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Abstract 

The human has always been to up to the best in everything, And this perfectionism has led to the creation of 

optimization methods. The goal of optimization is to determine the variables to find the best acceptable 

answer to the limitations in a problem, so that the objective function is a minimum or a maximum. Meta-

heuristic algorithms are one of inaccurate optimization methods that inspired by nature. In the recent years, 

much effort has been made to improve or create metaheuristic algorithms. One of the ways available to make 

improvements in meta-heuristic methods is to use combination. In this paper, a hybrid optimization 

algorithm is presented based on the imperialist competitive algorithm (ICA). The ideas used in ICA are an 

assimilation operation with a variable parameter and a war function that is based upon the mathematical 

model of a war in the real world. These changes lead to an increase in speed, find a global optimum, and 

reduce the search steps in contrast with the other meta-heuristic algorithms, so that the evaluations are made 

for more than 80% of the test cases. The proposed algorithm superior to the imperialist competitive 

algorithm, social based algorithm, cuckoo optimization algorithm, and genetic algorithm. 

 

Keywords: Optimization Method, Imperialist Competitive Algorithm(ICA), Meta-heuristic Algorithm, 

Hybrid Algorithm. 

1. Introduction 

Optimization is one of the important branches of 

engineering, which has a great effect on a 

structural design. The designers would be able to 

present better designs only if they could save time 

and money with the aid of optimization methods. 

Optimization means finding the best possible 

answer to an optimization problem [1].  

Most optimization problems are more complicated 

to be solved using the common optimization 

methods such as math programing. For instance in 

hybrid optimization problems, the goal is to find 

the optimum point of the function with discrete 

variables. In confronting these problems, which 

are mostly in the NP-Hard group, one of the 

existing solutions is to use the approximate or 

heuristic algorithms. These algorithms have the 

grantee that the given solution is an optimum one, 

and only after spending a long time we can just 

find a fairly exact answer; in fact, based on the 

time it takes, the exactness of the answer will vary 

[2].   

In the past 3 decades, a new type of approximate 

algorithms has been created, which aims to do the 

hybrid function in higher levels of basic 

explorative methods in order to increase the 

performance and accuracy of a search. Nowadays 

these algorithms are called meta-heuristic 

algorithms. The heuristic method is defined as a 

repetitive production process that guides a 

subsidiary heuristic function using intelligent 

composition with different exploration concepts 

[2]. This process will apply a simple perfect (or 

imperfect) answer or a set of answers in each 

iteration. Subsidiary heuristic function could be 

one of the high-level (or low-level) procedures or a 

simple local search or just a structural method [3]. 

There are a variety of hybrid methods available in 

heuristic algorithms. The first one is to add some 

components of a heuristic method to another one. 

The second type consists of a system called 

collaborative search, in which a variety of 

algorithms are available for information exchange. 
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The third method is to merge the approximate and 

principal methods [3, 4]. In the recent years, we 

have faced an increase in the optimization 

researchers’ interest to heuristic algorithms, which 

leads to the achievement of the best results for the 

optimization problems. Table 1 shows several 

samples of hybrid heuristic algorithms presented 

in the recent years. 
 

2. Imperialist competitive algorithm 

Generally, the ideas of heuristic and meta-

heuristic algorithms are based upon a natural 

process. The imperialist competitive algorithm 

(ICA), which was represented in 2007 by 

Atashpaz Gargary, is the opposite of the other 

algorithms inspired from a human-social 

phenomenon. This algorithm particularly looks at 

a colonial process as steps of a social-political 

evolution, and with mathematical modeling of this 

historical phenomenon, uses it as an inspiration 

source for a strong algorithm in the optimization 

context.  

In a little while past from the introduction of this 

algorithm, it has been used a lot for solving many 

problems in the optimization field [5]. ICA
1
 starts 

with some initial populations, like the other 

evaluation optimization methods. In this 

algorithm, each population element is called a 

country. In an optimization problem with N 

dimensions, the specification of countries (initial 

population) is characterized by an array, which is 

defined as follows: 

1 2 3[ , , ,..., ]
varNcountry p p p p  (1) 

 

The variable values are displayed in decimal 

numbers. From a cultural-historical viewpoint, the 

components of a country can be considered as 

social-political features such as the culture, 

language, economy, and structure. Figure 1 

demonstrates the social-political components of a 

country.  

According to this figure, based on a social-

political viewpoint, the passive variables of a cost 

function are the cultural and historical features, so 

that a country is guided toward a minimum point 

of the cost function. In fact, the goal of solving an 

optimization problem by ICA is to find the best 

country, i.e. a country with the best cultural-

historical features. As a matter of fact, finding this 

country is equal to reach best variables for the 

problem that produce a minimum value for the 

cost function. 
 

                                                      
1 Imperialist Competitive Algorithm 

 

Figure 1.  Socio-political components of a country. 

 

The cost of a country is obtained by evaluation 

of function f  for the variables

var1 2 3( , , ,..., )Np p p p . 

var1 2 3( ) ( , , ,..., )i i Ncost f country f p p p p   (2) 

 

3. Proposed ideas to combine 

In this section, the two ideas are considered which 

has been used in the ICA; then how to combine 

them with basic algorithms are expressed. 

 

3.1. Fight algorithm 

According to the real world that we live in, and 

knowing that ICA is based on the colonialism 

among countries, we focused on the point that in 

the real world, for the colonization of a country, a 

phenomenon called war may happen between the 

imperialists. The countries that have more power 

would attack the other ones and capture them as a 

part of their empire. In 1832 general Carl Von 

Clausewitz, a Russian commander and a military 

theorist, in his thesis called “On war” presented a 

definition for war: “War is an act of force to 

compel our enemy to do our will” (Wikipedia). 

According to this idea, a war may happen when 

there are more than one empires. We choose an 

empire randomly or by using the roulette wheel 

among stronger empires as the starter of the war, 

and use the same method to choose a weak empire 

from the weakest ones to be attacked. In this step, 

we check to make sure that the attacker empire is 

stronger than the empire under attack because 

meanwhile, a weaker empire may attack a 

stronger one, and it would undoubtedly be 

defeated. Thus by means of this comparison, we 

can prevent the occurrence of this war in the 

beginning. After choosing both the attacker and 

the immolation countries, if the immolation 

country has more than one country except the 

empire, the attacker country will possess one 

country from the victim country. In this condition, 

small empires with less population will have more 

chance to survive. The fight algorithm is shown in 

figure 2. 

 

 

 

1 2 3[ , , ,..., ]
varNcountry p p p p

Culture 

 

Language 

 

Economic policy 

 

Religion 

 

… 
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Fight Function(  ) 

1- {Select an Imperialist as the Fighter with Roulette Wheel  

       random mechanism 

2-   Select an Imperialist as Attacked with Roulette Wheel  
        random mechanism 

3-   If  Fighter is Stronger than Attacked 

4-      {Select a Colony of Attacked as Victim with  Roulette 
           Wheel random mechanism 

5-       Remove Victim of Attack and Update Attacking Empire 
       Add Victim to Fighter and Update Empire of Fighter}} 

Figure 2. pseudo-code of Fight algorithm. 

 

The stages of a fight algorithm and the manner to 

implement them are as follow: 
 

A) Choosing the attacker empire (fighter): 
In order to choose the attacker empire, first, we 

allocate a probability to each empire using the 

Boltzmann probability distribution according to 

the cost of each empire, so that the empire with a 

lower cost will have a more chance to be selected. 

Using the roulette wheel selection, we choose one 

of the empires as the attacker country. It is 

noticeable that in this paper, our assumption is 

based upon minimization, and therefore, an 

empire with a lower cost is the stronger. 
 

B)  Selection of the empire that comes under 

attack (The empire under attack): 
Again we use the Boltzmann probability 

distribution to choose the attacked country, by 

allocating a high probability to the weaker empire, 

and we give each country a probability. 

Contrariwise the previous step, here, the stronger 

empires will have a lower chance to be selected. 

Now by using the roulette wheel selection, one of 

the empires will be selected as the attacked 

empire. 
 

Table 1. Comparison of previous works.    

Improvement Year combined algorithms Algorithm Authors 

Increasing the convergence speed and accuracy of CCA  2010 GA &  CCA CCA-GA Nigam , Jain [6] 

Increasing the convergence speed and accuracy 2010 GA & ICA R-ICA-GA Razavi, Khorani, Ghoncheh [7] 

High speed than ICA & PSOLR 2011 ICA & LR ICALR Abdechiri & Meybodi [8] 

Increasing the public search functionality of HNN 2011 ICA & HNN HNNICA Abdechiri & Meybodi [8] 

Greater convergence of  hybrid  K-MICA  algorithm than 
other evolutionary algorithms 

2011 K-means &  ICA 
Hybrid K-
MICA 

Taher Niknam et al. [9] 

This algorithm was presented  for task scheduling in grid 

computing to decrease missed task and make span 
2011 

Fuzzy logic & 

 Q-learning 
GA-GELS Pooranian. et al. [10] 

Increasing the convergence speed and accuracy of ICA & 

EA 
2012 EA & ICA HEICA Ramezani  et al. [11] 

Increasing the convergence speed 2013 EA & ICA SBA Ramezani & Lotfi [12] 

Improvements in escape from local optimization 2013 
ICA &  Nelder-Mead 
simplex method 

ICAS Lepagnot.   et al. [13] 

Better classification of small data sets and large data sets 

than the last known classification algorithm 
2014 GA & ICA HYEI Jalal Nouri. et al. [14] 

This algorithm was presented for sensor network 
clustering, that leads to increased detection accuracy and 

clustering quality. The modified ICA-based detection 

system operates to sense DDoS attacks 

2014 

DBSCAN-based 

density clustering & 
fuzzy logic & ICA 

D-FICCA Shamshirband et al. [15] 

this approach was presented to protect wireless nodes  

from DDoS attacks 
2014 Fuzzy  & Genetic  FQL Shamshirband. et al. [16] 

This algorithm was present for cloud job scheduling and 

improves on various measures such as execution time, 
execution cost, and the average degree of imbalance. 

2015 Fuzzy  & Genetic  FUGE Shojafar et al. [17] 

find better and nearer optimal solutions. 2015 ICA & GA HGA  Roozbeh Nia et al. [18] 

This algorithm find the solution of optimal reactive power 

dispatch (ORPD) of power systems. The results show 

that the proposed hybrid approach is more effective and 
has a higher capability in finding better solutions 

2016 ICA & PSO PSO–ICA Mehdinejad et al. [19] 

This algorithm is a new modified harmony search 

algorithm to find the solution of optimal reactive power 

dispatch (ORPD) of power systems. 

2016 HSA & CLS MHSA Valipour, Kh., et al.[20] 

 

  

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Lepagnot,%20J..QT.&newsearch=true
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C) Selection of victim country: 
In order to capture a country, the attacker country 

should observe two conditions. First, the power of 

the attacker empire must be more than that of the 

attacked empire (be more qualified). 

Secondly, the attacked empire should have 2 other 

countries except the emperor. This causes that the 

attacked empire still has another country after the 

war, otherwise the war could make an empire to 

be destroyed and in the imperialist competition 

algorithm the act of eliminating one empire could 

happen in the competition among countries but we 

are preventing this in the war. Therefore, the 

attacked country could still survive, and this 

prevents the algorithm from a premature 

termination. Now we allocate a probability to each 

exciting country with a high priority for the 

weaker colony using the Boltzmann distribution 

and then with the roulette wheel selection, we 

choose a country. The selected country will be 

labeled as "Victim". 

 

D) Remove the victim country from its 

empire (empire under attack) and add it to the 

attacker empire (fighter). 
Now we should separate the victim country from 

the owner empire and join it to the attacker 

country. Finally, both countries should be updated 

(number of member countries, empire cost).  

  
3-2. Policy of variable beta assimilation idea 

(second idea) 

According to [5], the policy of assimilation 

(absorption) is applied to the culture of the central 

government, and the aim is to analyze the culture 

and social structure of the colonies. In fact, in this 

algorithm, the goal of assimilation policy is the 

same in ICA; it means that the colony country 

(country T) has moved as long as x units along 

with the connection line between the colony and 

imperialist and will be drawn in the new location. 

Figure 3 shows the assimilation policy of a colony 

toward an imperialist. 

To move a colony toward an imperialist we 

calculate the sum of the locations of the colony 

with an n dimension array of x-, where x is a 

random number with uniform distribution or any 

other distribution that can be obtained by Formula 

3. 

           (3) 

 

In this equation, d is the distance between the 

colony and the imperialist, and β is a number 

more than one and close to 2. Also, the possible 

deviations are applied by adding a random angle 

to the assimilation path. This deviation angle is 

called θ. 

          (4) 

 
Figure 3. Assimilation policy, moving colony toward 

imperialist. 
 

 

In this equation, γ is an arbitrary variable, the 

increase in which causes an increase in the search 

around the empire, and also decreasing it causes 

the colonies to move closer to the vector 

connecting the colony to the imperialist as much 

as possible. Considering the unit radians for γ, a 

number close to π/4 is a good choice in most 

implementations. 

The difference between the assimilation policy in 

this algorithm and the one in ICA uses 4 different 

values for β instead of using one constant 

assimilation parameter of β, and the method of 

allocating β will be defined in each iteration by 

inspiration from the Tabu search. It means that in 

each iteration, one of the β-s is selected randomly 

but there is restriction applied to this random 

selection. If β-j is used in the i
th
 iteration of the 

algorithm, using β-j is forbidden in the (i+1)
th
 

iteration, and another coefficient must be used. 

This will lead to a different space to search around 

the solution, and also will prevent being trapped 

in the local minimum because by choosing 

different and non-repetitive coefficients, the 

assimilation steps have a wider variety of values.  

 

 

Figure 4. Assimilation with constant  β and trapping in 

a local minimum. 

 

Figure 4 shows the state that colonies move 

toward the empire by a statistic β, which means 

that the assimilation parameter is constant. 
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Assume that the red arrow is the value for β 

(absorption parameter); with two steps, it could 

reach the local minimum, and with the third step, 

it would pass it, although as the slope is toward 

the local minimum, it will return to the local 

minimum with that step, and this sweep will be 

repeated. It is where we say the algorithm is 

trapped in the local minimum. Now suppose the 

state in which the values for β are different; for 

instance, in figure 5, assume the assimilation 

parameter with 4 different values and different 

steps in each iteration. If we use the non-repeated 

coefficients β1 and β3, respectively, in the moving 

steps, the algorithm gets closer to the local 

minimum; in the next step, the algorithm could 

not use β3. Assume that the algorithm randomly 

uses β4. Therefore, the algorithm will pass the 

local minimum, and will continue its path toward 

the global minimum. Thus this will prevent being 

trapped in the local minimum. 

 

 

Figure 5. Assimilation with variable β and escape from 

the local minimum. 

 

As shown in the figures, by using this method, we 

can avoid getting trapped in the local minimum in 

many cases. This method also searches in a bigger 

search space. This will make the algorithm to find 

the solution faster than the assimilation policy in 

ICA. In figure 6, you can see the uncertain 

assimilation algorithm.  

 

1. Beta=[0.5 , 1 , 1.3 , 2.9] 

2. For each colony C 

3. C.Beta = 0; 
4. Variable Beta Assimilation( ) 

5. {  for each Empire 

6.       for each colony as C  in empire 
7.          index = random(1,4) 

8.          while (C.Beta == index) 

9.             index = random(1,4) 
10.             C.Beta = index 

            Assimilate C into Imp(Empire) with C.Beta parameter }                      
 

Figure 6. Assimilation algorithm with variable values for 

beta. 

 

3.3. Hybrid algorithm (ICA-Fight-β) 

Now you can see in figure 7 the new hybrid 

algorithm. This algorithm is used instead of the 

original assimilation of the new assimilation 

function, The FIGHT function is also added to the 

collection of operations inside the main loop. The 

changes in the algorithm are shown below in bold. 

 

1. Initialization;                             // Create Initial Empires 
2. {                                             // The beginning of the loop iterations 
3. Variable Beta Assimilation ( );    //Assimilation with Variable Beta 

4. Do Revolution ( );                     // Revolution 

5. Intra Empire Competition ( );    // Intra-Empire Competition 
6. Fight Function ( );                      // Fight 

7. Update Total Cost ( );                    // Update Total Cost of Empires 

8. Inter Empire Competition ( );    // Inter-Empire Competition 
9. Update  Best Solution ( );          //Update Best Solution Ever Round 

If the stop condition is satisfied, stop; if not, go to 2.}                      
 

Figure 7. ICA-Fight-β algorithm. 

 

You can also view the new algorithm flowchart in 

figure 8; two new parts are different in the 

flowchart. 

 
4. System simulator characteristics 
 

To implement the algorithm, its simulation was 

run in MATLAB on a system with the following 

hardware and software characteristics: 

 CPU: AMD Turion™ 64 X2 Mobile Technology 

TL-64 2.2 GHz 

RAM: 2 GB, OS: Windows 7 (32 bit), Version of 

MATLAB: 7.8.0.347 (2009) 

 
5. Benchmark functions 

 In the recent years the growing need to optimize 

the cost in many engineering problems, has 

caused many optimization algorithms to be 

introduced by the researchers, but the more 

important issue is the evaluation method of the 

algorithm. One of the helpful methods used for 

analyzing the performance of these algorithms is 

to test them on different functions called test 

functions or benchmark functions. In applied 

mathematics, the evaluation functions are known 

as an artificial view which is useful for evaluating 

the features of the optimization algorithms such as 

the speed of convergence, accuracy, stability, and 

general performance. Here, we introduce some 

test functions that could be used as a goal function 

in the optimization case with a single goal [21-

25]. 

 
Some test functions are shown in table 2. Also, 

you can see in figure 9 the graph for a bumpy 

function. 

As you can see in figure 9, some of these 

benchmark functions contain too many minimal 

and maximal points, that it is a suitable criterion 

for evaluating the optimization algorithm. Since 

these functions simulate a state space with 

multiple local optimal, so they can evaluate 

algorithm performance. 
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Figure 8. ICA-Fight-β flowchart. 

 

 

Table 2. Benchmark Functions. 

Function name 

Range 

Parameters 
Formula function 

SPHERE      ∑  
 

 

   

 

SHUBERT 

 

      ∑               

 

   

  ∑               

 

   

  

BOOTH                              

Sum  

Squares 
     ∑   

 

 

   

 

Rotated 
Hyper-

Ellipsoid 
     ∑∑  

 

 

   

 

   

 

THREE-

HUMP 

CAMEL 
        

        
  

  
 

 
        

  

RASTRIGIN          ∑   
               

 

   

 

De Jong   
N.3 

     ∑    

 

   

 

Bumpy                                 

  

 
Figure 9. Bumpy function diagram. 

 
6. Evaluation of scenario and evaluation 

criteria 

As we know in order to assess the participant, 

having suitable criteria is the necessity for 

comparison. In the optimization algorithms, the 

goal is to find the optimum solution among a set 

of candidate solutions. Therefore, in the 

optimization algorithms, the qualified algorithm is 

the one that can find the solution faster than the 

others. However, as there is a possibility of not 

finding the optimum solution in heuristic 

algorithms, consider the possibility of not-finding 

the optimum solution in defining the criteria. Now 

we introduce the performance assessment criteria 

for the optimization algorithms. The two criteria 

Start 

Initialize the empires 

Assimilation colonies with 

variable Beta 

Revolve some colonies 

Is there a colony in an empire which 

has lower cost than that of the 

imperialist? 

Imperialistic Competition 

Compute the total cost of all empires 

Fight Function 

Exchange the positions of that imperialist 

and the colony 

End 

Eliminate this empire 

Unite Similar Empires 

Stop condition satisfied 

Is there an empire with 

no colonies? 

Yes 

No 

No 

No 

Yes 

Yes 
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response time and number of iterations are 

expressed to evaluate the performance of the 

proposed idea in comparison with the other 4 

algorithms ICA, SBA
2
, COA

3
 and GA

4
 as follows: 

 
6.1. Number of iterations for optimization 

algorithm 

In the heuristic optimization algorithms, a special 

action, the optimization iteration is carried out 

repeatedly. One of the criteria used to evaluate the 

performance of the optimization algorithm is to 

compare the number of repetitions until an 

optimum global answer is achieved. For example, 

if algorithm A with 100 iterations and B with 200 

ones get the optimum solution, then the number of 

iterations in algorithm A is better. Table 3 

contains the number of iterations required to 

achieve the optimum solution using the ICA-

Fight-β algorithm and the algorithms ICA, SBA, 

COA, and GA. It is to be noted that each iteration 

value in table 3 was obtained from an average of 

10 tests.  Figure 10 represents a comparative 

diagram of them. 

By two-by-two comparisons between ICA-Fight-

B and other algorithms, we will have an 

interesting result. As it can be seen, ICA-Fight-β 

reached the optimum solution in all cases, while 

the classical ICA algorithm in 4 cases and both 

the COA and GA algorithms in 3 out of 13 

evaluation cases received the optimal results in 

less than 200 iterations (illustrated with a star (*) 

in Table 3). The rest of the cases did not obtain 

the optimal solution, even in 200 repetitions. 

 

Table 3. Number of iterations of different algorithms until 

achieving the optimum or up to 200 steps. 

Optimization algorithms Evaluation 

functions 
 

ICAFightB GA COA SBA ICA 

99.3 200 200 200 200 Sphere 1 

50.1 200 18.4  * 200 200 Rastrigin 2 

95.8 200 200 200 200 DeJong3 3 

102.6 200 200 200 200 DeJong4 4 

98.8 200 200 200 200 Sumsqu 5 

116.6 200 200 200 200 Booth 6 

34 72.8  * 28  * 111 58.2 * boha1 7 

41.9 157.4 * 189.1 * 82.9 47.4 * Function9 8 

10.3 200 200 22.8 15.6  * Bumpy 9 

20.3 21.6 * 200 30.6 16.3  * Shubert 10 

71.2 200 200 200 200 camel3 11 

99.9 200 200 200 200 Rothyp 12 

33.1 200 200 200 200 Sumpow 13 

                                                      
2 Social-Based Algorithm 
3 Cuckoo Optimization Algorithm 
4 Genetic Algorithm 

It is noticeable that in the cases where these 

algorithms reach the optimal answer, the ICA 

algorithm in one case (shubert function) and the 

COA algorithm in two cases (rastrigin and boha1 

functions) achieve the optimal answer in a less 

number of iterations rather than the ICA-Fight-β 

algorithm (illustrated with black square in table 

3). In the rest of the cases, the proposed algorithm 

is conclusively excellent. Also the new algorithm 

is better than SBA in all cases. This represents an 

improvement in the proposed method. 
 

 

Figure 10. Comparison chart of optimization algorithms 

in terms of number of iterations to achieve optimal 

solution. 
 

 

6.2. Runtime (response time) 
Another evaluation parameter for the optimization 

algorithms is their runtime. To do so, we can 

choose either the time required to find the 

optimum answer or the time needed to execute a 

fixed number of iterations for comparison. It is 

clear that this time depends on the features of the 

implementation system of the algorithm. 

Therefore we must use the same system to 

compare different algorithms.  

Table 4 shows the response time for each 

algorithm to achieve the best answer. Here, a few 

required points are being recalled and mentioned. 

First to calculate the time, the tic and toc functions 

are used in MATLAB. This time depends on the 

efficiency of the simulator system. Secondly, like 

the previous criteria, each time is obtained from 

an average of 10 tests. Finally, what is being 

illustrated in table 4 shows the response time of 

the algorithms in seconds. It should be noted that 

the calculated values are the time required to 

reach the optimal solution or the time for 200 

iterations. According to the assumption of 

maximum 200 iterations in the simulation 

scenarios, if the algorithm does not achieve the 

optimal solution in 200 iterations, it ends, and this 

time is considered for the algorithm. 

0

50

100

150

200

ICA SBA COA GA ICAFightB
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Table 4. Response time of optimization algorithms until 

achievement of optimal solution. 

Optimization algorithms Evaluation 

function 

 

ICAFightB GA COA SBA ICA  

11.1724 2.7048 13.1467 27.7335 1.6464 Sphere 1 

6.9239 2.8298 0.9266  * 34.5356 1.6736 Rastrigin 2 

12.4593 2.7969 12.893 28.2778 1.4891 DeJong3 3 

17.7707 2.8908 13.272 30.0464 1.7244 DeJong4 4 

13.9416 2.3477 12.5234 28.5281 2.617 Sumsqu 5 

3.829 2.515 12.477 24.7035 2.0865 Booth 6 

1.0209 1.0023  * 1.2693 * 15.9542 0.9885  * boha1 7 

1.6263 2.1185  * 12.3701 * 12.5166 0.8729 * Function9 8 

0.3196 2.5638 14.0516 3.7347 0.3388  * Bumpy 9 

0.8095 0.3639  * 14.583 4.5835 0.3332  * Shubert 10 

2.4101 2.6 12.3894 28.5622 2.346 camel3 11 

17.9215 2.7618 12.4751 30.197 1.6078 Rothyp 12 

22.0118 2.7509 12.5814 30.88 1.68 Sumpow 13 

 

Since in most evaluations, the algorithms do not 

achieve the optimal point in up to 200 iterations 

(Table 3), the algorithms achieve the optimal 

points in less than 200 iterations, (illustrated with 

star (*) in Table 4). The ICA-Fight-β algorithm 

reached the optimal point in all the investigated 

evaluation functions, and so the increase in the 

response time compared with the ICA, SBA, 

COA, and GA algorithms is not disconcerting 

because, in fact, the algorithm times must be 

compared when both algorithms get to the optimal 

solution. Otherwise, the algorithm that has 

achieved the optimal solution is superior to the 

others. 

By comparing the ICA-Fight-β algorithm with the 

other ones in terms of the response time, the ICA 

algorithm has a lower response time in 3 out of 4 

cases which achieved to the optimal solution 

(illustrated with star (*) in Table 4). In the 

remainder, it does not reach the optimal solution 

or its response time is higher, and this is due to the 

some functions are added to the proposed method 

compared with ICA. Compared with the COA and 

GA algorithms, in only one case and two cases, 

respectively (illustrated with star (*) in Table 4), 

these algorithms reach the optimum solution faster 

than ICA-Fight-β algorithms, and in the other 

cases, the optimal solution is not reached or the 

ICA-Fight-β algorithm is superior. Also the new 

algorithm is better than SBA in all cases. 

 

 7. Conclusion  

After analysis of evaluation results, it was found 

the proposed algorithm is more efficient than the 

other algorithms since the ICA-Fight-B reaches to 

the optimal solution in less iteration compared 

with the ICA and SBA; this algorithm finds the 

optimum solution in a shorter response time and it 

is superior 100%. Also in comparison with COA, 

in more than 87% cases, the ICA-Fight-B 

algorithm finds the solution in fewer iterations. In 

terms of the response time, the presented 

algorithm has a better response time in 93% of 

cases in comparison with ICA, GA, and COA, 

because the ICA-Fight_B achieves to answer 

faster than other algorithms the exception in 1 

case out of 13 cases. 

The ICA-Fight-B algorithm is the first version of 

a hybrid algorithm based on a social-political 

process and a process inspired by real world war. 

Thus some changes in the algorithm may lead to 

an improvement in its performance an application. 

The proposed algorithm is suitable to solve 

continuous optimization problems for now. In 

order to solve the discrete optimization problems, 

some manipulations are needed in the algorithm. 

Presenting the discreet version of the algorithm is 

helpful for solving problems like choosing inputs 

in systems diagnosing, feature selection in pattern 

recognition, and traveling salesman. One other 

task for future works is to use a dynamic 

parameter  instead of a constant  or  with 

limited values such that, depending on the 

distance from the optimum point, the algorithm 

could use a suitable  to move because even in the 

real world, assimilation toward the global 

optimum is dynamic. 
 

References 
[1] Weise, T. (2009). Global Optimization Algorithms– 

Theory and Application. Germany: it-weise.de (self-

published). 

[2] Voß, S., Martello, S., Osman, I. H. & Roucairol, C. 

(1998) . Meta-heuristics: Advances and Trends Local 

Search Paradigms for Optimization. New York: 

Springer. 

[3] Grosan, C. & Abraham, A. (2007). Hybrid 

Evolutionary Algorithms: Methodologies, 

Architectures and Reviews. Springer-Verlag, New 

York, pp. 1–17. 

[4] Chan K.Y., et al. (2010) . A new orthogonal array 

based crossover with analysis of gene interactions for 

evolutionary algorithms and its application to car door 

design. Expert Systems with Applications, vol. 37, no.  

5, pp 3853-3862. 

[5] Atashpaz-Gargari, E. & Lucas, C. (2007). 

Imperialist Competitive Algorithm:An Algorithm For 

Optimization Inspired By Imperialistic Competition, 

2007 IEEE Congress on Evolutionary Computation , 

Singapore, 2007. 



Roustaei & Yousefi Fakhr/ Journal of AI and Data Mining, Vol 6, No 1, 2018. 
 

67 

 

[6] Jain, T. & Nigam, M.J. (2010). Synergy of 

evolutionary algorithm and socio-political process for 

global optimization. Expert Systems with Applications, 

vol. 37,no.  5, pp. 3706-3713. 

[7] Khorani, V., Razavi, F. & Ghoncheh, E. (2010). A 

New Hybrid Evolutionary Algorithm Based on ICA 

and GA: Recursive-ICA-GA. World Comp2010, 
California, USA, 2010. 

[8] Abdechiri, M. & Meybodi, M. R. (2011). A Hybrid 

Hopfield Network-Imperialist Competitive Algorithm 

for Solving the SAT Problem. 3th  International 

Conference  on  Signal Acquisition and Processing, 

Singapore, 2011.  

[9] Niknama T., et al. (2011). An efficient hybrid 

algorithm based on modified imperialist competitive 

algorithm and K-means for data clustering. 

Engineering Applications of Artificial Intelligence. vol. 

24, no.  2, pp. 306-317. 

[10] Pooranian Z., et al. (2011). New hybrid algorithm 

for task scheduling in grid computing to decrease 

missed task. World Acad Sci Eng Technol, vol. 55, no. 

1, pp. 5-9. 

[11] Ramezani F., et al. (2012).A Hybrid Evolutionary 

Imperialist Competitive Algorithm(HEICA).  

Computer Science, vol. 1, no.1, pp 359-368.  

[12] Ramezani, F. & Lotfi, S. (2013). Social-Based  

Algorithm  (SBA). Applied Soft Computing, vol. 13, 

no. 5, pp. 2837-2856. 

[13] Lepagnot, J., et. al. (2013). Hybrid Imperialist 

Competitive Algorithm with Simplex Approach: 

Application to Electric Motor Design. 2013 IEEE 

International Conference on Systems Man and 

Cybernetics, Manchester, United Kingdom, 2013. 

[14] Jalal Nouri, D., Saniee Abadeh, M. & Ghareh 

Mohammadi, F. (2014). HYEI: A New Hybrid 

Evolutionary Imperialist Competitive Algorithm for 

Fuzzy Knowledge Discovery. Advances in Fuzzy 

Systems. vol. 14, no. 11, pp.387-395.  

[15] Shamshirband S., et al. (2014). D-FICCA: A 

density-based fuzzy imperialist competitive clustering 

algorithm for intrusion detection in wireless sensor 

networks. Measurement, vol. 55, no. 1, pp. 212-226. 

 

 

 

 

 

 

 

 

[16] Shamshirband S., et al. (2014). Anomaly 

Detection using Fuzzy Q-learning Algorithm. Acta 

Polytechnica Hungarica, vol. 11, no. 8, pp.5-28. 

[17] Shojafar M., et al. (2015). FUGE: A joint meta-

heuristic approach to cloud job scheduling algorithm 

using fuzzy theory and a genetic method. Cluster 

Computing, vol. 18, no. 2, pp. 829-837. 

[18] Roozbeh Nia, A., Hemmati Far, M. & Akhavan 

Niaki, S.T. (2015). A hybrid genetic and imperialist 

competitive algorithm for green vendor managed 

inventory of multi-item multi-constraint EOQ model 

under shortage. Applied Soft Computing, vol. 30, no. 

1, pp. 353-364. 

[19] Mehdinejad M., et al. (2016).Solution of optimal 

reactive power dispatch of power systems using hybrid 

particle swarm optimization and imperialist 

competitive algorithms. International Journal of 

Electrical Power & Energy Systems, vol. 83, no. 1, pp. 

104-116. 

[20] Valipour, Kh. & Ghasemi, A. (2016). Using a new 

modified harmony search algorithm to solve multi-

objective reactive power dispatch in deterministic and 

stochastic models. Journal of AI and Data Mining, vol. 

5, no. 1, pp. 89-100. 

[21] Li X., et al. (2013). Benchmark functions for the 

CEC 2013 special session and competition on large-

scale global optimization. Gene, vol. 7, no. 33, pp. 87-

94. 

[22] Molga, M. & Smutnicki,C. (2005). Test functions 

for optimization needs. Available: http://www. 

zsd.ict.pwr.wroc.pl/files/docs/functions.pdf 

[23] The GEATbx website, (2005), Available: 

http://www.geatbx.com/download/ 

GEATbx_ObjFunExpl_v37.pdf. 

[24] Adorio, E. P. & Diliman, U. P. (2005). MVF: 

Multivariate Test Functions Library in C for 

Unconstrained Global Optimization. Available: 

http://www.geocities.ws/eadorio/mvf.pdf 

[25] SheYang, X. (2010) Test Problems in 

Optimization in Engineering Optimization: An 

Introduction with Metaheuristic Applications. New 

York: John Wiley & Sons. 

http://link.springer.com/search?facet-author=%22Fatemeh+Ramezani%22
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Lepagnot,%20J..QT.&newsearch=true
http://www.hindawi.com/72109832/
http://www.hindawi.com/47485715/
http://www.hindawi.com/13481048/
http://www.hindawi.com/13481048/


 

 

 

 نشریه هوش مصنوعی و داده کاوی

 

 

 

الگوریتم رقابت  مبتنی برسازی حل مسائل بهینهجهت ترکیبی جدید فرا ابتکاری یک الگوریتم 

 استعماری

 

  فاطمه یوسفی فخرو  *رسول روستائی

 .ملایر، ایران، دانشگاه آزاد اسلامی، واحد ملایر، کامپیوتر مهندسی  گروه1

 .ملایر، ایران، دانشگاه آزاد اسلامی، واحد ملایر، کامپیوتر مهندسی  گروه

 20/40/1422 پذیرش؛ 12/40/1422 بازنگری؛ 40/21/1422 ارسال

 چکیده:

هی   از سیازی رردیی ه اسیت. هیای بهیجیهها در تمامی امور  بوده است. این کمال طلبیی مجریر بیه پیی ایش ر شهمواره بشر به دنبال یافتن بهترین

ای که تابع ه   کمیجه ییا بیشییجه های مسأله است، به رونهسازی تعیین متغیرهای مساله   یافتن بهترین جواب قابل قبول، با توجه به مح  دیتبهیجه

هیای عت ب نبال جواب بهیجیه هسیتج . درسیالابتکاری است که معمولا با الهام ررفتن از طبی های فراسازی، ر شهای غیردقیق بهیجه. یکی از ر ششود

ابتکیاری اسیتداده های فراهای ایراد بهبود در ر شابتکاری صورت پذیرفته است. یکی از راه های فراهای زیادی برای بهبود   یا ایراد الگوریتماخیر تلاش

هیای بکاررفتیه درایین الگیوریتم شیود. ایی هی ارائه مییاستعمار رقابت ی ترکیبی مبتجی بر الگوریتمسازجهیبهمقاله یک الگوریتم  نیدر ااز ترکیب است. 

این تغییرات مجریر  است. ی اقع یایججگ در دنی اضیبر م ل ر ینام ججگ که مبتج با پارامتر متغییر   استداده از تابعی به جذب عبارت است از عملیات

 %84از شیدربیهای انریام شی ه ای که در ارزیابیرونه هشود، بابتکاری می های فراالگوریتم به افزایش سرعت   کاهش مراحل جسترو درمقایسه با دیگر

 بود.ارائه ش ه  تمیالگورالگوریتم مبتجی براجتماع  برتری با فاخته    استعماری، جستروی های رقابتآزمون، در قیاس با الگوریتمموارد 
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