

Journal of AI and Data Mining

Vol 6, No 1, 2018, 59-67

A Hybrid Meta-Heuristic Algorithm based on Imperialist Competition

Algorithm

R. Roustaei

*
 and F. Yousefi Fakhr

Department of Computer, Malayer Branch, Islamic Azad University, Malayer, Iran.

Received 04 December 2015; Revised 21 July 2016; Accepted 14 September 2016

*Corresponding author: RassoulRoustaei@gmail.com (R.Roustaei).

Abstract

The human has always been to up to the best in everything, And this perfectionism has led to the creation of

optimization methods. The goal of optimization is to determine the variables to find the best acceptable

answer to the limitations in a problem, so that the objective function is a minimum or a maximum. Meta-

heuristic algorithms are one of inaccurate optimization methods that inspired by nature. In the recent years,

much effort has been made to improve or create metaheuristic algorithms. One of the ways available to make

improvements in meta-heuristic methods is to use combination. In this paper, a hybrid optimization

algorithm is presented based on the imperialist competitive algorithm (ICA). The ideas used in ICA are an

assimilation operation with a variable parameter and a war function that is based upon the mathematical

model of a war in the real world. These changes lead to an increase in speed, find a global optimum, and

reduce the search steps in contrast with the other meta-heuristic algorithms, so that the evaluations are made

for more than 80% of the test cases. The proposed algorithm superior to the imperialist competitive

algorithm, social based algorithm, cuckoo optimization algorithm, and genetic algorithm.

Keywords: Optimization Method, Imperialist Competitive Algorithm(ICA), Meta-heuristic Algorithm,

Hybrid Algorithm.

1. Introduction

Optimization is one of the important branches of

engineering, which has a great effect on a

structural design. The designers would be able to

present better designs only if they could save time

and money with the aid of optimization methods.

Optimization means finding the best possible

answer to an optimization problem [1].

Most optimization problems are more complicated

to be solved using the common optimization

methods such as math programing. For instance in

hybrid optimization problems, the goal is to find

the optimum point of the function with discrete

variables. In confronting these problems, which

are mostly in the NP-Hard group, one of the

existing solutions is to use the approximate or

heuristic algorithms. These algorithms have the

grantee that the given solution is an optimum one,

and only after spending a long time we can just

find a fairly exact answer; in fact, based on the

time it takes, the exactness of the answer will vary

[2].

In the past 3 decades, a new type of approximate

algorithms has been created, which aims to do the

hybrid function in higher levels of basic

explorative methods in order to increase the

performance and accuracy of a search. Nowadays

these algorithms are called meta-heuristic

algorithms. The heuristic method is defined as a

repetitive production process that guides a

subsidiary heuristic function using intelligent

composition with different exploration concepts

[2]. This process will apply a simple perfect (or

imperfect) answer or a set of answers in each

iteration. Subsidiary heuristic function could be

one of the high-level (or low-level) procedures or a

simple local search or just a structural method [3].

There are a variety of hybrid methods available in

heuristic algorithms. The first one is to add some

components of a heuristic method to another one.

The second type consists of a system called

collaborative search, in which a variety of

algorithms are available for information exchange.

Roustaei & Yousefi Fakhr/ Journal of AI and Data Mining, Vol 6, No 1, 2018.

60

The third method is to merge the approximate and

principal methods [3, 4]. In the recent years, we

have faced an increase in the optimization

researchers’ interest to heuristic algorithms, which

leads to the achievement of the best results for the

optimization problems. Table 1 shows several

samples of hybrid heuristic algorithms presented

in the recent years.

2. Imperialist competitive algorithm

Generally, the ideas of heuristic and meta-

heuristic algorithms are based upon a natural

process. The imperialist competitive algorithm

(ICA), which was represented in 2007 by

Atashpaz Gargary, is the opposite of the other

algorithms inspired from a human-social

phenomenon. This algorithm particularly looks at

a colonial process as steps of a social-political

evolution, and with mathematical modeling of this

historical phenomenon, uses it as an inspiration

source for a strong algorithm in the optimization

context.

In a little while past from the introduction of this

algorithm, it has been used a lot for solving many

problems in the optimization field [5]. ICA
1
 starts

with some initial populations, like the other

evaluation optimization methods. In this

algorithm, each population element is called a

country. In an optimization problem with N

dimensions, the specification of countries (initial

population) is characterized by an array, which is

defined as follows:

1 2 3[, , ,...,]
varNcountry p p p p (1)

The variable values are displayed in decimal

numbers. From a cultural-historical viewpoint, the

components of a country can be considered as

social-political features such as the culture,

language, economy, and structure. Figure 1

demonstrates the social-political components of a

country.

According to this figure, based on a social-

political viewpoint, the passive variables of a cost

function are the cultural and historical features, so

that a country is guided toward a minimum point

of the cost function. In fact, the goal of solving an

optimization problem by ICA is to find the best

country, i.e. a country with the best cultural-

historical features. As a matter of fact, finding this

country is equal to reach best variables for the

problem that produce a minimum value for the

cost function.

1 Imperialist Competitive Algorithm

Figure 1. Socio-political components of a country.

The cost of a country is obtained by evaluation

of function f for the variables

var1 2 3(, , ,...,)Np p p p .

var1 2 3() (, , ,...,)i i Ncost f country f p p p p  (2)

3. Proposed ideas to combine

In this section, the two ideas are considered which

has been used in the ICA; then how to combine

them with basic algorithms are expressed.

3.1. Fight algorithm

According to the real world that we live in, and

knowing that ICA is based on the colonialism

among countries, we focused on the point that in

the real world, for the colonization of a country, a

phenomenon called war may happen between the

imperialists. The countries that have more power

would attack the other ones and capture them as a

part of their empire. In 1832 general Carl Von

Clausewitz, a Russian commander and a military

theorist, in his thesis called “On war” presented a

definition for war: “War is an act of force to

compel our enemy to do our will” (Wikipedia).

According to this idea, a war may happen when

there are more than one empires. We choose an

empire randomly or by using the roulette wheel

among stronger empires as the starter of the war,

and use the same method to choose a weak empire

from the weakest ones to be attacked. In this step,

we check to make sure that the attacker empire is

stronger than the empire under attack because

meanwhile, a weaker empire may attack a

stronger one, and it would undoubtedly be

defeated. Thus by means of this comparison, we

can prevent the occurrence of this war in the

beginning. After choosing both the attacker and

the immolation countries, if the immolation

country has more than one country except the

empire, the attacker country will possess one

country from the victim country. In this condition,

small empires with less population will have more

chance to survive. The fight algorithm is shown in

figure 2.

1 2 3[, , ,...,]
varNcountry p p p p

Culture

Language

Economic policy

Religion

…

Roustaei & Yousefi Fakhr/ Journal of AI and Data Mining, Vol 6, No 1, 2018.

61

Fight Function()

1- {Select an Imperialist as the Fighter with Roulette Wheel

 random mechanism

2- Select an Imperialist as Attacked with Roulette Wheel
 random mechanism

3- If Fighter is Stronger than Attacked

4- {Select a Colony of Attacked as Victim with Roulette
 Wheel random mechanism

5- Remove Victim of Attack and Update Attacking Empire
 Add Victim to Fighter and Update Empire of Fighter}}

Figure 2. pseudo-code of Fight algorithm.

The stages of a fight algorithm and the manner to

implement them are as follow:

A) Choosing the attacker empire (fighter):
In order to choose the attacker empire, first, we

allocate a probability to each empire using the

Boltzmann probability distribution according to

the cost of each empire, so that the empire with a

lower cost will have a more chance to be selected.

Using the roulette wheel selection, we choose one

of the empires as the attacker country. It is

noticeable that in this paper, our assumption is

based upon minimization, and therefore, an

empire with a lower cost is the stronger.

B) Selection of the empire that comes under

attack (The empire under attack):
Again we use the Boltzmann probability

distribution to choose the attacked country, by

allocating a high probability to the weaker empire,

and we give each country a probability.

Contrariwise the previous step, here, the stronger

empires will have a lower chance to be selected.

Now by using the roulette wheel selection, one of

the empires will be selected as the attacked

empire.

Table 1. Comparison of previous works.

Improvement Year combined algorithms Algorithm Authors

Increasing the convergence speed and accuracy of CCA 2010 GA & CCA CCA-GA Nigam , Jain [6]

Increasing the convergence speed and accuracy 2010 GA & ICA R-ICA-GA Razavi, Khorani, Ghoncheh [7]

High speed than ICA & PSOLR 2011 ICA & LR ICALR Abdechiri & Meybodi [8]

Increasing the public search functionality of HNN 2011 ICA & HNN HNNICA Abdechiri & Meybodi [8]

Greater convergence of hybrid K-MICA algorithm than
other evolutionary algorithms

2011 K-means & ICA
Hybrid K-
MICA

Taher Niknam et al. [9]

This algorithm was presented for task scheduling in grid

computing to decrease missed task and make span
2011

Fuzzy logic &

 Q-learning
GA-GELS Pooranian. et al. [10]

Increasing the convergence speed and accuracy of ICA &

EA
2012 EA & ICA HEICA Ramezani et al. [11]

Increasing the convergence speed 2013 EA & ICA SBA Ramezani & Lotfi [12]

Improvements in escape from local optimization 2013
ICA & Nelder-Mead
simplex method

ICAS Lepagnot. et al. [13]

Better classification of small data sets and large data sets

than the last known classification algorithm
2014 GA & ICA HYEI Jalal Nouri. et al. [14]

This algorithm was presented for sensor network
clustering, that leads to increased detection accuracy and

clustering quality. The modified ICA-based detection

system operates to sense DDoS attacks

2014

DBSCAN-based

density clustering &
fuzzy logic & ICA

D-FICCA Shamshirband et al. [15]

this approach was presented to protect wireless nodes

from DDoS attacks
2014 Fuzzy & Genetic FQL Shamshirband. et al. [16]

This algorithm was present for cloud job scheduling and

improves on various measures such as execution time,
execution cost, and the average degree of imbalance.

2015 Fuzzy & Genetic FUGE Shojafar et al. [17]

find better and nearer optimal solutions. 2015 ICA & GA HGA Roozbeh Nia et al. [18]

This algorithm find the solution of optimal reactive power

dispatch (ORPD) of power systems. The results show

that the proposed hybrid approach is more effective and
has a higher capability in finding better solutions

2016 ICA & PSO PSO–ICA Mehdinejad et al. [19]

This algorithm is a new modified harmony search

algorithm to find the solution of optimal reactive power

dispatch (ORPD) of power systems.

2016 HSA & CLS MHSA Valipour, Kh., et al.[20]

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Lepagnot,%20J..QT.&newsearch=true

Roustaei & Yousefi Fakhr/ Journal of AI and Data Mining, Vol 6, No 1, 2018.

62

C) Selection of victim country:
In order to capture a country, the attacker country

should observe two conditions. First, the power of

the attacker empire must be more than that of the

attacked empire (be more qualified).

Secondly, the attacked empire should have 2 other

countries except the emperor. This causes that the

attacked empire still has another country after the

war, otherwise the war could make an empire to

be destroyed and in the imperialist competition

algorithm the act of eliminating one empire could

happen in the competition among countries but we

are preventing this in the war. Therefore, the

attacked country could still survive, and this

prevents the algorithm from a premature

termination. Now we allocate a probability to each

exciting country with a high priority for the

weaker colony using the Boltzmann distribution

and then with the roulette wheel selection, we

choose a country. The selected country will be

labeled as "Victim".

D) Remove the victim country from its

empire (empire under attack) and add it to the

attacker empire (fighter).
Now we should separate the victim country from

the owner empire and join it to the attacker

country. Finally, both countries should be updated

(number of member countries, empire cost).

3-2. Policy of variable beta assimilation idea

(second idea)

According to [5], the policy of assimilation

(absorption) is applied to the culture of the central

government, and the aim is to analyze the culture

and social structure of the colonies. In fact, in this

algorithm, the goal of assimilation policy is the

same in ICA; it means that the colony country

(country T) has moved as long as x units along

with the connection line between the colony and

imperialist and will be drawn in the new location.

Figure 3 shows the assimilation policy of a colony

toward an imperialist.

To move a colony toward an imperialist we

calculate the sum of the locations of the colony

with an n dimension array of x-, where x is a

random number with uniform distribution or any

other distribution that can be obtained by Formula

3.

 (3)

In this equation, d is the distance between the

colony and the imperialist, and β is a number

more than one and close to 2. Also, the possible

deviations are applied by adding a random angle

to the assimilation path. This deviation angle is

called θ.

 (4)

Figure 3. Assimilation policy, moving colony toward

imperialist.

In this equation, γ is an arbitrary variable, the

increase in which causes an increase in the search

around the empire, and also decreasing it causes

the colonies to move closer to the vector

connecting the colony to the imperialist as much

as possible. Considering the unit radians for γ, a

number close to π/4 is a good choice in most

implementations.

The difference between the assimilation policy in

this algorithm and the one in ICA uses 4 different

values for β instead of using one constant

assimilation parameter of β, and the method of

allocating β will be defined in each iteration by

inspiration from the Tabu search. It means that in

each iteration, one of the β-s is selected randomly

but there is restriction applied to this random

selection. If β-j is used in the i
th
 iteration of the

algorithm, using β-j is forbidden in the (i+1)
th

iteration, and another coefficient must be used.

This will lead to a different space to search around

the solution, and also will prevent being trapped

in the local minimum because by choosing

different and non-repetitive coefficients, the

assimilation steps have a wider variety of values.

Figure 4. Assimilation with constant β and trapping in

a local minimum.

Figure 4 shows the state that colonies move

toward the empire by a statistic β, which means

that the assimilation parameter is constant.

Roustaei & Yousefi Fakhr/ Journal of AI and Data Mining, Vol 6, No 1, 2018.

63

Assume that the red arrow is the value for β

(absorption parameter); with two steps, it could

reach the local minimum, and with the third step,

it would pass it, although as the slope is toward

the local minimum, it will return to the local

minimum with that step, and this sweep will be

repeated. It is where we say the algorithm is

trapped in the local minimum. Now suppose the

state in which the values for β are different; for

instance, in figure 5, assume the assimilation

parameter with 4 different values and different

steps in each iteration. If we use the non-repeated

coefficients β1 and β3, respectively, in the moving

steps, the algorithm gets closer to the local

minimum; in the next step, the algorithm could

not use β3. Assume that the algorithm randomly

uses β4. Therefore, the algorithm will pass the

local minimum, and will continue its path toward

the global minimum. Thus this will prevent being

trapped in the local minimum.

Figure 5. Assimilation with variable β and escape from

the local minimum.

As shown in the figures, by using this method, we

can avoid getting trapped in the local minimum in

many cases. This method also searches in a bigger

search space. This will make the algorithm to find

the solution faster than the assimilation policy in

ICA. In figure 6, you can see the uncertain

assimilation algorithm.

1. Beta=[0.5 , 1 , 1.3 , 2.9]

2. For each colony C

3. C.Beta = 0;
4. Variable Beta Assimilation()

5. { for each Empire

6. for each colony as C in empire
7. index = random(1,4)

8. while (C.Beta == index)

9. index = random(1,4)
10. C.Beta = index

 Assimilate C into Imp(Empire) with C.Beta parameter }

Figure 6. Assimilation algorithm with variable values for

beta.

3.3. Hybrid algorithm (ICA-Fight-β)

Now you can see in figure 7 the new hybrid

algorithm. This algorithm is used instead of the

original assimilation of the new assimilation

function, The FIGHT function is also added to the

collection of operations inside the main loop. The

changes in the algorithm are shown below in bold.

1. Initialization; // Create Initial Empires
2. { // The beginning of the loop iterations
3. Variable Beta Assimilation (); //Assimilation with Variable Beta

4. Do Revolution (); // Revolution

5. Intra Empire Competition (); // Intra-Empire Competition
6. Fight Function (); // Fight

7. Update Total Cost (); // Update Total Cost of Empires

8. Inter Empire Competition (); // Inter-Empire Competition
9. Update Best Solution (); //Update Best Solution Ever Round

If the stop condition is satisfied, stop; if not, go to 2.}

Figure 7. ICA-Fight-β algorithm.

You can also view the new algorithm flowchart in

figure 8; two new parts are different in the

flowchart.

4. System simulator characteristics

To implement the algorithm, its simulation was

run in MATLAB on a system with the following

hardware and software characteristics:

 CPU: AMD Turion™ 64 X2 Mobile Technology

TL-64 2.2 GHz

RAM: 2 GB, OS: Windows 7 (32 bit), Version of

MATLAB: 7.8.0.347 (2009)

5. Benchmark functions

 In the recent years the growing need to optimize

the cost in many engineering problems, has

caused many optimization algorithms to be

introduced by the researchers, but the more

important issue is the evaluation method of the

algorithm. One of the helpful methods used for

analyzing the performance of these algorithms is

to test them on different functions called test

functions or benchmark functions. In applied

mathematics, the evaluation functions are known

as an artificial view which is useful for evaluating

the features of the optimization algorithms such as

the speed of convergence, accuracy, stability, and

general performance. Here, we introduce some

test functions that could be used as a goal function

in the optimization case with a single goal [21-

25].

Some test functions are shown in table 2. Also,

you can see in figure 9 the graph for a bumpy

function.

As you can see in figure 9, some of these

benchmark functions contain too many minimal

and maximal points, that it is a suitable criterion

for evaluating the optimization algorithm. Since

these functions simulate a state space with

multiple local optimal, so they can evaluate

algorithm performance.

Roustaei & Yousefi Fakhr/ Journal of AI and Data Mining, Vol 6, No 1, 2018.

64

Figure 8. ICA-Fight-β flowchart.

Table 2. Benchmark Functions.

Function name

Range

Parameters
Formula function

SPHERE ∑

SHUBERT

 ∑

 ∑

BOOTH

Sum

Squares
 ∑

Rotated
Hyper-

Ellipsoid
 ∑∑

THREE-

HUMP

CAMEL

RASTRIGIN ∑

De Jong
N.3

 ∑

Bumpy

Figure 9. Bumpy function diagram.

6. Evaluation of scenario and evaluation

criteria

As we know in order to assess the participant,

having suitable criteria is the necessity for

comparison. In the optimization algorithms, the

goal is to find the optimum solution among a set

of candidate solutions. Therefore, in the

optimization algorithms, the qualified algorithm is

the one that can find the solution faster than the

others. However, as there is a possibility of not

finding the optimum solution in heuristic

algorithms, consider the possibility of not-finding

the optimum solution in defining the criteria. Now

we introduce the performance assessment criteria

for the optimization algorithms. The two criteria

Start

Initialize the empires

Assimilation colonies with

variable Beta

Revolve some colonies

Is there a colony in an empire which

has lower cost than that of the

imperialist?

Imperialistic Competition

Compute the total cost of all empires

Fight Function

Exchange the positions of that imperialist

and the colony

End

Eliminate this empire

Unite Similar Empires

Stop condition satisfied

Is there an empire with

no colonies?

Yes

No

No

No

Yes

Yes

Roustaei & Yousefi Fakhr/ Journal of AI and Data Mining, Vol 6, No 1, 2018.

65

response time and number of iterations are

expressed to evaluate the performance of the

proposed idea in comparison with the other 4

algorithms ICA, SBA
2
, COA

3
 and GA

4
 as follows:

6.1. Number of iterations for optimization

algorithm

In the heuristic optimization algorithms, a special

action, the optimization iteration is carried out

repeatedly. One of the criteria used to evaluate the

performance of the optimization algorithm is to

compare the number of repetitions until an

optimum global answer is achieved. For example,

if algorithm A with 100 iterations and B with 200

ones get the optimum solution, then the number of

iterations in algorithm A is better. Table 3

contains the number of iterations required to

achieve the optimum solution using the ICA-

Fight-β algorithm and the algorithms ICA, SBA,

COA, and GA. It is to be noted that each iteration

value in table 3 was obtained from an average of

10 tests. Figure 10 represents a comparative

diagram of them.

By two-by-two comparisons between ICA-Fight-

B and other algorithms, we will have an

interesting result. As it can be seen, ICA-Fight-β

reached the optimum solution in all cases, while

the classical ICA algorithm in 4 cases and both

the COA and GA algorithms in 3 out of 13

evaluation cases received the optimal results in

less than 200 iterations (illustrated with a star (*)

in Table 3). The rest of the cases did not obtain

the optimal solution, even in 200 repetitions.

Table 3. Number of iterations of different algorithms until

achieving the optimum or up to 200 steps.

Optimization algorithms Evaluation

functions

ICAFightB GA COA SBA ICA

99.3 200 200 200 200 Sphere 1

50.1 200 18.4 * 200 200 Rastrigin 2

95.8 200 200 200 200 DeJong3 3

102.6 200 200 200 200 DeJong4 4

98.8 200 200 200 200 Sumsqu 5

116.6 200 200 200 200 Booth 6

34 72.8 * 28 * 111 58.2 * boha1 7

41.9 157.4 * 189.1 * 82.9 47.4 * Function9 8

10.3 200 200 22.8 15.6 * Bumpy 9

20.3 21.6 * 200 30.6 16.3 * Shubert 10

71.2 200 200 200 200 camel3 11

99.9 200 200 200 200 Rothyp 12

33.1 200 200 200 200 Sumpow 13

2 Social-Based Algorithm
3 Cuckoo Optimization Algorithm
4 Genetic Algorithm

It is noticeable that in the cases where these

algorithms reach the optimal answer, the ICA

algorithm in one case (shubert function) and the

COA algorithm in two cases (rastrigin and boha1

functions) achieve the optimal answer in a less

number of iterations rather than the ICA-Fight-β

algorithm (illustrated with black square in table

3). In the rest of the cases, the proposed algorithm

is conclusively excellent. Also the new algorithm

is better than SBA in all cases. This represents an

improvement in the proposed method.

Figure 10. Comparison chart of optimization algorithms

in terms of number of iterations to achieve optimal

solution.

6.2. Runtime (response time)
Another evaluation parameter for the optimization

algorithms is their runtime. To do so, we can

choose either the time required to find the

optimum answer or the time needed to execute a

fixed number of iterations for comparison. It is

clear that this time depends on the features of the

implementation system of the algorithm.

Therefore we must use the same system to

compare different algorithms.

Table 4 shows the response time for each

algorithm to achieve the best answer. Here, a few

required points are being recalled and mentioned.

First to calculate the time, the tic and toc functions

are used in MATLAB. This time depends on the

efficiency of the simulator system. Secondly, like

the previous criteria, each time is obtained from

an average of 10 tests. Finally, what is being

illustrated in table 4 shows the response time of

the algorithms in seconds. It should be noted that

the calculated values are the time required to

reach the optimal solution or the time for 200

iterations. According to the assumption of

maximum 200 iterations in the simulation

scenarios, if the algorithm does not achieve the

optimal solution in 200 iterations, it ends, and this

time is considered for the algorithm.

0

50

100

150

200

ICA SBA COA GA ICAFightB

Roustaei & Yousefi Fakhr/ Journal of AI and Data Mining, Vol 6, No 1, 2018.

66

Table 4. Response time of optimization algorithms until

achievement of optimal solution.

Optimization algorithms Evaluation

function

ICAFightB GA COA SBA ICA

11.1724 2.7048 13.1467 27.7335 1.6464 Sphere 1

6.9239 2.8298 0.9266 * 34.5356 1.6736 Rastrigin 2

12.4593 2.7969 12.893 28.2778 1.4891 DeJong3 3

17.7707 2.8908 13.272 30.0464 1.7244 DeJong4 4

13.9416 2.3477 12.5234 28.5281 2.617 Sumsqu 5

3.829 2.515 12.477 24.7035 2.0865 Booth 6

1.0209 1.0023 * 1.2693 * 15.9542 0.9885 * boha1 7

1.6263 2.1185 * 12.3701 * 12.5166 0.8729 * Function9 8

0.3196 2.5638 14.0516 3.7347 0.3388 * Bumpy 9

0.8095 0.3639 * 14.583 4.5835 0.3332 * Shubert 10

2.4101 2.6 12.3894 28.5622 2.346 camel3 11

17.9215 2.7618 12.4751 30.197 1.6078 Rothyp 12

22.0118 2.7509 12.5814 30.88 1.68 Sumpow 13

Since in most evaluations, the algorithms do not

achieve the optimal point in up to 200 iterations

(Table 3), the algorithms achieve the optimal

points in less than 200 iterations, (illustrated with

star (*) in Table 4). The ICA-Fight-β algorithm

reached the optimal point in all the investigated

evaluation functions, and so the increase in the

response time compared with the ICA, SBA,

COA, and GA algorithms is not disconcerting

because, in fact, the algorithm times must be

compared when both algorithms get to the optimal

solution. Otherwise, the algorithm that has

achieved the optimal solution is superior to the

others.

By comparing the ICA-Fight-β algorithm with the

other ones in terms of the response time, the ICA

algorithm has a lower response time in 3 out of 4

cases which achieved to the optimal solution

(illustrated with star (*) in Table 4). In the

remainder, it does not reach the optimal solution

or its response time is higher, and this is due to the

some functions are added to the proposed method

compared with ICA. Compared with the COA and

GA algorithms, in only one case and two cases,

respectively (illustrated with star (*) in Table 4),

these algorithms reach the optimum solution faster

than ICA-Fight-β algorithms, and in the other

cases, the optimal solution is not reached or the

ICA-Fight-β algorithm is superior. Also the new

algorithm is better than SBA in all cases.

 7. Conclusion

After analysis of evaluation results, it was found

the proposed algorithm is more efficient than the

other algorithms since the ICA-Fight-B reaches to

the optimal solution in less iteration compared

with the ICA and SBA; this algorithm finds the

optimum solution in a shorter response time and it

is superior 100%. Also in comparison with COA,

in more than 87% cases, the ICA-Fight-B

algorithm finds the solution in fewer iterations. In

terms of the response time, the presented

algorithm has a better response time in 93% of

cases in comparison with ICA, GA, and COA,

because the ICA-Fight_B achieves to answer

faster than other algorithms the exception in 1

case out of 13 cases.

The ICA-Fight-B algorithm is the first version of

a hybrid algorithm based on a social-political

process and a process inspired by real world war.

Thus some changes in the algorithm may lead to

an improvement in its performance an application.

The proposed algorithm is suitable to solve

continuous optimization problems for now. In

order to solve the discrete optimization problems,

some manipulations are needed in the algorithm.

Presenting the discreet version of the algorithm is

helpful for solving problems like choosing inputs

in systems diagnosing, feature selection in pattern

recognition, and traveling salesman. One other

task for future works is to use a dynamic

parameter  instead of a constant  or  with

limited values such that, depending on the

distance from the optimum point, the algorithm

could use a suitable  to move because even in the

real world, assimilation toward the global

optimum is dynamic.

References
[1] Weise, T. (2009). Global Optimization Algorithms–

Theory and Application. Germany: it-weise.de (self-

published).

[2] Voß, S., Martello, S., Osman, I. H. & Roucairol, C.

(1998) . Meta-heuristics: Advances and Trends Local

Search Paradigms for Optimization. New York:

Springer.

[3] Grosan, C. & Abraham, A. (2007). Hybrid

Evolutionary Algorithms: Methodologies,

Architectures and Reviews. Springer-Verlag, New

York, pp. 1–17.

[4] Chan K.Y., et al. (2010) . A new orthogonal array

based crossover with analysis of gene interactions for

evolutionary algorithms and its application to car door

design. Expert Systems with Applications, vol. 37, no.

5, pp 3853-3862.

[5] Atashpaz-Gargari, E. & Lucas, C. (2007).

Imperialist Competitive Algorithm:An Algorithm For

Optimization Inspired By Imperialistic Competition,

2007 IEEE Congress on Evolutionary Computation ,

Singapore, 2007.

Roustaei & Yousefi Fakhr/ Journal of AI and Data Mining, Vol 6, No 1, 2018.

67

[6] Jain, T. & Nigam, M.J. (2010). Synergy of

evolutionary algorithm and socio-political process for

global optimization. Expert Systems with Applications,

vol. 37,no. 5, pp. 3706-3713.

[7] Khorani, V., Razavi, F. & Ghoncheh, E. (2010). A

New Hybrid Evolutionary Algorithm Based on ICA

and GA: Recursive-ICA-GA. World Comp2010,
California, USA, 2010.

[8] Abdechiri, M. & Meybodi, M. R. (2011). A Hybrid

Hopfield Network-Imperialist Competitive Algorithm

for Solving the SAT Problem. 3th International

Conference on Signal Acquisition and Processing,

Singapore, 2011.

[9] Niknama T., et al. (2011). An efficient hybrid

algorithm based on modified imperialist competitive

algorithm and K-means for data clustering.

Engineering Applications of Artificial Intelligence. vol.

24, no. 2, pp. 306-317.

[10] Pooranian Z., et al. (2011). New hybrid algorithm

for task scheduling in grid computing to decrease

missed task. World Acad Sci Eng Technol, vol. 55, no.

1, pp. 5-9.

[11] Ramezani F., et al. (2012).A Hybrid Evolutionary

Imperialist Competitive Algorithm(HEICA).

Computer Science, vol. 1, no.1, pp 359-368.

[12] Ramezani, F. & Lotfi, S. (2013). Social-Based

Algorithm (SBA). Applied Soft Computing, vol. 13,

no. 5, pp. 2837-2856.

[13] Lepagnot, J., et. al. (2013). Hybrid Imperialist

Competitive Algorithm with Simplex Approach:

Application to Electric Motor Design. 2013 IEEE

International Conference on Systems Man and

Cybernetics, Manchester, United Kingdom, 2013.

[14] Jalal Nouri, D., Saniee Abadeh, M. & Ghareh

Mohammadi, F. (2014). HYEI: A New Hybrid

Evolutionary Imperialist Competitive Algorithm for

Fuzzy Knowledge Discovery. Advances in Fuzzy

Systems. vol. 14, no. 11, pp.387-395.

[15] Shamshirband S., et al. (2014). D-FICCA: A

density-based fuzzy imperialist competitive clustering

algorithm for intrusion detection in wireless sensor

networks. Measurement, vol. 55, no. 1, pp. 212-226.

[16] Shamshirband S., et al. (2014). Anomaly

Detection using Fuzzy Q-learning Algorithm. Acta

Polytechnica Hungarica, vol. 11, no. 8, pp.5-28.

[17] Shojafar M., et al. (2015). FUGE: A joint meta-

heuristic approach to cloud job scheduling algorithm

using fuzzy theory and a genetic method. Cluster

Computing, vol. 18, no. 2, pp. 829-837.

[18] Roozbeh Nia, A., Hemmati Far, M. & Akhavan

Niaki, S.T. (2015). A hybrid genetic and imperialist

competitive algorithm for green vendor managed

inventory of multi-item multi-constraint EOQ model

under shortage. Applied Soft Computing, vol. 30, no.

1, pp. 353-364.

[19] Mehdinejad M., et al. (2016).Solution of optimal

reactive power dispatch of power systems using hybrid

particle swarm optimization and imperialist

competitive algorithms. International Journal of

Electrical Power & Energy Systems, vol. 83, no. 1, pp.

104-116.

[20] Valipour, Kh. & Ghasemi, A. (2016). Using a new

modified harmony search algorithm to solve multi-

objective reactive power dispatch in deterministic and

stochastic models. Journal of AI and Data Mining, vol.

5, no. 1, pp. 89-100.

[21] Li X., et al. (2013). Benchmark functions for the

CEC 2013 special session and competition on large-

scale global optimization. Gene, vol. 7, no. 33, pp. 87-

94.

[22] Molga, M. & Smutnicki,C. (2005). Test functions

for optimization needs. Available: http://www.

zsd.ict.pwr.wroc.pl/files/docs/functions.pdf

[23] The GEATbx website, (2005), Available:

http://www.geatbx.com/download/

GEATbx_ObjFunExpl_v37.pdf.

[24] Adorio, E. P. & Diliman, U. P. (2005). MVF:

Multivariate Test Functions Library in C for

Unconstrained Global Optimization. Available:

http://www.geocities.ws/eadorio/mvf.pdf

[25] SheYang, X. (2010) Test Problems in

Optimization in Engineering Optimization: An

Introduction with Metaheuristic Applications. New

York: John Wiley & Sons.

http://link.springer.com/search?facet-author=%22Fatemeh+Ramezani%22
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Lepagnot,%20J..QT.&newsearch=true
http://www.hindawi.com/72109832/
http://www.hindawi.com/47485715/
http://www.hindawi.com/13481048/
http://www.hindawi.com/13481048/

 نشریه هوش مصنوعی و داده کاوی

الگوریتم رقابت مبتنی برسازی حل مسائل بهینهجهت ترکیبی جدید فرا ابتکاری یک الگوریتم

 استعماری

 فاطمه یوسفی فخرو *رسول روستائی

 .ملایر، ایران، دانشگاه آزاد اسلامی، واحد ملایر، کامپیوتر مهندسی گروه1

 .ملایر، ایران، دانشگاه آزاد اسلامی، واحد ملایر، کامپیوتر مهندسی گروه

 20/40/1422 پذیرش؛ 12/40/1422 بازنگری؛ 40/21/1422 ارسال

 چکیده:

هی از سیازی رردیی ه اسیت. هیای بهیجیهها در تمامی امور بوده است. این کمال طلبیی مجریر بیه پیی ایش ر شهمواره بشر به دنبال یافتن بهترین

ای که تابع ه کمیجه ییا بیشییجه های مسأله است، به رونهسازی تعیین متغیرهای مساله یافتن بهترین جواب قابل قبول، با توجه به مح دیتبهیجه

هیای عت ب نبال جواب بهیجیه هسیتج . درسیالابتکاری است که معمولا با الهام ررفتن از طبی های فراسازی، ر شهای غیردقیق بهیجه. یکی از ر ششود

ابتکیاری اسیتداده های فراهای ایراد بهبود در ر شابتکاری صورت پذیرفته است. یکی از راه های فراهای زیادی برای بهبود یا ایراد الگوریتماخیر تلاش

هیای بکاررفتیه درایین الگیوریتم شیود. ایی هی ارائه مییاستعمار رقابت ی ترکیبی مبتجی بر الگوریتمسازجهیبهمقاله یک الگوریتم نیدر ااز ترکیب است.

این تغییرات مجریر است. ی اقع یایججگ در دنی اضیبر م ل ر ینام ججگ که مبتج با پارامتر متغییر استداده از تابعی به جذب عبارت است از عملیات

 %84از شیدربیهای انریام شی ه ای که در ارزیابیرونه هشود، بابتکاری می های فراالگوریتم به افزایش سرعت کاهش مراحل جسترو درمقایسه با دیگر

 بود.ارائه ش ه تمیالگورالگوریتم مبتجی براجتماع برتری با فاخته استعماری، جستروی های رقابتآزمون، در قیاس با الگوریتمموارد

 .الگوریتم فرا ابتکاری، بهیجه سراسری، بهیجه محلی، الگوریتم رقابت استعماری، ترکیبی سازیبهیجه: کلمات کلیدی

