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Abstract Under-actuated nonlinear dynamic systems trajectory tracking, such as space robots and 

manipulators with structural flexibility, has recently been investigated for hierarchical sliding mode control 

since these systems require complex computations. However, the instability phenomena possibly occur 

especially for long-term operations. In this paper, a new design approach of an adaptive fuzzy hierarchical 

terminal sliding-mode controller (AFHTSMC) is proposed. The sliding surfaces of the subsystems construct 

the hierarchical structure of the proposed method in which the top layer includes all of the subsystems’ 

sliding surfaces. Moreover, a terminal-sliding mode has been implemented in each layer to ensure the error 

convergence to zero in finite time besides chattering reduction. In addition, online fuzzy models are 

employed to approximate the two nonlinear dynamic system’s functions. Finally, a simulation example of an 

inverted pendulum is proposed to confirm the effectiveness and robustness of the proposed controller. 

 

Keywords: Adaptive Fuzzy System, Hierarchical Structure, Terminal Sliding Mode Control, Under-actuated 

System. 

1. Introduction 

In the recent years, interests toward developing 

under-actuated systems have been increased. 

Many of mechanical systems often have the 

under-actuation problem in which the system is 

not able to follow arbitrary trajectories in 

configuration space. This occurs if the system has 

a lower number of actuators than its degrees of 

freedom. In this condition, the system is said to 

be trivially under-actuated. These systems cover 

a wide range of applications in our everyday lives 

such as overhead cranes, space robots, 

automobiles with non-holonomic constraints, and 

legged robots [1-3]. 

Many researchers investigated the control of 

under-actuated systems. In this paper, the focus is 

on variable structure systems (VSS) due to their 

effective control scheme in dealing with 

uncertainties, noise, and time varying properties 

[4,5]. One of the robust design methodologies of 

VSS is the sliding mode control chooses 

switching manifolds, which are usually linear 

hyper-planes that guarantee the asymptotic 

stability shown by the Lyapunov’s stability 

theorem [6,7]. In high precision applications, fast 

convergence may not be delivered without strict 

control. Hence, in order to overcome this 

problem, a terminal sliding mode (TSM) control 

has recently been developed. It enables the fast 

finite time convergence and ensures less steady 

state errors. However, the existence of the 

singularity problem in the conventional TSM 

controller design methods is a common drawback 

[8,9]. Several methods have been proposed to 

solve this problem.  

The TSM control methods can be divided into 

two approaches: the indirect approach and the 

direct approach, in which the controllers require 

discontinuous control leading to undesirable 

chattering. In an indirect approach [10], scientists 

implemented switching from terminal sliding 

manifold to linear sliding manifold in order to 

avoid the singularity problem. In addition, some 

efforts have been made to transfer the trajectory 

to a specified open non-singular region [11]. 

Also, a direct approach has been investigated for 

a class of nonlinear dynamical systems with 

parameter uncertainties and external disturbances 

in [12]. Later, fuzzy TSM controllers [13] were 

http://en.wikipedia.org/wiki/Configuration_space
http://en.wikipedia.org/wiki/Actuator
http://en.wikipedia.org/wiki/Degrees_of_freedom_%28engineering%29
http://en.wikipedia.org/wiki/Degrees_of_freedom_%28engineering%29
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introduced to solve the problems caused by these 

two approaches and under-actuated systems with 

unknown nonlinear system functions [14,18]. In 

addition, there has been growing attention paid to 

the adaptive fuzzy TSM in various control 

problems [19].  

In further studies, efforts have been made to 

overcome the problems of the fuzzy sliding mode 

control and fuzzy TSM control. Hierarchical 

structures shown their effectiveness according to 

their ability to achieve the ideal decoupling 

performance with guaranteed stability [20]. The 

implementation of these structures enables us to 

decouple a class of nonlinear coupled systems 

into several subsystems. Also, the sliding 

surfaces, which govern the states’ responses, are 

defined for each subsystem.  In these systems, 

first, a sliding surface is defined for each 

subsystem. Then, the first-layer sliding surface 

constructs the second-layer sliding surface. This 

process continues to achieve the last sliding mode 

surface (hierarchical surface). In literature, the 

Lyapunov theorem has been employed to prove 

the stability of the closed-loop system for the 

single-input system. There are a few studies on 

the effectiveness of the adaptive fuzzy law 

derivation for the coupling factor tuning [21-23]; 

however, the chattering and fast convergence 

problems are still remained unsolved. 

As can be clearly seen in the aforementioned 

studies, the implementation of the adaptive fuzzy 

system besides the sliding mode and hierarchical 

structure could not solve the chattering and fast 

time convergence problems; therefore, in this 

study, our main objective is to propose a novel 

control method, named as the adaptive fuzzy 

hierarchical terminal sliding mode control 

(AFHTSMC), which enables us to use the 

advantages of terminal sliding mode control 

besides the adaptive fuzzy hierarchical structure 

for uncertain under-actuated nonlinear dynamic 

systems control. The main features of the 

proposed AFHTSMC are as follows: 1) The 

implementation of the TSM control, which 

guarantees the fast finite time convergence and 

reduces the chattering and steady state errors. 

This superior property becomes admirable in the 

applications requiring high precision; 2) The 

unknown nonlinear system functions are 

approximated by the adaptive fuzzy systems with 

adaptive learning laws; 3) The hierarchical 

structure of the proposed method is also a very 

effective tool to guarantee the stability, especially 

for complex and high nonlinear dynamic systems. 

In Section II, the system’s description and the 

control objectives are presented. Then 

AFHTSMC development for dealing with the 

trajectory tracking control problem of uncertain 

under-actuated nonlinear dynamic systems is 

introduced in Section III. Section IV is dedicated 

to the Lyapunov stability analysis of the proposed 

closed-loop system. The simulations, results and 

discussions are presented in Section V for an 

inverted pendulum on a cart. Finally, concluding 

remarks are made in Section VI. 

 

2. System description and problem 

formulation 

An under-actuated single-input-multi-output 

system with uncertainty and nonlinear 

coefficients is defined in (1). 

{
 
 
 
 

 
 
 
 

ẋ1(t) = x2(t)

ẋ2(t) = f1(x) + b1(x) u(t) + d1(x, t)

ẋ3(t) = x4(t)

ẋ4(t) = f2(x) + b2(x) u(t) + d2(x, t)
.
.
.

ẋ2n−1(t) = x2n(t)

ẋ2n(t) = fn(x) + bn(x) u(t) + dn(x, t)

 

 

 

 

 

 

 

(1a) 

y(t) = [x1(t) x3(t)… x2n−1(t)]
T (1b) 

 

 

 
 

where, x(t) = [x1(t) x2(t) … x2n(t)]
T ∈ ℜ2n is the 

system state variable, fi(x) and bi(x), i=1,2, …, n 

are unknown nominal nonlinear functions, 

(0 ≤ 𝑑𝑖(𝑥, 𝑡) ≤ 𝜌𝑖 , i=1,2, …, n) are bounded time-

varying disturbances, and u(t) and y(t) are the 

control input and the system output, respectively. 

The contribution of this paper is to design the 

hierarchical terminal sliding mode controller with 

adaptive fuzzy learning laws for a class of 

uncertain under-actuated nonlinear dynamic 

systems (UUND). Figure 1 shows that the 

adaptive learning laws are applied to adjust the 

parameter vectors of fuzzy systems for 

approximation of uncertain nonlinear system 

functions.  

 

Figure 1. The schematic overall control block-diagram. 
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Also, the performance of the bounded trajectory 

tracking and asymptotical trajectory tracking are 

addressed. Finally, the simulation results of an 

inverted pendulum on a movable cart with 

bounded external disturbance are investigated. 
 

3. AFHTSMC development 

3.1. The terminal sliding surfaces 

In this section, initially, the conventional terminal 

sliding surfaces are defined in (2-4). 
𝑠𝑖(𝑡) = 𝑒̇𝑖(𝑡)

𝛾𝑖 + 𝑐𝑖𝑒𝑖(𝑡) (2) 
 

where, for i=1,2,…,n, the reference inputs are 

𝑟𝑖(𝑡), 𝑐𝑖 and 𝛾𝑖 =
𝑝

𝑞
  are positive constants, and p 

and q are odd positive integers. 
 

𝑒𝑖(𝑡) = 𝑥2𝑖−1(𝑡) − 𝑟𝑖(𝑡) 
 

(3) 

𝑒̇𝑖(𝑡) = 𝑥2𝑖(𝑡) − 𝑟̇𝑖(𝑡) (4) 
 

However, the singularity problem may occur in 

this structure because of the term 𝑐𝑖
𝑞

𝑝
𝑒𝑖
𝑞−𝑝

𝑝 (𝑡)𝑒̇𝑖(𝑡) 

in the control input. If the 2𝑞 > 𝑝 > 𝑞 is chosen, 

the term 𝑒𝑖
𝑞−𝑝

𝑝 (𝑡) will be equal to 𝑒𝑖
2𝑞−𝑝

𝑝 (𝑡) which 

will be nonsingular. On the other hand, if little 

control to enforce 𝑒𝑖(𝑡) ≠ 0 is made while 𝑒̇𝑖(𝑡) ≠

0, the singularity problem occurs. Hence, an 

indirect approach has been implemented to avoid 

this problem and define the terminal sliding 

surfaces in (5). 
𝑠𝑖(𝑡) = 𝑒̇𝑖(𝑡)

𝛾𝑖 + 𝑐𝑖𝑒𝑖(𝑡) (5) 

It has to be noticed that the derivative of 𝑠𝑖(𝑡) 
along the system’s dynamics does not result in 

terms with negative (fractional) powers by using 

(5) and the singularity is avoided by switching 

between (2) and (5), where the error and its 

derivative are bounded as in [20]. In this 

problem, designing a switched control that drives 

the plant state to the switching surface and 

maintain it on the surface upon interception is the 

most important achievement. As can be seen, the 

system motion is governed by 𝑐𝑖, which is an 

integer number. This number’s value indicates 

the effect of error on the sliding surface and it is 

selected based on the 𝑒̇𝑖(𝑡)
𝛾𝑖 value, while 𝑠𝑖(𝑡) in 

each layer has a crucial effect on the system’s 

control. It is important to mention that high 

values of 𝑐𝑖 increase the effect of 𝑒𝑖 in each layer 

and may result in misleading the controller; 

hence, appropriate values of 𝑐𝑖 are required to 

maintain a high precision control system. Further 

studies can be found in section 3.2. 
 

3.2. The hierarchical structure  

In the next step, after the definition of the sliding 

surfaces, higher hierarchical levels (𝑆𝑖(𝑡)) are 

created by lower TSM surfaces (𝑠𝑖(𝑡)) as shown 

in figure 2. The 𝑖𝑡ℎ hierarchical layer sliding 

surface is defined in (6). 
Si(t) = λi−1Si−1(t) + si(t) (6) 
 

where, λi−1 is constant when λ0 = S0 = 0. The 

value of the λi−1 parameter indicates the 

effectiveness of the last hierarchical layers in 

comparison with the current sliding surface. 

Larger values of λi−1 increase the value amount 

that is given to the prior layers instead of the 

highest hierarchical sliding surface. This 

parameter has to be adjusted so as to satisfy the 

Lyapunov theorem and the required accuracy.  

Furthermore, the control input for the 𝑖𝑡ℎ layer 

ui(t) consists of the equivalent and the switching 

control terms besides the last control input 

𝑢𝑖−1(𝑡), which is shown in (7). 

 
ui(t) = ui−1(t) + ûeq,i(t) + ûsw,i(t) (7) 

where, 𝑢0 = 0 and 

 

  𝑢̂𝑒𝑞,𝑖(𝑡)

= −

[
𝑓𝑖(𝑥|𝜃𝑓𝑖) − 𝑟̈𝑖(𝑡) + 𝑐𝑖𝛾𝑖

−1𝑒̇𝑖
2−𝛾𝑖 +

𝑘𝑠𝑔𝑛(𝑠𝑖)
]

𝑏̂𝑖(𝑥|𝜃𝑏𝑖)
 

 

       (8) 

ûsw,i(t)

= −∑ûsw,l(t)

i−1

l

−

{
∑ [∑ (∏ aj

i
j=m

i
m=1
m≠l

i
l=1 )b̂m(x|θ̂bm)]

× ûeq,l(t) + kiSi(t) + sgn(Si)ω̂(t)
}

∑ (∏ aj
i
j=m )b̂m(x|θ̂bm)

i
m=1

 

  (9) 

 

where, 𝑓𝑖, 𝑏̂𝑖 are the approximations of the 

unknown nonlinear functions. fi(x) and bi(x) are 

defined in (13,14). r̈i(t) is the second derivative 

of reference input , aj = λj as j ≠ i and aj = 1 as 

j = i, i=1,2,…,n.  
 

 

 
 

Figure 2. The hierarchical TSM layers construction. 
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3.3. Adaptive fuzzy inference system 

In order to improve the system effectiveness, the 

unknown uncertain continuous nonlinear 

functions, fi(x), bi(x) and ρi(x) are to be learned 

by the learning functions. The fuzzy rule base is 

defined in (10). 
 

R(l): IF x1 is F1
l  and…and x2n is F2n

l ,  
THEN y is Gl 

(10) 

where, Fi
l and Gi

l are the input and the output of 

the fuzzy systems, respectively. The crisp point 𝑥 

is mapped from fuzzy sets U to a crisp point V, 

based on the fuzzy IF-THEN rules and by means 

of the fuzzifier and defuzzifier. The output of the 

fuzzy system is shown in (11), based on singleton 

fuzzifier, center-average deffuzification, and 

product inference engine. 

 
y = θTξ(x) (11) 

in which, θT = [θT θT… θT] ∈ ℜM are the points 

that have the maximum value of membership 

functions that Gl is able to achieve and ξ(x) =
[ξ1(x) ξ2(x) … ξM(x)]T are basis functions defined 

as in (12). 

ξl(x) =
∏ μ

Fi
l(xi)

2n
i=1

∑ ∏ μ
Fi
l(xi)

2n
i=1

M
l=1

 
(12) 

 

where, μ
Fi
l(xi) is the membership function of the 

fuzzy set. The approximation of the unknown 

nonlinear functions fi(x), bi(x) and ρi(x) are 

defined as in (13-15). 

 

f̂i(x|θ̂fi) = θ̂fi
T  ξ(x)  

 

(13) 

b̂i(x|θ̂bi) = θ̂bi
T  ξ(x)  

 

(14) 

ρ̂i(x|θ̂ρi) = θ̂ρi
T  ξ(x)  (15) 

 

 

Also, the optimal parameters will be defined in 

(16-18). 

θfi
∗ = argθ̂fi(t)∈Ωθ̂fi

min sup
x(t)∈Ωx

{|f̂i(x|θ̂fi)

− fi(x)|} 
 

(16) 

θbi
∗ = argθ̂fi(t)∈Ωθ̂bi

min sup
x(t)∈Ωx

{|b̂i(x|θ̂bi)

− bi(x)|} 
 

(17) 

θρi
∗ = argθ̂ρi(t)∈Ωθ̂ρi

min sup
x(t)∈Ωx

{|ρ̂i(x|θ̂ρi)

− ρi(x)|} 

(18) 

 

And the learning laws of parameter vectors are 

designed as in [19, 20]. 

In addition, the upper bound of uncertainties is 

defined in (19). 

ω̇̃

= {
γw|Si(t)|                                   if |ω̃| < Nw
γw|Si(t)| − δw|Si(t)|ω̃(t)   if |ω̃| ≥ Nw

 

 

(19) 

where,  γw > 0 is the learning gain and δw > 0 is 

the projection gain. 

Hence, (20, 21) are obtained for AFHTSMC. 

Sn(t) = ∑ (∏aj

i

j=m

) sm(t)

n

m=1

 

 

(20) 

  un(t) =∑ûsw,l(t)

n

l=1

+ ûeq,l(t) 
(21) 

 

 
 

4. Stability analysis  
The following Lyapunov functions are 

considered in order to prove the stability of the 

proposed control method. Here, it has been 

assumed that the learning parameters are 

bounded and no projection term is required for 

the learning laws. 
 

Vi = {Si
2 + ∑ [

θ̃fm
T θ̃fm
γfm

+
θ̃bm
T θ̃bm
γbm

+
θ̃ρm
T θ̃ρm
γρm

]

i

m=1

+ ω̃2/γω} /2 

 

(22) 

V̇i = SiṠi +
ω̃ω̇̃

γω
+ ∑ [

θ̃fm
T θ̃̇fm
γfm

+
θ̃bm
T θ̃̇bm
γbm

i

m=1

+
θ̃ρm
T θ̃̇ρm
γρm

] 

   (23) 

 

V̇i = Si ∑ (∏aj

i

j=m

) ṡm(t)

n

m=1

+
ω̃ω̇̃

γω
 

+ ∑ [
θ̃fm
T θ̃̇fm
γfm

+
θ̃bm
T θ̃̇bm
γbm

+
θ̃ρm
T θ̃̇ρm
γρm

]

i

m=1

 

 

(24) 

= Si ∑ (∏aj

i

j=m

) [cmėm

n

m=1

 

+γmėm
γm−1(fm + bmu + dm − r̈m) +

ω̃ω̇̃

γω
 

+∑ [
θ̃fm
T θ̃̇fm
γfm

+
θ̃bm
T θ̃̇bm
γbm

+
θ̃ρm
T θ̃̇ρm
γρm

]

i

m=1

 

 

 (25) 

≤ Si ∑ (∏aj

i

j=m

) [cmėm

n

m=1

+ γmėm
γm−1(fm + bmu − r̈m)

+ |Si| ∑ |(∏aj

i

j=m

)| γmėm
γm−1ρm

i

m=1

+
ω̃ω̇̃

γω

+ ∑ [
θ̃fm
T θ̃̇fm
γfm

+
θ̃bm
T θ̃̇bm
γbm

+
θ̃ρm
T θ̃̇ρm
γρm

]

i

m=1

 

(26) 
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= Si ∑ (∏aj

i

j=m

) [cmėm

n

m=1

+ γmėm
γm−1([fm − f̂m

∗ ] + [f̂m
∗ − f̂m] + f̂m + [bmu

− b̂m
∗ u] + [bm

∗ u − b̂mu] + bmu − r̈m)

+ |Si| ∑ |(∏aj

i

j=m

)| γmėm
γm−1{[ρm − ρ̂m

∗ ]

i

m=1

+ [ρ̂m
∗ − ρ̂m] + ρ̂m} +

ω̃ω̇̃

γω

+ ∑ [
θ̃fm
T θ̃̇fm
γfm

+
θ̃bm
T θ̃̇bm
γbm

+
θ̃ρm
T θ̃̇ρm
γρm

]

i

m=1

 

 (27) 

 

≤ Siω+ Si ∑(∏aj

i

j=m

) [cmėm

n

m=1

+ γmėm
γm−1([f̂m

∗ − f̂m] + f̂m + [bm
∗ u − b̂mu] + bmu

− r̈m)

+ |Si| ∑ |(∏aj

i

j=m

)| γmėm
γm−1{[ρ̂m

∗ − ρ̂m] + ρ̂m}

i

m=1

+
ω̃ω̇̃

γω
+ ∑ [

θ̃fm
T θ̃̇fm
γfm

+
θ̃bm
T θ̃̇bm
γbm

+
θ̃ρm
T θ̃̇ρm
γρm

]

i

m=1

 

 

 

((28) 

= Siω+ Si ∑ (∏aj

i

j=m

) [cmėm

n

m=1

+ γmėm
γm−1 ([θfm

∗ T
ξ − θ̂fm

T
ξ] + f̂m + [θbm

∗ T
ξ

− θ̂bm
T
ξ] + bmu − r̈m)

+ |Si| ∑ |(∏aj

i

j=m

)| γmėm
γm−1{[θρm

∗ Tξ − θ̂ρm
T
ξ]

i

m=1

+ ρ̂m} +
ω̃ω̇̃

γω
+ ∑ [

θ̃fm
T θ̃̇fm
γfm

+
θ̃bm
T θ̃̇bm
γbm

+
θ̃ρm
T θ̃̇ρm
γρm

]

i

m=1

 

(29) 

= Siω+ Si ∑(∏aj

i

j=m

) [cmėm

n

m=1

+ γmėm
γm−1(f̂m + bmu − r̈m)

+ |Si| ∑ |(∏aj

i

j=m

)| γmėm
γm−1{ρ̂m}

i

m=1

+
ω̃ω̇̃

γω

− Si ∑ (∏aj

i

j=m

)

i

m=1

θ̃fm
T  ξ + ∑ θ̃fm

T θ̂fm
T

i

m=1

/γfm

− Si ∑ (∏aj

i

j=m

)

i

m=1

θ̃bm
T  ξu + ∑ θ̃bm

T θ̂bm
T

i

m=1

/γbm

− |Si ∑(∏aj

i

j=m

)

i

m=1

|θ̃ρm
T  ξ + ∑ θ̃ρm

T θ̂ρm
T

i

m=1

/γfm 

(30) 

 

Hence, we replace the terms f̂m
∗ , f̂m, bm

∗  and b̂m 

by θfm
∗ T

ξ, θ̂fm
T
ξ, θbm

∗ T
ξ and θ̂bm

T
ξ, 

respectively. This leads to (29) and discretization 

gives (30). Substituting the learning laws and the 

control law of the 𝑖𝑡ℎlayer and the learning upper 

bound of uncertainties into the above equation 

yields (31-35). 

 

= |Si|ω +
ω̃ω̇̃

γω
+Si ∑(∏aj

i

j=m

) [cmėm

n

m=1

+ γmėm
γm−1(fm + bmûeq,m

+ bm(∑ ûeq,l

i

l=1
l≠m

+∑ûsw,l

i

l=1

)− r̈m)]

+ |Si| ∑ |(∏aj

i

j=m

)| γmėm
γm−1ρm

i

m=1

 

(31) 

= |𝑆𝑖|𝜔 +
𝜔̃𝜔̇̃

𝛾𝜔
+𝑆𝑖 ∑ (∏𝑎𝑗

𝑖

𝑗=𝑚

) [𝑐𝑚𝑒̇𝑚

𝑛

𝑚=1

+ 𝛾𝑚𝑒̇𝑚
𝛾𝑚−1 (𝑓𝑚 + 𝑏𝑚∑𝑢̂𝑠𝑤,𝑙 + 𝑢̂𝑒𝑞,𝑙

𝑖

𝑙=1

− 𝑟̈𝑚)]

+ |𝑆𝑖| ∑ |(∏𝑎𝑗

𝑖

𝑗=𝑚

)| 𝛾𝑚𝑒̇𝑚
𝛾𝑚−1𝜌𝑚

𝑖

𝑚=1

 

 

(32) 

 

= |Si|ω +
ω̃ω̇̃

γω
+Si ∑ (∏aj

i

j=m

) [

n

m=1

 

γmėm
γm−1

(

 
 
bm(∑ ûeq,l

i

l=1
l≠m

+∑ûsw,l

i

l=1

)

)

 
 
]

+ |Si| ∑ |(∏aj

i

j=m

)| γmėm
γm−1ρm

i

m=1

 

(33) 

 

≤ |Si|ω +
ω̃ω̇̃

γω
− K|Si|ėm

γm−1ω 
(34) 

≤ −K1 Si
2 − K|Si|ėm

γm−1ω < 0 (35) 

 
 

5. Simulations and discussions 

The inverted pendulum on a movable cart is 

considered to verify the effectiveness of the 

proposed controller (Figure 3). Here, the system 

functions are described in (36-39). 
 
 

 

f1(x) =
{mt g sinx1 −mpL sinx1cosx1x2

2}

L/2 (
4mt

3
− mpcos

2x1)
 

(36) 

 

 

 

f2(x) =
{−
4mpL

2
x2
2 sin

x1
3
+ mpg sin x1 cos x1}

(
4mt

3
− mpcos

2x1)
 

(37) 
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b1(x) = cos
x1

L
2
(
4mt

3
− mpcos

2x1)
 (38) 

 

 

b2(x) =
4

3 (
4mt

3
− mpcos

2x1)
 (39) 

 

where, mt = mp +mc and x1 , x2 , x3 , x4 are 

respectively the pendulum’s angle with respect to 

the vertical axis, the angular velocity of the 

pendulum with respect to the vertical axis, the 

position of the cart, and the velocity of the cart. 

The magnitudes of the constant parameters of the 

system are shown in table 1.  

 

 
 

Figure 3. The inverted pendulum on a movable cart. 
 

The simulations have been done by MATLAB 

2012 software. Since the term xi is used in the 

Lyapunov function and adaptation laws, it has to 

be fuzzified in order to achieve the results for the 

output of the system. Hence, 𝑥𝑖 is input variable 

of the fuzzy system and u is its output variable, 

respectively. The membership functions are 

assumed to be triangular because they result in 

entropy equalization in probability density 

function. 

Table 1. The constant parameter’s magnitudes of the 

system. 

Parameter                   Magnitude                      Description 

              𝒎𝒄                           1 Kg                          Mass of the cart 

              𝒎𝒑                         0.05 Kg                 Mass of the pendulum 

               L                             1 m                   Length of the pendulum 

               g                            9.806 
𝑚

𝑠2
                    Acceleration due  

                                                                                      to gravity 

 

 

Also, the reconstruction will be error-free if a ½ 

overlap between neighbouring fuzzy sets is 

considered. When interfacing fuzzy sets are being 

constructed by numerical datum, these two 

characteristics are implemented. Based on the 

aforementioned reasons, the membership 

functions are designed as shown in figures 4 and 

5.  

As can be clearly seen, each of the inputs and the 

outputs are partitioned by seven membership 

functions called as negative big (NB), negative 

medium (NM), negative small (NS), zero (Z), 

positive small (PS), positive medium (PM), and 

positive big (PB). Of course, one can alter the 

membership functions type and number in order 

to improve the results. 

In this research, the reference inputs are set as 

r1(t) = 5.5 sin(t) (degree) and r2(t) = sin(t) (m). 

The hierarchical terminal sliding surfaces are 

selected as  s1(t) = ė1(t)
γ1 + c1e1(t) and  s2(t) =

ė2(t)
γ1 + c2e2(t) where c1 = 2, c2 = 1 and γ1 =

γ2 =
9

7
 . The initial values are chosen as x(0) =

[
π

6
, 0, 0, 0]. In addition, we assume the external 

disturbance to be a low frequency signal, 

d1(x, t) = 0.75x1
2(t)sin (sin(t) x1x3), and a high 

frequency signal, d2(x, t) = 0.75x3x4sin (100(t)). 

 

 
Figure 4. The membership functions of the input variables. 
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Figure 5. The membership functions of the output variable. 

 

In order to verify the reliability of the proposed 

AFHTSMC, long-term operation simulations are 

presented and compared with Adaptive Fuzzy 

Hierarchical Sliding Mode Control (AFHSMC) 

[19] as shown in figures 6-9. The position 

tracking plots for the pendulum and the cart 

(Figure 6 and 7) demonstrate the perfect match of 

the two control methods for a hundred seconds. 

As can be clearly seen for AFHTSMC, the small 

undesirable fluctuations disappear in the very first 

steps of the control algorithm and the desired 

oscillatory motion continues over a long period of 

time. Figure 8 represents a significant effect of the 

TSM implication on the control method by 

comparing the top hierarchical surfaces of the 

aforementioned methods. As it is shown the TSM 

results have a higher rate of convergence. Also, 

asymptotical trajectory tracking is obtained 

immediately and the transition time (0.42 

seconds) is much less than that of [19] (3.65 

seconds). In addition, the variations of the top 

hierarchical surface decreases significantly in 

AFHTSMC, compared to AFHSMC. Therefore, 

the combination of the TSM control and 

hierarchical structure enables the fast finite time 

convergence of the uncertain nonlinear dynamic 

system. Therefore, the proposed method is much 

more convenient when fast convergence 

properties and high precision are required. The 

control input variations after learning are also 

presented in figure 9, in which the AFHTSMC 

shows smoother force results. This happens 

because of the TSM requirement to avoid the 

singularity problem. Although there may exist a 

large amplitude of force before learning, it does 

not affect the system because of the AFHTSMC’s 

fast convergence. However, there still exists small 

fluctuations. In addition, in most of the high 

precision applications, we do not need very large 

forces. Hence, the force variations are between 

small ranges that do not affect the system 

performance. 

 
Figure 6. The position tracking vs. time for the pendulum angle (blue dashed line is the reference signal, the solid 

blue line is the output signal and the red dashed line is for the AFHSMC). 
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Figure 7. The position tracking vs. time for the cart (dashed blue line is the reference signal, the solid 

blue line is the output signal and the dashed red line is for the AFHSMC). 

 

 
Figure 8. Second level hierarchical terminal sliding surface vs. time (blue and red solid lines represents 

the AFHTSMC and the AFHSMC top hierarchical surface, respectively). 

 
                                      Figure 9. The control input (u) vs. time (The blue solid line and the red solid line 

show the force values for AFHTSMC and AFHSMC, respectively). 

 

It is clear that larger learning rates can accelerate 

the convergence properties though the instability 

phenomena possibly occur in AFHSMC, 

especially in long-term applications. However, the 
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implementation of the AFHTSMC reduces the 

requirement to implement very large learning 

rates, and is a major drawback of the previous 

studies. In addition, as demonstrated in the 

simulation results, applying Lyapunov stability 

theorem with the AFHTSMC guarantees the 

robustness to the bounded external disturbance, 

stability, and finite time convergence in trajectory 

tracking of the system. 

 

6. Conclusions 

In this study, the AFHTSMC has been proposed 

for a class of uncertain nonlinear dynamic 

systems. The control algorithm was designed 

based on the Lyapunov stability criterion. The 

combination of the TSM and the adaptive fuzzy 

hierarchical system, which is the main novelty of 

this paper, enables the system to converge much 

faster to the desired trajectory compared with the 

other methods in literature. Also, applying the 

TSM in the adaptive fuzzy hierarchical system is 

much more effective in chattering reduction. 

Furthermore, the hierarchical structure decouples 

the class of nonlinear coupled systems to 

subsystems with guaranteed stability, and the 

direct adaptive fuzzy scheme works online but 

does not require prior knowledge of dynamic 

parameters. Computer simulations for an inverted 

pendulum on a cart have demonstrated the long-

term stability, robustness, and validity. The 

AFHTSMC can be extended to other applications 

with multi-input-multi-output (MIMO) structures. 

We will focus on the fuzzy Type-2, neuro-fuzzy, 

and evolutionary fuzzy systems in the hierarchical 

TSM in our future study. 
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 نشریه هوش مصنوعی و داده کاوی

 

 

مراتبی فازی های دینامیکی غیرخطی زیرفعال: کنترل مد لغزشی ترمینال سلسلهتعقیب مسیر ربات

 طبیقیت

 

  *انوشیروان فرشیدیانفر و یاسمن واقعی

 .ایران، مشهد، دانشگاه فردوسی مشهد، گروه مهندسی مکانیک1

 12/22/1422 ؛ پذیرش 12/40/1422 ارسال

 چکیده:

به محاسبات دلیل نیاز بهپذیر های فضایی و عملگرهای انعطافهای دینامیکی غیرخطی زیرفعال مانند روباتهای اخیر، تعقیب مسیر در سیسنمدر سال

خصوص در ی ناپایداری بهوقوع پیوستن پدیدهحال، امکان بهلغزشی سلسله مراتبی مورد بررسی قرار گرفته است. با این پیچیده توسط کنترل مد 

ی مد لغزشی ترمینال سلسله مراتبی فازی تطبیقی ارائه شده کنندهدارد. در این پژوهش، روش طراحی نوینی از کنترلمدت وجود های طولانیکاربری

ی بالایی تمامی سطوح لغزشی که در آن، لایهدهند تشکیل می حاضر را ساختار سلسله مراتبی روشها، های لغزشی زیرسیستماست. سطوح لایه

شود. همچنین، از مود لغزشی ترمینال در هر لایه جهت اطمینان از همگرایی پاسخ به صفر در زمان محدود و نیز برای کاهش ها را شامل میزیرسیستم

اند. درنهایت، کار گرفته شدهب زدن دو تابع دینامیکی غیرخطی سیستم بههای فازی برخط نیز برای تقریعلاوه، مدلاغتشاشات استفاده شده است. به

 ی ارائه شده آورده شده است.کنندهمنظور اثبات کارآیی و مقاومت کنترلسازی شده از یک آونگ معکوس بهمثالی شبیه

 .های زیر فعالسیستم فازی تطبیقی، ساختار سلسله مراتبی، کنترل مد لغزشی ترمینال، سیستم :کلمات کلیدی

 


