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Abstract Under-actuated nonlinear dynamic systems trajectory tracking, such as space robots and
manipulators with structural flexibility, has recently been investigated for hierarchical sliding mode control
since these systems require complex computations. However, the instability phenomena possibly occur
especially for long-term operations. In this paper, a new design approach of an adaptive fuzzy hierarchical
terminal sliding-mode controller (AFHTSMC) is proposed. The sliding surfaces of the subsystems construct
the hierarchical structure of the proposed method in which the top layer includes all of the subsystems’
sliding surfaces. Moreover, a terminal-sliding mode has been implemented in each layer to ensure the error
convergence to zero in finite time besides chattering reduction. In addition, online fuzzy models are
employed to approximate the two nonlinear dynamic system’s functions. Finally, a simulation example of an
inverted pendulum is proposed to confirm the effectiveness and robustness of the proposed controller.
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1. Introduction

In the recent years, interests toward developing
under-actuated systems have been increased.
Many of mechanical systems often have the
under-actuation problem in which the system is
not able to follow arbitrary trajectories in
configuration space. This occurs if the system has
a lower number of actuators than its degrees of
freedom. In this condition, the system is said to
be trivially under-actuated. These systems cover
a wide range of applications in our everyday lives
such as overhead cranes, space robots,
automobiles with non-holonomic constraints, and
legged robots [1-3].

Many researchers investigated the control of
under-actuated systems. In this paper, the focus is
on variable structure systems (VSS) due to their
effective control scheme in dealing with
uncertainties, noise, and time varying properties
[4,5]. One of the robust design methodologies of
VSS is the sliding mode control chooses
switching manifolds, which are usually linear
hyper-planes that guarantee the asymptotic
stability shown by the Lyapunov’s stability
theorem [6,7]. In high precision applications, fast

convergence may not be delivered without strict
control. Hence, in order to overcome this
problem, a terminal sliding mode (TSM) control
has recently been developed. It enables the fast
finite time convergence and ensures less steady
state errors. However, the existence of the
singularity problem in the conventional TSM
controller design methods is a common drawback
[8,9]. Several methods have been proposed to
solve this problem.

The TSM control methods can be divided into
two approaches: the indirect approach and the
direct approach, in which the controllers require
discontinuous control leading to undesirable
chattering. In an indirect approach [10], scientists
implemented switching from terminal sliding
manifold to linear sliding manifold in order to
avoid the singularity problem. In addition, some
efforts have been made to transfer the trajectory
to a specified open non-singular region [11].
Also, a direct approach has been investigated for
a class of nonlinear dynamical systems with
parameter uncertainties and external disturbances
in [12]. Later, fuzzy TSM controllers [13] were
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introduced to solve the problems caused by these
two approaches and under-actuated systems with
unknown nonlinear system functions [14,18]. In
addition, there has been growing attention paid to
the adaptive fuzzy TSM in various control
problems [19].

In further studies, efforts have been made to
overcome the problems of the fuzzy sliding mode
control and fuzzy TSM control. Hierarchical
structures shown their effectiveness according to
their ability to achieve the ideal decoupling
performance with guaranteed stability [20]. The
implementation of these structures enables us to
decouple a class of nonlinear coupled systems
into several subsystems. Also, the sliding
surfaces, which govern the states’ responses, are
defined for each subsystem. In these systems,
first, a sliding surface is defined for each
subsystem. Then, the first-layer sliding surface
constructs the second-layer sliding surface. This
process continues to achieve the last sliding mode
surface (hierarchical surface). In literature, the
Lyapunov theorem has been employed to prove
the stability of the closed-loop system for the
single-input system. There are a few studies on
the effectiveness of the adaptive fuzzy law
derivation for the coupling factor tuning [21-23];
however, the chattering and fast convergence
problems are still remained unsolved.

As can be clearly seen in the aforementioned
studies, the implementation of the adaptive fuzzy
system besides the sliding mode and hierarchical
structure could not solve the chattering and fast
time convergence problems; therefore, in this
study, our main objective is to propose a novel
control method, named as the adaptive fuzzy
hierarchical terminal sliding mode control
(AFHTSMC), which enables us to use the
advantages of terminal sliding mode control
besides the adaptive fuzzy hierarchical structure
for uncertain under-actuated nonlinear dynamic
systems control. The main features of the
proposed AFHTSMC are as follows: 1) The
implementation of the TSM control, which
guarantees the fast finite time convergence and
reduces the chattering and steady state errors.
This superior property becomes admirable in the
applications requiring high precision; 2) The
unknown nonlinear system functions are
approximated by the adaptive fuzzy systems with
adaptive learning laws; 3) The hierarchical
structure of the proposed method is also a very
effective tool to guarantee the stability, especially
for complex and high nonlinear dynamic systems.
In Section II, the system’s description and the
control  objectives are presented. Then

AFHTSMC development for dealing with the
trajectory tracking control problem of uncertain
under-actuated nonlinear dynamic systems is
introduced in Section Ill. Section 1V is dedicated
to the Lyapunov stability analysis of the proposed
closed-loop system. The simulations, results and
discussions are presented in Section V for an
inverted pendulum on a cart. Finally, concluding
remarks are made in Section VI.

2. System  description and  problem
formulation
An under-actuated single-input-multi-output
system  with uncertainty and nonlinear
coefficients is defined in (1).

%1(0) = x,(t)
%,() = f;(x) + by () u(®) + d; (x, 1)

X3(0) = x,(0)
%4(0) = £,(x) + ba(x) u(®) + dx(x,t)

(1a)
Xon—1 () = X2, ()
Xon (1) = £,(x) + by (X) u(®) +d,(x, 1)
y(© =[x, () x3(D) ... X2n-1(®O]T (1b)

where, x(t) = [x;() x,(1) ... X,,(D)]T € R?" is the
system state variable, f;(x) and b;(x), i=1,2, ..., n
are unknown nominal nonlinear functions,
(0 < d;(x,t) <p;, i=1,2, ..., n) are bounded time-
varying disturbances, and u(t) and y(t) are the
control input and the system output, respectively.
The contribution of this paper is to design the
hierarchical terminal sliding mode controller with
adaptive fuzzy learning laws for a class of
uncertain under-actuated nonlinear dynamic
systems (UUND). Figure 1 shows that the
adaptive learning laws are applied to adjust the
parameter vectors of fuzzy systems for
approximation of uncertain nonlinear system

functions.
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Figure 1. The schematic overall control block-diagram.
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Also, the performance of the bounded trajectory
tracking and asymptotical trajectory tracking are
addressed. Finally, the simulation results of an
inverted pendulum on a movable cart with
bounded external disturbance are investigated.

3. AFHTSMC development

3.1. The terminal sliding surfaces

In this section, initially, the conventional terminal
sliding surfaces are defined in (2-4).

5i(t) = ()7 + c;e(8) (2)

where, for i=1,2,...,n, the reference inputs are

ri(t), c;and y; = S are positive constants, and p

and g are odd positive integers.
e;(t) = xp;_1(t) — 1y (t) (3)

é;(t) = x2(t) — 7:(6) (4)
However, the singularity problem may occur in
q-p
this structure because of the term ci%ei v (t)é;(t)
in the control input. If the 2q > p > q is chosen,
q-p 2q-p

the terme; » (t) will be equal to e; » (t) which

will be nonsingular. On the other hand, if little

control to enforce e;(t) # 0 is made while ¢;(t) #

0, the singularity problem occurs. Hence, an

indirect approach has been implemented to avoid

this problem and define the terminal sliding

surfaces in (5).

5i(8) = (O + ciei(0) (5)

It has to be noticed that the derivative of s;(t)
along the system’s dynamics does not result in
terms with negative (fractional) powers by using
(5) and the singularity is avoided by switching
between (2) and (5), where the error and its
derivative are bounded as in [20]. In this
problem, designing a switched control that drives
the plant state to the switching surface and
maintain it on the surface upon interception is the
most important achievement. As can be seen, the
system motion is governed by c;, which is an
integer number. This number’s value indicates
the effect of error on the sliding surface and it is
selected based on the ¢;(t)Y value, while s;(t) in
each layer has a crucial effect on the system’s
control. It is important to mention that high
values of c; increase the effect of e; in each layer
and may result in misleading the controller;
hence, appropriate values of c; are required to
maintain a high precision control system. Further
studies can be found in section 3.2.

3.2. The hierarchical structure
In the next step, after the definition of the sliding
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surfaces, higher hierarchical levels (S;(t)) are
created by lower TSM surfaces (s;(t)) as shown
in figure 2. The it" hierarchical layer sliding
surface is defined in (6).

Si(0) = Aj_1S;-1(0) +5i(0) (6)

where, A;_; is constant when A, =S, = 0. The
value of the A;_; parameter indicates the
effectiveness of the last hierarchical layers in
comparison with the current sliding surface.
Larger values of A;_; increase the value amount
that is given to the prior layers instead of the
highest hierarchical sliding surface. This
parameter has to be adjusted so as to satisfy the
Lyapunov theorem and the required accuracy.
Furthermore, the control input for the it" layer
u; (t) consists of the equivalent and the switching
control terms besides the last control input
u;_1(t), which is shown in (7).

U; () = w1 (£) + Geq,i(0) + Ui (D )
where, u, = 0 and
/‘aeq,i(t) (8)
[fi(xléfi) -7 + ey e T+
- _ ksgn(s;)
5:(x]By,)
ﬁsw,i'(t) (9)

i-1

== Gai®

1 . . ~ ~
{ 21:1[2;1=}(H]!=m a))bp (x[8y, )1
X flgq,1 (1) + k;S; () + sgn(S)B (1)
Zhn=1(Il2m 3))bm (x[6y,,)
where, f;, b; are the approximations of the
unknown nonlinear functions. f;(x) and b;(x) are
defined in (13,14). ¥;(t) is the second derivative
of reference input,, aj =A;asj#iandaj=1as
j =i i=12,....n.
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Figure 2. The hierarchical TSM layers construction.
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3.3. Adaptive fuzzy inference system

In order to improve the system effectiveness, the
unknown uncertain  continuous  nonlinear
functions, f;(x), b;(x) and p;(x) are to be learned
by the learning functions. The fuzzy rule base is
defined in (10).

R®:1F x, is Fl and ..
THEN y is G!

where, F! and G! are the input and the output of
the fuzzy systems, respectively. The crisp point x
is mapped from fuzzy sets U to a crisp point V,
based on the fuzzy IF-THEN rules and by means
of the fuzzifier and defuzzifier. The output of the
fuzzy system is shown in (11), based on singleton
fuzzifier, center-average deffuzification, and
product inference engine.

(10)

.and x,, is F},,,

y = 6T8(x) (11)
in which, 8T =[6TeT... 6T] € ®M are the points
that have the maximum value of membership
functions that G! is able to achieve and (x) =

[E'(x) E2(x) ... EM(x)]T are basis functions defined
asin (12).

. I, UF}(Xi) 12)
R VLN e

where, “F!(xi) is the membership function of the

fuzzy set. The approximation of the unknown
nonlinear functions f;(x),b;(x) and p;(x) are
defined as in (13-15).

?i(X|§fi) = ?JE &(x) (13)
Bi(xlébi) = étT)i §(x) (14)
Pi(x18,,) = 87, 5() (15)

Also, the optimal parameters will be defined in
(16-18).

of = argéfi(t)enéfimin X(St;lp X{|?1(X|éfi) (16)
- [}
Op, = args, (eag, min sup {|b; (X|6b) a7
x(1)EQx
— b (X)|}
0;, = argy, e, min sup {|pi(x]6,,) (18)

x(t)EQx

- pl(X)|}

And the learning laws of parameter vectors are
designed as in [19, 20].

In addition, the upper bound of uncertainties is
defined in (19).
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& (19)
s if &3] < Ny,
YulSi O] = 8,IS,OIB® if 3] = Ny,

where, vy, > 0 is the learning gain and &, > 0 is
the projection gain.
Hence, (20, 21) are obtained for AFHTSMC.

v 20
NOEDY (1_[ a,->sm(t) )
Y (21)

u,(t) = Z ﬁsw,l(t) + ﬁeq,l(t)

I=1

4. Stability analysis

The following Lyapunov  functions are
considered in order to prove the stability of the
proposed control method. Here, it has been
assumed that the learning parameters are
bounded and no projection term is required for
the learning laws.

of 8; eb eb 8T
V‘ — SZ Z[ m + Pm "~ Pm
{ yfm me (22)
+(T)2/Yu>}/2
or 6 L& 0 (23)
_ S S + ww [ fim “fm b bm
ypm ]
n i _
G=s ) (] o om0+ (24)
m=1 \ j=m ©
+ \ ég‘mefm égméb epmépm
] Vi Ybm Yom
n i
=5 aj [Cmém (25)
m=1 \ j=m
B
FYmem "™ (f + b + dpy — ) + —
®
'3 [ef b ézmebm+ézmepm]
= Vi Ybm Yom
i (26)

<las . BB
+ |Si| naj Ymem'™ Pm t——
= [\ Yo
m=1 | \j=m
- [6T 6, BT 6, 6T 6,
m=1 Yfm m Yom
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n i (27)
zsiz Haj [Cmém
m=1 \ j=m
+ Ymémym_l([fm _A f;;’l] + [flfn - m] + fm + [bmu
—bju] + [bju — byu] + bpu — )
i i
w180 [ )| vmem™™ lom = ]
m=1 j=m
SR ~ I
+ [Pm — Pm] + Pm} +—
Yo B
T & e ) 8T ¢
+ Z fm °fm bm “bm + Pm "~ Pm
Yfm bm ypm
n /A (28)
< Sjw + S Z aj | [cmém
m=1 \ j=m
+ ¥Ymeém "™ ([ — fn] + F + [bjau — Byu] + bpu
_'I:m)
i i
180 | s [ ymem™ 55 = ] + B}
m=1 j=m
~ I raT A AT A AT A
>0 0; 6 6, 0 0, 0
+— fm fm+ bm bm+ Pm pm]
Yo m=1 Ym Ybm Yom
n i (29)
= Si(,l) + Si Z naj [Cmém
m=1 \j=m
. - * a T i *
+ Ymem ™ (107,75 — 85, 1+ + (65,5
~ T ..
— 0y, & +bpu-— I‘m)
i i
+1si Z ]_[a,- Y™ (10;,, 75 = B,
=1
T & e 6, oI
+pm}+_ Z fm “fm bm Vbm + Pm "~ Pm
Ypm
(30)

n i
= Sjw + §; z l_[ aj | [cmém
=1

+ ymémym 1(f + bmu — )

1 (1)(1)
+ISIE || Ymem"™ {Pm} +—
Yo

-5 naj CH §+Zef 0f /ve.,
m=1 \ j=m
i i
=si > ([ Jar |85, 5+ Z 6r 8% /vo,
m=1 j:m
i
~ I8y ]_[a] 5, z+zeT 08, /i,
m=1 \j=m

Hence, we replace the terms £, f,,, b}, and by,
by 0;,'5 8, & 6 "gandd, g
respectively. This leads to (29) and discretization
gives (30). Substituting the learning laws and the
control law of the i**layer and the learning upper
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bound of uncertainties into the above equation
yields (31-35).

36 (T _
=[Sjlo + —+S; Z naj [cmém
Yo m=1 \ j=m

R -1 ~
+ Ymemym fm + bmueq,m

(1)

S (32

usw,l + ueq,l —Tm ]

(33)

- Ym-1
Ymem' " Pm

i i
et ([ o
m=1 j=m

B 34
< ISi|w+y——K|Si|éme_1w (34)

w
< —K; S2—K|Sjlém™ tw < 0 (35)

5. Simulations and discussions

The inverted pendulum on a movable cart is
considered to verify the effectiveness of the
proposed controller (Figure 3). Here, the system
functions are described in (36-39).

£6O {mtgsinxl —mpL sinxlcosxlxg} (36)
1X) =
L/2 (% - mpcosle)
4m,L
{— 2p x3 sin’L 3 L+ my, g sin xq cosxl} (37)
f,(x) =

(% — m;,cos X1)
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by (x) = cos- T s (38)
3

il 2
3~ — Mpcos xl)

by(x) =

4 (39)
3 (% — mpcosle)

where, m¢ =m, +m, and x; , X, , X3 , X, are
respectively the pendulum’s angle with respect to
the vertical axis, the angular velocity of the
pendulum with respect to the vertical axis, the
position of the cart, and the velocity of the cart.
The magnitudes of the constant parameters of the
system are shown in table 1.

B
— =

" L
|

I

¥
=
EX)

Figure 3. The inverted pendulum on a movable cart.

The simulations have been done by MATLAB
2012 software. Since the term x; is used in the
Lyapunov function and adaptation laws, it has to
be fuzzified in order to achieve the results for the
output of the system. Hence, x; is input variable
of the fuzzy system and u is its output variable,
respectively. The membership functions are
assumed to be triangular because they result in
entropy equalization in probability density
function.
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Table 1. The constant parameter’s magnitudes of the

system.
Parameter Magnitude Description
m, 1Kg Mass of the cart
m, 0.05 Kg Mass of the pendulum
L 1m Length of the pendulum
g 9.806 sﬁz Acceleration due

to gravity

Also, the reconstruction will be error-free if a ¥
overlap between neighbouring fuzzy sets is
considered. When interfacing fuzzy sets are being
constructed by numerical datum, these two
characteristics are implemented. Based on the
aforementioned  reasons, the  membership
functions are designed as shown in figures 4 and
5.

As can be clearly seen, each of the inputs and the
outputs are partitioned by seven membership
functions called as negative big (NB), negative
medium (NM), negative small (NS), zero (2),
positive small (PS), positive medium (PM), and
positive big (PB). Of course, one can alter the
membership functions type and number in order
to improve the results.

In this research, the reference inputs are set as
r; (t) = 5.5sin(t) (degree) and r,(t) = sin(t) (m).
The hierarchical terminal sliding surfaces are
selected as s;(t) = &; ()Y + cie,(t) and s,(t) =
é,(0)Y1 + ce,(t) where ¢; =2, ¢, =1 and vy, =
Yl :3 . The initial values are chosen as x(0) =
[£,0,0,0]. In addition, we assume the external

disturbance to be a low frequency signal,
d,(x,t) = 0.75x%(t)sin(sin(t) x;x3), and a high
frequency signal, d, (x,t) = 0.75x3x,sin(100(t)).

F 4 s M B

s

Figure 4. The membership functions of the input variables.
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Figure 5. The membership functions of the output variable.

In order to verify the reliability of the proposed
AFHTSMC, long-term operation simulations are
presented and compared with Adaptive Fuzzy
Hierarchical Sliding Mode Control (AFHSMC)
[19] as shown in figures 6-9. The position
tracking plots for the pendulum and the cart
(Figure 6 and 7) demonstrate the perfect match of
the two control methods for a hundred seconds.
As can be clearly seen for AFHTSMC, the small
undesirable fluctuations disappear in the very first
steps of the control algorithm and the desired
oscillatory motion continues over a long period of
time. Figure 8 represents a significant effect of the
TSM implication on the control method by
comparing the top hierarchical surfaces of the
aforementioned methods. As it is shown the TSM
results have a higher rate of convergence. Also,
asymptotical trajectory tracking is obtained
immediately and the transition time (0.42
seconds) is much less than that of [19] (3.65
seconds). In addition, the variations of the top

sibon Tracking for the inverted pendulum angle

/

4 | | |
0 10 20 30 40

hierarchical surface decreases significantly in
AFHTSMC, compared to AFHSMC. Therefore,
the combination of the TSM control and
hierarchical structure enables the fast finite time
convergence of the uncertain nonlinear dynamic
system. Therefore, the proposed method is much
more convenient when fast convergence
properties and high precision are required. The
control input variations after learning are also
presented in figure 9, in which the AFHTSMC
shows smoother force results. This happens
because of the TSM requirement to avoid the
singularity problem. Although there may exist a
large amplitude of force before learning, it does
not affect the system because of the AFHTSMC’s
fast convergence. However, there still exists small
fluctuations. In addition, in most of the high
precision applications, we do not need very large
forces. Hence, the force variations are between
small ranges that do not affect the system
performance.

| | | |
60 70 80 090 100

time(s)
Figure 6. The position tracking vs. time for the pendulum angle (blue dashed line is the reference signal, the solid
blue line is the output signal and the red dashed line is for the AFHSMC).
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Figure 7. The position tracking vs. time for the cart (dashed blue line is the reference signal, the solid
blue line is the output signal and the dashed red line is for the AFHSMC).
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Figure 8. Second level hierarchical terminal sliding surface vs. time (blue and red solid lines represents
the AFHTSMC and the AFHSMC top hierarchical surface, respectively).
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Figure 9. The control input (u) vs. time (The blue solid line and the red solid line
show the force values for AFHTSMC and AFHSMC, respectively).
It is clear that larger learning rates can accelerate phenomena possibly occur in  AFHSMC,
the convergence properties though the instability especially in long-term applications. However, the
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implementation of the AFHTSMC reduces the
requirement to implement very large learning
rates, and is a major drawback of the previous
studies. In addition, as demonstrated in the
simulation results, applying Lyapunov stability
theorem with the AFHTSMC guarantees the
robustness to the bounded external disturbance,
stability, and finite time convergence in trajectory
tracking of the system.

6. Conclusions

In this study, the AFHTSMC has been proposed
for a class of uncertain nonlinear dynamic
systems. The control algorithm was designed
based on the Lyapunov stability criterion. The
combination of the TSM and the adaptive fuzzy
hierarchical system, which is the main novelty of
this paper, enables the system to converge much
faster to the desired trajectory compared with the
other methods in literature. Also, applying the
TSM in the adaptive fuzzy hierarchical system is
much more effective in chattering reduction.
Furthermore, the hierarchical structure decouples
the class of nonlinear coupled systems to
subsystems with guaranteed stability, and the
direct adaptive fuzzy scheme works online but
does not require prior knowledge of dynamic
parameters. Computer simulations for an inverted
pendulum on a cart have demonstrated the long-
term stability, robustness, and validity. The
AFHTSMC can be extended to other applications
with multi-input-multi-output (MIMO) structures.
We will focus on the fuzzy Type-2, neuro-fuzzy,
and evolutionary fuzzy systems in the hierarchical
TSM in our future study.
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