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Abstract 

When the number of training samples is limited, feature reduction plays an important role in classification of 

hyperspectral images. In this paper, we propose a supervised feature extraction method based on discriminant 

analysis (DA) which uses the first principal component (PC1) to weight the scatter matrices. The proposed 

method, called DA-PC1, copes with the small sample size problem and has not the limitation of linear 

discriminant analysis (LDA) in the number of extracted features. In DA-PC1, the dominant structure of 

distribution is preserved by PC1 and the class separability is increased by DA. The experimental results show 

the good performance of DA-PC1 compared to some state-of-the-art feature extraction methods. 

Keywords: Discriminant Analysis, Principal Component, Feature Reduction, Hyperspectral, Classification.

1. Introduction  

Due to the recent advances of remote sensing 

instruments, hyperspectral imaging has become a 

fast growing technique in the field of remote 

sensing [1]. Hyperspectral imaging sensors with 

acquiring a large number of spectral bands allows 

us to better distinguish many subtle objects and 

materials [2]. An important application of 

hyperspectral imaging is image classification [3-

6]. However, as the inputs of hyperspectral 

datasets are high-dimensional vectors whose 

coordinates are highly correlated, the direct use of 

classical models for hyperspectral image 

classification faces several difficulties particularly 

when the number of available training samples is 

limited. With a fixed number of training samples, 

hyperspectral image classification accuracy can 

first increase as the dimensionality of data 

increases, but decays with the dimensionality 

higher than some optimum value. In other words, 

Hughes phenomenon occurs [7]. One of the main 

approaches to mitigate this problem is 

dimensionality reduction [8-11].  

Feature reduction can be done with feature 

selection or feature extraction. In feature selection 

approaches, just an appropriate subset of original 

features is selected usually using a discrimination       

 

criterion and a search algorithm [12-18]. Thus, the 

physical meaning of data is preserved using the 

feature selection. However, in the feature 

extraction method, a linear or nonlinear 

transformation is applied to the original features to 

extract some new features [19-26]. Depending on 

the use of labeled samples for training feature 

extraction, theses techniques are divided into 

supervised ones, which use the class label 

information, and unsupervised ones, which do not 

use the class label information for training.  

Principal component analysis (PCA) and linear 

discriminant analysis (LDA) are the most widely 

used unsupervised and supervised linear feature 

extraction methods, respectively [27]. PCA finds 

the principal components in accordance with the 

maximum variance of a data matrix. Thus, after 

such a transformation, the dominant structure of 

the distribution can be well preserved in the 

reduced subspace. The generated principal 

components are linear combination of the original 

features and are uncorrelated. PCA searches 

directions with a large variance in the data and 

subsequently projects data onto it. The position of 

data in the reduced feature space may be 

inappropriate to distinguish between classes to 
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have a good classification. LDA utilizes the label 

information to infer class separability. LDA seeks 

projection directions on which the ratio of the 

between-class scatter to within-class scatter is 

maximized. Some difficulties with LDA method 

are as follows. When the number of training 

samples is limited, the accurate estimate of scatter 

matrices may not be obtained and the within-class 

scatter matrix becomes singular. Thus LDA has 

no reasonable performance in small sample size 

situation.  Moreover, LDA can extract maximum 

𝑐 − 1 features (𝑐 is the number of classes) which 

is not always sufficient for representing the 

original data. 

As the generalized discriminant analysis (GDA) 

provides a mapping of input vectors into a high 

dimensional feature space, it can deal with 

nonlinear discriminant analysis using kernel 

function operator [28].  Using a different kernel, 

one can cover a wide class of nonlinearities. 

GDA, which is the kernelized version of LDA, 

can extract maximum 𝑐 − 1  features. 

Nonparametric weighted feature extraction 

(NWFE) has been proposed for improving LDA 

[29]. To put different weights on samples to 

compute the weighted means, defining new 

nonparametric between-class and within-class 

scatter matrices to obtain more than 𝑐 − 1  

features is the main idea of NWFE. In order to 

alleviate the negative influence of outliers in 

class-mean based methods, authors in [30] have 

proposed a novel linear dimensionality reduction 

technique called median–mean line based 

discriminant analysis (MMLDA) method. They 

rectify to some extent the position of the class-

mean caused by outliers by introducing the 

median–mean line as an adaptive class-prototype. 

In this paper, we propose a supervised feature 

extraction method based on discriminant analysis 

(DA). The proposed method uses the first 

principal component (PC1) to weight scatter 

matrices. So, in addition to class discrimination 

information contained in the Fisher criterion 

(maximizing the between-class scatter and 

minimizing the within-class scatter), the proposed 

method can use the data representation and 

reconstruction information to preserve the main 

structure of original data in the reduced subspace. 

Moreover, the non-parametric form of scatter 

matrices and the use of regularization method help 

to extraction of more than 𝑐 − 1 features and also 

to solve the singularity problem.  

We introduce the proposed method in section 2, 

called DA-PC1, with more details. Then, in 

section 3, the extensive experiments show that the 

proposed method outperforms popular feature 

extraction methods in terms of classification 

accuracy. Finally, the conclusions are discussed in 

section 4. 

 

2. DA-PC1 

The proposed feature extraction method, DA-PC1, 

uses the discriminant analysis to increase the 

separability between classes. DA-PC1 maximizes 

the between-class scatter matrix and minimizes 

the within-class scatter matrix. It defines the 

weighted non-parametric scatter matrices to 

provide three main advantages: 1- DA-PC1 copes 

with the singularity problem of within-class 

scatter matrix in the small sample size situation. 2- 

It can extract more than 𝑐 − 1 features where 𝑐 is 

the number of classes. 3- In addition to class 

discrimination information, it uses the 

reconstruction information contained in the first 

principal component for weighting the scatter 

matrices. In the first step, we compute the first 

principal component (PC1) of data. For reaching 

this purpose, we estimate the covariance matrix of 

data as follows: 

 

𝜮𝑥 =
1

𝑁−1
∑ (𝒙𝑖 − 𝒙̅)𝑁

𝑖=1 (𝒙𝑖 − 𝒙̅)𝑇                     (1) 

where, 𝒙𝑖 ∈ ℛ𝑑  (𝑖 = 1,2, … , 𝑁) is the 𝑖th pixel of 

hyperspectral image, 𝑑 is the number of spectral 

bands, 𝑁 is the total number of samples (pixels) 

and 𝒙̅ is the total mean of data that is given by: 

 

𝒙̅ =
1

𝑁
∑ 𝒙𝑖

𝑁
𝑖=1                                                       (2) 

 

The PC1 is obtained by using the eigenvector 𝒗1 

correspondence with the largest eigenvalue of 𝜮𝑥. 

Then, we have: 

 

𝑃𝐶1(𝒙𝑖) = 𝒗1
𝑇𝒙𝑖 ;  (𝑖 = 1,2, … , 𝑁)                   (3) 

 

The between-class scatter matrix (𝐒𝑏)  and the 

within-class scatter matrix (𝐒𝑤) are calculated as 

follows: 

 

𝐒𝑤 = ∑ ∑ 𝑤𝑖𝑗(𝒙𝑡𝑖 − 𝒙𝑡𝑗)(𝒙𝑡𝑖 − 𝒙𝑡𝑗)
𝑇𝑛

𝑖=1
𝑙𝑖=𝑙𝑗

𝑛
𝑗=1    (4)                                           

𝐒𝑏 = ∑ ∑ 𝑤𝑖𝑗(𝒙𝑡𝑖 − 𝒙𝑡𝑗)(𝒙𝑡𝑖 − 𝒙𝑡𝑗)
𝑇𝑛

𝑖=1
𝑙𝑖≠𝑙𝑗

𝑛
𝑗=1     (5) 

where, 𝒙𝑡𝑖 (𝑖 = 1, 2, … , 𝑛)  is the 𝑖 th training 

sample, 𝑛 is the total number of training samples 

and 𝑙𝑖 ∈ {1, 2, … , 𝑐}  is the class label of sample 

𝒙𝑡𝑖, and 𝑐 is the number of classes.  

The closer the principal components of two 

samples 𝒙𝑡𝑖 and 𝒙𝑡𝑗 are, the larger weight 𝑤𝑖𝑗 will 

be. Thus, the weight 𝑤𝑖𝑗 (𝑖 = 1, … , 𝑛;  𝑗 =

1, … , 𝑛) is calculated as follows: 
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𝑤𝑖𝑗 =
1

|𝑃𝐶1(𝒙𝑡𝑖)−𝑃𝐶1(𝒙𝑡𝑗)|
2

+1
                                (6) 

 

The number one is added to the denominator 

because 𝑤𝑖𝑗  should not be infinite. In above 

equation, we have: 

 

𝑃𝐶1(𝒙𝑡𝑖) = 𝒗1
𝑇𝒙𝑡𝑖 ;  (𝑖 = 1, 2, … , 𝑛)                (7) 

 

To degrade the singularity problem and thus, to 

increase the classification accuracy, we regularize 

the matrix 𝐒𝑤 as follows: 

 

𝐒𝑤 = 0.5𝐒𝑤 + 0.5𝑑𝑖𝑎𝑔(𝐒𝑤)                              (8) 
 

Because of non-parametric form of 𝐒𝑤  and also 

with the regularization of it, DA-PC1 copes with 

the singularity problem in small sample size 

situation. Because of non-parametric form of 𝐒𝑏, 

DA-PC1 can extract more than 𝑐 − 1  features. 

DA-PC1 uses both the information contained in 

the DA and PC1. DA-PC1 increases the class 

separability using DA. Moreover, the PC1, which 

is in accordance with the maximum variance of 

data matrix, can preserve the dominant structure 

of distribution in the reduced subspace after 

transformation. 

 

3. Experiments and results 

The performance of DA-PC1 is compared with 

LDA, NWFE, GDA, MMLDA, and PCA. To 

assess the performance of classification, we use 

the accuracy and reliability of classes, the average 

accuracy, the average reliability, kappa coefficient 

[31] and also the McNemar test results [32]. The 

definitions of these measures are represented 

below. 

The accuracy (Acc.) and reliability (Rel.) for each 

class are defined as 𝐴𝑐𝑐 = 𝛾/𝛼  and 𝑅𝑒𝑙 = 𝛾/𝛽 

respectively where 𝛾  is the number of testing 

samples that are correctly classified, 𝛼 denotes the 

total testing samples of class and 𝛽  is the total 

samples which are labeled as this class. The kappa 

coefficient is defined as follows: 

 

𝐾𝑎𝑝𝑝𝑎 =
𝑁 ∑ 𝑡𝑘𝑘−∑ 𝑡𝑘+𝑡+𝑘

𝑐
𝑘=1

𝑐
𝑘=1

𝑁2−∑ 𝑡𝑘+𝑡+𝑘
𝑐
𝑘=1

                          (9) 

where, 𝑁  and 𝑐  denote the number of testing 

samples and the number of classes, respectively. 

𝑡𝑘𝑘 is the number of samples correctly classified 

in class 𝑘 , 𝑡𝑘+  is the number of testing samples 

labeled as class 𝑘 , and 𝑡+𝑘  is the number of 

samples predicted as belonging to class 𝑘 . The 

McNemar test is used to assess the statistical 

significance of differences in classification results. 

The parameter 𝑍12 in McNemar test is defined as 

follows:                                                             

𝑍12 =
𝑓12−𝑓21

√𝑓12+𝑓21
                                                  (10) 

where, 𝑓12  is the number of samples which are 

labeled correctly by classifier 1 and incorrectly by 

classifier 2. The difference in the accuracy 

between two classifiers is said to be statistically 

significant if |𝑍12|  >  1.96. If classifier 1 is more 

accurate than classifier 2, we have 𝑍12  >  0 and 

otherwise  𝑍12  <  0. 

Kennedy Space Center (KSC) was acquired by the 

NASA Airborne Visible/Infrared Imaging 

Spectrometer (AVIRIS) instrument over the KSC, 

Florida, on March 23, 1996. It contains 13 

ground-truth classes and 512×614 pixels. This 

hyperspectral image has 224 spectral channels 

which after discarding water absorption and noisy 

bands, 176 bands are retained. Indian Pines 

dataset was acquired by the AVIRIS sensor in 

1992. This image scene contains 145×145 pixels 

and 16 classes which 10 classes of it are chosen 

for our experiments. The Indian dataset has 220 

spectral bands, where 20 bands were discarded 

because of the atmospheric affection. The Pavia 

University dataset was provided by the Reflective 

Optics System Imaging Spectrometer (ROSIS) 

with a spatial resolution of 1.3 𝑚 per pixel. The 

number of spectral channels in the original 

recorded image is 115 (with a spectral range from 

0.43 to 0.86 𝜇𝑚) which after the removal of the 

noisy bands, 103 spectral bands are selected. This 

urban image contains nine classes and 610×340 

pixels. 

We used three different classifiers for 

classification of reduced datasets: support vector 

machine (SVM), maximum likelihood (ML), and 

nearest neighbor (NN). The Gaussian distribution 

is assumed for datasets in ML classifier. We use 

the Radial basis function (RBF) kernel and the 

one-against-one multiclass classification 

algorithm for SVM classification. We test the 

penalty parameter 𝐶 of SVM between [10– 1000] 
with a step size increment of 20 and the 𝛾 

parameter of the RBF kernel between [0.1– 2] 
with a step size increment of 0.1.  The best values 

of free parameters are obtained using a 5-fold 

cross validation approach.  

The training samples are chosen randomly from 

entire datasets and the remaining samples are used 

for testing. Each experiment is repeated 10 times, 

with different random training samples in each 

time, and the average results are reported.  

The average classification accuracies versus the 

number of extracted features are shown in figure 1 

for Indian dataset with a) SVM classifier, 10 

training samples, b) ML classifier, 10 training 

samples, c) NN classifier, 10 training samples, d) 
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SVM classifier, 15 training samples, e) ML 

classifier, 15 training samples, f) NN classifier, 15 

training samples, g) SVM classifier, 30 training 

samples, h) ML classifier, 30 training samples, i) 

NN classifier, 30 training samples, j) SVM 

classifier, 60 training samples, k) ML classifier, 

60 training samples, l) NN classifier, 60 training 

samples. In most cases, the better performance of 

DA-PC1 compared to other feature extraction 

methods can be seen.  

Figure 1 shows that the efficiency of LDA using 

just 10 and 15 training samples is very weak 

because of singularity of within-class scatter 

matrix. Moreover, LDA and GDA can extract 

maximum 𝑐 − 1 = 9  features which are 

insufficient in some cases for accurate 

classification of data.  

The classification accuracies of reduced data in 

different number of extracted features with using 

15 training samples per class for KSC dataset 

obtained by a) SVM classifier, b) ML classifier, 

and c) NN classifier are shown in figure 2. The 

accuracy and reliability of classes obtained by 15 

training samples and SVM classifier are 

represented for Indian (with 6 extracted features) 

and KSC (with 8 extracted features) datasets in 

table 1 and table 2, respectively.  

The McNemar test results and the ground truth 

map (GTM) and the classification maps of theses 

cases are shown in table 3, figures 3, and 4, 

respectively.  

In table 3, 𝑍𝑟𝑐 denotes each case of table where 𝑟 

is the row and 𝑐  is the column. The highest 

classification accuracies are represented in table 4. 

The numbers in the parentheses are the number of 

features which achieve the highest average 

classification accuracy in each method. In most 

cases, DA-PC1 obtains the maximum 

classification accuracy compared to other 

methods.  

Just in the following cases, other feature 

extraction methods obtain more classification 

accuracy compared to the proposed method.  In 

Pavia University dataset, with using ML classifier, 

the best classification accuracy is obtained by 

GDA, MMLDA, and PCA methods and with 

using NN classifier, MMLDA obtains the best 

result for this dataset.  

Moreover, in KSC dataset, with using ML 

classifier, the maximum classification accuracy is 

obtained by GDA. In figure 5, we compare the 

performance of DA-PC1 with PCA and LDA in a 

fixed number of extracted features with varying 

the number of training samples from 5 to 130 

samples per class, for Indian dataset with a) SVM 

classifier and 6 extracted features, b) ML 

classifier and 5 extracted features, c) NN classifier 

and 9 extracted features. The following points can 

be concluded from the results of this experiment:  

1) When the training set is small, PCA works 

better than LDA and when the training set is 

large, LDA works better than PCA. 

2) When the number of training samples is 

limited, DA-PC1 is superior to both the PCA 

and LDA and when the high number of 

training samples is available, with using SVM 

and NN classifiers, LDA outperforms DA-

PC1. However, in this case, DA-PC1 has yet 

reasonable performance. 

3) With using ML classifier, the performance of 

DA-PC1 is better than PCA and LDA in both 

cases of small and large training set. 

In general, when we use the parametric classifiers 

such as ML, which need to calculate the mean 

vectors and covariance matrices of classes and 

have more sensitivity to the training set, the use of 

DA-PC1 is preferable compared to PCA and LDA 

whether the training set size is small or large. But, 

when we use the non-parametric classifiers such 

as SVM and NN, which have the less sensitivity 

to the number of training samples, DA-PC1 is 

preferable using small training set and LDA is 

preferable with large training set. 

 

4. Conclusion 

In this paper, the DA-PC1 method is proposed for 

feature extraction of hyperspectral images. In DA-

PC1, the first principal components of training 

samples are used for weighting of scatter matrices 

in the DA. Thus, in addition to increasing the class 

separability, the signal representation in the 

reduced subspace may be improved. 

The experimental results show that with using 

parametric classifiers such as ML, the use of DA- 

PC1 is superior to PCA and LDA whether the 

training set size is small or large. Also, with using 

non-parametric classifiers such as SVM and NN, 

the use of DA-PC1 is superior to PCA and LDA 

with a small training sample size. Moreover, the 

comparison of DA-PC1 with the state-of-the-art 

feature extraction methods such as NWFE, GDA, 

and MMLDA shows the better performance of 

DA-PC1 for feature reduction and classification of 

hyperspectral images particularly in small sample 

size situation. 
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Figure 1. The average classification accuracies versus the number of extracted features for Indian dataset with a) SVM 

classifier, 10 training samples, b) ML classifier, 10 training samples, c) NN classifier, 10 training samples, d) SVM classifier, 

15 training samples, e) ML classifier, 15 training samples, f) NN classifier, 15 training samples, g) SVM classifier, 30 training 

samples, h) ML classifier, 30 training samples, i) NN classifier, 30 training samples, j) SVM classifier, 60 training samples, k) 

ML classifier, 60 training samples, l) NN classifier, 60 training samples. 
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Figure 2. The average classification accuracies versus the number of extracted features for KSC dataset using 15 training 

samples obtained by a) SVM classifier, b) ML classifier, and c) NN classifier. 

 

Table 1. The accuracy and reliability of classes of Indian dataset obtained by SVM classifier, 15 training samples and 6 

extracted features. 

 

 

Table 2. The accuracy and reliability of classes of KSC dataset obtained by SVM classifier, 15 training samples and 8 

extracted features. 

 

 

 

 

 

 

 

class DA-PC1 LDA NWFE GDA MMLDA PCA 

No Name of class 
# 

samples 
Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. 

1 Corn-no till 1434 0.94 0.36 0.81 0.32 0.91 0.29 0.91 0.30 0.91 0.30 0.93 0.30 
2 Corn-min till 834 0.77 0.53 0.21 0.37 0.43 0.41 0.60 0.46 0.46 0.39 0.45 0.41 

3 Grass/pasture 497 0.68 0.44 0.10 0.25 0.57 0.35 0.53 0.34 0.35 0.22 0.39 0.26 
4 Grass/trees 747 0.76 0.41 0.42 0.05 0.53 0.47 0.53 0.40 0.61 0.49 0.60 0.53 

5 Hay-windrowed 489 0.79 0.62 0.42 0.47 0.74 0.57 0.45 0.65 0.79 0.45 0.78 0.45 

6 Soybeans-no till 968 0.66 0.87 0.34 0.49 0.79 0.83 0.83 0.79 0.58 0.79 0.60 0.78 
7 Soybeans-min till 2468 1.00 0.54 0.92 0.13 1.00 0.51 0.35 0.12 1.00 0.32 1.00 0.42 

8 Soybeans-clean till 614 0.78 1.00 0.45 0.99 0.78 0.99 0.73 0.95 0.72 0.99 0.73 1.00 

9 Woods 1294 0.95 0.20 1.00 0.02 0.95 0.13 0.95 0.50 0.95 0.36 1.00 0.42 

10 
Bldg-Grass-Tree-

Drives 
380 0.53 0.59 0.33 0.20 0.58 0.39 0.63 0.47 0.55 0.51 0.55 0.50 

Average Acc. and Average Rel. 0.72 0.68 0.30 0.31 0.62 0.59 0.64 0.62 0.62 0.60 0.62 0.60 

Kappa coefficient 0.60 0.19 0.51 0.56 0.54 0.54 

class DA-PC1 LDA NWFE GDA MMLDA PCA 

No Name of class 
# 

samples 
Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. 

1 Scrub 761 0.80 0.95 0.50 0.59 0.67 0.96 0.77 0.91 0.72 0.93 0.68 0.92 
2 Willow swamp 243 0.87 0.86 0.42 0.54 0.88 0.91 0.84 0.84 0.68 0.46 0.67 0.48 

3 
Cabbage palm 

hammock 
256 0.88 0.80 0.29 0.26 0.82 0.81 0.87 0.76 0.72 0.74 0.59 0.75 

4 
Cabbage palm/oak 

hammock 
252 0.56 0.52 0.11 0.23 0.70 0.44 0.50 0.32 0.25 0.30 0.30 0.31 

5 Slash pine 161 0.63 0.43 0.24 0.25 0.42 0.42 0.30 0.30 0.40 0.30 0.43 0.26 

6 
Oak/broadleaf 

hammock 
229 0.59 0.52 0.54 0.19 0.45 0.32 0.20 0.26 0.38 0.29 0.35 0.28 

7 Hardwood swamp 105 0.93 0.64 0.51 0.27 0.90 0.75 0.85 0.76 0.48 0.41 0.49 0.46 
8 Graminoid marsh 431 0.67 0.79 0.55 0.47 0.83 0.69 0.82 0.75 0.41 0.35 0.28 0.30 

9 Spartina marsh 520 0.93 0.73 0.20 0.43 0.82 0.82 0.91 0.77 0.79 0.69 0.85 0.62 
10 Cattail marsh 404 0.82 0.97 0.73 0.88 0.74 0.96 0.72 0.87 0.39 0.42 0.42 0.42 

11 Salt marsh 419 0.98 0.95 0.47 0.31 0.99 0.85 0.93 0.95 0.94 0.92 0.93 0.87 

12 Mud flats 503 0.80 0.96 0.33 0.45 0.79 0.91 0.75 0.89 0.27 0.44 0.29 0.46 

13 Water 927 0.98 1.00 0.93 0.97 0.98 0.99 0.98 0.98 0.94 0.92 0.96 0.98 

Average Acc. and Average Rel. 0.80 0.78 0.45 0.45 0.77 0.76 0.73 0.72 0.57 0.55 0.56 0.55 

Kappa coefficient 0.81 0.46 0.78 0.77 0.59 0.59 
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Table 3. The values of parameter 𝒁 obtained by McNemar test. 

 

Figure 3. GTM and the classification maps of Indian dataset obtained by SVM classifier, 15 training samples and 6 extracted 

features. 

 

Figure 4. GTM and the classification maps of KSC dataset obtained by SVM classifier, 15 training samples and 8 extracted 

features. 

Table 4. The highest classification accuracies achieved by 15 training samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

KSC/ SVM classifier/15 training samples/ 8 features 

 DA-PC1 LDA NWFE GDA MMLDA PCA 

DA-PC1 0 35.74 5.93 7.75 27.62 28.83 

LDA -35.74 0 -32.18 -30.94 -13.80 -12.92 
NWFE -5.93 32.18 0 2.00 22.44 23.59 

GDA -7.75 30.94 -2.00 0 21.73 22.80 

MMLDA -27.62 13.80 -22.44 -21.73 0 1.53 
PCA -28.83 12.92 -23.59 -22.80 -1.53 0 

Indian/ SVM classifier/15 training samples/ 6 features 

 DA-PC1 LDA NWFE GDA MMLDA PCA 

DA-PC1 0 48.92 15.65 6.15 9.63 9.27 

LDA -48.92 0 -38.58 -44.26 -42.58 -42.77 
NWFE -15.65 38.58 0 -8.40 -5.95 -6.33 

GDA -6.15 44.26 8.40 0 3.00 2.66 

MMLDA -9.63 42.58 5.95 -3.00 0 -1.23 
PCA -9.27 42.77 6.33 -2.66 1.23 0 

Dataset 
Classifie

r 
DA-PC1 LDA NWFE GDA MMLDA PCA 

Indian 

SVM 
0.72 

(6) 

0.31 

(8) 

0.62 

(6) 

0.66 

(5) 

0.68 

(4) 

0.67 

(4) 

ML 
0.72 

(5) 

0.27 

(6) 

0.65 

(6) 

0.71 

(4) 

0.69 

(4) 

0.69 

(4) 

NN 
0.72 

(9) 

0.33 

(8) 

0.65 

(11) 

0.49 

(6) 

0.69 

(4) 

0.64 

(4) 

Pavia University 

SVM 
0.79 

(6) 

0.53 

(6) 

0.74 

(12) 

0.74 

(6) 
0.79 

(11) 

0.77 

(11) 

ML 
0.80 

(6) 

0.49 

(5) 

0.79 

(3) 
0.81 

(4) 

0.81 

(4) 

0.81 

(4) 

NN 
0.78 

(6) 

0.57 

(5) 

0.76 

(10) 

0.73 

(8) 

0.80 

(11) 

0.77 

(5) 

KSC 

SVM 
0.80 

(8) 

0.47 

(10) 
0.80 

(12) 

0.75 

(10) 

0.59 

(15) 

0.63 

(15) 

ML 
0.75 
(6) 

0.36 
(6) 

0.72 
(8) 

0.77 

(7) 

0.54 
(3) 

0.54 
(3) 

NN 
0.79 

(6) 

0.52 

(12) 

0.78 

(11) 

0.54 

(7) 

0.58 

(15) 

0.57 

(14) 
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Figure 5. The comparison of performance of DA-PC1 with PCA and LDA in a fixed number of extracted features with 

varying the number of training samples for Indian dataset with a) SVM classifier and 6 extracted features, b) ML classifier 

and 5 extracted features, c) NN classifier and 9 extracted features.
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 نشریه هوش مصنوعی و داده کاوی
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 چکیده:

کندد  در ایدم مقا ده یدش روش     بنددی تاداویر ابرطی دی ای دا مدی     های آموزشی محدود است، کاهش ویژگی نقش مهمی در طبقهتعداد نمونه کههنگامی

کندد   های پراکندگی است اده مدی دهی ماتریسی اصلی اول برای وزناستخراج ویژگی نظارت شده بر مبنای تحلیل ممیز پیشنهاد شده است که از مو  ه

هدای اسدتخرا ی نددارد  در روش    کند و محدودیت تحلیل ممیز خطی را در تعداد ویژگیی آموزشی محدود مقابله میی نمونههادی با مسئلهروش پیشن

هدای  مایشیابد  نتایج آزتحلیل ممیز افزایش میاست اده از ا بها پذیری کلاسشود و  داییی اصلی اول ح ظ میپیشنهادی، ساختار غا ب توزیع با مو  ه

 های استخراج ویژگی پرکاربرد است ی کارایی خوب روش پیشنهادی در مقایسه با سایر روشدهنده انجام شده، نشان

  بندیی اصلی، کاهش ویژگی، ابرطی ی، طبقهتحلیل ممیز، مو  ه :کلمات کلیدی

 




