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Dialogue understanding for low-resource languages such as Persian
remains challenging due to limited annotated data, which constrains
supervised training at scale. We propose a simple yet effective
training-free method that combines machine translation, retrieval-
based example selection, and prompting with a large language model
(GPT-40) to improve zero-shot cross-lingual performance. Given a
Persian utterance translated into English, our method retrieves
semantically and lexically similar English examples using a hybrid
similarity function, translates them back into Persian, and constructs a
few-shot prompt tailored to the input. This input-sensitive strategy
enhances the quality of the examples, helping the model align more
effectively with each instance. Experimental results on the Persian-
ATIS dataset show that our approach improves intent detection and
achieves competitive slot filling performance, outperforming state-of-
the-art baselines without requiring any supervision in the target
language. The modular pipeline is easy to reproduce and, in future
work, can be extended to other low-resource languages, tasks, or
retrieval configurations. The repository of our work is available at

https://github.com/saedeht/Persian_Language Understanding.

1. Introduction

Recent advances in natural language processing
(NLP), driven by large language models (LLMs),
have led to remarkable improvements in tasks such
as machine translation, summarization,
information extraction, and dialogue systems [1-3].
These developments have brought NLP
technologies closer to real-world applications
while enabling more natural human—computer
interaction. Despite these advancements, the
benefits are not equally distributed across
languages. Although over 7,000 languages are
spoken worldwide [4], nearly 50% of websites are
in English. Spanish follows, but with a wide gap,
accounting for only about 6% of web content (as of
February 2025)', reflecting the unequal distribution

! https://www.statista.com/statistics/262946/most-common-
languages-on-the-internet

of digital resources. Consequently, recent NLP
progress has primarily favored high-resource
languages like English, while low-resource
languages remain underrepresented and continue to
face significant challenges in developing effective
language models [5].

Task-oriented dialogue is an important NLP
application that helps users accomplish goals such
as booking flights or setting reminders [6-8].
Natural language understanding (NLU) is a crucial
component of these systems. As shown in Figure 1,
NLU typically includes intent detection (ID),
which identifies the user's goal from the utterance,
and slot filling (SF), which assigns labels to tokens
to extract relevant entities [9]. These tasks rely on


https://github.com/saedeht/Persian_Language_Understanding
mailto:saedeh.tahery@email.kntu.ac.ir
https://www.statista.com/statistics/262946/most-common-languages-on-the-internet
https://www.statista.com/statistics/262946/most-common-languages-on-the-internet
https://www.statista.com/statistics/262946/most-common-languages-on-the-internet

Tahery & Farzi/ Journal of Al and Data Mining, X(X): XXX-XXX, XXXX

labeled datasets, which are often unavailable for
low-resource languages like Persian. Manual
annotation is costly and time-consuming, limiting
the deployment of robust NLU systems and
highlighting the need for methods that generalize
without requiring labeled data in the target
language [10].
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i:igure 1. The Natural Language Understanding module
consists of intent detection and slot filling, illustrated with
an example in Persian.

To address this, studies have explored cross-lingual
transfer techniques, leveraging labeled data from
high-resource languages such as English to build
models for low-resource languages [11]. A
common approach is zero-shot cross-lingual
transfer, where multilingual models trained on
English are directly applied to other languages.
While this yields reasonable performance, it may
overlook language-specific context and cultural
nuances [12].

Recent approaches have employed LLMs through
prompt-based learning [13], constructing prompts
that enable the model to perform tasks with zero or
few informative examples, without extensive fine-
tuning. Some studies further combine cross-lingual
transfer with prompting to achieve both linguistic
generalization and model adaptability [14].

The application of prompt engineering to cross-
lingual NLU, despite promising results, remains
relatively underexplored, particularly in low-
resource contexts. A key factor in few-shot
prompting is the selection of relevant examples, as
their contextual alignment with the input greatly
influences performance. This motivates us to move
beyond static example selection and introduce an
input-sensitive prompting approach, in which
contextually appropriate examples are dynamically
retrieved based on the input utterance.

In this paper, inspired by retrieval-augmented
generation (RAG) [15], we propose a retrieval-
based dynamic prompting approach for zero-shot
cross-lingual Persian language understanding,
comprising two main phases. We leverage machine
translation to transfer supervision from English to
Persian, a strategy widely used in cross-lingual
NLP due to the robustness of current translation

systems and the central role of English in
multilingual resources [16, 17].

In the first phase, we perform input-sensitive
example selection via retrieval in the English
source space. Each Persian input is translated into
English to retrieve the top-k relevant examples
using a hybrid similarity function that combines
contextual embeddings and lexical overlap (TF-
IDF) [18] with an adjustable weight («). This
balances semantic relevance with surface-level
matching, promoting the quality of selected
examples. The retrieved English examples are
translated back into Persian, with their intent and
slot annotations preserved and automatically
aligned to the source input using token-level
alignment [19]. In the second phase, the retrieved
examples are incorporated into a few-shot prompt
and fed to an LLM (GPT-40) to perform ID and SF
on the original Persian input. By combining
machine translation, cross-lingual retrieval, and
prompt-based inference, our approach provides a
flexible solution that dynamically adapts
predictions for each input. Notably, our approach
requires no training or fine-tuning in either the
source or target language, making it practical and
easily applicable to real-world scenarios.
Accordingly, we define three research guestions to
systematically investigate the proposed method
throughout the paper:

¢ RQ1: How sensitive is the proposed method
to the adjustable weight («) and the number
of examples in few-shot prompting (k)?

e RQ2: How well does the proposed method
perform compared to its counterparts for
zero-shot cross-lingual understanding?

¢ RQ3: What insights can be drawn from a
fine-grained evaluation of the method’s
performance?

To answer these research questions, we evaluate
our approach on the Persian-ATIS (Airline Travel
Information Systems) dataset [20]. Experimental
results demonstrate that our method outperforms
state-of-the-art methods in ID and remains
competitive in SF.

The key contributions of this work are as follows:

e Proposing a simple yet effective method with
minimal computational overhead, featuring a
modular pipeline that uses standard tools for
easy adaptation without task- or language-
specific training.

¢ Introducing dynamic retrieval of contextually
relevant examples to improve few-shot
prompting.

e Enhancing performance on Persian language
understanding tasks without requiring any
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labeled data in the target language.
The paper is organized as follows: Section 2
reviews task definitions and related work. Section
3 details the methodology, and Section 4 presents
experiments and analysis. Finally, Section 5
concludes the paper.

2. Background and Related Work

This section first provides a formal definition of the
NLU tasks (ID and SF) and then presents a
summary of the most relevant related studies.

2.1. Language Understanding Tasks

The NLU module functions as the core component
responsible for enabling meaningful interactions in
task-oriented dialogues, typically structured within
the dialogue act framework [8].

As shown in (1), given a user utterance

X =[x, X,,... x. ], where T is the number of tokens,

ID is framed as a classification task aiming to
predict the most probable intent class ¢ among a
predefined set of intent classes C.

¢ =argmax p(c| X) 1)
ceC

Similarly, SF is a sequence labeling task that
assigns a semantic tag to each token x , identifying

fine-grained semantic information such as
departure city or date. This task is commonly
modeled as provided in (2), which finds the most

probable sequence of slot labels Y = [¥.9,,. 91
Y =argmax p(Y | X) )

As supervised models heavily rely on annotated
data, which is not feasible for low-resource
languages, we resort to a zero-shot cross-lingual
approach to circumvent this need for Persian. We
next review existing approaches developed to cope
with this limitation.

2.2. Related Work

In the pursuit of modern Al-native dialogue
systems, particularly those capable of handling
multilingual interactions, the design of robust
language understanding modules remains a critical
challenge. The availability of annotated data is an
inevitable bottleneck in many NLP systems,
especially in low-resource scenarios [21].

Early approaches to cross-lingual understanding
relied on static multilingual embeddings such as
context vectors [22, 23] or cross-lingual word
alignments, which offered limited flexibility and
generalization [24].

With the advent of multilingual pre-trained
language models like multilingual BERT

(mBERT) [25] and XLM-RoBERTa (XLM-R)
[26], the field shifted toward more scalable
solutions that leverage shared cross-lingual
representations. For instance, Zadkamali et al. [27]
conducted cross-lingual training for Persian using
mBERT and XLM-R models. Several methods
have been proposed to enhance these models,
including translation-based approaches, data
augmentation, and code-switching techniques,
each aiming to mitigate the lack of supervision in
target languages by enriching the input space or
aligning the latent space across languages [28—-31].
Qin et al. [30] proposed a data augmentation
framework for fine-tuning mMBERT  with
multilingual code-switched data, improving cross-
lingual alignment without relying on bilingual
training pairs. Safari and Shamsfard [32]
introduced PerInfEx, a Persian chatbot designed to
extract personal information through casual
conversation, leveraging both manual and
automated data augmentation to enhance NLU
performance.

Another line of research focuses on improving
cross-lingual transfer by learning language-
independent representations [33, 34]. Tahery et al.
[33] proposed an adversarial approach based on a
Generative Adversarial Network (GAN) [35] to
derive such representations from mBERT’s
contextual embeddings. Their model proved
effective for language understanding tasks by
minimizing language-specific information.
However, despite strong results on Latin-based
languages such as Spanish, its performance
declined for typologically distant languages like
Persian. Another GAN-based method was
proposed in [36], which employed an encoder-
decoder architecture. The task-specific fine-tuning
was decoupled, and during adversarial training, the
decoder was used to reconstruct input utterances.
This approach  mitigates language-specific
information while preserving semantic content in
contextual representations, improving performance
for languages like Persian, although some room for
further enhancement remains.

In recent years, LLMs have also opened new
possibilities in this realm [37, 38]. These models,
due to their extensive pre-training on diverse
multilingual corpora, support two main paradigms:
(i) fine-tuning the model for specific tasks in a
supervised manner [39], and (ii) prompting the
model to perform tasks in an inference mode,
utilizing its emergent zero-shot capabilities [40].
While the former still requires labeled data and
computational resources, the latter introduces new
challenges, especially regarding whether such
models can reliably perform structured tasks like
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ID and SF with little or no task-specific
supervision. Zhu et al. [41] proposed a two-stage
framework leveraging ChatGPT for zero-shot
language understanding, which empowers mutual
verification between subtasks to improve
performance. However, their experiments were
exclusively conducted in English.

Yet, an important question arises regarding
whether general-purpose LLMs such as ChatGPT
can handle zero-shot cross-lingual NLU tasks,
whether performance can be improved by
providing a few demonstration examples, and how
these examples should be selected.

A recent study tackled this problem by employing
machine-generated examples [14]. Initially, an
effective cross-lingual model was used to
automatically generate labeled training instances.
These examples were then filtered per domain,
selecting a fixed subset based on criteria such as
utterance length (favoring longer examples with
fewer non-slot tokens), as well as diversity in
intents and slot types. For each domain, the same
static set of few-shot examples was used regardless
of the input utterance, making the prompting
strategy domain-aware but not input-sensitive. In
contrast, this paper investigates an input-sensitive
prompting strategy, which dynamically selects
examples based on the input utterance and leads to
improved NLU performance.

While other notable efforts have also contributed to
advancing Persian language understanding [42,
43], it remains considerably underexplored
compared to high-resource languages.

Continued research is required in areas such as
adapting large-scale language models for Persian,
improving the handling of code-switched inputs,
and establishing standardized corpora [44].

3. Proposed Method

This section presents our approach to zero-shot
cross-lingual Persian language understanding. In
the absence of labeled data for the target language,
we adopt machine translation, automatic
alignment, and a retrieval-based method to identify
and construct relevant few-shot examples for a
given input utterance. These examples, formulated
in the target language, are then used to prompt the
LLM (GPT-40) for the NLU tasks.

As illustrated in Figure 2, the proposed method
consists of two main phases: dynamic example
retrieval and LLM-based inference.

Given a Persian utterance, the first phase begins by

2 https://huggingface.co/BAAI/bge-large-en

translating it into English. Considering English as
the source language with available annotations, we
then retrieve the top-k most relevant utterances
from the annotated English dataset. These
examples are subsequently translated back into
Persian and used to construct few-shot prompts. In
the second phase, these prompts are provided to the
LLM to perform the ID and SF tasks on the original
Persian utterance. Further details of the proposed
method are provided in the following sections.

3.1. Retrieval in the English Space
To retrieve relevant labeled English examples, we
adopt a hybrid retrieval strategy that integrates both
dense and sparse representations. We compute a
weighted similarity score between the translated
input utterance u and each candidate labeled
utterance v in the English database as follows:
score(u,v) = a.sim(emb(u),emb(v)) A3)
+(1- o).sim(tfidf (u),tfid (v))

where emb(.) denotes the sentence embedding

derived from a pre-trained transformer-based
encoder. In our setup, we employ the BAAI/bge-
large-en* model in inference mode, without any
task-specific fine-tuning. This retrieval-oriented
encoder was fine-tuned on large-scale English
corpora using contrastive learning objectives and
has demonstrated strong performance across dense
retrieval benchmarks. Its ability to produce
semantically meaningful and generalizable
representations makes it well-suited for semantic
similarity in our hybrid retrieval pipeline.

Moreover, tfidf () in (3) represents the sparse

vector obtained via TF-IDF weighting, Sim
denotes the cosine similarity [45], and « €[0,1] is

an adjustable weight that controls the relative
contribution of each similarity component.

This hybrid retrieval strategy is motivated by the
complementary strengths of dense and sparse
retrieval methods. Embedding-based similarity
captures high-level semantic relatedness, while TF-
IDF provides token-level lexical matching, which
is particularly useful in short-form texts such as
user utterances, where keywords often directly
signal intent or slot boundaries. TF-IDF also
emphasizes rare yet informative words through
higher weighting, which is especially beneficial in
low-resource scenarios. We explore the effect of
each similarity component in Section 4.3.1.
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Figure 2. Overview of the proposed method, which consists of two main phases: dynamic example retrieval and LLM-based
inference.

3.2. Translation and Alignment

Each retrieved English example is associated with
its corresponding intent label and slot annotations.
After selecting the top-k English utterances, we
translate them back into Persian to maintain
language consistency during the few-shot
prompting phase. For translation in both directions,
we employ Google Translate* due to its well-
established performance across a wide range of
language pairs, including low-resource ones.*
While intent labels can be directly reused after
translation, slot filling requires additional
processing. Since slot filling is a sequence labeling
task, it is essential to ensure that slot labels are
correctly aligned with the translated Persian
tokens. To this end, we first normalize and tokenize
the Persian utterances using Hazm and then apply
SimAlign with the IterMax algorithm [19] to
perform token-level alignment between the English
and Persian sequences. The slot tags are
subsequently projected from the English utterances
to the aligned Persian tokens based on the
alignment links. For instance, Figure 3 shows a
sample alignment in which the slot labels assigned
to the English tokens pittsburgh and philadelphia
are correctly mapped to their Persian equivalents
through alignment.

3 Translation was performed using the Python Google Translate
API (googletrans==3.1.0a0).

4 To verify translation quality, we randomly selected 30 samples
in each direction and had them manually reviewed by a human

Bfromloc.cty_name B-toloc.dty _name

0 1 2 3 4 ‘5 0 7
show | me | the | flights | from | pittsburgh | to | philadelphia

7
”

A | Gl o | w1y | LRG| o'.gfd,,.....;.;fdhjl,ﬂ
L T L s 4 .Ii 2 1 0
|
B-toboc,city_name B-fromloc.city_name

Figure 3. An example of word alignment between English
and Persian utterances.

Note that we choose the tools Hazm and SimAlign
based on their strong performance reported in the
literature [46]. Hazm is a widely used NLP library
tailored to the linguistic characteristics of Persian.
It incorporates rules that handle morphological
variations, pseudo-spaces, and common affixation
patterns specific to the Persian language.
Furthermore, SimAlign is a lightweight alignment
tool that leverages multilingual contextual
embeddings to align tokens between language pairs
without requiring parallel corpora, making it
particularly suitable for low-resource settings like
Persian.

We acknowledge that human translation and
annotation of Persian utterances would offer higher
reliability; however, it is impractical in our setup
due to the time and cost involved, especially given

annotator. The resulting BLEU scores were 37.31 for FA—EN and
50.49 for EN—FA, which indicate satisfactory translation quality for
the purposes of our cross-lingual experiments.

* https://github.com/roshan-research/hazm
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Figure 4. The prompt structure for intent detection (left) and slot filling (right) as used in [14], with the main difference being
the use of input-sensitive examples.

the low-resource cross-lingual context. Therefore,
we resort to automatic tools to generate such
annotated examples. While these tools may
introduce errors in translation and annotation, they
still provide a feasible and efficient means of
generating few-shot examples in the target
language. In practice, we find that even imperfect
projected labels are sufficient to construct effective
prompts for LLM-based language understanding
tasks. A few samples are provided in Appendix A.

3.3. LLM-based inference

In the second phase of our proposed method, the
few-shot examples constructed during the retrieval
phase are used to prompt GPT-40 to perform the 1D
and SF tasks. By presenting the LLM with
informative Persian examples alongside the
original utterance, we enable it to infer intent or slot
labels without requiring any direct supervision in
the target language. By informative examples, we
mean Persian examples whose corresponding
English versions have higher hybrid similarity
scores. In other words, the higher the similarity
score of an English example, the more informative
the resulting Persian example is.

This prompt-based inference leverages the model’s
pre-trained knowledge and its capacity to
generalize from limited examples, which makes it
particularly effective in zero-shot cross-lingual
settings.

¢ https://openai.com/

4. Experimental Study

We begin by outlining the overall setup and prompt
structure, followed by a description of the dataset
and a presentation of the experimental results.

4.1, Setup

All experiments were conducted using a specific
version of ChatGPT (GPT-40-2024-08-06) via the
official APIS. All parameters, such as temperature,
were left at their default settings.

To ensure a fair and consistent evaluation, we
employ two structured prompts for the ID and SF
tasks, similar to the setup in [14], as illustrated in
Figure 4.

For ID, the model is instructed to select the most
relevant intent label from a predefined list given an
input utterance. The prompt begins by specifying
the task description and the set of possible intents,
followed by several illustrative examples
demonstrating the expected mapping between
utterances and intents. For SF, the prompt similarly
introduces the task, defines the list of possible slots,
and specifies the required output format. The
examples illustrate how tokens should be labeled
with the corresponding slots.

Note that although the format remains the same, the
retrieved examples are not static as in [14]; rather,
they are input-sensitive, vary with each test
utterance, and rely on a fundamentally different
example construction strategy.

4.2. Data
We conduct experiments on the Persian-ATIS
dataset [20], a benchmark in the flight domain
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covering both intent detection and slot filling tasks.
It includes 26 intent classes and 84 slot types, with
utterances available in both English and Persian.
The dataset contains 3,982 utterances for training,
996 for validation, and 893 for testing in each
language.

For consistency with prior work and due to
computational constraints, we use the same data
subset as in [14], which consists of 500 utterances.
This subset was selected in a stratified manner to
preserve the distribution of both intent and slot
labels, ensuring that the relative frequencies of
each class remain similar to those in the full
dataset.  This  approach  maintains  the
representativeness of the evaluation set for both
tasks while accommodating limited computational
resources.

4.3. Evaluation Results
This section aims to answer the research questions
presented in the Introduction.

4.3.1. Sensitivity Analysis

To address RQ1, we conduct a sensitivity analysis
over two key variables: the adjustable weight ()
and the number of examples (k). We evaluate
micro-averaged accuracy for ID and F1 score for
SF across different values of
a €{0,0.3,0.5,0.7,1.0} and k e{1,3,5}.

Intent Detection. As shown in Figure 5, the overall
trend indicates that increasing k generally improves
performance, with the best results achieved at
k =5 across all a values.

” 8.:-(2._ :
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a=05 ’ i
92 4 a=07
* a=10
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> &
ol 88
3
9 ar
< 86 -
84
824 A
80 .

1 3
Number of Examples (k)
Figure 5. The impact of parameters a and k on intent
detection accuracy.

The effect of a is also pronounced in this task:
performance consistently improves with higher a
values, peaking at 94.40% accuracy when « =0.7

and k=5. This suggests that ID benefits more
from dense similarity signals, likely because the
semantic-level information  captured by
embeddings is essential for matching intents that
may not share surface-level lexical overlap.
Interestingly, performance slightly drops to
93.60% accuracy when a increases to 1.0 (fully
dense similarity) at k=5. This may be due to
retrieving examples that, despite their high
embedding-based similarity, still include irrelevant
tokens.

These findings highlight the effectiveness of a
hybrid retrieval strategy at moderate « values (e.g.,
0.7), which balances semantic relevance with
lexical-level control. In general, tuning a to
emphasize dense similarity («>0.5) and

increasing k leads to consistent gains in ID
performance.

Slot Filling. Compared to ID, the performance of
SF exhibits less stability across values of « and k,
as illustrated in Figure 6. Overall, the results are
more scattered and suggest greater sensitivity to the
interplay between retrieval parameters. The best
performance is achieved at ¢ =0.3 and k=5,
yielding an F1 score of 82.19%, whereas the worst
result occurs at @ =1.0 and k =1, with a score of
79.95%. Notably, in contrast to the ID task,
increasing the number of examples, particularly at
higher o values, does not necessarily lead to
performance gain. This suggests that relying solely
on embedding-based similarity is not sufficient
when including more examples.
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Figure 6. The impact of parameters a and k on slot filling
F1 score.

The irregular pattern observed reflects the nature of
sequence tagging, which depends more heavily on
token-level alignment and exact lexical cues. These
findings suggest a trade-off between the
informativeness of examples and their quality.
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Table 1. Main results comparing different zero-shot cross-lingual methods for Persian. The best scores are shown in bold.

Intent Detection (I1D) Slot Filling (SF)

Methods Accuracy micro-F1 score
GAN-based model (MBERT + BiLSTM) [33] 76.15 13.00
GAN-based model (encoder-decoder) + Multi-task Learning [36] 86.45 59.60
Adapted Few-shot Prompting (k =1) [14] 63.80 74.61
Adapted Few-shot Prompting (k = 3) [14] 65.40 80.60
Adapted Few-shot Prompting (k = 5) [14] 84.40 82.50
Zero-shot ChatGPT (GPT-40) [14] 60.40 75.46
Proposed Method: Dynamic Few-Shot Prompting (k = 1) (a8i8100) (aB(i'%ZS)
Proposed Method: Dynamic Few-Shot Prompting (k = 3) (ag?;8100) (081=.8120)
Proposed Method: Dynamic Few-Shot Prompting (k = 5) (agiéon (a82:'1093)

Table 2. Performance of our method on the intent detection task across different parameter configurations. The best values

are in bold.
Micro Average Macro Average Weighted Average

a k Precision/Recall/F1 Precision Recall Fl Precision Recall F1

0 1 80.40 34.81 36.20 32.95 96.89 80.40 87.43

0 3 88.80 48.45 53.04 49.02 96.51 88.80 92.22

0 5 92.00 52.02 53.61 52.33 97.56 92.00 94.55
0.3 1 84.60 45,55 50.32 44,92 96.48 84.60 89.76
0.3 3 90.80 56.39 56.66 55.24 97.54 90.80 93.80
0.3 5 92.80 58.66 58.86 58.56 97.15 92.80 94.87
0.5 1 82.00 37.66 41.25 36.72 97.02 82.00 88.33
0.5 3 89.20 53.55 56.56 53.56 96.83 89.20 92.55
0.5 5 92.60 59.65 62.78 60.52 97.76 92.60 94.95
0.7 1 85.40 49.27 50.76 48.67 97.35 85.40 90.64
0.7 3 90.60 57.53 64.54 58.50 97.58 90.60 93.64
0. 5 94.40 69.08 71.01 69.69 97.98 94.40 96.08
1.0 1 86.80 45.35 50.57 45.29 96.94 86.80 91.11
1.0 3 92.80 67.87 70.76 68.79 97.51 92.80 94.99
1.0 5 93.60 56.86 60.58 57.84 97.47 93.60 95.34

4.3.2. Comparison of Different Models

To address RQ2, we compare the performance of
our proposed method (Dynamic Few-Shot
Prompting) against various baselines, including
GAN-based models [33, 36], a zero-shot ChatGPT
setting, and an adapted few-shot prompting method
[14] across different values of k. Table 1 reports the
results for both 1D and SF.

The GAN-based baseline (MBERT + BiLSTM)
[33], which employs an adversarial learning
approach to generate language-independent
representations, achieved reasonably good results
for ID but performed poorly on SF, primarily due
to its limited capacity to capture fine-grained,
token-level dependencies in Persian. In contrast,
the other GAN-based baseline (encoder-decoder),
which utilizes the multilingual BART (mBART)
architecture and emphasizes preserving semantic
content, achieved significantly better results for
both the ID and SF tasks.

Zero-shot ChatGPT, relying solely on its internal
knowledge, produced moderate results for both
tasks, with 60.40% accuracy on ID and an F1 score

of 75.46% for SF. This highlights the limitations of
general-purpose LLMs in zero-shot settings,
especially for structured language understanding
tasks. Nevertheless, it serves as a useful baseline
that offers insight into performance without task-
specific supervision.

Comparing our method with the Adapted Few-shot
Prompting approach, which is the most similar
baseline to ours, under various values of k (each
using its optimal «), we observe substantial
improvements for ID across all k values. This
underscores the importance of sentence-level
semantic similarity in ID and suggests that
dynamically retrieved examples offer greater
utility than static ones, even when length and
diversity are considered.

Furthermore, for SF, while our method achieves
performance on par with the adapted approach at
k=5, it outperforms itat k =1 and k =3. These
findings indicate that even feeding a small number
of dynamic examples to an LLM can be more
informative than statically selected ones.
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Table 3. Performance of our method on the slot filling task across different parameter configurations. The best values are in

bold.
Micro Average Macro Average Weighted Average
a k Precision Recall F1 Precision Recall F1 Precision Recall F1
0 1 79.99 8158 80.78 59.08 59.11 57.11 82.09 8158 81.46
0 3 78.86 82.46 80.62 55.28 58.22 55.25 81.46 82.46 81.62
0 5 79.51 82.64 81.05 61.22 63.43 60.61 81.77 82.64 81.89
03 1 79.39 80.88 80.13 56.89 60.00 56.04 80.92 80.88 83.06
03 3 78.82 82.29 80.52 63.45 65.75 62.97 81.35 82.29 81.52
03 5 80.53 83.93 82.19 66.68 62.23 65.73 82.75 83.93 83.06
05 1 79.92 81.94 80.92 62.49 64.98 6159 81.87 81.94 8151
05 3 79.67 82.76 81.19 65.02 67.61 64.85 81.64 82.76 81.91
05 5 79.77 82.87 81.39 62.28 66.67 62.57 82.06 82.87 82.11
07 1 79.12 8111 80.10 61.84 64.14 60.99 81.18 8111 80.82
07 3 79.04 82.70 80.83 60.19 63.77 60.06 81.61 82.70 81.79
07 5 78.72 82.64 80.63 60.02 64.37 60.30 81.34 82.64 81.62
10 1 78.55 8141 79.95 57.04 60.01 56.19 81.06 81.41 80.87
1.0 3 80.41 83.28 81.82 63.75 66.30 63.34 82.43 83.28 82.54
10 5 78.66 81.41 80.69 61.23 62.94 60.73 81.46 82.82 81.78
The statistical reliability of the reported results is
assessed in Appendix B. 5. Conclusion
In this work, we introduced a zero-shot cross-
4.3.3. Fine-Grained Performance Analysis lingual method for  Persian  language
In response to RQ3, we conduct a fine-grained understanding, leveraging machine translation,
analysis to examine how performance varies across dynamic example retrieval, and GPT-40

different « and k configurations in terms of
precision, recall, and F1.

Intent Detection. Table 2 summarizes the results of
our method on the ID task under various
configurations. Micro-level metrics, which are
identical to accuracy, indicate strong performance
across settings, with the best results achieved at
a=0.7 and a=1.0. Macro-level scores show
more variation, reflecting differences across intent
types. However, the consistently high weighted
scores suggest that the model performs well when
accounting for class frequency. Taken together, the
results affirm that increasing the number of
dynamically selected support examples enhances
intent detection performance.

Slot Filling. The detailed results in Table 3 show
that micro and weighted F1 scores for SF remain
consistently high across all configurations,
indicating strong overall performance at the token
level. Conversely, macro F1 fluctuates more,
reflecting variation in handling less frequent slot
types. Nevertheless, the best configuration, which
aligns across all three metrics, suggests good
generalization even to underrepresented classes.
Notably, even with k =1, our method remains
competitive (micro F1>80% for most a values),
demonstrating the value of dynamic prompting
even with few support examples. The stability
across o further confirms the robustness of our
method.

In general, the model maintains a good balance
between precision and recall, and gains in macro
F1 also indicate its ability to handle label
imbalance through dynamic selection.

prompting. Without requiring labeled data in the
target language, our approach constructs input-
sensitive prompts from semantically and lexically
similar examples retrieved from the source
language through a hybrid similarity strategy.
Experiments on the Persian-ATIS dataset
demonstrate that our method improves intent
detection and achieves competitive slot filling
performance, outperforming strong baselines,
including zero-shot LLM inference and prompting
techniques with fixed examples. Moreover, it
remains effective even with a single retrieved
example, underscoring its practicality for low-
resource scenarios. In future work, we plan to
extend this modular pipeline to other domains and
languages, and explore prompt optimization under
broader cross-lingual settings.
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Appendix A

To better interpret the quantitative results, we
conducted a manual qualitative inspection of
representative samples, as shown in Table 4. The
analysis reveals how translation errors,
tokenization mismatches, and alignment deviations
interact and affect the ID and SF tasks.

Sample 1 illustrates a case where the overall
translation quality is strong.
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Table 4. Samples from the proposed pipeline showing translation and alignment.

Sample 1 (a =0.7)

Input hlgS o0 sl 41 Sl 5l e 9 Ko (p0
utterance [vlm@‘?}&u ‘“Q‘J?j"‘“g'J” ‘ud{u "'\_T)\%_',” Lu}‘u ‘“E-?‘A” ‘"}‘5;2” hﬂx_i._[” hu\‘;‘)u]
Translation . .
(FA—EN) I want a morning flight from New York to Los Angeles

Top-k English

1. what flights from new york to los angeles
. [“what”, “flights”, “from”, “new”, “york”, “to”, “los”, “angeles”]
o flight
. [0, 'O, 'O, 'B-fromloc.city_name', ‘I-fromloc.city_name', 'O’ 'B-toloc.city_name',
'I-toloc.city_name']
2. please list the flights from new york to los angeles
. [“please”, “list”, “the”, “flights”, “from”, “new”, “york”, “to”, “los”, “angeles”]

o flight

Examples e [0,'0,'0,'0,'0, B-fromloc.city_name', 'I-fromloc.city_name', 'O, 'B-toloc.city_name’,
(k=3 ‘I-toloc.city_name']
3. i'dlike a flight from kansas city to los angeles that arrives in los angeles in the late afternoon
. ['i', ™d", 'like', 'a', "flight', 'from’, 'kansas', ‘city’, 'to', 'los', ‘angeles', 'that’, 'arrives', 'in', 'los', ‘angeles’,
'in'; 'the', 'late’, 'afternoon']
o flight
e [0O,'0,'0,'0,'0, "0, 'B-fromloc.city_name', 'I-fromloc.city_name', 'O', 'B-toloc.city_name',
'I-toloc.city_name', 'O', 'O', 'O, 'B-toloc.city_name', 'I-toloc.city_name', 'O', 'O’
‘B-arrive_time.period_of day', 'lI-arrive_time.period_of day']
sl ol o & Syss §f sl 4z 1
Franslatin 5 e b 4 S sl 2

355 5o ol o 0)ls 1B 5w By oS i bl G 4 e I S Sl S e 3

Normalization &

[H - ']uw-]" ‘"‘D‘" ‘”J)%j_:_}” ‘l!j‘l! 6”‘5[&)"9){_” ‘HA%H] .1
[n “'{n M. “]n "'l)" M .'TU“J” ‘n‘\in ‘VVJ)%EI| ‘"LSL“)"j),f." M n] 2

Tokenization ‘VVM]L}JH ."g)b" ‘H)Q‘E" .”)'IH ‘nd’.’n ~”)—">|5|” "'45" ‘HMU ‘"Q..l;_r.l]wJ” ‘"‘U," ‘”gs:':"“” "'u,,l;,sls” ‘n),‘u &"jlj)-,g" ‘u&au ‘ucau] 3
[H‘)}‘:@ll
1. [[0,0], [1,1],[2. 2], [3, 3], [4, 5], [5, 4], [6, 5], [7. 5]]
2. [[0,0], [1,6], 2, 1], [3, 1], [5, 2], [6, 4], [7, 3], [9, 71]
Alignment = [0, 'O, 'B-fromloc.city_name', 'O', {I-fromloc.city_name’, 'O','O', {I-toloc.city_name?]
3. [[0,0],[2 1], [3. 1], [4, 2], [5, 3], [6, 4], [7, 5], [8, 6], [9, 7], [10, 7], [11, 9], [12, 16], [13, 14], [14, 15], [15,
15], [16, 11], [18, 10], [19, 13]]
= [0,'0','0', ‘0", 'B-fromloc.city_name', ‘I-fromloc.city_name’, ‘0", {I-tol me, '0','0",
'B-arrive_time.period_of_day’, O}, {0}, 'I-arrive_time.period_of_day’, '
'I-toloc.city_name’, ‘O]
> Intent: flight v/
Output > [0,'0,'0, 'depart_time.period_of_day', 'O', 'B-fromloc.city_name', 'O, 'B-toloc.city_name',
‘I-toloc.city_name', 'O"]
Sample 2 (a =0.3)
Input OFwgr & pgiwgsd 3l ad b S saslgn ol
utterance [”Q?:»w}g” ‘"4_3” n”\b}:«d}:-k” ‘VV}‘VV g”é\élJa” ‘H&{H ‘HLSL‘:)_‘S)%.H AHJ)}Q.)_)‘H]
Translation .
(FAEN) The cheapest one -way flights from Houston to Boston

Top-k English
Examples
k=3

1. what's the cheapest one way flight from oakland to boston
. ['what', "™'s", 'the', 'cheapest', ‘one’, ‘way', 'flight’, 'from’, 'oakland’, 'to', 'boston’]
e flight
. [0, 'O, 'O, 'B-cost_relative', 'B-round_trip', 'I-round_trip', ‘0", 'O", 'B-fromloc.city_name', 'O’,
'B-toloc.city_name']

2. what is the cheapest one way flight from atlanta to boston
° ['what', "is', 'the', 'cheapest’, 'one’, ‘way’', ‘flight', ‘from’, ‘atlanta’, 'to’, 'boston’]
e flight
. [0, 'O, 'O, 'B-cost_relative', 'B-round_trip', 'I-round_trip', 'O, 'O’,
'B-fromloc.city_name', 'O’ '‘B-toloc.city _name']
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Table 4. Continued.

3. what are the cheapest one way flights from denver to atlanta
. ['what', 'are’, 'the’, 'cheapest', ‘one’, ‘way’, 'flights', ‘from’, ‘denver’, 'to', ‘atlanta']
e flight
. [0, 'O, 'O, 'B-cost_relative', 'B-round_trip', 'I-round_trip', ‘0", 'O',
'‘B-fromloc.city_name', 'O", '‘B-toloc.city_name']
Translati ol g 4 92l 5l 5l a8,k S5l Sl ) e 4L
ranslation T
(EN—FA) Cone Gy & LT 51 a8l S 5l 052
ez BT 4y 59 51 byl S5 sloly o533
. . [IICA‘JIH ‘"Q}:&J%H‘ ”4.1" ‘Hmslﬂ ‘")_‘" 5”43:)10\1.{" ‘H)']H ‘")_‘5)-3:” ‘"L})‘)-:-;‘)') " ‘”5}-3?;” ‘”4.?”] .1
Normallzatlon & [" - "o " "4.1" ”L:_}wi" ”'l” "43: \&,H VL‘ "non ‘ ‘H] 2
Tokenization Rl u5~:’9~3 cdy T s b T BT IG5 oL I
[n?n ‘u S " "‘L“.J)Ul" ‘u;b.u ‘")95~>" ‘nj‘n "'Aé)!ada_"' ‘“5‘-‘”)‘5;—.{." ‘“L’-‘J‘m)')‘"] 3
1. [[0,01, [1, 1], [3 2], [4, 5], [5, 5], [6, 31, [, 41, [7, 6], [8, 71, [9, 8], [10, 9]

'B-toloc.city_name', ‘O]

Alignment 2. [[o,0],[3,0][4 2] [5,2],1[6,1],[7, 3], [8, 41, [9, 5], [10, 6], [10, 7]]
Output > Intent: flight«
P > ['B-cost_relative', 'O, {I-round_trip’, 'I-round_trip', 'O", 'B-fromloc.city_name', ‘0", 'B-toloc.city_name']

Each pair [i, j] shows that the i English token is aligned with the j Persian token.

The minor issues observed mainly concern
sentence fluency rather than semantic accuracy.
Consequently, the translated utterance preserves
the intended meaning and accurately renders all
slot-bearing entities (e.g., fromloc.city_name,
toloc.city name). Although the city name “< 155"

(“Newark”) was translated as “New York,” and this
substitution led to the retrieval of semantically
different English examples, the retrieved utterances
still belonged to the same intent category (flight),
and therefore did not affect the model’s final
prediction.

Moreover, Persian tokenization and normalization
introduce certain systematic mismatches. Due to
the use of half-spaces, compounds such as
“saly> o must not be split into “ . and “ 2l for

consistent processing. We used the Hazm toolkit to
normalize tokens, which standardizes the text
according to Persian orthographic rules. However,
this process sometimes produces discrepancies
with the gold data. For example, proper names like
“ ol J” may appear as two separate tokens

("™ " JM) in the gold annotation. Such

inconsistencies can misalign tokens during
alignment evaluation.

Nevertheless, when the alignment correctly
identifies the slot types (even if the B—I tags are not
perfectly assigned), the LLM’s contextual
understanding often compensates for these

inconsistencies. In this sample, despite minor
alignment errors and tokenization mismatches, the
model correctly predicted both the intent (flight)
and all slot labels, including the proper B-lI
structure for “Los Angeles.” This suggests that the
overall translation—alignment pipeline preserves

essential slot semantics even under noisy
conditions.
Sample 2, in contrast, highlights a more

challenging case where the intent boundary is
semantically ambiguous. The correct intent should
be airfare, but all top-k retrieved examples were
labeled as flight, introducing a bias toward that
intent during prompting. While the translation
correctly rendered most slot-related tokens, the
expression “as,L <, (“one-way”) proved difficult

for the alignment model to handle. The system
interpreted it as a round_trip tag but failed to
produce the correct B structure.

Given that the evaluation was performed at the
span level, such boundary-level mismatches can
lead to substantial penalties. Even a small
misrecognition around compound slots such as
“a3 b G may propagate considerable error into the

span-based metrics. In contrast, similar issues were
handled more effectively for city and country
names, suggesting that the model can better cope
with such entities.

In a nutshell, these qualitative cases demonstrate
that translation errors in our setup rarely distort slot
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semantics, while normalization and tokenization in
Persian introduce systematic yet predictable
mismatches. The results confirm that the
translation—alignment pipeline remains sufficiently
reliable for cross-lingual intent detection and slot
filling. At the same time, targeted improvements
addressing specific sources of error could further
strengthen the model’s stability and consistency in
future work.

Appendix B

To assess the statistical reliability of the reported
results, we estimate confidence intervals for both
ID accuracy and SF F1 using non-parametric
bootstrap resampling, which allows uncertainty
estimation directly from the empirical distribution
of predictions on the test set.

We perform 10,000 bootstrap resamples, each
drawn with replacement from the 500 test
instances, using a fixed random seed (42) for
reproducibility. For each resample, ID accuracy
and SF F1 are recomputed, and 95% confidence
intervals are derived from the resulting empirical

score distribution. Given the limited size of the test
set, these intervals are approximate, but they
provide a meaningful indication of the stability of
the reported metrics.

As shown in Table 5, the reference scores (as
reported in Table 1) fall well within their
corresponding 95% bootstrap confidence intervals,
demonstrating that the results are stable with
respect to test set variability. These findings
indicate that the reported metrics exhibit stable
behavior under resampling-driven uncertainty
estimation.

Table 5. 95% bootstrap confidence intervals for the

proposed method’s performance.

Intent Detection
(ID) Accuracy

Slot Filling (SF)

Methods micro-F1 score

Dynamic Few-Shot [84.00, 89.80] [78.90, 82.90]

Prompting (k =1) (¢ =1.0) (e =05)
Dynamic Few-Shot [90.80, 95.20] [79.80, 83.80]
Prompting (k = 3) (¢ =1.0) (¢ =10)
Dynamic Few-Shot [92.40, 96.40] [80.10, 84.30]

Prompting (k = 5) (a=0.7) (a=0.3)
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