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Abstract 

Reliability of a software counts on its fault-prone modules. This means that the less the software consists of 

fault-prone units, the more we may trust it. Therefore, if we are able to predict the number of fault-prone 

modules of a software, it will be possible to judge its reliability. In predicting the software fault-prone 

modules, one of the contributing features is software metric, by which one can classify he software modules 

into the fault-prone and non-fault-prone ones. To make such a classification, we investigated 17 classifier 

methods, whose features (attributes) were software metrics (39 metrics), and the mining instances (software 

modules) were 13 datasets reported by NASA. 

However, there are two important issues influencing our prediction accuracy when we use data mining 

methods: (1) selecting the best/most influential features (i.e. software metrics) when there is a wide diversity 

of them, and (2) instance sampling in order to balance the imbalanced instances of mining; we have two 

imbalanced classes when the classifier biases towards the majority class. Based on the feature selection and 

instance sampling, we considered 4 scenarios in appraisal of 17 classifier methods to predict software fault-

prone modules. To select features, we used correlation-based feature selection (CFS), and to sample 

instances, we implemented the synthetic minority oversampling technique (SMOTE).The empirical results 

obtained show that suitable sampling software modules significantly influences the accuracy of predicting 

software reliability but metric selection does not have a considerable effect on the prediction. Furthermore, 

among the other data classifiers, bagging, K*, and random forest are the best ones when we use the sampled 

instances for training data. 

 

Keywords: Software Fault Prediction, Classifier Performance, Feature Selection, Data Sampling, Software 

Metric, Dependent Variable, Independent Variable. 

1. Introduction 

The software fault prediction methods use 

software metrics and faulty modules to guess 

fault-prone modules for the next software version. 

Hereafter, a software module indicates an 

instance, and a software metric does a feature. 

When we aim to classify software modules into 

the faulty and non-faulty ones, the software 

metrics are considered as predictor (independent) 

variables (features), and the faulty/non-faulty 

modules are done as the outcome (dependent) 

variable. Software metrics measure/quantify 

software characteristics such as line of code 

(LOC). 

The software fault prediction models have been 

investigated since 1990s. According to [1], the 

probability of detection (PD) (71%) of the robust 

fault prediction models may be higher than that 

for software reviews (60%). According to [1], 

Fagan claimed that inspections can find 95% of 

defects before testing was not defended at the 

IEEE Metrics 2002 conference, and this detection 

ratio was about 60%.One member of the review 

team may examine 8-20 software lines of code in 

a minute. Thus, compared to the software reviews, 

the software fault prediction methods are more 

cost-effective to recognize software faults. The 

advantages of a robust software fault prediction 

are [2]: 

 Reach a dependable system; 

 Improving test process by concentrating 

on the fault-prone modules; 
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 Improving quality by improving test 

procedure. 
Software quality engineering uses various 

methods and processes for producing high quality 

softwares. One efficient method is to apply the 

data mining techniques to software metrics for 

detection of the potential fault-prone modules. 

Through these techniques, we employed 

classification to predict program modules as fault-

prone (fp) or not-fault-prone (nfp) [3-5], in which 

two noteworthy issues, the feature selection and 

class imbalance problems, were considered. 

The class imbalance problem is raised if the fp 

instances are much less than the nfp ones. The 

imbalance problem can cause an undesirable 

conclusion; however, researchers often do not 

care about it [3, 5]. The efficiency of the software 

fault prediction models is affected by two 

significant numbers: (1) software metrics, and (2) 

software fp modules. The software quality 

prediction model without balancing up classes 

will not produce efficient fault predictors. 

Before investigating the classifier methods to 

predict the fault proneness of software modules, 

we presented 4 scenarios consisting of an 

informed combination of two data preprocessing 

steps, feature selection (for selecting the 

important software metrics), and instance 

sampling (for the class imbalance problem), 

according to the Shepperd’s work [6]. 

Some researchers have considered the feature 

reduction techniques such as principal component 

analysis (PCA) to improve the performance of the 

prediction models [7]. We used the correlation-

based feature selection (CFS) [8] technique to 

obtain the relevant metrics, and the synthetic 

minority over-sampling technique (SMOTE) [9] 

for instance sampling (fp/nfp modules). We used 

(1) the SMOTE technique because it chooses 

samples through a non-random way [10, 11], and 

(2) CFS because, according to Catal et al. [12], it 

has a high performance. Considering the use of 

the SMOTE and CFS techniques for the selection 

of samples and features, figure 1 shows our 

approach. 

The process of using feature (metric) selection 

and instance(module) sampling concurrently gives 

4 scenarios, furnishing 4different training datasets 

for building the prediction models (classifiers).We 

made the software metric selection on the (1) 

sampled and (2) original modules, providing2 

different metric subsets. Note that we will obtain 

different metrics if we use a feature selection 

method on the sampled or original modules. 

Having selected the features, we dealt with 

training the prediction model using the original or 

sampled modules separately. Accordingly, 4 

possible scenarios may be considered:  

   

  

  

  

  

  

  

  

  

  

  

  

  

  

  
 

Figure 1. Our approach phases. 

- First, to make use of the original modules 

for feature (metric) selection, and then training 

the classifiers based on the (1) original or (2) 

sampled instances. 

- First, to make use of the sampled modules 

for feature (metric) selection, and then training 

the classifiers based on the (3) original or (4) 

sampled instances. 

The research goal of our work was to compare the 

performance of the fault prediction models based 

on each of these scenarios, and to detect the best 

classification model. To this end, we exploited 13 

public NASA datasets from PROMISE repository 

that were created in 2005 [13].  

The remainder of this paper is organized as what 

follows. Section 2 discusses the related works. 

Section 3 explains the feature selection and 

sampling methods. Section 4 deals with the 

classifier methods and techniques applied in this 

paper. Section 5 deals with our empirical 

evaluation. Finally, in Section 6, we summarize 

our conclusions and provide suggestions for the 

future works. 
 

2. Related works 

Various methods have already been applied for 

software fault prediction. Catal et al. [12, 14, 15] 

have expanded and validated some artificial 

immune system-based models in the software 

fault prediction. Elish et al. [16] have compared 

the performance of support vector machines 

(SVMs) with the performance of logistic 

regression, multi-layer perceptron, Bayesian 

belief network, naive bayes (NB), random forests 

(RFs), and decision trees, and have finally 

concluded that the performance of SVMs is better 
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than or (at least the same as) the other methods in 

the context of 4 NASA datasets. Kanmani et al. 

[17] have used probabilistic neural network 

(PNN) and back-propagation neural network 

(BPN) with a dataset obtained from the project of 

graduate students to compare their results with the 

results of statistical methods. They stated that 

PNN provided a better performance. Gondra [18] 

has shown that SVMs have a higher performance 

over the artificial neural networks (ANNs)in 

software fault prediction. Menzies et al. [1] have 

stated that although it is a very simple algorithm, 

naive Bayes is the best software prediction model. 

The area under the ROC (receiver operating 

characteristic) curve (called AUC, and explained 

in section 5.4) has been applied to evaluate the 

fault prediction models [3, 5]. Malhotra et al. [19] 

have shown that, based on AUC, LogitBoost is the 

highest method among the machine learning 

techniques ANN, RF, two boosting algorithms 

(LogitBoost, AdaBoost), NB, KStar, and bagging 

and logistic regression; their dataset was some 

open source software. 

Catal et al. [2] have studied machine-learning 

methods such as RFs and artificial immune 

systems in the context of public NASA datasets, 

i.e. the PROMISE repository. They focused on the 

effects of dataset size, metrics set, and feature 

selection techniques. They showed (1) RFs had 

the best prediction performance for large datasets, 

(2) NB was the best prediction algorithm for small 

datasets based on AUC, and (3) the parallel 

implementation of artificial immune recognition 

systems (AIRS2Parallel) was the best artificial 

immune system paradigm-based algorithm when 

the method-level metrics were used. 

A survey of the feature selection algorithms has 

been explained in [20]. Typically, the feature 

selection techniques fall into 2 categories, the 

wrapper-based and filter-based approaches. The 

former trains a learner during the feature selection 

process, whereas the latter does not depend on 

training a learner and applies the natural 

characteristics of instances (which is based on the 

given metrics) to the feature selection. The latter 

is computationally faster than the former. 

Hall et al. [21] have validated 6 feature selection 

techniques producing ranked lists of features, and 

have applied them to 15 datasets in the UCI 

repository. The experimental results obtained 

showed that no one approach was the best for all 

situations. However, if computational complexity 

is eliminated as a factor, a wrapper-based 

approach has the best accuracy for a feature 

selection scheme.  

Saeys et al. [22] have perused the use of an 

ensemble of feature selection techniques; this 

means that the multiple feature selection methods 

are combined for the feature selection process. 

They have stated that the ensemble approach 

provides subset of features more robust than a 

single feature selection technique.  

Khoshgoftar et al. [23] have studied 2 types of 

feature selections for software defect prediction: 

(1) individual, and (2) repetitive and sampled with 

learning processes (boosting vs. plain learner).The 

former denotes that the feature ranking algorithm 

is used individually on the original data and once. 

The latter also uses only one feature ranking 

algorithm but it creates a sample dataset using an 

under-sampling or over-sampling technique. They 

applied 6 feature ranking techniques and 2 

learners to build classification models (multi-layer 

perceptron and support vector machine). Their 

results have shown that the latter enjoys a better 

performance over the former. Moreover, the 

ensemble learning (boosting) approach enjoys a 

better classification performance over the plain 

learning process, which uses no boosting.  

Gao et al. [24] have used 9 filter-based feature-

ranking techniques for feature selection with 

random under-sampling data through 3 scenarios: 

(1) the features were selected based on the 

sampled data, and the training data was based on 

the original data, (2) the features were selected 

based on the sampled data, and the training data 

was based on the sampled data, and (3) the 

features were selected based on the sampled data, 

and the training data was based on the original 

data. The SVM classifier was applied to build the 

classification model, and the eclipse dataset of the 

PROMISE repository was used. The results 

obtained demonstrated that the first scenario was 

better than Scenarios 2 and 3, and the AUC 

feature-ranking technique performed better than 

the other approaches. 

Similar to their earlier work, Gao et al. [25] 

applied the three scenarios but they used CFS for 

feature selection and 5 classifiers (SVM, MLP, 

LR, KNN, and NB) for constructing the model. 

The results showed that the 1st scenario performed 

better than the others, and SVM presented the best 

performance. 

In [26], Gao et al. have applied (1) 6 filter-based 

feature-ranking techniques before and after the 

ensemble sampling methods RUSBoost and 

SMOTEBoost, and (2) 5 different classification 

algorithms for a group of datasets from real-world 

software systems. The results obtained 

demonstrated that feature selection after ensemble 

sampling was better, and RUSBoost performed 
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better than SMOTEBoost. Among the 6 ranking 

techniques, RF (Random Forest) and RFW 

(random forest walk)enjoyed more performance 

over the others. 

Wang et al. [27] investigated different feature-

selection techniques consisting of filter-based and 

wrapper-based methods, and showed that the 

efficiency of the classification models improved; 

however, there was no efficiency when over 85% 

of the features were removed from the original 

datasets. The experiments carried out by Catal et 

al. [12] showed a high performance of the CFS 

method. 

The class imbalance problem have been 

investigated in various areas [28-30], and various 

techniques have been developed to overcome the 

difficulties of learning from imbalanced data. In a 

binary classification, under-sampling the majority 

class and over-sampling the minority class [31-

33] are the main approaches for solving the class 

imbalance problem. Since in this work, the 

majority and minority classes are non-faulty and 

faulty modules, respectively, we used under-

sampling the non-faulty module class and over-

sampling the faulty module one.  

Riquelme et al. [11] have shown that the 

balancing techniques such as SMOTE improve 

the AUC parameter (see section 3.2.1). They 

applied the 2 balancing techniques SMOTE and 

resample, with 2 common classification 

algorithms, NB and J48, on 5 open public datasets 

from the PROMISE repository. In the current 

study, we considered the SMOTE method to 

resolve the class imbalance problem in fault 

prediction modeling. 

Considerable works have been done on feature 

selection and data sampling separately but a few 

studies have been presented for considering both 

of them simultaneously, particularly in the 

software engineering field.  

Chen et al. [34] considered data sampling and 

feature selection in the context of software 

cost/effort estimation but did not focus on the 

class imbalance problem, and used data sampling 

prior to feature selection. Furthermore, their 

classification model was for non-binary problems. 

Liu et al. [35] have introduced the active feature 

selection in their sampling approach. However, 

their goal of data sampling was dataset size 

reduction instead of addressing the class 

imbalance problem. 

Khoshgoftaar et al. [36] presented feature 

selection and data sampling together for software 

fault prediction. They viewed 6 commonly used 

feature-ranking techniques [27] for feature 

selection and the random under-sampling [33] 

technique for data sampling. However, they used 

just the SVM and KNN classifiers for building the 

software prediction models and their dataset; their 

results were different from ours. In this paper, we 

used 4 scenarios consisting of 4 significant 

synthesis of feature selection and data sampling. 

Each synthesis was used as a data preprocessing 

step for the training phase of 17 classifiers in the 

context of 13 public and cleaned NASA datasets 

from PROMISE repository. 
  

3. Feature selection and sampling methods 

In this section, we address the feature selection 

and sampling methods exploited in our work. 
 

3.1. Correlation-based feature selection 

In machine learning, feature selection is the 

process of selecting a subset of relevant features 

for the construction of a prediction model. 

Instances may contain redundant or irrelevant 

features, where the former does not provide 

additional information and the latter provides no 

useful information. 

Elimination of redundant features from a set of 

features is called filtering. The filtering process 

may be considered for all or correlated features. 

For predict models that use machine learning 

techniques, it is important to determine relevant 

and significant features. In this work, we used a 

filter-based method called the correlation-based 

feature selection (CFS) to identify relevant 

metrics. This method begins with a null set, and at 

each stage, adds the features having the highest 

correlation with the class but not have high 

correlation with the already included features in 

the set. 
 

3.2. Sampling methods 

Sampling is a pre-processing method 

implemented to balance a given imbalanced 

dataset by increasing or decreasing the modules 

(cases) in the dataset before building the 

prediction model. Usually a dataset consists of a 

large number of “normal” (unconcerned) 

instances with just a small number of “abnormal” 

(concerned) ones. In this work, the normal and 

abnormal classes were the non-fault prone and 

fault-prone classes, respectively. 

There are 2 types of samplings, over-sampling 

and under-sampling. In a binary classification, the 

former tries to increase the minority (abnormal) 

class, while the latter tries to decrease the 

majority (normal) one. Although under-sampling 

increases the sensitivity of a classifier to the 

minority class, a combination of over-sampling 

and under-sampling leads to a better performance 
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over just under-sampling. Accordingly, prediction 

of the minority class is improved by correcting the 

imbalance problem.  

Another sampling concern is that over-sampling 

may lead to over-fitting and under-sampling may 

lead to elimination of useful instances. Therefore, 

we used the synthetic minority over-sampling 

technique (SMOTE). 
 

3.3. SMOTE 

Chawla et al. [9] have proposed SMOTE, 

producing new instances based on K-nearest 

neighbor (KNN).To produce sample modules, we 

used SMOTE through the following steps: 

1. Normalizing software metrics as the predictor 

variables. The normalization was used to fit a 

variable into a specific range. Among the others, 

the Min-Max normalization maps the metric value 

mti,j to nval(mti,j), fitting in the range [0,1] “(1)”. 

The nval(mti,j) value indicates the normalized 

value for metric mti of module j, where val(mti,j) is 

the current value for the metric of module j, and 

min(mti,j) and max(mti,j) indicate the max. and 

min. values for the metric of module j, 

respectively.                     

 
 

   
i,j i,j

i,j

i,j i,j

val(mt )- min mt
nval mt = 

max mt -min mt
                 (1) 

 

2. Choosing a sample module, say ms, from the 

fault-prone class. 

3. Computing the KNN value forms based on the 

similarity (we considered K=5). Among 5 

neighbors, the most similar module to ms is the 

one that has the least Euclidian distance to ms. 

Given that each module consists of n metrics, 

“(2)” shows the Euclidean distance between ms 

and another module (similarity ms to another 

module), say mb, where n indicates the number of 

metrics of the module. 

 
n

2

s b i,s i,b

i=1

sim m ,m =  [nval(mt )-nval(mt )]
   

(2)  

 

Having calculated the similarity of module ms to 

others, we selected 5 modules having the 

minimum Euclidian distance to ms. These 

modules are called the 5 NNs of module ms. 

4. Choosing one of the 5 neighbors randomly, say 

mr, and adding to the minority (fault-prone) class. 

5. Generating the synthetic module. (a) The 

difference between each ms  metric value and the 

corresponding mr metric was computed as follows 

(n is the number of metrics): 

, i,s i,rd = val(mt )-val(mt ), i=1..ni s
                    (3) 

(b) di,s is multiplied by a random number between 

0 and 1, and added to the corresponding ms metric 

value. 

i,s i,s i,sval(mt )=val(mt )+rand[0,1]*d , i=1,n       (4) 

Step 5 leads to the generality of the decision 

region of the fault-prone class.  
 

4. Classifiers 

We evaluated the statistical and machine learning 

classifiers [37-39] for software fault prediction. In 

what follows, we briefly explain them. 
 

4.1. Logistic regression (LR) 

LR is widely applied as a statistical technique. A 

detailed explanation of the LR analysis could be 

obtained from Hosmer et al. [34] and Basili et al. 

[11]. It is called ridge regression, which is the 

most commonly used regularization method for 

the not well-posed problems, meaning that the 

solution is highly sensitive to changes in data. In 

this work, we used the multinomial logistic 

regression model using the ridge estimator [40]. 
 

4.2. Bagging 

Bagging (bootstrap aggregating), introduced by 

Breiman [41], improves the classification 

performance using the bootstrap aggregation, 

meaning that it produces various similar sets of 

training data and applies a new method to each 

set. It is an ensemble classifier, and provides an 

aggregation of predictions of some independent 

classifiers with the goal of improving the 

prediction accuracy. An ensemble classifier uses 

the multiple classification algorithms and 

averages their predictions. To this end, it uses 

random samples with replacement and/or random 

predictor (feature) sets to generate diverse 

classifications. Therefore, each training set is a 

bootstrap sample because of using sampling with 

replacement. The ensemble methods are used to 

address the class imbalance problem. 

The bagged classifier makes a decision by the 

majority of the prediction results returned by each 

classification. According to [41, 42], the benefits 

of  bagging are (1) a better classification accuracy 

over the other classifiers,(2) the variance 

reduction, and (3) avoidance of over-fitting. 

 

4.3. Random forest (RF) 

RF was proposed by Breiman [43], and similar to 

bagging, it is an ensemble method. It produces a 

forest of decision trees at the training time. Each 

tree is produced based on the values for a random 

vector; these vectors are sampled with the same 

distribution and independently for all trees of the 
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forest. The result of the output class is known as 

the mode of output classes obtained from the 

individual trees [42]. 

According to [41, 42, 44], the features of RF are: 

(1) simplicity and robustness against noises, (2) 

ability of accurate classification for various 

datasets, (3) ability of fast learning, (4) having 

efficiency on large datasets, (5) ability of 

estimation of important variables in the 

classification, (6) ability of estimating missing 

data and maintaining accuracy in missing a large 

proportion of the data, and (7) having methods for 

balancing unbalanced datasets. 
 

4.4. Boosting techniques 

Similar to bagging and random forest, boosting is 

a machine-learning ensemble meta-algorithm. It 

uses a decision tree algorithm for producing new 

models. Unlike bagging, which assigns an equal 

vote to each classifier, boosting assigns weights to 

classifiers based on their performance. The 

boosting methods use a training set for each 

classifier based on the performance of the earlier 

classifiers. 

There are various boosting algorithms present in 

the literature. In this work, we used AdaBoost(AB) 

[45] and LogitBoost(LB) [46] for classification. 

The features of boosting are its ability to (1) 

reduce bias and variance in supervised learning, 

and (2) convert weak learners to strong ones[47]. 

A weak/strong learner is a classifier that is ill-

correlated/well-correlated with the true 

classification. 

 

4.5. DECORATE 

DECORATE (diverse ensemble creation by 

oppositional relabeling of artificial training 

examples) is a meta-learner, exploiting a strong 

learner for constructing classes. To this end, 

DECORATE artificially builds random examples 

for the training phase. This is why DECORATE 

provides a high accuracy on the training data to 

build efficient various classes in a simple way. 

The class labels of these artificially constructed 

examples are in inverse relation to the current 

classes, and therefore, it increases diversity when 

a new classifier is trained on the additional data. 

The problem with the boosting and bagging 

classifiers is that they restrict the amount of the 

ensemble diversity they can get when the training 

set is small. This is because the boosting and 

bagging classifiers provide the diversity by re-

weighting the existing training examples, while 

the DECORATE classifier ensures variety on a 

large set of additional artificial examples. 

In the case of class imbalance, identifying 

samples from the minority class is usually more 

significant and dearer than the majority class. 

Therefore, some ensemble methods have been 

presented to resolve it. According to [48], adding 

variety to an ensemble method improves the 

performance of a learning method in case of the 

class imbalance. Haykin and Network have dealt 

with the influence of diversity on the performance 

of the minority and majority classes [48]. They 

have presented good and bad patterns in 

imbalanced scenarios, and have obtained 6 

different situations of the influence of the 

diversity through theoretical analysis. 

Furthermore, they have carried out experimental 

studies on the datasets consisting of highly 

skewed class distributions. Then they have come 

into the conclusion that there is a strong 

correlation between diversity and performance, 

and that diversity has a good influence on the 

minority class. 

 

4.6. Multi-layer perceptron (MLP) 

MLP uses biological neurons to construct a 

model, and is applied to model complex 

relationships between inputs and outputs and 

search patterns in datasets [48]. MLP could be 

considered as a binary classifier with multiple 

layers. An MLP feed forward network includes 

one input layer, one or more hidden layers, and 

one output layer. Each layer consists of nodes that 

are connected to their immediate preceding layers 

as the input and the immediate succeeding layers 

as the output. The back-propagation method is the 

most commonly used learning algorithm in order 

to train the multi-layer feed forward networks, 

and includes 2 passes, forward and backward. 

Through the forward pass, a training input dataset 

is used, and a set of outputs is created as the 

actual response. In this pass, the network weights 

are fixed and their effect is propagated through 

the layers of the network [48]. Through the 

backward pass, an error, which is the difference 

between the actual and desired output of the 

network, is computed. The computed error is 

propagated backward through the network, and 

the weights are re-adjusted in order to reduce the 

gap between the actual and desired responses. 

 

4.7. Radial basis function (RBF) network 

RBF is a function whose value depends only on 

the distance (normally the Euclidean distance) 

from the origin. The RBF network, proposed by 

Broomhead and Lowe [49], is an artificial neural 

network (ANN) applying RBF as an activation 

function. Among others such as function 
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approximation and time series prediction, the RBF 

networks could apply to the classification.  

The RBF networks often consist of 3 layers: input 

layer, non-linear RBF hidden layer, and linear 

output layer, where the input layer is a vector of 

real numbers, 𝑥 ∈  ℝ𝑛, and the output layer is a 

scalar function of the input vector (Relation 5). In 

fact, we have 𝜑: ℝ𝑛 ⟶ ℝ. 
N

i i

i=1

φ(x)= a ρ(|x-c |)                                            (5) 

 

where, N is the number of neurons in the hidden 

layer, 𝑐𝑖 is the center vector, and 𝑎𝑖 is the weight 

of neuron 𝑖 in the output layer. All inputs are 

connected to each hidden neuron. The RBF 

network consisting of enough hidden neurons can 

approximate any continuous function with a 

desired accurate [50]. The RBF networks could 

be normalized; in this work, we used the 

normalized Gaussian RBF network. 
  

4.8. Naïve bayes (NB) 

The NB classifier is a probabilistic classifier 

based on the Bayes theorem, assuming that there 

is a strong (naive) independency between the 

features [51]. When NB equips with an 

appropriate preprocessing, it classifies as well as 

some advanced methods such as the support 

vector machine (SVM). 

Instead of the expensive iterative approximation, 

which is used by many classifiers, the NB 

classifier uses maximum-likelihood (i.e. without 

Bayesian methods), and training is performed 

through assessing a closed-form expression in the 

linear time. 

A feature value is independent from the other 

feature values in the NB classifier. Accordingly, 

the NB classifier considers each feature 

independently in the sample classification, 

regardless of the correlations with other features 

of the sample. 

The NB classifiers can be trained efficiently using 

the supervised learning for some types of 

probability models, and their advantage is that 

they require a small amount of training data for 

the classification process. 
 

4.9. Bayes network (BN) 

A Bayesian network is a probabilistic graphical 

model that shows relationships among the subsets 

of variables. Unlike the NB classifier, this method 

considers dependencies between variables, and 

determines joint conditional probability 

distributions. The advantages of a BN model are: 

(1) it easily handles the missing data because of 

representing dependencies between variables, (2) 

it could provide a graphical model of causal 

relationships, and hence could be used to predict 

the consequences of intervention, and (3) since it 

has both the causal and probabilistic semantics, it 

is ideal for incorporating prior knowledge (which 

typically comes in the causal form) [52]. 
 

4.10. Support vector machines (SVM) 

SVM, proposed by Vapnik [53], is a supervised 

learning method creating a hyper-plane or 

collection of hyper-planes, and can be used for 

classification and regression. When a hyper-plane 

has the largest distance to the nearest training data 

of any class (called functional margin) a good 

separation is obtained because a larger margin 

leads to a smaller error of the classifier. SVM 

could be used for the ill-posed problems, meaning 

that the solution is highly sensitive to the changes 

in a dataset. 
The main problem with SVM is that it is not 

possible to separate the datasets linearly in a finite 

dimensional space. Accordingly, the original 

finite-dimensional space is mapped into a higher-

dimensional space so that we can separate the 

datasets [54]. The hyper-planes in the higher-

dimensional space are the set of points whose dot 

product with a vector in that space is constant. 

Another problem with SVM is that despite a good 

performance in the pattern, recognition field does 

not consider the problem domain knowledge; 

moreover, the classification speed is considerably 

slower than that of the neural networks. 
 

4.11. K* 

K* is an instance-based learning method, using 

the entropy distance to compute the distance 

between instances [55]. Learning based on 

instances means that the instance classification is 

carried out through comparing the instances with 

a dataset of pre-classified examples. Such a 

learning is based on the fact that similar instances 

have similar classifications. The similarity 

between 2 instances is determined according to a 

distance function, and a classification function is 

used to exploit the instance similarity for the 

classification of the new instances. The entropy 

distance manages (1) symbolic attributes, (2) real-

valued features, and (3) missing values. 
 

4.12. DecisionStump (DS) 

DS is a binary classifier, and has a one-

level decision tree with one root node connected 

to the terminal nodes (leaves) [56]. The prediction 

through DS is carried out based on the value for a 

single input attribute. DS is often used as a 

http://en.wikipedia.org/wiki/Linear_separability
http://en.wikipedia.org/wiki/Decision_tree_learning
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component of the ensemble methods such as 

bagging and boosting. 
 

4.13. J48 

J48 is a Java implementation of the C4.5 

algorithm [57], and is a decision tree-based 

classifier. A decision tree is a machine-learning 

predictor that predicts the dependent variable 

value based on the attribute values of the existing 

data. The dependent variable is the attribute that 

should be predicted. The independent variables 

are other attributes, which are used to predict the 

dependent variable value. 

A decision tree has internal nodes, indicating 

different attributes, where the attribute values for 

the observed samples are shown on branches 

between the nodes. The final values for the 

dependent variables are shown by the tree leaves. 

To classify a new sample, the J48 decision tree 

classifier creates a decision tree based on the 

attribute values of the training dataset. 

Afterwards, the order of attribute selection is 

followed based on the tree. The target value of a 

new instance is predicted through checking values 

of all attributes against the corresponding values 

in the decision tree model. 

 

4.14. AN alternating decision tree (ADTree) 

The ADTree classifier combines decision trees 

with the prediction accuracy of the boosting 

classifier in a set of classification rules. The 

ADTree classifier consists of decision and 

prediction nodes [58], where the former is used to 

determine conditions and contains both the root 

and leaf nodes. The latter nodes have a single 

number. Classifying a sample by an ADTree is 

different from classifying it by the binary 

classification trees such as C4.5 because a sample 

follows only one path in tree in C4.5, while in 

ADTree, a sample follows all paths for which the 

decision nodes are true; then all the prediction 

nodes visited in these paths were considered. A 

variation in ADTree is the multi-class ADTree 

[59]. 

 

4.15. PART 

PART is a Java implementation of the C4.5 

algorithm [60]. PART is a partial decision tree 

algorithm, applying the divide-and-conquer 

method, builds a partial C4.5 decision tree in a 

number of iterations, and adds the best leaf to a 

rule. The main feature of the PART classifier is 

that it needs no global optimization, while C4.5 

does such an optimization.  

5. Empirical evaluation 

This section aims to represent the empirical study 

results to evaluate the ability of classifiers in 

predicting fault-prone software modules. We used 

the weka toolkit with default settings. 
 

5.1. Datasets 

We used cleaned versions of the datasets of 13 

mission critical NASA software projects (Table 1) 

in this work; they were available from the 

PROMISE repository. The software metrics were 

considered as the independent variables (the 

predictor variables), and the faulty-prone and non-

faulty-prone classes were considered as the 

dependent variables (the predicted variables). 

Table 1. NASA PROMISE datasets. 

Legends: NSM: #software metrics, NI: #instances,  

%DI: %defective instances (modules). 
 Dataset Language NSM NI %DI 

1 CM1 C 21 439 10.47 

2 JM1 C 22 7782 20.71 

3 KC1 

KC2 

KC3 

C++ 

Java 

Java 

22 

22 

40 

1183 

334 

325 

21.4 

27.84 

12.92 

4 

5 

6 MC1 

MC2 

C & C++ 

C 

39 

40 

1988 

157 

1.81 

32.48 7 

8 MW1 C 38 379 7.38 

9 PC1 

PC2 

PC3 

PC4 

PC5 

 

 

C 

 

C++ 

22 

37 

38 

38 

39 

946 

1391 

1436 

1287 

1711 

6.65 

1.50 

10.44 

13.67 

26.82 

10 

11 

12 

13 

 

5.2. Independent variables 

We considered 39 software metrics as the 

independent variables. They were quantitative 

values indicating the software features. The 

metrics are explained briefly below, and are of 3 

types: (1) module-level called McCabe metrics 

[61, 62], (2) Halstead, and (3) enumerated 

metrics. 

The module-level metrics consisting of metrics 1-

4, 24, 26, 28, 30, 31, 33, and 37 were considered 

using flow-graph of a module, the Halstead 

metrics consisting of metrics 6-12 and 32 were 

used for the experimental verifications of a 

module, and the enumerated metrics consisting of 

metrics 5, 13-23, 25, 27, 29, 34-36, 38, and 39 

indicate the number of comments, instructions, 

delimiters, and blank lines of a module. The 



Babamir & Karimian / Journal of AI and Data Mining, Vol 5, No 2, 2017. 

157 
 

abbreviations used at the beginning of the metrics 

are used by the PROMISE dataset.  

Loc: total number of lines 

1. v(g): cyclomatic complexity= p+1, where p 

denotes the predicate (branch) of the module; 

2. ev(g): essential complexity, denoting 

unstructured codes of a module, and used to 

compute the effort prediction for the module 

maintenance; 

3. iv(g): design complexity: number of calls 

directly performed by a module or number of 

modules directly call a module; 

4. n: parameter count: number of parameters of a 

module; 

5. v:volume = length log2(1+2),where 1 and 

2denote the number of distinct operators and 

operands of a module, respectively; 

6. l:length = N1 + N2, where N1 and N2denote the 

total number of  operands and operators of a 

module, respectively; 

7. d: difficulty = (1/2)* (N2/2), parameters 1, 

N2, and 2 were explained above. This metric 

denotes the module understanding; 

8. i: content = levelvolume, where program level 

ranges between zero and one, and level=1 denotes 

that a module has been composed at the highest 

possible level (i.e. with a minimum size); 

9. e: effort = difficultyvolume; the effort 

estimated for development of a module; difficulty 

is computed as D=1/level. As the module volume 

increases, its level and difficulty decreases and 

increases, respectively; 

10. error_est: error estimation=(effort2/3)/3000; 

the number of errors is estimated to code a 

module; 

11. prog_time: effort/18 seconds; the required 

time to program; 

12. LOCode: number of instructions of a module; 

13. LOComment: number of comment lines of a 

module; 

14. LOBlan: number of blank lines of a module; 

15. uniq_op:number of unique operators of a 

module; 

16. uniq_opnd: number of unique operands of a 

module; 

17. total_op: total number of operators of a 

module; 

18. total_opnd: total number of operands of a 

module; 

19. branch_count: number of branches of a 

module; 

20. call_pairs: number of invocations by a 

module; 

21. loc_code_and_comment: number of 

instructions and comment lines of a module; 

22. condition_count: number of condition points 

of a module; 

23. cyclomatic_density = v(g) / (LOCode + 

LOComment); 

24. decision_count: number of decision points of 

a module; 

25. design_density:iv(g)/v(g); 

26. e: edge_count: number of edge flow graph of 

a module; 

27. essential_density: (ev(g)-1)/(v(g)-1); 

28. loc_executable: number of lines of executable 

code of a module; 

29. gdv(g):global_data_complexity = v(g)/n (see 

Parameter 4 for n); 

30 global_data_density: gdv(g)/v(g); 

31. L: halstead_level = 2*2/(1*N2); 

32. maintenance_severity =ev(g)/v(g); 

33. modified_condition_count: effect of changing 

a condition on a decision outcome; 

34. multiple_condition_count: number of multiple 

conditions of a module; 

35. node_count: number of nodes of flow graph of 

a module; 

36. normalized_cylomatic_complexity: v(g)/loc; 

37. number_of_lines: number of lines of a 

module; 

38. percent_comments: percentage of comment 

lines of a module. 

 

The PROMISE calculated metrics 1-20 for 

datasets 1-4 and 9 in table 1, and all metrics for 

datasets 5-8 and 10-13. However, because some 

independent variables might be highly correlated, 

we used a correlation-based feature selection 

technique (CFS) [8] to select the best predictors of 

the original and sampled data (Table 2). 

 
Table 2. Metrics selection using CFS method for original 

and sampled data. 
Selected metrics 

of sampled data  

Selected metrics of original 

data  

Dataset # 

3-4-9-13-14-15-16 1-4-9-14-16-17 CM1 1 

3-4-14-15-22-16 1-4-9-13-14-15-22-16-17 JM1 2 
3-4-14-15-17 6-7-8-9-14-15-17-20 KC1 3 

2-3-9-13-14-15-22-

17-19 

1-3-9-15-22-18-19 KC2 4 

22-31-30-6-37-39 7-22-15 KC3 5 

15-21-22-14-26-3-

30-31-33-38-39 

21-38-39 MC1 6 

14-26-4-3-31-8-10-

11-7 

15-14-4-28-31-8-10-11-36-18 MC2 7 

15-21-14-24-4-26-
27-35-18-38 

15-14-4-27-9-32-34-36-17 MW1 8 

3-4-9-14-22-15-19 9-14-22-15-17 PC1 9 

14-4-26-29-33-16-
39 

20-22-14-26-9-8-18-39 PC2 10 

1-21-22-14-25-3-5-

9 

15-22-14-9-33-37-17 PC3 11 

3-24-26-4-28-5-39 22-23-3-39 PC4 12 

15-21-3-24-4-3-5-

30-31 

21-22-24-4-3-30-9-8-10-34-16-

36-1 

PC5 13 
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5.3. Dependent variable 

This work focuses on the prediction of being 

fault-prone a module. Therefore, our dependent 

variable was a boolean variable consisting of true 

or false values, indicating that the module was 

fault-prone (fp) or non-fault-prone (nfp). 

Predicting the number of faults is a possible future 

work if such data is accessible. 

 

5.4. Performance metrics 

Since the area under the ROC (receiver operating 

characteristic) curve (called AUC) is used to 

evaluate the fault prediction models (classifier 

methods) [3, 5], we used AUC in this work. The 

ROC curve shows sensitivity against specificity, 

where the sensitivity and specificity denote the 

probability of true fault detection and the 

probability of false alarm, respectively. We did 

not have a good performance when the AUC value 

was less than 0.7. (1-.9 = excellent, .9-.8 = good, 

.8-.7 = fair, .7-.6 = poor, less than .6 = fail). 

If the fp and nfp modules are regarded as the 

positive and negative cases, the ROC curve will 

show rates of the true positive (i.e. correct 

prediction in fault-proneness of a module) against 

the false positive (i.e. incorrect prediction of a 

non-fault-prone module as a fault-prone module). 

An ROC curve shows the classifier performance, 

lying between 0 and 1 (the value 1 indicates a 

perfect classifier) [47]. 

 

5.5. Environment setting 

The parameters of the experimental environment 

were set for the classifiers, as follow: 

 

Logistic Regression: (1) maxIts=-1 (maximum 

number of iterations to be performed. Value -1 

means until convergence), (2) ridge=10-8 (ridge 

value in the log-likelihood). 

Bagging: (1) classifier: RepTree, (2) 

bagSizePercent=100 (Size of each bag, as a 

percentage of the training set size). 

Random Forest: (1) maxDepth=0 (maximum 

depth of the trees, 0 for unlimited), (2) 

numFeatures=0 (number of attributes to be used 

in random selection, zero means log2 

(number_of_attributes) + 1 is used), (3) 

numTrees=10 (number of trees to be generated). 

Boosting: (1) classifier: DecisionStump, (2) 

likelihood Threshold=-1.7976931348623157E308 

(threshold on likelihood improvement), (3) 

numRuns = 1 (number of runs for internal cross-

validation), (4) weightThreshold=10 (weight 

threshold for weight pruning). 

Decorate: (1) artificialSize=1.0 (number of 

artificial examples to use during training), (2) 

classifier: J48, (3) desiredSize=15 (number of 

classifiers in this ensemble. Decorate may 

terminate before the size is reached (depending on 

the value for num Iterations), (4) 

numIterations=50 (maximum number of iterations 

to be run). 

Multilayer Perceptron: (1) hiddenLayers = 

(attribs+ classes)/2, (2) learningRate=0.3 (amount 

that the weights are updated), (3) momentum=0.2 

(momentum applied to the weights during 

updating). 

Radial Basis Function: (1) clusteringSeed=1 

(random seed to pass to K-means), (2) 

minStdDev=0.1 (minimum standard deviation for 

clusters), (3) numClusters=2 (number of clusters 

for K-Means to be generated), (4) ridge=10-8 

(ridge value for logistic or linear regression). 

Naïve Bayes: (1) KernelEstimator=false (kernel 

estimator for numeric attributes rather than a 

normal distribution), (2) SupervisedDiscretization 

=false (supervised discretization to convert 

numeric attributes to the nominal ones). 

Bayes Network: (1) Estimator= SimpleEstimator 

(Estimator algorithm for finding the conditional 

probability tables of the Bayes network), (2) 

search Algorithm=k2 (selected method to search 

the network structures). 

Support Vector Machine: (1) c=10 (complexity 

parameter C), (2) epsilon=0.001 (epsilon for 

round-off error), (3) kernel: radial basis 

function(kernel to be used). 

K*: (1) entropicAutoBlend=false (entropy-based 

blending is not used), (2) globalBlend=20 

(parameter for global blending), (3) missingMode: 

average column entropy curves (to determine how 

missing attribute values are treated). 

J48: (1) confidenceFactor=0.25 (confidence factor 

for pruning), (2) minNumObj=2 (minimum 

number of instances in per leaf), (3) 

subtreeRaising=true (subtree raising operation is 

considered in pruning). 

ADTree: (1) numOfBoostingIterations=10 

(number of boosting iterations to be performed), 

(2) saveInstanceData=false (tree does not save 

instance data), (3) searchPath: expand all paths 

(type of search to be performed when it builds the 

tree. It will do an exhaustive search). 

PART: (1) minNumObj=2 (minimum number of 

instances per rule), (2) confidenceFactor=0.25. 
 

5.6. Cross-validation 

A 10-fold cross-validation [63] was used to 

validate the prediction models. Each dataset was 

randomly partitioned into 10 folds of the same 

size. 

For 10 times, 9 folds were selected to train the 

models, and the remaining fold was used to test 
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the models, with each time leaving out a different 

fold. All the preprocessing steps (feature selection 

and data sampling) were done on the training 

dataset. The processed training data was then 

applied to build the classification model, and the 

resulting model was used for the test fold. This 

cross-validation was repeated 10 times; each fold 

was used exactly once at the test data. 

 

5.7. Discussion of results 

In this section, we aim to show the effect of 

feature selection techniques in combination with 

data sampling using 4 scenarios. The scenarios 

(see Figure 2) include all the possible situations 

when feature selection and data sampling are used 

simultaneously to create the training dataset. 

 

 
Figure2. Feature selection and data sampling scenarios. 

Scenario 1 (S1): using CFS, we select features 

from the original data, and create the training 

dataset based on the original data; 

Scenario 2 (S2): using CFS, we select features 

from the original data, and create the training 

dataset based on the sampled data; 

Scenario 3 (S3): using CFS, we select features 

from the sampled data, and create the training 

dataset based on the original data; 

Scenario 4 (S4): using CFS, we select features 

from the sampled data, and create the training 

dataset based on the sampled data. 

 

5.7.1. Investigation using AUC performance 

As stated in Section 5.4, the AUC value denotes 

the method performance. In other words, if h and 

g are 2 classifiers, then AUC(h) > AUC(g) means 

that classifier h has a better average performance 

over classifier g. 

We classified the 13 datasets stated in table 1 

using 17 classifiers and the 4 scenarios, and then 

calculated the AUC values. For brevity, we 

showed just the results of classifying the datasets 

MC1, MC2, JM1, and KC2 (the datasets 6, 7, 2, 

and 4 in Table 1) obtained by 17 data classifiers 

under the 4 scenarios.  

 

According to table 1, MC1 consists of the Min. 

percent of faulty modules (1.81%), many metrics 

(39 from 40), and comparatively many instances 

(1988).  

Against MC1, MC2 consists of the max.  percent 

of faulty modules (32.48%) and the min. number 

of instances (157). Similar to MC1, MC2 contains 

the max. number of metrics (40). Against MC2, 

JM1 has the max. number of instances (7782) and 

the nearly min. numbers of metrics (22 from 40). 

Finally, KC2 lacks about half of the metrics (18) 

and comparatively, does not have many instances 

(324).  

We then proceeded to evaluate the 17 classifiers 

for classifying the 4 datasets mentioned above. 

Figures 3-6 show the evaluation under the 4 

scenarios for the datasets MC1, MC2, JM1, and 

KC2. The figures show two issues: (1) method 

performance with the 4 scenarios, and (2) 

comparison between the performances of the 

methods.  

The 1st issue shows that with scenarios 2 and 4, 

we have a higher AUC (performance) than 

scenarios 1 and 3. The 2nd issue shows that there 

are agreements and disagreements on the 

performance of the methods (Table 3). This table 

shows that the figures agree on the best 

performance of the random forest and LogitBoost 

classifiers (predictors), and the worst performance 

of SVM and LADTree.  

With the 4 scenarios, we obtained 4 different 

AUC performance values for each classifier in the 

classification of the 13 datasets. Then we 

calculated the mean (average) values for the 4 

ACU values obtained and standard deviation of 

the scenarios from the mean (Relation 6,  is the 

mean) for each classifier. 
4

2

i

1

1
s= (scenario -m)

4
                                       (6) 

 

A low mean (less than 0.5) and a high standard 

deviation indicate inappropriate values.  

A low standard deviation means that the data is 

very close to the mean, while a high standard 

deviation does that data scatter over a wider range 

of values. 
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Figure 3. Performance evaluation of 17 data classifiers for MC1 dataset. 

 

Figure 4. Performance evaluation of 17 data classifiers for MC2 dataset. 

 

Figure 5. Performance evaluation of 17 data classifiers for JM1 dataset. 
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Figure 6. Performance evaluation of 17 data classifiers for KC2 dataset. 

 
Table 3. Performance of classifiers under scenarios. 

 

 
Figure 7. AUC mean value with 4 scenarios and deviation 

from mean value in MC1 dataset classification. 
  

Figure 7 shows (1) the mean AUC value obtained 

with 4 scenarios, and (2) standard deviation of 

scenarios from the mean for the 17 classifiers in 

the classification of the MC1 dataset. According 

to figure 7, the worst (least) mean of the AUC 

value with the 4 scenarios is that of the SVM 

predictor; therefore, totally, it is not a good 

prediction method for the MC1 dataset, while the 

best (most) mean of the AUC value with the 4 

scenarios is that of LogitBoost, Bagging and 

Kstar. However, the deviation in the SVM, 

Logistic, Naïve Bayes, LogitBoost, and Bagging 

classifiers from the mean is the lowest; this means 

that they are stable against the class imbalance 

problem. By contrast, the deviation of the 

Decorate, J48, and LADTree classifiers from the 

mean is the worst (most). This means that they are 

more unstable for the class imbalance problem 

over others. Overall, figure 7 shows that Logistic, 

Bagging, and LogitBoost are better predictors than 

the others with view of the mean and deviation.  

Figure 8 shows the mean AUC value obtained 

using the 4 scenarios, and the standard deviation 

of the scenarios from the mean for the 17 

classifiers in the classification of the MC2 dataset.  

 

 
Figure 8. AUC mean value with 4 scenarios and deviation 

from mean in MC2 dataset classification. 

Similar to the classification used for the MC1 

dataset, Figure 8 shows that the worst (least) value 

of the mean AUC with the 4 scenarios is that of 

the SVM predictor; therefore, totally, it is not a 

good prediction method for the MC2 dataset; by 

contrast, the best (most) value of the mean AUC 
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with the 4 scenarios is that of Decorate, Bagging, 

and Random Forest. However, the deviations in 

Naïve Bayes and Decision Stump from the mean 

are the least. This means that they are stable 

against imbalanced data. Overall, figure 8 shows 

that ADTree and AdaBoost predict better than the 

others with view of the mean and deviation. 

Figure 9 shows the AUC mean value obtained 

with the 4 scenarios and standard deviation of 

scenarios from the mean for the 17 classifiers 

used for classification of the JM1 dataset. Similar 

to the classification used for the MC1 and MC2 

datasets, figure 9 shows that the worst (least) 

mean AUC value with the 4 scenarios is that of 

the SVM predictor. Therefore, totally, it is not a 

good prediction method for JM1; moreover, 

deviation in the SVM classifier from the mean 

value is the worst (most). By contrast, the best 

(most) mean AUC value with the 4 scenarios is 

that of the BayesNet, Bagging, and Part 

predictors. 
 

 

Figure 9. AUC mean value with 4 scenarios and deviation 

 from mean in JM1 dataset classification. 
 

Deviation of the Logistic, RBF, MLP, Naïve 

Bayes, and DecisionStump predictors from the 

mean value is the least (best).This means that they 

are stable against the class imbalance problem. 

Figure 10 shows the mean AUC value obtained 

with the 4 scenarios and standard deviation of 

scenarios from the mean for the 17 classifiers 

used for classification of the KC2 dataset. 

Again, similar to the three previous experiences, 

Figure 10 shows that the worst (least) mean AUC 

value with the 4 scenarios is that of the SVM 

predictor; therefore, totally, it is not a good 

prediction method for KC2; moreover, similar to 

the JM1 dataset, deviation of SVM from the mean 

value is the worst. 

 

 
Figure 10. AUC value mean with 4 scenarios and 

deviation from mean value in KC2 dataset classification. 

However, the mean AUC value of about 10 

classifiers is high, and their deviation from the 

mean value is low. Moreover, the deviation of all 

classifiers but SVM from the mean is low. This 

means that all predictors but SVM are stable 

against the imbalanced data. 
 

5.8. Overall evaluations 

Figures 11 and 12 show the AUC values obtained 

for the classifiers in classifying all the datasets 

with: (1) scenarios 2 and 4, and (2) all the 

scenarios, respectively. 

Furthermore, the figures show the deviation of the 

classifiers from the mean value. With scenarios 2 

and 4, figure 11 shows that the best performance 

is that of Bagging and Random Forest, while the 

worst performance is that of the SVM classifier. 
 

 

Figure 11. AUC mean value with scenarios 2 and 4 and 

deviation from mean for classification of all 

datasets. 
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Figure 12. AUC mean of all scenarios and deviation from 

mean for classification of all datasets. 

Based on all scenarios, figure 12 shows that the 

best performance is that of the BayesNet, 

LogitBoost, and Bagging, while the worst one is 

that of the SVM predictor. Moreover, the deviation 

of the J48 classifier from the mean value is the 

worst. Based on Figs. 10 and 11, we came into 

this conclusion that the performance of the 

classifiers for software fault prediction is 

according to table 4. 

To show the impact of the 4 scenarios on the 

prediction models, we classified all of the 13 

datasets to faulty and non-faulty modules using 

the 17 classifiers, and obtained the mean value of 

the classifiers for each scenario. Then we 

calculated the impact mean value of the scenarios 

and the deviation of each scenario from the mean 

value.  

We used one-way analysis of variance (ANOVA) 

F-test [64] to determine the statistical difference 

between the 4 scenarios. There are 2 possible 

hypotheses: (1) null hypothesis, meaning that 

means of all groups of the population (scenarios) 

are the same, and (2) alternate hypothesis, 

meaning that at least one pair of mean values are 

different.  

To show the statistical difference between the 

mean values of groups of population, the 

significance level (indicated by probability value 

or p-value) was computed by ANOVA. The 

difference between some of the means are 

statistically significant if p-value≤0.05. 

Otherwise, we have not enough evidence to reject 

the null hypothesis, meaning that the means are 

equal. Therefore, for p-value≤0.05, we concluded 

that the alternate hypothesis should be accepted, 

and the means of at least 2 scenarios are 

significantly different from each other. We used 

MATLAB [65] to compute the p-value (Table 5). 

 
Table 5. ANOVA results for 4 scenarios. 

 

The p-value=0.0014 indicates that the scenarios 

are different. Source means "the source of the 

variation in the data" and Scenario shows groups 

of the population whose p-values to be compared. 

Error means "the variability within the groups" or 

"unexplained random error." Parameters m=4 and 

n=68 denote the number of scenarios and data, 

respectively. 

After rejecting the null hypothesis, a multiple 

comparison called Tukey’s test was used to 

compare the difference between the mean values 

pair wise. Figure 13 displays the multiple 

comparisons for the 4 scenarios with 95% 

confidence interval. As the figure shows, these 

intervals have no overlap; therefore, the mean 

values are significantly different. Considering 

figure 13, we understand that scenarios 2 and 4 

significantly show a better performance over 

scenarios 1 and 3. 

As figure 14 shows, the performance of the fault 

prediction of the models based on the training 

sampled data (i.e. scenarios 2 and 4) is better than 

the training original data (i.e. scenario 1 and 3), 

regardless of selection of the features from the 

sampled or original data. 

In addition, scenario 4 (i.e. training sampled data 

and selection of features from the sampled data) 

shows the most mean value of performance using 

all datasets. If we call the impact of a scenario as 

the mean value for the performance of all 

classifiers using all datasets, the deviation of 

scenario 2 (i.e. training the sampled data and 

selection of features from the original data) from 

the impact mean is the best (least). 

Overall, scenario 2 achieves better than the others. 

Therefore, considering figure 14, we came into 

this conclusion that the impact of the scenarios on 

the performance of the classifiers is 3<1<2<4 if 

we consider the mean value, and 2<4<1<3 if we 

do the standard deviation value.  

Table 4. Software fault prediction performance of 

classifiers. 

Scenario Value Method Performance 

2 and 4 Mean Kstar> Bagging > RF > Decorate 

>BayesNet 
1,2,3,4 Mean Bagging >BayesNet>LogitBoost>Kstar> 

RF 

1,2,3,4 Standard 
Deviation 

DecisionStump>  Naïve Bayes 
>BayesNet 

Source sum of 

squares 

degree of 

square 

mean sum  

of squares 

F-test p-value 

Scenario 0.08573 m-1= 
4-1=3 

0.08573/3 
=0.02858 

0.02858/ 
/0.00489

=5.84 

P[F(3,64) 
≥ 5.84] 

<0.0014 

Error 0.31313 n-m=  
68-4=64 

0.31313/64 
=0.00489 

  

Total 0.39886 64+3=67 0.00489 + 

0.02858 
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Figure 13. Multiple comparison for four scenarios. 

 

 

Figure 14. Mean value of performance of all classifiers 

(impact) for each scenario and deviation of scenarios 

from their impact using all datasets. 

 

6. Conclusions and future work 

This paper experimentally evaluated the ability of 

17 classifiers in predicting fault-prone software 

modules with 4 scenarios in the context of 13 

cleaned NASA datasets. 

In a given classification problem, an important 

challenge is the choice of the convenient features 

when the underlying data is imbalanced. To deal 

with this problem, we discussed the different 

combinations of the feature selection and data 

sampling to create the training data for 

construction of a software fault prediction model. 

This study answered these research questions: (1) 

for which of the original or sampled data should 

feature selection be used? (2) given a set of picked 

features, based on which type of data (the original 

or sampled), we create the training data? (3) 

which of the classifiers have a better 

performance? 

The results obtained showed that feature selection 

based on sampled or original data is not affected 

in the performance of the fault prediction models. 

Furthermore, the performance of the fault 

prediction models is better when the training data 

is created using the sampled data over the original 

data. In addition, Bagging, Random Forest, and 

K* have the best performance in the mean for all 

datasets with scenarios 2 and 4. 

A future work may conduct the additional 

experimental studies on the other datasets, feature 

selection, and sampling methods, and may use 

additional in dependent variables (i.e. features) 

such as coupling and cohesion metrics. 

Another new idea that may be considered as the 

future work is thinking of the fault prediction of 

the concurrent programs such as the multi-thread 

programs. For such programs, metrics such as the 

number of concurrent and sequential threads 

should be considered. Two significant classes for 

such programs are (1) execution sequences of a 

concurrent program leading to deadlock, and (2) 

those not leading to deadlock. We have an 

experience on fault prediction of concurrent 

programs using the NARX neural network, where 

executions are classified into deadlock-prone and 

non-deadlock-prone [66]. However, this 

classification was based on the runtime (dynamic) 

behavior of the concurrent programs, and not the 

use of software static metrics. 

Another future work may apply sample reduction 

to training phase inspired by [67]. In [67], authors 

addressed an instance reduction method to discard 

irrelevant instances from the training set.   
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 افزارهای مستعدخطای نرمبینی پیمانهبندها در پیشارزیابی دسته

 

 فاطمه کریمیان و *سید مرتضی بابامیر

 ایران.، کاشان، دانشگاه کاشان، دانشکده برق و کامپیوتر

 04/04/9402 پذیرش ؛09/42/9402 بازنگری ؛92/40/9402 ارسال

 چکیده:

-افزار کمتر باشند، اعتماد به نرمهای مستعد خطای نرمخطای آن بستگی دارد. یعنی هرقدر پیمانه-های مستعدنهافزار به تعداد پیماقابلیت اطمینان نرم

نیز امکان افزارافزار باشیم، قضاوت درباره قابلیت اطمینان نرمخطای نرم -های مستعدبینی تعداد پیمانهشود. بنابراین اگر  قادر به پیشافزار بیشتر می

 هایتوان پیمانهافزار است که توسط آن میهای کمکی، معیار نرمافزار، یکی از ویژگیخطای نرم-های مستعدبینی پیمانهخواهد بود. در پیش پذیر

هایشان ویژگی بند تحقیق کردیم کهروش دسته0۱، بر روی بندیای ایجاد این دستهبندی کرد. برخطا دسته-مستعد -خطا و بدون-افزار را به مستعدنرم

  ی ناسا هستند.مجموعه داده 00افزار( های نرم)پیمانههایشانافزار و  نمونهمعیار نرم 02

ها )مانند گی( انتخاب بهترین ویژ0از: ) گذارد عبارتندکاوی اثر میهای دادهبینی در هنگام استفاده از روشدو موضوع مهم که بر روی صحت پیش

بند به سمت که دستهبرداری از موارد به منظور متوازن کردن موردهای ناهماهنگ؛ هنگامی( نمونه9ها و )( در میان تنوع وسیع ویژگیافزارمعیارهای نرم

بند روش دسته 0۱سناریو برای ارزیابی  0برداری از مورد، هشود دو کلاس ناهماهنگ داریم. بر اساس انتخاب ویژگی و نمونکلاس اکثریت متمایل می

برداری موردها ها، از انتخاب ویژگی مبتنی بر همبستگی و برای نمونهخطا درنظر گرفتیم. برای انتخاب ویژگی-های مستعدبینی پیمانهمنظور پیشبه

ها، تاثیر قابل توجهی بر روی برداری مناسب پیمانهجربی نشان دادند که نمونهبرداری بیش از حد اقلیت ترکیبی را استفاده کردیم. نتایج تروش نمونه

بندها، بینی ندارد. همچنین در میان دستهگذارند، اما انتخاب معیار اثر قابل توجهی بر روی پیشافزار میبینی قابلیت اطمینان نرمصحت پیش

gBaggin  ،*K بندها بودند.کنیم بهترین دستههای آموزشی استفاده میبرداری شده را برای دادهکه موردهای نمونهو جنگل تصادفی  هنگامی 

 افزار.معیار نرمبرداری از داده، بند، انتخاب ویژگی، نمونهکارایی دسته افزار،بینی خطای نرمپیش :کلمات کلیدی

 


