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Abstract 

The prediction of liquefaction potential of soil due to an earthquake is an essential task in civil engineering. 

The decision tree has a structure consisting of internal and terminal nodes, which process the data to 

ultimately yield a classification. C4.5 is a known algorithm widely used to design decision trees. In this 

algorithm, a pruning process is carried out to solve the problem of the over-fitting. This article examines the 

capability of C4.5 decision tree for the prediction of seismic liquefaction potential of soil based on the Cone 

Penetration Test (CPT) data. The database contains the information about cone resistance (qc), total vertical 

stress (σ0), effective vertical stress (σ0
′ ), mean grain size (D50), normalized peak horizontal acceleration at 

ground surface (amax), cyclic stress ratio (τ/σ0
′ ) and earthquake magnitude (Mw). The overall classification 

success rate for all the data set is 98%. The results of C4.5 decision tree have been compared with the 

available artificial neural network (ANN) and relevance vector machine (RVM) models. The developed C4.5 

decision tree provides a viable tool for civil engineers to determine the liquefaction potential of soil.  

 

Keywords: Soil Liquefaction, Cone Penetration Test, Artificial Intelligence, C4.5 Decision Tree.  

1. Introduction 

Seismically induced liquefaction in saturated soils 

is a phenomenon in which soil loses much of its 

strength or stiffness due to rising pore water 

pressure for a generally short period of time but 

nevertheless long enough for it to cause ground 

failure. Liquefaction of saturated sandy soils 

during the earthquakes causes building settlement 

or tipping, sand blows, lateral spreading, ground 

cracks, landslides, dam and high embankment 

failures and many other hazards. Liquefaction 

occurrence depends on the mechanical 

characteristics of the soil layers on the site, the 

depth of the water table, the intensity and duration 

of the ground shaking, the distance from the 

source of the earthquake and the seismic 

attenuation properties of in situ soil [1]. 

Determination of liquefaction potential of soil due 

to an earthquake is an important step for 

earthquake hazard mitigation. Because of the 

participation of a large number of factors that 

affect the occurrence of liquefaction during 

earthquake, the determination of liquefaction 

potential is a complex geotechnical engineering 

problem and has attracted considerable attention 

of geotechnical researchers in the past three 

decades. Several methods have been proposed to 

predict the occurrence of liquefaction. Many of 

these methods, are based on correlations between 

the in situ test measurements and observed field 

performance data, and are extensions of the 

“simplified procedure” pioneered by Seed and 

Idriss [2]. 

Amongst in situ tests, many researchers have 

adapted Cone Penetration Test (CPT) results as 

the basis for evaluation of liquefaction potential of 

the test method [3,4]. A primary advantage of the 

CPT is the nearly continuous information 

provided along the depth of the explored soil 

strata. The CPT is also considered more consistent 

and repeatable than other in situ test methods. 

Artificial intelligence (AI) techniques such as 

artificial neural network (ANN) [4-6], support 

vector machine (SVM) [6-8] and relevance vector 

machine (RVM) [9,10] have been used to develop 

liquefaction prediction models based on in situ 

test database.  
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These models have the ability to operate on large 

quantities of data and learn complex model 

functions from examples, i.e., by training on sets 

of input and output data.  

The greatest advantage of AI techniques over 

traditional modeling techniques is their ability to 

capture non-linear and complex interaction 

between variables of the system without having to 

assume the form of the relationship between input 

and output variables.  

In the context of determination of liquefaction 

occurrence, this method can be trained to measure 

the relationship between the soil and earthquake 

characteristics with the liquefaction potential, 

requiring no prior knowledge of the form of the 

relationship. 

Even though most of the introduced AI techniques 

have been successfully applied to CPT data, they 

do have shortcomings. For example, in the ANN 

approach, the optimum structure (e.g., number of 

inputs, hidden layers, and transfer functions) must 

be identified as a priori. This is usually done 

through a trial and error procedure.  

The other major shortcoming is the black box 

nature of ANN model and the fact that the 

relationship between input and output parameters 

of the system is described in terms of a weight 

matrix and biases that are not accessible to the 

user [11]. 

Decision trees algorithms are quite transparent 

and also do not need optimization of model and 

internal parameters. Either a decision tree 

partitions or the input space of data set into 

mutually exclusive regions is assigned a label 

(classification tree) or a value to characterize its 

data points (regression tree). The decision tree has 

a structure consisting of internal and external 

nodes connected by branches. Each internal node 

is associated with a decision function to determine 

which node to visit next. Meanwhile, each 

external node, known as a terminal node or leaf 

node, indicates the output of a given input vector. 

Figure 1 shows partitions of the input space into 

four non-overlapping rectangular regions, and 

each of which is assigned a labeled class ‘Ci’. 

C4.5 introduced by Quinlan [12] is a known 

algorithm widely used to design decision trees. 

This paper investigates the capability of C4.5 

decision tree for the prediction of liquefaction 

potential of soil based on CPT data. 

 

2. Materials and methods 

2.1. Decision trees 

Decision trees are fast and easy to use. The rules 

generated by decision trees are simple and 

accurate for most problems. Therefore, decision 

trees are very popular and powerful tools in data 

mining [14]. 

 

Figure 1. An example of a decision tree for classification 

(a) binary decision tree (b) feature space partitioning [13]. 

 

In general, a decision tree is a tree in which each 

branch node represents a choice between a 

number of alternatives and each leaf node 

represents a classification or decision [15]. An 

unknown (or test) instance is routed down the tree 

according to the values of the attributes in the 

successive nodes. When the instance reaches a 

leaf, it is classified according to the label assigned 

to the corresponded leaf.  

In the first stage of model construction, a 

decision-tree induction algorithm is used to build 

the tree. Many algorithms for decision tree 

induction exist. Interactive Dichotomizer version 

3 (ID3) and Commercial version 4.5 (C4.5) 

[13,16] are the most widely used with the 

classification and regression tree (CART) 

algorithm [17]. C4.5 algorithm is an extension of 

ID3 algorithm and the divide-and-conquer 

approach [12] whose main improvements 

included the pruning methodology and the 

processing of numeric attributes, missing values 

and noisy data. 

The construction phase is begun at the root node 

where each attribute is evaluated using a statistical 

test to determine how well it can classify the 

training samples. The best attribute is chosen as 
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the test at the root node of the tree. A descendant 

of the root node is then created for each either 

possible value of this attribute if it is a discrete-

valued attribute or possible discretized interval of 

this attribute if it is a continuous-valued attribute. 

Next, the training samples are sorted to the 

appropriate descendant node. 

The process is repeated using the training samples 

associated with each descendant node to select the 

best attribute for testing at that point in the tree. 

This forms a greedy search for a decision tree, in 

which the algorithm never backtracks to 

reconsider earlier node choices. Although it is 

possible to add a new node to the tree until all 

samples assigned to one node belong to the same 

class, the tree is not allowed to grow to its 

maximum depth. A node is only introduced to the 

tree only when there are a sufficient number of 

samples left from sorting. After the complete tree 

is constructed, a tree pruning is usually carried out 

to avoid data over-fitting. 

A statistical test used in C4.5 for assigning an 

attribute to each node in the tree also employs an 

entropy-based measure. The assigned attribute is 

the one with the highest information gain ratio 

among attributes available at that tree construction 

point. The information gain ratio Gain Ratio(A, S) 

of an attribute ′A′ relative to the sample set S is 

defined as 

𝐺𝑎𝑖𝑛 𝑅𝑎𝑡𝑖𝑜(𝐴, 𝑆) =
𝐺𝑎𝑖𝑛(𝐴,𝑆)

𝑆𝑝𝑙𝑖𝑡 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝐴,𝑆)
                 (1)                       

Where 

𝐺𝑎𝑖𝑛(𝐴, 𝑆) = 𝐸𝑛𝑡(𝑆) − ∑
|𝑆𝑎|

|𝑆|
𝑎∈𝐴

𝐸𝑛𝑡(𝑆𝑎)                (2) 

and 

𝑆𝑝𝑙𝑖𝑡 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝐴, 𝑆) = − ∑
|𝑆𝑎|

|𝑆|
𝑎∈𝐴

𝑙𝑜𝑔2

|𝑆𝑎|

|𝑆|
 (3) 

Sa is the subset of S for which the attribute A has 

the value a. Obviously, the information gain ratio 

can be calculated straightaway for discrete-valued 

attributes. In contrast, continuous-valued 

attributes are needed to be discretised prior to the 

information gain ratio calculation. 
 

2.2. Database 

The database [5] used in this study consists of 

total 109 cases, 74 of them are liquefied cases and 

35 of them are non-liquefied cases. The database 

contains: cone resistance (qc), total vertical stress 

(σ0), effective vertical stress (σ0
′ ), mean grain size 

(D50), normalized peak horizontal acceleration at 

ground surface (amax), cyclic stress ratio (τ/σ0
′ ) 

and earthquake magnitude (Mw). The range of 

values associated with each input variable is 

shown in table 1.  

Generally in pattern recognition procedures (e.g., 

ANN, SVM or GP) it is common that the model 

construction is based on adaptive learning over a 

number of cases and the performance of the 

constructed model is then evaluated using an 

independent validation data set. Therefore, in the 

present study, a total of 74 datasets are considered 

for the training dataset, and other datasets are 

considered for the testing dataset. The training and 

testing datasets are the same as the ones used by 

Goh [5] and Samui [9].  

Table 1. Range of values associated with the input 

variables used in liquefaction analysis. 
Input variable Range 

Cone tip resistance, 𝑞𝑐 (MPa) 1.0-31.4 

Total vertical stress, 𝜎0 (kPa) 17-122 

Effective vertical stress, 𝜎0
′ (kPa) 17-249 

Mean grain size, 𝐷50 (mm) 0.06-0.67 

Maximum horizontal ground surface                                          

acceleration, 𝑎𝑚𝑎𝑥 (g) 

0.1-0.8 

Cyclic stress ratio, 𝜏/𝜎0
′ 0.06-0.72 

Earthquake moment magnitude, 𝑀𝑤 6.6-7.8 

 

3. Result and discussion  

For building the model based on training data set, 

C4.5 algorithm implemented in WEKA software 

[18] was used. WEKA is written in Java and is 

freely available from  Waikato University website 

[19].  

The Decision tree generated by C4.5 algorithm is 

shown in figure 2, table 2 and table 3 illustrate the 

performance of  C4.5 decision tree for training 

and testing dataset respectively. For the training 

patterns, three cases of liquefaction were wrongly 

classified. For the testing patterns, one case of 

liquefaction was wrongly classified. 

Training and testing performance have been 

determined by using (4). 

 

Training= Testing performance (%) =

(
No of data predicted accurately by C4.5

Total data
) × 100 

 

       (4) 

As the results presented in table 2, the 

performances of C4.5 decision tree for training 

and testing data are comparable.  

The successful prediction values are 95.9% for 

training and 97.1% for testing data whereas the 

overall success rate in predicting liquefaction in 

all cases is 96.3%. The overall classification 

success rate for the entire data set is slightly lower 

than the overal

http://www.cs.waikato.ac.nz/~ml/
http://www.cs.waikato.ac.nz/~ml/


Ardakani & Kohestani/ Journal of AI and Data Mining, Vol 3, No 1, 2015 
 

88 

 

rate of ANN and RVM models reported by Goh [5] and Samui [9], respectively (see Table 4).

 

Figure 2. Decision tree generated by C4.5 algorithm. 

a Number of cases in this partition. 

b Number of cases misclassified. 

 

Table 2. Performance of C4.5 for training dataset. 

𝑴𝒘 𝝈𝟎
′  (kPa) 𝝈𝟎 (kPa) 𝒒𝒄 (MPa) 𝒂𝒎𝒂𝒙 (g) 𝝉/𝝈𝟎

′  𝑫𝟓𝟎 (mm) Actual liquefied Predicted liquefied? 

7.5 53 36 3.20 0.16 0.15 0.331 Yes Yes 

7.5 87 52 1.60 0.16 0.16 0.331 Yes Yes 

7.5 99 58 7.20 0.16 0.17 0.331 Yes Yes 

7.5 152 83 5.60 0.16 0.17 0.331 Yes Yes 

7.5 91 63 5.45 0.16 0.14 0.331 Yes Yes 

7.5 127 80 8.84 0.16 0.15 0.331 Yes No 

7.5 211 120 9.70 0.16 0.15 0.331 Yes No 

7.5 86 46 8.00 0.16 0.19 0.30 No No 

7.5 95 50 14.55 0.16 0.18 0.30 No No 

7.7 58 48 10.00 0.23 0.18 0.32 No No 

7.7 73 54 16.00 0.23 0.20 0.32 No No 

7.7 96 65 15.38 0.23 0.21 0.32 No No 

7.7 54 46 1.79 0.23 0.17 0.32 Yes Yes 

7.7 64 52 4.10 0.23 0.19 0.32 Yes Yes 

7.7 96 67 7.96 0.23 0.21 0.32 Yes Yes 

7.7 114 75 8.97 0.23 0.22 0.32 Yes Yes 

7.8 57 42 1.70 0.40 0.35 0.06 Yes Yes 

7.8 114 69 9.40 0.40 0.41 0.25 Yes Yes 

7.8 148 85 5.70 0.40 0.42 0.25 Yes Yes 

7.8 162 92 7.60 0.40 0.42 0.30 Yes Yes 

7.8 17 17 1.50 0.40 0.27 0.17 Yes Yes 

7.8 25 21 1.00 0.40 0.32 0.17 Yes Yes 

7.8 34 25 5.00 0.40 0.36 0.17 Yes Yes 

7.8 38 34 2.50 0.40 0.29 0.14 Yes Yes 

Yes (4.0)

≤ 2.48 > 2.48

≤ 0.1

≤ 9.7 > 9.7

No (15.0ᵅ )

> 0.1

≤ 0.2 > 0.2

≤ 7.2 > 7.2

No (10.0ᵅ /1.0ᵇ )

No (4.0/2.0)Yes (14.0)

Yes (27.0)
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𝑴𝒘 𝝈𝟎
′  (kPa) 𝝈𝟎 (kPa) 𝒒𝒄 (MPa) 𝒂𝒎𝒂𝒙 (g) 𝝉/𝝈𝟎

′  𝑫𝟓𝟎 (mm) Actual liquefied Predicted liquefied? 

7.8 57 43 2.60 0.40 0.34 0.14 Yes Yes 

7.8 76 52 3.20 0.40 0.37 0.16 Yes Yes 

7.8 89 58 5.80 0.40 0.39 0.16 Yes Yes 

7.8 122 74 3.50 0.40 0.40 0.16 Yes Yes 

7.8 181 102 8.40 0.40 0.41 0.16 Yes Yes 

7.8 38 29 1.70 0.40 0.35 0.12 Yes Yes 

7.8 40 29 3.50 0.40 0.36 0.12 Yes Yes 

7.8 51 35 4.10 0.40 0.38 0.12 Yes Yes 

7.8 29 27 5.50 0.40 0.29 0.17 Yes Yes 

7.8 57 40 9.00 0.40 0.37 0.32 Yes Yes 

7.8 23 21 7.00 0.40 0.29 0.48 Yes Yes 

7.8 34 26 1.18 0.40 0.35 0.48 Yes Yes 

7.8 48 33 4.24 0.40 0.38 0.48 Yes Yes 

7.8 76 71 11.47 0.40 0.27 0.16 No No 

7.8 160 111 15.76 0.40 0.34 0.20 No No 

7.8 59 56 11.39 0.20 0.14 0.21 No No 

7.8 78 65 12.12 0.20 0.15 0.21 No No 

7.8 99 75 17.76 0.20 0.17 0.14 No No 

7.8 74 49 2.65 0.20 0.19 0.14 Yes Yes 

7.8 53 35 4.40 0.20 0.20 0.16 Yes Yes 

7.8 61 39 3.00 0.20 0.20 0.16 Yes Yes 

7.8 156 81 9.00 0.20 0.23 0.08 Yes No 

7.8 99 55 2.00 0.10 0.11 0.14 Yes Yes 

7.8 95 52 1.10 0.20 0.23 0.07 Yes Yes 

7.8 209 106 15.50 0.10 0.11 0.08 No No 

7.8 217 110 6.50 0.10 0.11 0.08 No No 

7.8 91 53 9.00 0.10 0.11 0.10 No No 

7.8 101 58 2.50 0.10 0.11 0.10 No No 

7.8 112 63 16.50 0.10 0.11 0.10 No No 

7.8 91 68 13.65 0.10 0.06 0.25 No No 

7.8 114 58 8.47 0.20 0.24 0.062 No No 

7.8 228 112 4.55 0.20 0.23 0.067 No No 

7.8 249 122 5.79 0.20 0.22 0.067 No No 

7.8 121 55 2.48 0.20 0.25 0.062 Yes Yes 

7.8 114 56 1.57 0.20 0.25 0.062 Yes Yes 

7.8 213 103 1.45 0.20 0.23 0.67 Yes Yes 

7.8 220 106 2.15 0.20 0.23 0.67 Yes Yes 

7.8 230 111 2.60 0.20 0.23 0.67 Yes Yes 

7.8 213 103 2.73 0.20 0.23 0.67 Yes Yes 

7.8 219 106 1.78 0.20 0.23 0.67 Yes Yes 

7.8 211 108 7.64 0.20 0.22 0.67 No No 

6.6 29 29 25.60 0.80 0.44 0.11 No No 

6.6 48 36 24.70 0.80 0.57 0.11 No No 

6.6 64 42 31.40 0.80 0.64 0.11 No No 

6.6 29 29 1.43 0.80 0.44 0.11 Yes Yes 

6.6 64 42 2.48 0.80 0.64 0.11 Yes Yes 

6.6 96 54 4.03 0.80 0.72 0.11 Yes Yes 

6.6 29 29 3.30 0.80 0.44 0.06 No No 

6.6 48 36 8.80 0.80 0.57 0.06 No No 

6.6 64 42 6.70 0.80 0.64 0.06 No No 
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Table 3. Performance of C4.5 for testing dataset. 

𝑴𝒘 𝝈𝟎
′  (kPa) 𝝈𝟎 (kPa) 𝒒𝒄 (MPa) 𝒂𝒎𝒂𝒙 (g) 𝝉/𝝈𝟎

′  𝑫𝟓𝟎 (mm) Actual liquefied 
Predicted 

liquefied? 

7.8 89 78 1.65 0.20 0.41 0.17 Yes Yes 

7.8 99 83 3.65 0.20 0.15 0.17 Yes Yes 

7.8 29 25 1.03 0.20 0.15 0.19 Yes Yes 

7.8 55 37 5.00 0.20 0.19 0.31 Yes Yes 

7.8 76 47 2.91 0.20 0.21 0.18 Yes Yes 

7.8 105 61 6.06 0.20 0.21 0.18 Yes Yes 

7.8 23 22 13.24 0.20 0.14 0.17 No No 

7.8 32 26 13.06 0.20 0.16 0.17 No No 

7.8 40 30 16.59 0.20 0.18 0.17 No No 

7.8 59 59 10.59 0.20 0.13 0.26 No No 

7.8 63 61 9.12 0.20 0.13 0.26 No No 

7.8 76 67 11.29 0.20 0.15 0.26 No No 

7.8 70 41 1.94 0.20 0.22 0.16 Yes Yes 

7.8 76 44 5.00 0.20 0.22 0.16 Yes Yes 

7.8 70 47 2.24 0.20 0.19 0.14 Yes Yes 

7.8 114 79 14.12 0.20 0.09 0.25 No No 

7.8 162 102 18.94 0.20 0.09 0.28 No No 

7.8 44 44 3.52 0.20 0.13 0.16 Yes Yes 

7.8 59 51 2.73 0.20 0.15 0.16 Yes Yes 

7.8 57 50 3.29 0.20 0.15 0.21 Yes Yes 

7.8 61 52 4.12 0.20 0.15 0.21 Yes Yes 

7.8 72 57 2.94 0.20 0.16 0.21 Yes Yes 

7.8 61 52 3.00 0.20 0.15 0.15 Yes Yes 

7.8 95 68 5.85 0.20 0.18 0.32 Yes Yes 

7.8 106 73 9.00 0.20 0.18 0.32 Yes No 

7.8 49 48 1.88 0.20 0.13 0.13 Yes Yes 

7.8 74 64 2.55 0.20 0.15 0.17 Yes Yes 

7.8 76 65 4.50 0.20 0.15 0.17 Yes Yes 

7.8 106 79 4.24 0.20 0.17 0.17 Yes Yes 

7.8 114 77 8.00 0.20 0.18 0.22 No No 

7.2 80 48 5.22 0.22 0.21 0.20 Yes Yes 

7.2 95 55 3.73 0.22 0.22 0.20 Yes Yes 

7.2 114 64 3.11 0.22 0.22 0.20 Yes Yes 

7.2 133 73 1.32 0.22 0.22 0.20 Yes Yes 

7.2 152 82 5.22 0.22 0.22 0.20 Yes Yes 

Table 4. Comparison of results of developed C4.5 decision 

tree with available ANN [5]  and RVM models [9]. 

Method 

Performance in terms of successful prediction 

(%) 

Training Testing Overall 

ANN [5] 98.6 94.3 97.2 

RVM [9] 100 100 100 

C4.5 decision 

tree 
95.9 97.1 96.3 

 

The ANN uses many parameters, such as the 

number of hidden layers, number of hidden nodes, 

learning rate, momentum term, number of training 

epochs, transfer functions, and weight 

initialization methods. Though the RVM has 

lower parameters compared with ANN, but RVM 

requires a selection of a suitable kernel function 

first and then setting of the specific parameters 

and these processes are time consuming. 

Moreover, these techniques will not produce an 

explicit relationship in the variables and thus, the 

developed model provides very little insight into 

the basic mechanism of the problem. Decision 
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trees algorithms are quite transparent and also do 

not need optimization of model and internal 

parameters. The developed C4.5 decision tree,  

figure 2, can be used by geotechnical engineering 

professionals with the help of a spreadsheet to 

evaluate the liquefaction potential of soil for a 

future seismic event without going into 

complexities of model development whereas the 

available ANN and RVM models do not provide 

any explicit equations for professionals. Also in 

the C4.5 approach normalization or scaling of the 

data is not required, but is an advantage over 

ANN and RVM approach. 

The limitations of the C4.5 decision trees need to 

be mentioned as well. Similar to other artificial 

intelligence techniques, decision trees have a 

limited domain of applicability and are mostly 

case dependent. Therefore, their generalization is 

limited and they are only applicable in the range 

of training data. However, the C4.5 model can 

always be updated to yield better results, as new 

data becomes available. 

 

4. Conclusions 

Liquefaction in soil is one of the major causes of 

concern in geotechnical engineering. The cone 

penetration test has proven to be an effective tool 

in characterization of subsurface conditions and 

analysis of different aspects of soil behavior, 

comprising estimating the potential for 

liquefaction on a specific site. In this paper, the 

C4.5 decision tree is used to predict the 

liquefaction potential of soil based on CPT data. 

The C4.5 model was trained and validated using a 

database of 109 liquefaction and non-liquefaction 

field case histories for sandy soils based on CPT 

results. The overall classification success rate for 

the entire data set is 96.3% and is comparable 

with those calculated using ANN and RVM 

models which were taken in the literature. Unlike 

available ANN and RVM models, the proposed 

model provide easily interpretable tree structure 

that can be used by geotechnical engineering 

professionals with the help of a spreadsheet to 

predict the liquefaction potential of soil for future 

seismic event without going into the complexities 

of model development using C4.5 decision tree. 

This model can be adopted for modeling different 

problems in geosciences. 
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 نشریه هوش مصنوعی و داده کاوی
 

 

 C4.5درخت تصمیم  با استفاده از CPTرزیابی پتانسیل روانگرایی بر مبنای نتایج ا

  

 وحیدرضا کوهستانیو  *علیرضا اردکانی

  ی امام خمینی )ره(، قزوین، ایران.دانشکده فنی و مهندسی، دانشگاه بین الملل

 01/54/4500پذیرش  ؛50/50/4502 ارسال

 چکیده:

ها هنگام وقوع زلزله یکی از وظایف اصلی در مهندسی عمران است.  درختتان میتمیک یتخ ستاختار درختتی  تامل        بینی پتانسیل روانگرایی خاکپیش

رد در هتای پرکتارب  یکتی از الگتوریتک   C4.5 تود   ها میبندی آنها، در نهای. منجر به طبقهداده ها هستند که با پردازش رویهای داخلی و مرمینالگره

 ود  این مقالته موانتایی درخت. میتمیک     ، یخ مرحله هرس انجام میتک، به منظور حل مشکل بیش پردازشطراحی درختان میمیک اس.  در این الگوری

C4.5 های آزمایش نفوذ مخروط ها بر مبنای دادهبینی پتانسیل روانگرایی خاکرا برای پیش(CPT) عتامی دربتاره   کند  پایگاه داده  امل اطلابررسی می

σ0(، منش قائک مؤثر )σ0(، منش قائک کل )qcمقاوم. مخروط )
(، نستب.  amax(،  تاب افقی متاکزیمک در ست ز زمتین )   D50ها )(، میانگین اندازه دانه′

τ/σ0منش سیکلی )
بتا   C4.5دس. آمده اس.  نتایج درخت. میتمیک    درصد به 01ها، بندی داده( اس.  درصد موفقی. کلی طبقهMw( و بزرگی زلزله )′

گرفته، یتخ ابتزار مفیتد     کل C4.5مقایسه  ده اس.  درخ. میمیک  (RVM)و ما ین بردار ارمباط  (ANN)های موجود  بکه عیبی مینوعی مدل

 ها را معیین کنند کند ما با استفاده از آن پتانسیل روانگرایی خاکبرای مهندسان عمران فراهک می

  C4.5روانگرایی، آزمایش نفوذ مخروط، هوش مینوعی، درخ. میمیک  :ت کلیدیکلما

 




