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Abstract 

The optimal reactive power dispatch (ORPD) problem is a very important aspect in power system planning, 

and it is a highly non-linear, non-convex optimization problem because it consists of both the continuous and 

discrete control variables. Since a power system has an inherent uncertainty, this paper presents both the 

deterministic and stochastic models for the ORPD problem in multi-objective and single-objective 

formulations, respectively. The deterministic model considers three main issues in the ORPD problem 

including the real power loss, voltage deviation, and voltage stability index. However, in the stochastic 

model, the uncertainties in the demand and equivalent availability of shunt reactive power compensators 

have been investigated. To solve them, we proposed a new modified harmony search algorithm (HSA), 

implemented in single and multi-objective forms. Since, like many other general purpose optimization 

methods, the original HSA often traps into the local optima, an efficient local search method called chaotic 

local search (CLS) and a global search operator are proposed in the internal architecture of the original HSA 

algorithm to improve its ability in finding the best solution because the ORPD problem is very complex, with 

different types of continuous and discrete constrains, i.e. excitation settings of generators, sizes of fixed 

capacitors, tap positions of tap changing transformers, and amount of reactive compensation devices. 

Moreover, the fuzzy decision-making method is employed to select the best solution from the set of Pareto 

solutions. The proposed model is individually examined and applied on different test systems. The 

simulation results show that the proposed algorithm is suitable and effective for the reactive power dispatch 

problem compared to the other available algorithms. 

 

Keywords: Reactive Power Dispatch, Modified HSA, Multi-objective, System Stability, Stochastic Model. 

1. Introduction 

The optimal reactive power dispatch (ORPD) 

problem can be divided into two parts, known as 

the real and reactive power dispatch problems. 

The real power dispatch problem aims to 

minimize the total cost of real power generation 

from thermal power plants at various stations [1]. 

However, reactive power dispatch controls the 

power system stability and power quality, i.e. 

voltage stability and power loss. Generally, the 

objective of ORPD is to minimize the real power 

loss and increase the voltage stability in the power 

system, while satisfying various discrete and 

continues constraints [2].  

Recently, many scientific papers have been 

dedicated to the ORPD problem, which can be 

classified into two groups, classical and intelligent 

computing methods. Classical computing methods 

consist of some well-known mathematical 

strategies such as linear programming (LP) [3], 

non-linear programming (NLP) [4], quadratic 

programming [5], and decomposition technique 

[6]. This group is computationally fast but they 

have several limitations like (i) the need for 

continuous and differentiable objective functions, 

(ii) easy convergence to local minima. and (iii) 

difficulty in handling a very large number of 

variables. Therefore, it is vital to develop some 

intelligent methods that are capable of 

overcoming these shortages. In another group, 

computational intelligence-based techniques have 

been proposed for the application of reactive 

power optimization. In [7], a new modified  
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version of honey bee mating optimization called 

the parallel vector evaluated honey bee mating 

optimization (PVEHBMO) based on multi-

objective formulation has been proposed to solve 

the RPD problem. In [8], the authors have 

presented a quasi-oppositional differential 

evolution to solve the ORPD problem of a power 

system. In [9], the authors have proposed a multi-

objective differential evolution (MODE) to solve 

the multi-objective optimal reactive power 

dispatch (MORPD) problem by minimizing the 

active power transmission loss and voltage 

deviation, and maximizing the voltage stability, 

while varying the control variables such as the 

generator terminal voltages, transformer taps, and 

reactive power output of shunt compensators. 

Pareto-efficient 12-h variable double auction 

bilateral power transactions have been considered 

in [10]. The effect of that on the economic welfare 

has been observed, while solving the reactive 

power dispatch (RPD) by differential evolution 

using the random localization technique. This has 

been accomplished by a combination of static and 

dynamic var compensators. Out of these 12-h 

variable power transactions, the Pareto-efficient 

transactions, which are reconciled by planed 

biding, have provided the maximum global 

welfare. In [11], the authors have presented a new 

meta-heuristic method, namely gray wolf 

optimizer (GWO), which is inspired from gray 

wolves’leadership and hunting behaviors to solve 

the optimal reactive power dispatch (ORPD) 

problem.  

The aforementioned papers show that the 

optimization methods have a good potential to 

solve the ORPD problem. The ORPD with high 

optimal variables and constrains requires a more 

effective method to avoid the local optimal 

solutions, and it has well-distribution of non-

dominated solutions, while satisfying the diversity 

characteristics. A new meta-heuristic algorithm, 

mimicking the improvisation process of music 

players, has been recently developed and named 

the harmony search algorithm (HSA) [12]. Due to 

its many positive features, being simple in concept 

and easy to implement, flexibility, the possibility 

of using chaotic maps and of developing hybrids 

from combinations with other techniques, the 

HSA algorithm has been successfully applied to 

the optimization of complex mathematical 

functions with or without constraints [13]. 

Unfortunately, the standard HSA often converges 

to local optima. In order to improve the fine-

tuning characteristic of HSA, an improved HSA 

has been proposed, enhancing the fine-tuning 

characteristic and convergence rate of harmony 

search [14-15]. This paper proposes two 

modifications in the local and global operators. In 

the local term, a new CLS operator is presented to 

update each particle in the search space. In the 

global part, the pitch adjusting rate (PAR) and the 

distance bandwidth (bw) are rewritten, which are 

important coefficients in exploration and 

exploitation. Moreover, HSA is developed as a 

stochastic optimization algorithm; it can find an 

optimal solution within a short calculation time. 

The results obtained from three test systems in the 

ORPD problem show that the proposed method 

has a robust convergence and makes an acceptable 

distribution in the Pareto-optimal solutions. 

 

2. Deterministic formulation of ORPD problem 

In this section, the deterministic formulation of 

the ORPD problem is presented.  

 

2.1. Problem objectives 

• Objective 1: power-loss minimization 

Transmission losses are construed as a loss of 

revenue by the utility. The transmission loss can 

be expressed by [7]:  

2 2
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P ( , ) [ 2 cos( )
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loss k i j i j i j

k

J x u g V V V V  


     (1) 

where,  gk is the conductance of the line i-j, Vi and 

Vj are the line voltages, and θi and θj are the line 

angles at the i and j line ends, respectively, k is the 

k
th
 network branch that connects bus i to bus j, i = 

1, 2, . . , ND, where ND is the set of numbers of 

power demand bus, and j = 1, 2, . . . , Nj, where Nj 

is the set of numbers of buses adjacent to bus j. 

PG is the active power in lines i and j. x and u are 

the vector of dependent variables and the vector of 

control variables, respectively.  

• Objective 2: Minimization of voltage deviation 

The aim of this function is to minimize the 

absolute voltage deviation of load bus voltages 

from their desired values: 

2
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                (2) 

where,  Nd is the number of load buses. 

• Objective 3: Minimization of L-index voltage 

stability 

It is a static voltage stability measure of power 

system, which is computed based on the normal 

load flow solution. L-index Lj of the j
th
 bus can be 

expressed by: 
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where,  NPV and NPQ are the number of PV and PQ 



Valipour & Ghasemi/ Journal of AI and Data Mining, Vol 5, No 1, 2017. 

91 

 

buses, respectively. Y1 and Y2 refer to the sub-

matrices of the YBUS matrix one gets:  

1 2

3 4

PQ PQ

PV PV

I VY Y

Y YI V

    
    
    

              (4) 

 

The L-index is calculated for all the PQ buses. Lj 

shows no load case and voltage collapse 

conditions of bus j in the range of (0, 1). Thus the 

objective function is represented by: 

max( ), 1,2,...,j PQL L j N               (5) 

In the ORPD problem, an incorrect set of control 

variables may increase the value of L-index, and 

leads to a voltage instability. Let the maximum 

value of L-index be Lmax. Therefore, to enhance 

the voltage stability, and to keep the system far 

from the voltage collapse margin, one gets:  

3 max( , )J VL x u L                (6) 

 

2.2. Objective constraints 

• Constraints 1: Equality Constraints 

In the ORPD problem, the power generation must 

be equal to the sum of the demand (PD) and the 

power loss in the transmission lines:  
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(7) 

where, NB is the number of buses; QGi is the 

reactive power generated at the i
th
 bus; and PDi 

and QDi are the i
th
 bus load real and reactive 

power, respectively; Gij and Bij are the transfer 

conductance and susceptance between bus i and 

bus j, respectively; Vi and Vj are the voltage 

magnitudes at bus i and bus j, respectively; and θi 

and θj are the voltage angles at bus i and bus j, 

respectively.  

• Constraints 2: Generation Capacity Constraints 

Generally, the generator outputs and bus voltage 

constrains by lower and upper limits are as follow: 
min max min max,i i i i i iQ Q Q v v v                 (8) 

Where,  Pi
min

 and Pi
max

 are the minimum and 

maximum values, respectively.  

 • Constraints 3: Line-flow constraints 

One of the main constrains in the ORPD problem 

is the maximum transfer capacity of the 

transmission line. These constrains can be 

calculated as follows:  
max

, , , 1,2,...,Lf k Lf kS S k L               (9) 

where,  SLf,k is the real power flow of line k; max

,Lf k
S  

is the power flow upper limit of line k, and 

subscript L denotes the number of transmission 

lines. 

• Constraints 4: Transformer  

The transformer tap setting is restricted by its 

lower and upper values: 
min max

i i iT T T               (10) 

 

2.3. Problem formulation  

As results, the proposed deterministic multi-

objective ORPD problem can be formulated as: 
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          (11) 

Where, g and h are the equality and inequality 

constraints, respectively; [VL], [QG], and [SL] are 

the vector of load bus voltages, generator reactive 

power outputs, and transmission line loadings, 

respectively; and [VG], [T], and [QC] are the vector 

of generator bus voltages, transformer taps, and 

reactive compensation devices, respectively. 

 

3. Stochastic formulation of ORPD problem  

In practice, power injections, especially from 

intermittent renewable sources, and demand are of 

uncertainties [16-17]. To aim with this cope, in 

this section, the load uncertainty is developed in 

the stochastic form in the ORPD problem. Usually 

the probability distribution of a random variable is 

represented using a finite set of scenarios. In other 

words, each scenario (s
th
) has an associated 

probability of occurrence (ξs). From (1), variable 

  can be defined as: 

n

n L
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                                      (12) 

The expected value for   can be given by: 
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Substituting (12) and (13), one gets: 

min{ ( ) [ ( )]}f x E y                                    (14) 

Finally, the stochastic formulation of power loss 

can be calculated as follows: 
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Constraints Eqs. (7)-(11) in the deterministic 

model are modified to take into account all the 

different scenarios of demand s S , such that 

modifications are shown in constraints Eq. (15) in 

the stochastic model. 

 

4. Multi-objective MHSA 

4.1. Standard HSA 

In this section, the original HSA is briefly 

introduced; more details can be found in [12]. 

 
Start 

Objective function f(x), x=(x1,x2, …,xd)
T 

Generate initial harmonics (real number arrays) 
Define pitch adjusting rate (PAR), pitch limits and bandwidth 

Define harmony memory accepting rate (raccept) 

while t<Max number of iterations 
     Generate new harmonics by accepting best harmonics 

     Adjust pitch to get new solutions 

        if (rand>raccept), choose an existing harmonic randomly 
        else if (rand>PAR), adjust the pitch randomly within limits 

               else generate new harmonics via randomization 

               end if 

            Accept the new harmonics (solutions) if better 

        end  
Find the current best solutions 

End 

Figure 1. Pseudo-code of standard HSA. 

 

This algorithm has three main components, as 

shown in figure 1. It is clear that the probability of 

randomization can be given by: 

random acceptP =1-r                          (16) 

and the actual probability of adjusting pitches is 

given by: 

pitch acceptP =r PAR             (17) 

 

4.2. Modified HSA 

This algorithm shows a good performance in an 

optimization problem, although the main shortage 

of the HSA algorithm comes from this fact that it 

may miss the optimum solution or converge to a 

near optimum solution. However, it has a flexible 

and well-balanced mechanism to enhance the 

global and local exploration abilities. Therefore, 

the following modifications are proposed. 

 Modification of bw and PAR 

Generally, the parameters PAR and bw are 

arbitrarily fixed. It is clear that they can affect the 

stochastic nature of HSA. Therefore, a time-

varying operator is proposed to keep away from 

this difficulty: 

min max min( )i

i
PAR PAR PAR PAR

H
              (18) 

min

max
max

ln( )

exp( )i

bw

bw
bw bw i

H
             (19) 

where,  PARmin and PARmax are the minimum and 

maximum values for the pitch adjustment rate in 

the search space, respectively; and H and i are the 

maximum and current iterations, respectively.    

• Global searching operator 

In order to have an effective global search, 

combine the genetic operator as follows: 

min max min

  i=1:N

( );

;

 rand T

rand ( );

best worst
i i i

New best
i i i

New
i i i i

for

penalty abs x x

x x penalty

if

x x x x

end

end

 

 



   

        (20) 

The superscripts best and worst refer to the global 

best and worst solutions for variable x, 

respectively. The parameter penalty is the 

guarantee for the global search ability. In other 

words, after some evaluations, HSA may reach a 

local solution and penalty goes to zero, and 

hereby, the algorithm will be stagnated. To avoid 

this shortage, generate some random harmonies, 

and replace the worse harmonies. The number of 

new random harmonies depends on the problem 

and size of HM. The new random harmonies 

increase the penalty parameter, and lead to new 

exploration in finding a better solution.  

• Local searching operator (CLS) 

Chaos is a random-like process found in a non-

linear, dynamical system, which is non-period, 

non-converging, and bounded [17]. The proposed 

CLS-integrated HSA can be formulated as 

follows: 

1

2 , 0 0.5
, 1,2,...,

2(1 ), 0.5 1

j j

i ij

i j j

i i

c if c
c j Ng

c if c


 
 

  
      (21) 

where,  C
j
i+1 is the j

th
 chaotic variable of i

th
 

iteration. This combination can be summarized as 

follows: 

i) Generate an initial population: 
0 1 2

,0 ,0 1,0

1 2
0 0 0 0

,min,0

0
,max ,min

[ , ,..., ]

[ , ,..., ]

, 1,2,...,

g

Ng
cls cls cls Ncls

Ng

j
jclsj

j j

X X X X

cx cx cx cx

X P
cx j Ng

P P






 



          (22) 

where,  the chaos variable can be obtained by: 
1 2
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ii) Measure the chaotic variables: 
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where,  Nchaos is the number of individuals for 

CLS; Ng
icx  is the i

th
 chaotic variable; rand() is a 

random number at the range (0,1); Ng is the 

number of units; and X
i
cls is the current position of 

the harmony-based chaos theory. 

iii): Map the decision variables 

iv): Convert the chaotic variables to the decision 

variables 

v): Evaluate the new solution with decision 

variables. 

 

4.3. Non-dominated sort and crowding distance 

In this process, the entire population is sorted with 

its non-dominated level. Each solution is assigned 

with a fitness value. Perform the non-dominated 

sort method on the initial population, and 

calculate the rank: rank1, rank2, rank3...., etc. 

After the non-dominated sort is done, the 

crowding distance is assigned to each solution. 

The crowding distance is assigned front wise. 

Compare the crowding distance between two 

individuals in different fronts [9, 10]. Hereby, the 

density of the surrounding individuals of i is 

expressed by id, which is the smallest range that 

contains i but does not contain other points around 

the individual i . This process can be expressed as 

follows: 

i) For each front 
iF , l  is the number of 

individual, i.e. | |iF l . 

ii) For every individual i , set the initial crowding 

distance 0di  . 

iii) Set 1d dl   . For each individual i , [ ].P i k

denotes the value for the thk  objective function. 

iv) Let i cycle be from 2 to 1l  , and calculate the 

following expression to define the crowding 

distance for each individual 

 (25) 

The graphical outlook for non-dominated sort and 

crowding distance is shown in figure 2. 

 

4.4. Best compromise solution 

Fuzzy decision-maker is one of the multi-criteria 

decision methods that provide the best decision 

between a set of solutions. It can help the designer 

to make the best decisions that are consistent with 

their values, goals, and performances [17]. 

Hereby, firstly, the solution is assigned with the 

following triangular membership function: 

max

max min
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where, f
i
min and f

i
max are the maximum and 

minimum values for the i
th
 function response of 

the selected k
th
 solution, respectively. The 

normalized membership function FDM
k
 can be 

calculated by: 
obj

obj

N
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1 1

k

i
k i

M
j

i

j i
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           (28) 

where, M is the number of non-dominated 

solutions, and Nobj is the number of objective 

functions. Figure 3 illustrates a typical shape of 

the employed membership function. 

 

 

Figure 2. Non-dominated and crowding distance sorting. 

 

 

Figure 3. Membership function. 

 

4.5. Pareto-optimal solutions 
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 s is strictly better than s′ in at least one 

attribute. 

It can be denoted as s ≻ s′ or s′ ≺ s. A solution s is 

defined as covering another one s′ if s is no worse 

than s′ in any attribute. It can be denoted as s ≽ s′ 

or s′ ≼ s. 

If a solution s cannot be dominated by another one 

s′, it can be said that s is non-dominated by s′. If a 

solution s is non-dominated by all the other 

solutions in a solution set , it is called the 

Pareto-optimal solution in . The set of all the 

non-dominated solutions of  is called the Pareto-

set of . 

 

5. Applying MHSA in a multi-objective ORPD 

problem 

The proposed strategy to solve ORPD in the 

multi-objective framework can be stepped as 

follows:  

Step 1: Generate the initial populations. Firstly, 

set counter i = 0, and generate n random harmony, 

as follows: 
1 2

1 2 3
[ , , ,..., ] ( , ,..., )m

n i i i i
D D D D D D d d d    (29) 

where di
j
 is the j

th
 state variable value of the i

th
 

harmony population. For each individual (Di), the 

objective function values are calculated.  

Step 2: The three conflicted fitness functions, 

namely J1, J2, and J3 should be minimized 

simultaneously, while satisfying the system 

constraints.  

Step 3: Update the counter i= i +1. 

Step 4: Store the positions of the solutions that 

represent the non-dominated vectors. 

Step 5: Determine the best global solution for the 

i
th
 harmony from the non-dominated sort. First, 

these hypercubes consisting of more than one 

solution are assigned a fitness value equal to the 

result of dividing any number x>1 by the number 

of solutions that they contain. Then apply the 

crowding distance on the fitness values to select 

the hypercube.  

Step 6: Generate a new population of harmonies 

based on the proposed mutation, local and global 

operators.  

Step 7: Evaluate each solution by the Newton-

Raphson power flow analysis method to calculate 

the power flow and system transmission loss. 

Step 8: Update the contents of the repository non-

dominated sort together with the geographical 

representation of the solutions within the 

hypercube. 

Step 9: Update the contents of the repository 

solutions. 

Step 10: If the maximum iteration itermax is 

satisfied, then the stop optimization process and 

print final results. Otherwise, go to step 3. 

The graphical illustration is shown in figure 4. 

 
Figure 4. Proposed strategy to solve ORPD problem with modified HAS method.
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6. Simulation and discussion 

The proposed algorithm was implemented in the 

MATLAB language 2011a. All simulations were 

performed on a PC with an Intel Duo Core 

processor T5800, 2 GHz with a 4GB RAM. In 

order to access full search ability of the proposed 

algorithm, test it on the several benchmarks and 

look at the other articles. As a result, PARmin, 

PARmax, bwmin, and bwmax were set with the 0.35, 

0.99, 5×10-4, and 0.05 values, respectively. 

HMCR and HMS were 0.95 and 4, respectively. 

Also the maximum number of iterations was equal 

to 500.  

 

6.1. Deterministic model on IEEE 14-bus 

At first, the IEEE 14-bus test system was 

considered with five generator buses (bus 1 was 

the slack bus, and buses 2, 3, 6, and 8 were PV 

buses with continuous operating values), 9 load 

buses and 20 branches, in which 3 branches (4-7, 

4-9, and 5-6) were tap changing transformers. 

Moreover, the candidate buses for shunt 

compensation were 9 and 14.  

Table 1. Results of multi-objective optimization in IEEE 

14-bus test system. 

Parameters 
Case 1 Case 2 

MHSA HSA MHSA HSA 

Vg2 1.012 1.034 1.132 1.098 

Vg3 1.031 1.065 1.074 1.109 

Vg6 1.029 1.095 1.030 1.165 

Vg8 1.065 1.082 1.072 1.163 

T4-7 1.012 1.034 1.028 1.064 

T4-9 0.970 0.976 0.907 1.006 

T5-6 0.952 0.897 0.989 0.943 

Qc9 0.324 0.302 0.302 0.325 

Qc14 0.058 0.047 0.073 0.049 

J1 1.176 1.209 1.175 1.206 

J2 0.205 0.243 0.298 0.652 

J3 0.137 0.135 0.113 0.120 

Parameters 
Case 3 Case 4 

MHSA HSA MHSA HSA 

Vg2 1.093 1.103 1.083 1.053 

Vg3 1.065 1.095 1.094 1.064 

Vg6 1.083 1.163 1.028 1.093 

Vg8 1.001 1.154 1.014 1.172 

T4-7 1.039 1.196 1.004 1.106 

T4-9 1.042 0.895 1.042 0.953 

T5-6 0.987 0.854 0.987 0.803 

Qc9 0.393 0.473 0.386 0.401 

Qc14 0.063 0.035 0.057 0.038 

J1 1.195 1.268 1.177 1.210 

J2 0.203 0.438 0.208 0.448 

J3 0.114 0.123 0.115 0.125 

 

In order to evaluate the effectiveness of the 

proposed algorithm in this test system, four 

different cases were considered as follow: 

Case 1: Consider two objective functions; real 

power loss (J1) and voltage deviation (J2). 

Case 2: Consider two objective functions; real 

power loss (J1) and voltage stability index (J3). 

Case 3: Consider two objective functions; voltage 

deviation (J2) and voltage stability index (J3). 

Case 4: Consider all objective functions; J1, J2, 

and J3. 

The numerical results of these case studies with 9 

variables were tabulated in table 1, satisfying the 

system constrains. In all cases, the lower and 

upper limits of reactive powers were 0-30 MVAr, 

and these limits for the transformer tap settings 

and voltage magnitude were considered within the 

interval 0.9-1.1 p.u, respectively. The simulation 

results for the algorithms are shown in table 2. It 

can be seen that the results obtained for MHSA 

are better than those for the standard HSA 

algorithm in all cases. The Pareto front of the 

proposed algorithm for all cases is shown in figure 

5.  

Moreover, in order to show the robustness of the 

proposed algorithm to solve the ORPD problem, 

consider all objective functions, and optimize 

them by 30 trails that were individually run for 30 

times. The simulation results of these trails are 

given in figure 6.  

 

 

Figure 6. Distribution of final results for proposed 

algorithm in 30 trials, which simultaneously optimize 

three objective functions.  

It is clear that the variation range of the best total 

cost during 30 trails simulations is small, which 

indicates that the MHSA algorithm is stable 

compared to HSA. 

 

6.2. Deterministic model on IEEE 30-bus 

The proposed algorithm was carried out on the 

IEEE 30-bus test system, which consisted of six 

thermal plants, 26 buses, and 46 transmission 

lines. The other useful line data and bus data were 

taken from [7]. Moreover, it had four 

transformers, with the off-nominal tap ratio at 

lines 6–9, 6–10, 4–12, and 28–27. In addition, 

buses 10, 12, 15, 17, 20, 21, 23, 24, and 29 were 

selected as shunt VAR compensation buses. 

The results of the proposed algorithm were 

compared with SGA, PSO, GSA, standard HAS, 

etc, all of which were referred to [7] and [18]. The 

load of system was Pload = 2.832 p.u and Qload = 
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1.262 p.u on a 100 MVA base. In this case, the 

optimization problem had 19 control variables, 

which were presented in table 2. 

 

 

Figure 5. Pareto-optimal front of proposed approach, IEEE 14 bus. 

Table 2. Variable limits (p.u.). 
Voltage and tab setting limits Reactive power generation limits 

11 8 5 2 1 Bus 13 11 8 5 2 1 Bus 

Tmin Tmax Vload
min Vload

max VG
min VG

max 0.155 0.15 0.53 0.6 0.48 0.596 QG
max 

0.95 1.05 0.95 1.05 0.9 1.1 -0.078 -0.075 -0.265 -0.3 -0.24 -0.298 QG
min 

                                Reactive compensation devices and voltage limits 

       VG
max              VG

min VG
max QC

max      

    0.95 1.05 -0.12 0.36      
 

Table 3. Comparison of transmission loss for different methods in IEEE 30-bus system.  
Algorithm GAMs PSO [7] HSA [7] DE [7] SQP [7] GSA [7] BBO [7] BF [18] 

Best Ploss (MW) 4.5468 4.9239 4.9059 5.011 5.043 4.51431 4.5511 4.623 

Worst Ploss (MW) 4.8932 5.0576 4.9653 --- --- --- --- 4.64 

Average Ploss (MW) 5.1029 4.9720 4.9240 --- --- --- --- 4.68 

CPU time, s 11.82 --- --- --- --- 94.6938 --- --- 

Algorithm CPVEIHBMO [7] BF [18] ABC [18] FF [18] HBMO [7] HFA [18] ALC-PSO [18] MHSA 

Best Ploss (MW) 4.37831 4.623 4.6022 4.5691 4.40867 4.529 4.4793 4.373 

Worst Ploss (MW) 4.4901 4.64 4.61 4.578 4.8869 4.5325 4.5036 4.487 

Average Ploss (MW) 4.4826 4.68 4.63 4.59 4.6453 4.546 4.4874 4.480 

CPU time, s 66.038 --- --- --- 67.413 --- --- 65.02 

 

The simulation results were tabulated in table 3. 

As it is evident in this table, the proposed method 

demonstrates its superiority in the ORPD 

problem, success rate, and solution quality over 

the other heuristic methods. Moreover, these 

results confirm the potential of multi-objective 

MHSA algorithm to solve real-world highly non-

linear constrained multi-objective optimization 

problems. For the sake of a fair comparison, the 

results obtained by the MHSA algorithm in term 

of power loss reduction were compared with the 

other algorithms [7], in which the constraints and 

initial settings of the problem were different with 

the assumed values and constraints (four reactive 

compensation devices were installed at buses 6, 

17, 18, and 27). Figure 7 shows a comparison 

between the different algorithms. The results 

obtained show that the proposed method 

demonstrates its superiority in computational 

complexity, success rate, and solution quality over 

the PSO, GSA, HSA, HBMO, IPM, and DE 

methods. For the sake of a fair comparison among 

the developed methods, 10 independent runs were 

carried out. 

 

6.3. Deterministic model on IEEE 118-bus 

For the completeness and comparison purposes, 

this is the largest practical test system which we 
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can find in the literature with the complete data 

required for the ORPD problem. In order to test 

and validate the robustness of the proposed 

algorithm, the simulations were carried out in the 

IEEE 118-bus test system. This network consisted 

of 186 branches, 54 generator buses, and 12 

capacitor banks. Nine branches 8-5, 26-25, 30-17, 

38-37, 63-59, 64-61, 65-66, 68-69, and 81-80 

were tap changing transformers [19]. 

 

 

Figure 7. Comparison of proposed method with results 

exposed in [7]. 

The capacity of the 12 shunt compensators were 

within the interval (0, 30) MVAr. All bus voltages 

were required to be maintained within the range of 

(0.95, 1.1) p.u. In this regard, consider the 

following operating condition to compare the 

performance of the proposed algorithm with the 

other available methods. 

Case 1: To show the effectiveness of the proposed 

approach, initially, three different objectives 

namely, transmission loss minimization, voltage 

profile improvement, and voltage stability index 

minimization were considered individually. To 

demonstrate the superiority of the proposed 

MHSA, the simulation results were compared 

with the various well-known methods available in 

the literature, namely, PSO, FIPS, QEA, ACS, 

DE, SGA, PSO, MAPSO, SOA, TLBO, and 

QOTLBO. For the convenience of the reader, 

these methods are collaborated in [20]. The 

simulation results were tabulated in table 4. 

Case 2: In this case study, consider that all the 

objective functions are simultaneous. The 

simulation results are given in table 5. 

Table 4. Comparison results for IEEE 118-bus system in case 1. 

Index 

Loss minimization (MW) 

MHSA 
QOTLBO 

[19] 

TLBO 

[19] 

PSO 

[19] 

ALC-PSO 

[19] 

FIPS 

[19] 

QEA 

[19] 

ACS 

[19] 
GAM 

DE 

[19] 

Best 111.092 112.2789 116.4003 118.0 121.53 120.6 122.22 131.90 112.142 128.31 

Worst 113.72 115.4516 121.3902 122.3 132.99 120.7 NA NA 113.731 NA 

Mean 112.91 113.7693 118.4427 120.6 123.14 120.6 NA NA 112.642 NA 

Standard 

deviation 
0.012 0.0244 0.0482 NA 0.00 NA NA NA 0.014 NA 

Index 

Voltage deviation minimization (p.u.) L-index minimization 

MHSA 
QOTLBO 

[19] 

TLBO 

[19] 
GAM MHSA GAM 

QOTLBO 

[19] 

TLBO 

[19] 

Best 0.1864 0.1910 0.2237 0.1875 0.0603 0.0607 0.0608 0.0613 

Worst 0.2201 0.2267 0.2543 0.2412 0.0607 0.0608 0.0631 0.0646 

Mean 0.1985 0.2043 0.2306 0.1989 0.0608 0.0611 0.0616 0.0626 

Standard 

deviation 
0.0342 0.0356 0.0384 0.0403 0.0402 0.0399 0.0476 0.0488 

Table 6. Simulation results obtained by MHSA for case 2 in IEEE 118-bus test system. 
Control variables MHSA Control variables MHSA Control variables MHSA Control variables MHSA 

Vg1  (p.u.) 1.0166 Vg49  (p.u.) 1.008 Vg90  (p.u.) 1.0201 QC48 (p.u.) 0.0769 

Vg4  (p.u.) 0.999 Vg54  (p.u.) 1.0215 Vg91  (p.u.) 1.009 QC74 (p.u.) 0.0970 

Vg6  (p.u.) 1.022 Vg55  (p.u.) 1.0146 Vg92  (p.u.) 1.0048 QC79 (p.u.) 0.1091 

Vg8  (p.u.) 1.0244 Vg56  (p.u.) 1.0136 Vg99  (p.u.) 1.0094 QC82 (p.u.) 0.0544 

Vg10  (p.u.) 1.0172 Vg59  (p.u.) 1.024 Vg100  (p.u.) 1.0007 QC83 (p.u.) 0.1208 

Vg12  (p.u.) 1.0194 Vg61  (p.u.) 1.0061 Vg103  (p.u.) 1.0017 QC105 (p.u.) 0.1087 

Vg15  (p.u.) 1.019 Vg62  (p.u.) 1.0194 Vg104  (p.u.) 1.0247 QC107 (p.u.) 0.0861 

Vg18  (p.u.) 1.0091 Vg65  (p.u.) 1.0193 Vg105  (p.u.) 1.0251 QC110 (p.u.) 0.0821 

Vg19  (p.u.) 1.0166 Vg66  (p.u.) 1.0088 Vg107  (p.u.) 1.0143 T8-5 0.9903 

Vg24  (p.u.) 1.0028 Vg69  (p.u.) 1.0141 Vg110  (p.u.) 0.9997 T26-25 1.0141 

Vg25  (p.u.) 1.018 Vg70  (p.u.) 1.0001 Vg111  (p.u.) 1.0046 T30-17 0.9896 

Vg26  (p.u.) 0.9989 Vg72  (p.u.) 0.9995 Vg112  (p.u.) 1.008 T38-37 0.9907 

Vg27  (p.u.) 1.0058 Vg73  (p.u.) 1.013 Vg113  (p.u.) 1.0212 T63-59 1.008 

Vg31  (p.u.) 0.9993 Vg74  (p.u.) 1.0201 Vg116  (p.u.) 0.9984 T64-61 0.9917 

Vg32  (p.u.) 1.0007 Vg76  (p.u.) 1.0244 QC5  (p.u.) 0.0908 T65-66 1.0193 

Vg34  (p.u.) 1.0213 Vg77  (p.u.) 1.0017 QC34 (p.u.) 0.0712 T68-69 1.0193 

Vg36  (p.u.) 1.0177 Vg80  (p.u.) 1.0141 QC37 (p.u.) 0.1063 T81-80 1.0157 

Vg40  (p.u.) 1.007 Vg85  (p.u.) 1.0113 QC44 (p.u.) 0.0628   

Vg42  (p.u.) 1.0249 Vg87  (p.u.) 0.9983 QC45 (p.u.) 0.1018   

Vg46  (p.u.) 0.999 Vg87  (p.u.) 1.0075 QC46 (p.u.) 0.0624   
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It is clear that the proposed method yielded better 

solutions than QOTLBO, the original TLBO, and 

the other methods. According to table 5, the 

minimum system loss obtained by the proposed 

algorithm is 133.82 MW. In other words, it can be 

seen that the saving with the proposed method in 

the system loss is 0.4% better than the best 

solution for QOTLBO. Moreover, voltage 

deviation and L-index obtained using MHSA is 

better than QOTLBO and the original TLBO 

methods. To the reader’s convenience, Table 6 

summaries the ORPD results obtained by MHSA 

including the transmission loss, voltage deviation, 

L-index, and optimal settings of control variables. 

Table 5. Comparison of test results for multi-objectives of 

IEEE 118-bus system using different methods. 

Index 
J1, J2, and J3 

MHSA QOTLBO TLBO 

Loss (MW) 133.82 134.4059 137.4324 

Voltage deviation (p.u.) 0.2102 0.2410 0.2612 

L-index (p.u.) 0.0585 0.0619 0.0627 

 

6.4. Stochastic model on IEEE 30-bus  

To validate the proposed stochastic model in a 

single objective formulation, the numerical results 

were presented on a six-bus and a modified IEEE 

30-bus test system. It consisted of 30 buses, 37 

transmission lines, 6 generators, 4 under-load tap 

changing transformers, and 2 fixed shunt reactive 

capacitive power banks. For the tests, assume that 

there are three forecasted levels of demand: 1) low 

demand, 2) average demand, and 3) peak demand. 

They are known to happen with 25%, 50%, and 

25% probabilities, respectively. Other information 

is given in section 6.2. Comparison to section 6.2 

added a new shunt reactive capacitive 

compensator at bus 24, whose maximum capacity 

is 40 MVar. The data for the different levels of 

demand active and reactive is given in table 7. 

 

Table 7. Demand levels for modified IEEE 30-bus system. 

Bus 
PD [MW] QD [MVar] 

Low demand Average demand Peak demand Low demand Average demand Peak demand 

2 16.28 21.70 27.13 9.53  12.70  15.88 

3 1.80  2.40  3.00 0.90  1.20  1.50 

4 5.70  7.60  9.50 1.20  1.60  2.00 

5 70.65  94.20  117.75 14.25  19.00  23.75 

7 17.10  22.80  28.50 8.18  10.90  13.63 

8 22.50  30.00  37.50 22.50  30.00  37.50 

10 4.35  5.80  7.25 1.50  2.00  2.50 

12 8.40  11.20  14.00 5.63  7.50  9.38 

14 4.65  6.20  7.75 1.20  1.60  2.00 

15 6.15  8.20  10.25 1.88  2.50  3.13 

16 2.63  3.50  4.38 1.35  1.80  2.25 

17 6.75  9.00  11.25 4.35  5.80  7.25 

18 2.40  3.20  4.00 0.68  0.90  1.13 

19 7.13  9.50  11.88 2.55  3.40  4.25 

20 1.65  2.20  2.75 0.53  0.70  0.88 

21 13.13  17.50  21.88 8.40  11.20  14.00 

23 2.40  3.20  4.00 1.20  1.60  2.00 

24 6.53  8.70  10.88 5.03  6.70  8.38 

26 2.63  3.50  4.38 1.73  2.30  2.88 

29 1.80  2.40  3.00 0.68  0.90  1.13 

30 7.95  10.60  13.25 1.43  1.90  2.38 

 

Table 8 shows the reactive power dispatched for 

reactive sources and the taps settings under load 

variable transformers by minimizing the active 

power losses in each demand level. Table 9 shows 

the voltage magnitude profile. 

At load buses, for the three level demands, the 

voltages are close to their secure lower limit 0.95. 

However, by the reactive power injection of the 

fixed or continuous reactive sources installed in 

some load buses, the voltages are always not as 

near their secure lower limits. 

 

 

 

Table 8. Solution of stochastic model, IEEE 30-bus 

system. 

Bus 
Dispatch of Reactive Sources [MVAr] 

Low demand Average demand Peak demand 

2 6.48 21.32 59.99 

5 21.09 33.75 40.00 

8 21.03 36.04 39.98 

11 16.32 22.68 24.00 

13 7.98 22.56 23.67 

24 4.39 9.01 37.26 

Bus 
Tap Settings of Transformers [pu] 

Low demand Average demand Peak demand 

6-9 0.938 0.937 0.951 

6-10 1.087 1.094 1.038 

4-12 1.028 1.001 1.014 

27-28 0.965 0.973 0.949 
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Table 9. Voltage profile after optimized-30-bus system. 

Peak Ave Low Bus Peak Ave Low Bus 

0.997 1.011 0.975 16 1.030 0.978 0.992 1 

0.994 1.011 1.009 17 1.027 1.008 1.008 2 

1.040 1.006 1.007 18 1.032 1.004 0.986 3 

1.034 0.973 1.018 19 1.023 1.020 0.973 4 

1.028 0.976 1.014 20 1.037 1.022 1.012 5 

1.038 0.979 0.971 21 1.020 1.008 0.952 6 

0.992 1.027 1.006 22 1.041 0.980 0.994 7 

1.010 0.990 0.999 23 1.033 0.994 0.964 8 

1.007 0.989 1.017 24 1.024 0.991 1.005 9 

1.019 1.015 0.980 25 1.001 1.001 0.971 10 

1.020 0.976 0.976 26 0.997 1.027 1.001 11 

1.033 1.015 0.997 27 0.997 1.013 0.990 12 

1.030 0.990 1.000 28 1.046 0.972 1.002 13 

1.042 0.985 0.959 29 1.030 1.029 0.998 14 

1.018 1.011 0.980 30 1.014 0.984 1.014 15 

 

6.7. Statistical analysis and comparison 

In this section, the performance of the multi-

objective MHSA is compared with NSGA [21] 

and MOPSO [22] in Spread (SP) index [23]. This 

indicator is to measure the extent of spread 

archived among the non-dominated solutions 

obtained: 
1

1

| |

( 1)

N

f l i

i

f l

d d d d

SP
d d N d





  


  


          (30) 

where, N is the number of non-dominated 

solutions found so far; di is the Euclidean distance 

between neighboring solutions in the obtained 

non-dominated solutions set, and d  is the mean 

of all di. The parameters df and dl are the 

Euclidean distances between the extreme 

solutions and the boundary solutions of the 

obtained non-dominated set, respectively. A value 

of zero for this metric shows that all members of 

the Pareto optimal set are equidistantly spaced. A 

smaller value for SP indicates a better distribution 

and diversity of the non-dominated solutions. 

Table 10 shows a comparison of the SP metric for 

different algorithms. It can be seen that the 

average performance of multi-objective MHSA is 

much better than the other algorithm results. 

Table 10. Comparison of SP-metric for different 

algorithms. 
Index  MHSA NSGA MOPSO 

Best 0.1683 0.5999 0.2542 

Average 0.2789 0.6801 0.3242 

Std 0.0089 0.0598 0.0375 

 

7. Conclusion 

This paper proposes a modified harmony search 

algorithm (HSA), which was successfully applied 

for the ORPD problem solving in deterministic 

and stochastic models, taking into account the 

inequality and equality constraints. The ORPD 

problem was formulated as a multi-objective 

optimization problem with three conflicted 

objectives, known as power loss, voltage 

deviation, and Lindex. A diversity-preserving 

mechanism of crowding entropy tactic was 

investigated to find widely different Pareto 

optimal solutions. The main contribution of the 

proposed algorithm can be looked at for the 

design of local and global search operators and 

interactive strategy to adjust two significant 

parameters (i.e. bw and PAR) during the 

optimization process, which improves its overall 

performance. The proposed algorithm was 

evaluated on the three test systems IEEE 14-bus, 

30-bus, and 118-bus to demonstrate its 

effectiveness compared to other available 

algorithms. It was seen that the ability of the 

proposed algorithm to jump out of the local 

optima, the convergence precision, and speed 

were enhanced remarkably. Furthermore, the 

results obtained showed the capabilities of the 

proposed algorithm to generate well-distributed 

Pareto solutions. Moreover, the uncertainty in 

generating units in the form of system 

contingencies was considered in the reactive 

power optimization procedure by the stochastic 

model. Hereby, it is expected that the proposed 

MHSA algorithm is preferred, and it plays a more 

active role in the reactive power dispatch problem. 

 

References 
[1] Ghasemi, A., Golkar, M. J., Golkar, A.  &  Eslami, 

M. (2016). Reactive power planning using a new 

hybrid technique. Soft Comput, vol. 20, pp. 589-605.  

 

[2] Mehdinejad, M., Mohammadi-Ivatloo, B., 

Dadashzadeh-Bonab, R.  &  Zare, K. (2016). Solution of 

optimal reactive power dispatch of power systems 

using hybrid particle swarm optimization and 

imperialist competitive algorithms. Int. J. Electr. Power 

Energy Syst. vol. 83, pp. 104-116.  

 

[3] Kirschen, D. S.   & Van Meeteren, H. P. (1988). 

MW/voltage control in linear programming based 

optimal power flow. IEEE Trans. Power Syst. vol. 3, 

pp. 481-489.  

 

[4] Lee, K. Y., Park, Y. M.   & Ortiz., J. L. (1985). A 

united approach to optimal real and reactive power 

dispatch. IEEE Trans. Power Apparatus Syst. vol. 104, 

pp. 1147-1153.  

 

[5] Nanda, J., Kothari, D. P. & Srivastava, S. C. 

(1989). New optimal power dispatch algorithm using 

Fletcher’s quadratic programming method. IEE Electr. 

Power Gener. Transm. Distrib. vol. 136, pp. 53-161.  

 

[6] Momeh, JA., Guo, SX., Oghuobiri, EC. & Adapa, 

R. (1994). The quadratic interior point method solving 

the power system optimization problems. IEEE Trans 

Power Syst, vol. 9, no. 3, pp. 1327-1336.  

 

[7] Ghasemi, A., Valipour, K. & Tohidi, A. (2014). 

Multi objective optimal reactive power dispatch using a 

http://www.sciencedirect.com/science/article/pii/S0142061516305658
http://www.sciencedirect.com/science/article/pii/S0142061516305658
http://www.sciencedirect.com/science/article/pii/S0142061516305658
http://www.sciencedirect.com/science/article/pii/S0142061516305658


Valipour & Ghasemi/ Journal of AI and Data Mining, Vol 5, No 1, 2017. 

100 

 

new multi objective strategy. Int. J. Electr. Power 

Energy Syst., vol. 57, pp.318-334. 

[8] Basu, M. (2016). Quasi-oppositional differential 

evolution for optimal reactive power dispatch. Int. J. 

Electr. Power Energy Syst., vol. 78, pp. 29-40.  

 

[9] Basu, M. (2016). Multi objective optimal reactive 

power dispatch using multi objective differential 

evolution. Int. J. Electr. Power Energy Syst., vol. 82, 

pp. 213-224.  

 

[10] Biswas (Raha), S., Mandal, K. K. & Chakraborty, 

N. (2016). Pareto-efficient double auction power 

transactions for economic reactive power dispatch. 

Applied Energy, vol. 168, pp. 610-627.  

 

[11] Sulaiman, M. H., Mustaffa, Z., Mohamed, M. R. 

& Aliman, O. (2015). Using the gray wolf optimizer 

for solving optimal reactive power dispatch problem. 

Applied Soft Computing, vol. 32, pp. 286-292.  

 

[12] Geem, Z. W., Kim, J. H. & Loganathan, G. V. 

(2011). A new heuristic optimization algorithm: 

harmony search. Simulation, vol. 76, no. 2, pp. 60-68.  

 

[13] Kazemi, A., Parizad, A. & Baghaee, H. R. (2009). 

On the use of harmony search algorithm in optimal 

placement of facts devices to improve power system 

security. in: Proceedings of EUROCON, pp. 570-576.  

 

[14] Dash, R. & Dash, P. (2016). Efficient stock price 

prediction using a Self Evolving Recurrent Neuro-

Fuzzy Inference System optimized through a Modified 

Differential Harmony Search Technique. Expert 

Systems with Applications, vol. 52, pp. 75-90.  

 

[15] Pandiarajan, K. & Babulal, C. K. (2016). Fuzzy 

harmony search algorithm based optimal power flow 

for power system security enhancement. Int. J. Electr. 

Power Energy Syst., vol. 78, pp. 72-79.  

 

[16] Hu, Z., Wang, X. & Taylor, G. (2010). Stochastic 

optimal reactive power dispatch: Formulation and 

solution method. Electr. Power Energy Syst., vol. 32, 

pp. 615-621.  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

[17] Ghasemi, A., Gheydi, M., Golkar, M. J. & Eslami, 

M. (2016). Modeling of Wind/Environment/Economic 

Dispatch in power system and solving via an online 

learning meta-heuristic method. Applied Soft 

Computing, vol. 43, pp. 454-468.  

 

[18] Rajan, A. & Malakar, T. (2015). Optimal reactive 

power dispatch using hybrid Nelder–Mead simplex 

based firefly algorithm. Electrical Power and Energy 

Systems, vol. 66, pp. 9-24.  

 

[19] Power systems test case archive, 

http://www.ee.washington.edu/research/pstca.  

 

[20] Mandal, B. & Roy, P. K. (2013). Optimal reactive 

power dispatch using quasi-oppositional teaching 

learning based optimization. Electrical Power and 

Energy Systems, vol. 53, pp. 123-134.  

 

[21] Mosavi, A. (2014). Data mining for decision 

making in engineering optimal design. Journal of AI 

and Data Mining, vol. 2, no. 1, pp. 7-14. 
 

[22] Shayeghi, H. & Ghasemi, A. (2012). Economic 

Load Dispatch Solution Using Improved Time Variant 

MOPSO Algorithm Considering Generator Constraints. 

International Review of Electrical Engineering, vol. 7, 

no. 2, pp. 4292-4303.  

 

[23] Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T. 

(2002). A fast and elitist multiobjective genetic 

algorithm: NSGA-II. IEEE Trans. Evol. Comput., vol. 

6, no. 2, pp. 182-19.  

 

[24] Zitzler, E., Deb, K. & Thiele, L. (2000). 

Comparison of multiobjective evolutionary algorithms: 

empirical results. Evol. Comput. J. vol. 8, pp. 125-148. 
 

http://www.sciencedirect.com/science/article/pii/S0142061515004986
http://www.sciencedirect.com/science/article/pii/S0142061515004986
http://www.sciencedirect.com/science/article/pii/S0142061516304197
http://www.sciencedirect.com/science/article/pii/S0142061516304197
http://www.sciencedirect.com/science/article/pii/S0142061516304197
http://www.sciencedirect.com/science/article/pii/S0306261916300198
http://www.sciencedirect.com/science/article/pii/S0306261916300198
http://www.sciencedirect.com/science/article/pii/S1568494615001994
http://www.sciencedirect.com/science/article/pii/S1568494615001994
http://www.sciencedirect.com/science/article/pii/S0957417416000269
http://www.sciencedirect.com/science/article/pii/S0957417416000269
http://www.sciencedirect.com/science/article/pii/S0957417416000269
http://www.sciencedirect.com/science/article/pii/S0957417416000269
http://www.sciencedirect.com/science/article/pii/S0142061515004846
http://www.sciencedirect.com/science/article/pii/S0142061515004846
http://www.sciencedirect.com/science/article/pii/S0142061515004846
http://www.ee.washington.edu/research/pstca


 

 

 

 نشریه هوش مصنوعی و داده کاوی

 

 

 

بکارگیری یک مدل بهبود یافته الگوریتم جستجوی هارمونی برای مساله چند هدفه توزیع توان راکتیو 

 های قطعی و غیر قطعی برای مدل

  

 علی قاسمی و *خلیل ولیپور

 .، ایرانمهندسی، گروه برق قدرت، اردبیلی دانشگاه محقق اردبیلی، دانشکده فن

 01/10/1122 ؛ پذیرش21/12/1122 ارسال

 چکیده:

د غیرخطتی و توابتع ریزی سیستم قدرت بوده که با وجود متغیرهای گسسته و پیوستته دارای قیتوکتیو یکی از مسائل مهم در برنامهتوزیع بهینه توان را

قطعی پرداخته شده است. در متدل قطعتی از سته وان راکتیو در دو مدل قطعی و غیرمدلسازی مساله توزیع تباشد. در این مقاله ابتدا به هزینه ناصاف می

به صورت چند هدفه برای حل آن استفاده شده است. در مدل غیرقطعی براساس توابع امیتد ریایتی و احتلاتا ت  Lتابع تلفات، پایداری ولتاژ و پایداری 

باشتد از یت  مساله پیچیده میگیرد. از آنجایی که این سازی قرار میر نهایت این تابع هدف مورد کلاینهشده است که دبه مدلسازی تابع تلفات پرداخته 

هتای تستت استت. روش پینتنهادی بتر روی سیستتم هدفه به حل آن پرداخته شتدههدفه و ت افته جستجوی هارمونی به صورت چندیالگوریتم بهبود

گتوریتم پینتنهادی در حتل های موجود مورد بحث و بررسی قرار گرفته است. نتایج ننتان از کتارایی بتا ی البا سایر روشاعلاال و نتایج حاصله مختلف 

 هدفه توان راکتیو دارد. مساله چند

 .هدفه، پایداری سیستم، مدل غیرقطعیفته جستجوی هارمونی، مدلسازی چندیازیع توان راکتیو، الگوریتم بهبودتو :کلمات کلیدی

 


