. (1998). Approximate statistical

tests for comparing supervised classification learning

algorithms. Neural Computation, vol. 10, no.7, pp.

1895-1923.

[38] Duda, R. O., Hart, P. E., & Stork, D. G.

(2012). Pattern classification. John Wiley & Sons.

[39] Kothari, C. R. (2004). Research methodology:

Methods and techniques. New Age International.

[40] Le Cessie, S., & Van Houwelingen, J. C. (1992).

Ridge estimators in logistic regression. Applied

statistics, pp.191-201.

[41] Breiman, L. (2001). Random forests. Machine

learning, vol. 45, no. 1, pp. 5-32.

[42] Biau, G., Devroye, L., & Lugosi, G. (2008).

Consistency of random forests and other averaging

classifiers. Journal of Machine Learning Research, vol.

9, pp. 2015-2033.

[43] Fenton, N. E., & Ohlsson, N. (2000). Quantitative

analysis of faults and failures in a complex software

system. IEEE Transactions on Software engineering,

vol. 26, no. 8, pp. 797-814.

[44] Livingston, F. (2005). Implementation of

Breiman’s random forest machine learning

algorithm. Machine Learning : ECE519.

[45] Freund, Y., & Schapire, R. E. (1996). Experiments

with a new boosting algorithm. In the 13th International

Conference on Machine Learning, pp. 148-156. 1996.

[46] Friedman, J., Hastie, T., & Tibshirani, R. (2000).

Additive logistic regression: a statistical view of

boosting (with discussion and a rejoinder by the

authors).The Annals of Statistics, vol. 28, no. 2, pp.

337-407.

[47] Witten, I. H., & Frank, E. (2005). Data Mining:

Practical machine learning tools and techniques.

Morgan Kaufmann.

[48] Haykin, S. S. (2001). Neural networks: a

comprehensive foundation. Tsinghua University Press.

[49] Broomhead, D.S. & Lowe, D. (1988). Radial basis

functions, multi-variable functional interpolation and

adaptive networks. Royal Signals and Radar

Establishment Publisher.

[50] Park, J., & Sandberg, I. W. (1991). Universal

approximation using radial-basis-function

networks. Neural Computation, vol. 3, no. 2, pp. 246-

257.

[51] John, G. H., & Langley, P. (1995). Estimating

continuous distributions in Bayesian classifiers. In the

11th Conference on Uncertainty in artificial

intelligence, pp. 338-345.

[52] Heckerman, D. (1998). A tutorial on learning with

Bayesian networks. Learning in graphical models, MIT

Press Cambridge, pp. 301-354.

[53] Vapnik, V. (2000). The nature of statistical

learning theory. 2nd Edition, Springer.

[54] Press, W. H., Teukolsky, S. A., Vetterling, W. T.,

& Flannery, B. P. (2007). Numerical Recipes: The Art

of Scientific Computing, Section 16.5, Support Vector

Machines, Cambridge University Press, The 3rd

Edition,

[55] Cleary, J. G., & Trigg, L. E. (1995). K*: An

instance-based learner using an entropic distance

measure. In the 12th International Conference on

Machine learning, vol. 5, pp. 108-114.

[56] Iba, W., & Langley, P. (1992). Induction of one-

level decision trees. In the 9th International Conference

on Machine Learning, pp. 233-240.

[57] Quinlan, J. R. (2014). C4.5: programs for machine

learning, Morgan Kaufmann Publishers.

[58] Freund, Y., & Mason, L. (1999). The alternating

decision tree learning algorithm. In the 16th

International Conference on Machine Learning, vol.

99, pp. 124-133.

[59] Holmes, G., Pfahringer, B., Kirkby, R., Frank, E.,

& Hall, M. (2002). Multiclass alternating decision

Babamir & Karimian / Journal of AI and Data Mining, Vol 5, No 2, 2017.

167

trees. In the European Conference on Machine

Learning, pp. 161-172.

[60] Frank, E., & Witten, I. H. (1998). Generating

accurate rule sets without global optimization. In the

15th International Conference on Machine Learning,

pp. 144-151.

[61] McCabe, T. J. (1976). A complexity

measure. IEEE Transactions on Software Engineering,

vol. 2, no. 4, pp. 308-320.

[62] McCabe, T. J., & Butler, C. W. (1989). Design

complexity measurement and testing. Communications

of the ACM, vol. 32, no.12, pp. 1415-1425.

[63] Kohavi, R. (1995). A study of cross-validation and

bootstrap for accuracy estimation and model selection.

In the 14th International Joint Conference on Artificial

Intelligence, vol. 2, pp. 1137-1143.

[64] Rutherford, A. (2011). ANOVA and ANCOVA: a

GLM approach. John Wiley & Sons.

[65] One-way analysis of variance-MATLAB anova1-

MathWorks (2016), http://www.mathworks

.com/help/stats/anova1.html, Access date: 11/21/2016.

[66]. Babamir, S. M., Hassanzade, E., & Azimpour, M.

(2015). Predicting potential deadlocks in multithreaded

programs. Concurrency and Computation: Practice and

Experience, vol. 27, no.17, pp. 5261-5287.

[67] Hamidzadeh, J. (2015). IRDDS: Instance

reduction based on distance-based decision surface,

Journal of IA and Data Mining, vol. 3, no. 2, pp. 121-

130.

 نشریه هوش مصنوعی و داده کاوی

 افزارهای مستعدخطای نرمبینی پیمانهبندها در پیشارزیابی دسته

 فاطمه کریمیان و *سید مرتضی بابامیر

 ایران.، کاشان، دانشگاه کاشان، دانشکده برق و کامپیوتر

 04/04/9402 پذیرش ؛09/42/9402 بازنگری ؛92/40/9402 ارسال

 چکیده:

-افزار کمتر باشند، اعتماد به نرمهای مستعد خطای نرمخطای آن بستگی دارد. یعنی هرقدر پیمانه-های مستعدنهافزار به تعداد پیماقابلیت اطمینان نرم

نیز امکان افزارافزار باشیم، قضاوت درباره قابلیت اطمینان نرمخطای نرم -های مستعدبینی تعداد پیمانهشود. بنابراین اگر قادر به پیشافزار بیشتر می

 هایتوان پیمانهافزار است که توسط آن میهای کمکی، معیار نرمافزار، یکی از ویژگیخطای نرم-های مستعدبینی پیمانهخواهد بود. در پیش پذیر

هایشان ویژگی بند تحقیق کردیم کهروش دسته0۱، بر روی بندیای ایجاد این دستهبندی کرد. برخطا دسته-مستعد -خطا و بدون-افزار را به مستعدنرم

 ی ناسا هستند.مجموعه داده 00افزار(های نرم)پیمانههایشانافزار و نمونهمعیار نرم 02

ها)مانند گی(انتخاب بهترین ویژ0از:) گذارد عبارتندکاوی اثر میهای دادهبینی در هنگام استفاده از روشدو موضوع مهم که بر روی صحت پیش

بند به سمت که دستهبرداری از موارد به منظور متوازن کردن موردهای ناهماهنگ؛ هنگامی(نمونه9ها و)(در میان تنوع وسیع ویژگیافزارمعیارهای نرم

بند روش دسته 0۱سناریو برای ارزیابی 0برداری از مورد، هشود دو کلاس ناهماهنگ داریم. بر اساس انتخاب ویژگی و نمونکلاس اکثریت متمایل می

برداری موردها ها، از انتخاب ویژگی مبتنی بر همبستگی و برای نمونهخطا درنظر گرفتیم. برای انتخاب ویژگی-های مستعدبینی پیمانهمنظور پیشبه

ها، تاثیر قابل توجهی بر روی برداری مناسب پیمانهجربی نشان دادند که نمونهبرداری بیش از حد اقلیت ترکیبی را استفاده کردیم. نتایج تروش نمونه

بندها، بینی ندارد. همچنین در میان دستهگذارند، اما انتخاب معیار اثر قابل توجهی بر روی پیشافزار میبینی قابلیت اطمینان نرمصحت پیش

gBaggin ،*K بندها بودند.کنیم بهترین دستههای آموزشی استفاده میبرداری شده را برای دادهکه موردهای نمونهو جنگل تصادفی هنگامی

 افزار.معیار نرمبرداری از داده، بند، انتخاب ویژگی، نمونهکارایی دسته افزار،بینی خطای نرمپیش :کلمات کلیدی

