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 In this study, an intelligent deep learning–based system is proposed 

for the automated detection of surface defects in copper cathode 

blanks used in the electrorefining process. The proposed pipeline 

combines a YOLOv8-based segmentation model with an 

EfficientNetV2-S classifier to localize and analyze defect-relevant 

regions of each blank. The segmentation module identifies the main 

copper regions, edge strips, and defect-prone areas associated with 

surface anomalies such as scratches, dents, misalignment, and 

discoloration, effectively reducing background interference and 

improving classification reliability. The dataset includes 5,266 

labeled images with a significant class imbalance, addressed using 

focal loss and class weighting during training. Experimental results 

on the test set demonstrate strong performance, achieving 98.32% 

accuracy, 96.71% precision, 95.67% recall, an F1-score of 96.19%, 

and an AUC of 0.9953. Grad-CAM visualizations and error analysis 

further confirm that the model consistently focuses on meaningful 

defect regions while remaining robust to background and illumination 

variations. These results highlight the effectiveness of the proposed 

approach for reliable quality control in industrial copper 

electrorefining lines. 
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1. Introduction 

Copper electrorefining is a well-established 

metallurgical process that enables the production of 

copper with very high purity levels, often 

exceeding 99.99% [1, 2]. In this process, impure 

copper from smelting serves as the anode, while 

stainless steel cathodes act as reusable substrates 

onto which copper ions are deposited. Despite 

continuous improvements in cell design and 

electrolyte chemistry, maintaining uniform and 

defect-free deposition remains a persistent 

challenge. Even small anomalies in the deposited 

layer can complicate the stripping stage, causing 

excessive adhesion or incomplete separation of the 

copper from the cathode [3, 4]. Such problems not 

only lower process efficiency but also increase 

operational costs through equipment damage and 

production downtime. Figure 1 provides a 

schematic overview of the electrorefining setup 

[5]. 

The durability of stainless steel cathodes, which are 

designed to undergo numerous production cycles, 

is another critical factor in sustaining efficient 

electrorefining operations [6]. Mechanical 

deformation or surface damage to these blanks 

accelerates replacement requirements and disrupts 

production continuity. In large-scale industrial 
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facilities, such as the Sarcheshmeh Copper 

Complex in Rafsanjan, Iran, surface defect 

identification has traditionally relied on visual 

inspection by human operators. 

Copper Anode

(Cu 99.4%)

Stainless Steel

Blank

Electrolysis

(Electro Refining Cells)

Copper Cathode

(Cu 99.99%)

 Cathode Washing 

&

Stripping Machine

 
Figure 1. Schematic overview of the copper 

electrorefining process. The figure is an original redraw 

by the authors and does not reproduce any previously 

published illustration; it is based on the general process 

description reported in [5]. 

While simple in principle, manual inspection 

suffers from significant limitations, including 

operator fatigue, subjective judgment, and reduced 

reliability under harsh industrial conditions. 

Exposure to electrolyte fumes, high temperatures, 

and chemically aggressive environments further 

degrade inspection accuracy and pose health and 

safety risks to operators. 

Delayed or inaccurate detection of surface defects 

allows defective blanks to progress to subsequent 

production stages, potentially causing equipment 

damage, increased scrap rates, and deterioration of 

final product quality. Over time, the physical and 

mental demands placed on human inspectors also 

elevate the risk of workplace accidents and 

operational inefficiencies. These challenges 

highlight the need for automated inspection 

solutions that can operate consistently and reliably 

under real-world electrorefining conditions. 

In this context, advanced image processing and 

deep learning techniques offer a promising 

alternative to conventional inspection methods. By 

enabling continuous, rapid, and objective defect 

detection, such approaches can significantly reduce 

human error, minimize operational downtime, and 

lower overall production costs. Accordingly, this 

study develops an intelligent inspection system that 

combines a YOLOv8-based model for detecting 

and segmenting critical regions of copper blanks 

with an EfficientNetV2-S network for the final 

classification of surface defects.  

By focusing analysis on defect-relevant regions 

rather than entire images, the proposed approach 

aims to enhance detection accuracy while 

maintaining robustness to environmental 

variability commonly encountered in industrial 

electrorefining lines. 

2. Related work  

Ensuring reliable detection of surface defects is 

essential for maintaining product quality and 

production-line efficiency [7]. Early industrial 

inspection systems largely depended on manual 

visual checks or classical image-processing 

techniques such as thresholding, Gabor filtering, 

and wavelet-based feature extraction [8]. While 

these approaches can perform adequately in 

controlled settings, they often degrade under real 

factory conditions where lighting fluctuations, 

specular reflections, and background texture 

variations are unavoidable—particularly when 

defects are subtle, small, or embedded in noisy 

surface patterns [8]. 

With the shift toward data-driven solutions, deep 

learning—especially convolutional neural 

networks (CNNs)—has become the dominant 

paradigm for automated surface inspection. 

Following major breakthroughs in large-scale 

visual recognition, CNN backbones such as 

AlexNet, VGG, and ResNet have been widely 

adopted for defect classification and recognition in 

industrial applications [9–13]. However, pure 

image-level classification only indicates whether a 

defect exists and does not provide spatial 

localization. This limitation motivated the adoption 

of object detection frameworks that simultaneously 

localize and recognize defect regions [14]. 

Two-stage detectors (e.g., Faster R-CNN) have 

been successfully adapted for inspection tasks, 

often by strengthening multi-scale representation 

and proposal quality. Representative enhancements 

include feature pyramid integration for improved 

detection of small defects [15], guided-anchor 

strategies and backbone optimizations for PCB and 

metal inspection [16], and deformable convolution 

or refined suppression techniques for steel-related 

applications [17]. Despite strong accuracy, two-

stage pipelines typically involve heavier 

computation and slower inference, which can be 

restrictive for real-time deployment on production 

lines. 

To meet real-time constraints, many recent studies 

have moved toward one-stage detectors such as 

SSD and YOLO [14]. Numerous YOLO variants 

have been tailored for industrial defect detection by 

improving feature fusion, reducing model 

complexity, and strengthening small-target 

sensitivity. For example, YOT-Net extended 

YOLOv3 using triplet-loss learning for copper 

elbow inspection [8], and other works combined 

YOLO backbones with lightweight networks to 

achieve favorable speed–accuracy trade-offs on 

metallic defect datasets [19]. Variants of YOLOv4 

and YOLOv5 have incorporated lightweight 
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designs, shallow–deep fusion, pruning strategies, 

and attention mechanisms to enhance detection 

under complex textures [20–23]. More recent 

anchor-free developments and improved label 

assignment schemes (e.g., YOLOv6) further 

improved robustness and localization quality in 

challenging scenarios [17]. 

Within metal-surface inspection, copper-related 

studies increasingly adopt YOLO due to its balance 

of speed and accuracy. For instance, Zhang et al. 

integrated a lightweight backbone and attention 

mechanisms to detect nodules on cathode plates 

while maintaining real-time capability [24]. CSC-

YOLO, derived from a YOLOv4-tiny design with 

cross-region fusion and channel attention, reported 

strong accuracy on copper strip/plate defect 

datasets with high throughput [25]. Similar trends 

are observed in steel inspection, where modified 

YOLO pipelines (e.g., Res2Net backbones, 

double-FPN designs, and transformer/attention 

augmentation) consistently report measurable 

gains over baseline models [26–29]. Recent 2025 

studies continue this direction: Zhou et al. proposed 

AEB-YOLOv8n for copper strips, improving 

mAP@0.5 while reducing parameters and 

computation, with explicit emphasis on small-

defect representation and efficient multi-scale 

fusion [33]. Likewise, Zhang et al. introduced an 

improved YOLOv10-based model (LAM-

YOLOv10n) for steel surface defects, reporting a 

precision gain over the YOLOv10n baseline while 

targeting practical real-time constraints [34]. 

Beyond YOLO-centric detectors, researchers have 

explored alternative backbones and hybrid designs 

to improve feature quality and deployment 

efficiency. EfficientNet-based modifications have 

been used to balance accuracy and inference cost, 

including attempts to replace standard YOLO 

backbones with EfficientNet variants combined 

with attention modules [30]. ResNet-based designs 

remain common for multi-scale defect recognition 

and PCB inspection, especially when paired with 

attention and feature pyramid strategies [16, 31]. In 

parallel, unsupervised and generative approaches 

(e.g., autoencoders and GANs) have been 

investigated for anomaly detection, particularly 

when defect labels are scarce or class distributions 

are highly imbalanced. Lightweight deployment 

has also been addressed through pruning and edge-

oriented optimization, enabling faster inference on 

embedded GPUs without a major loss in accuracy 

[32]. 

Although prior studies demonstrate that YOLO-

based detectors can localize defects efficiently, 

most existing pipelines emphasize bounding-box 

detection on generic metal datasets (often copper 

strips or steel plates) and do not explicitly address 

inspection requirements where (i) background 

suppression is crucial, (ii) defect regions are small 

and visually ambiguous, and (iii) downstream 

decision-making depends on fine-grained region 

analysis rather than coarse localization. In copper 

electrorefining environments, reflections, surface 

texture variability, and operational artifacts can 

further complicate detection. Moreover, many 

defect inspection workflows treat localization and 

final classification as a single-stage objective, 

whereas practical quality-control settings may 

benefit from a structured pipeline that first isolates 

critical regions and then performs a dedicated 

classification with loss functions tailored to class 

imbalance. These gaps motivate the proposed two-

stage system in this work, where YOLOv8-based 

segmentation is used to focus on key regions and 

suppress irrelevant background before 

EfficientNetV2-S performs defect classification 

under focal loss and class-weighting constraints. 

 

3. Method 

3.1. Dataset 

In this study, to train and evaluate the proposed 

system for automated surface defect detection in 

copper blanks, a dedicated dataset comprising 

5,266 real images was collected from the 

electrorefining process at the Sarcheshmeh Copper 

Refinery in Rafsanjan, Iran. The data were 

gathered over several weeks through continuous 

sampling in collaboration with the plant’s quality 

control team. Image acquisition was carried out 

using a Basler acA1300-200uc industrial camera, 

known for its high resolution and suitability for 

harsh environments. The camera was mounted in a 

fixed position to ensure a consistent angle and 

distance relative to the blank in all samples. 

To ensure high image quality and consistency 

during acquisition, a high-precision Time-of-Flight 

(ToF) laser distance sensor (wavelength: 940 nm, 

Class 1, measurement range: 1 cm to 5 m, accuracy: 

±1.5 cm) was employed to measure the distance 

between the camera and the blank surface in real 

time. Images were only captured when the 

measured distance was within a predefined range 

and the reflected signal from the blank surface met 

the required intensity threshold. This automated 

validation mechanism ensured that only high-

quality images under optimal visual and geometric 

conditions were stored in the dataset, thereby 

minimizing noise and inconsistencies. 

Maintaining standardization in image acquisition is 

crucial in computer vision and deep learning 

applications, particularly in industrial 

environments where minor deviations in lighting, 



Ghayoumi Zadeh et al./ Journal of AI and Data Mining, x(x): xxx-xxx, xxxx 
 

angle, or object placement can significantly impact 

model performance. To enhance dataset diversity 

and simulate real-world production conditions, 

image capture was conducted at different times of 

day and under varying workshop conditions, 

including the presence of electrolyte vapor, natural 

and artificial light fluctuations, and changes in 

humidity. This approach resulted in a dataset that 

better represents real operating conditions and 

improves the generalization capability of the 

trained model. 

The dataset was divided into two primary 

categories: Normal, representing blanks with 

consistent copper deposition and no critical flaws, 

and Reject, which includes blanks with significant 

issues that can interfere with the stripping process. 

As shown in Figure 2.a, normal blanks exhibit a 

smooth and uniform copper layer. In contrast, 

Figures 2.b–2.f present typical defective cases. In 

Figure 2.b, the copper layer bridges across the two 

upper windows of the blank, preventing proper 

separation. Figure 2.c highlights the absence of the 

edge strip, allowing copper to spread over the 

edges and increasing the likelihood of damage. 

Figure 2.d shows incomplete deposition in the 

lower part of the blank, signaling a failure in the 

process. In Figure 2.e, the edge strip is present but 

misaligned, leading to abnormal copper overflow 

around it. Lastly, Figure 2.f depicts a bent and 

damaged upper window, which can cause 

mechanical interference in the stripping equipment.   

 

   
(a) (b) (c) 

   

(d) (e) (f) 

Figure 2. Sample images of copper blanks. (a) Normal 

blank with uniform copper deposition. (b–f) Various 

defect types including: copper bridging upper windows 

(b), missing edge strip (c), incomplete lower deposition 

(d), misaligned edge strip (e), and deformed upper 

window (f). 

Together, these examples illustrate the range and 

complexity of defects in the Reject class and 

reinforce the necessity for reliable, automated 

inspection systems. 

 

3.2. Segmentation 

Semantic segmentation plays a crucial role in 

computer vision tasks that require precise 

localization and classification of each pixel in an 

image. In contrast to traditional classification 

models that assign a single label to the entire 

image, segmentation models analyze the spatial 

structure of the image to determine which pixels 

belong to which object or region [35]. This is 

particularly important in industrial inspection 

problems where the shape, position, and boundary 

of an object directly affect its functional 

assessment. In surface defect detection scenarios, 

segmentation can isolate regions of interest—such 

as the surface of the product—while ignoring 

irrelevant background information, thereby 

improving the accuracy and robustness of 

subsequent classification stages. By leveraging 

segmentation, the system is empowered to focus on 

specific zones of the object under inspection, which 

is essential when defects are subtle, localized, and 

possibly embedded in noisy surroundings [36]. 

In our study, early experiments showed that using 

classification alone on full-frame images often led 

to misclassification—especially in borderline cases 

where the defect was visually subtle or narrowly 

localized. In several instances, the classifier 

sometimes confused background textures, lighting 

variations, or equipment markings with actual 

defects. This confusion led to both false positive 

and false negative results [37]. This issue became 

more prominent due to the nature of the copper 

blanks used in electrorefining: although the 

position of each blank was fixed, variations in 

surface oxidation, lighting reflection, and 

environmental conditions introduced significant 

background noise. Furthermore, some reject 

conditions, such as incomplete copper deposition at 

the bottom or a thin bridge of copper between the 

top windows, were small in size and located at the 

periphery. Without spatial filtering, these features 

could be easily overlooked by a deep classifier 

trained on the entire image. Therefore, we decided 

to incorporate a segmentation stage as a 

preprocessing step to extract only the relevant 

regions of the blank from the original image. This 

not only reduced input complexity but also allowed 

the classifier to focus exclusively on the critical 

areas where defects are likely to occur. 

YOLOv8-seg was adopted as the segmentation 

backbone due to its practical balance between mask 

quality and inference efficiency for industrial 

deployment. Compared with earlier YOLO 

generations commonly used in defect inspection 

(e.g., YOLOv5/YOLOv7), YOLOv8 employs a 

more modern head design and training strategy that 

reduces sensitivity to anchor settings and improves 

localization of small, low-contrast regions—an 

important requirement in our application where 
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defects may appear as thin copper bridges, edge-

strip anomalies, or incomplete deposition near 

boundaries. In addition, as a one-stage instance 

segmentation model, YOLOv8-seg directly outputs 

pixel-level masks with a compact architecture, 

enabling standardized cropping and background 

suppression prior to classification. This provides a 

favorable speed–accuracy trade-off compared with 

heavier two-stage alternatives such as Mask R-

CNN or semantic segmentation pipelines like 

DeepLab, particularly under the practical 

constraints of memory usage and real-time 

inference. In our preliminary trials, the 

segmentation-guided input reduced 

misclassifications caused by background textures 

and illumination artifacts while maintaining the 

throughput needed for online quality control in 

copper refineries [38]. 

Mathematically, the YOLOv8 model is designed as 

a single-stage detector that maps an input image 

x∈ℝH×W×3 to a set of predictions including bounding 

boxes b=(x,y,w,h), class probabilities p∈[0,1]C, 

and binary segmentation masks m∈{0,1}H×W. The 

model optimizes a multi-part loss function: 

Loss Loss Loss
YOLOv8 mask mask box

Loss
cls cls

box
 



  
 

(1) 

In this formulation, the total loss is expressed as a 

weighted sum of three components. The 

classification term (λcls) measures how well the 

model distinguishes between classes and is 

typically implemented using Binary Cross-

Entropy. The regression term (λbox) evaluates the 

accuracy of bounding box localization, often with 

a loss such as CIoU. The mask term (λmask) applies 

binary cross-entropy to the predicted segmentation 

masks to ensure precise pixel-level delineation. 

The λ coefficients act as balancing factors, 

regulating the relative contribution of each 

component to the overall optimization process. 

This unified design allows YOLOv8 to jointly 

capture object existence, spatial location, and 

precise contours, leading to substantial 

improvements in identifying small, fine-grained, or 

low-contrast defects—characteristics commonly 

observed in the reject samples of our dataset. 

In training the YOLOv8 segmentation model, 

labeling was carried out at the blank-surface level, 

including the copper deposition zone, edge strips, 

and potential defect regions. This choice stemmed 

from the observation that distinguishing normal 

from reject blanks often depends on very fine 

details—such as slight miscoverage of copper or 

small bridging—that are only meaningful within 

the geometry of the blank itself. Conversely, the 

surrounding scene introduced irrelevant variations 

in lighting, textures, and background structures that 

could confuse the model. Focusing annotations 

solely on the blank region eliminated this noise, 

resulting in clearer masks and more consistent 

preprocessing. Such structured labeling not only 

enabled precise cropping but also enhanced the 

overall robustness and interpretability of the defect 

detection pipeline. 

Figure 3 demonstrates how preprocessing 

improves blank-region segmentation. In the left 

panel (a), the raw camera image contains 

background artifacts and environmental noise that 

can interfere with reliable feature extraction. In 

contrast, the right panel (b) shows the outcome 

after YOLO-based segmentation and cropping, 

where a clear and standardized view of the blank 

surface is obtained, providing a more suitable input 

for downstream analysis and classification. 

 

 
 

(a) (b) 

Figure 3: (a) Example of a raw input image captured 

from the production line, including background clutter; 

(b) Preprocessed and segmented blank region using 

YOLOv8, isolating the area of interest for reliable defect 

detection. 

3.3. Classification Using EfficientNetV2-S 

Accurate classification of copper blank surfaces—

particularly in distinguishing between normal and 

reject categories—requires a model capable of 

detecting fine-grained visual differences across 

localized regions. In our dataset, many of the reject 

cases were characterized by subtle anomalies such 

as incomplete copper deposition, narrow bridging 

between zones, or slight deformations in edge 

areas, all of which were difficult to capture without 

a high-capacity yet detail-sensitive network. These 

challenges ruled out the use of shallow models or 

standard CNNs, which often fail to detect nuanced 

surface-level inconsistencies, especially when 

trained on small or imbalanced datasets. To address 

these demands, we selected EfficientNetV2-S, a 

state-of-the-art convolutional neural network that 

combines efficient scaling, faster convergence, and 

enhanced representational capacity. Its compound 

scaling method allows the model to maintain a 

good trade-off between accuracy and 

computational cost—making it suitable for 

deployment in industrial environments while 

ensuring robustness in detecting delicate surface 
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defects. The network’s proven performance in 

various fine-grained classification benchmarks 

further supported its adoption in our pipeline [39, 

40]. 

For the classification task, we selected 

EfficientNetV2-S, a modern convolutional neural 

network architecture that offers a strong trade-off 

between accuracy and computational efficiency. 

This model is particularly well-suited for our 

application, as distinguishing between normal and 

reject copper blanks often depends on fine-grained 

local features such as incomplete copper 

deposition, irregular connections near the 

windows, or subtle anomalies around the edge strip 

area. These features are challenging to capture 

using conventional CNNs, especially under 

varying illumination and industrial background 

noise. All images were resized to a resolution of 

384×384 and normalized using standard ImageNet 

statistics:                                                 

x
x norm






  

(2) 

 

EfficientNetV2 is based on compound scaling, 

which uniformly scales the depth d, width w, and 

resolution r of the network using a set of fixed 

coefficients (α, β, γ) subject to the constraint: 
2 2

2,    2           for a x increase in FLOPs    
(3) 

 

The goal is to maintain optimal accuracy while 

increasing the model size within a bounded 

computational budget. Each scaling factor 

contributes as follows: 

 d: increases network depth (number of 

layers), 

 w: increases the number of channels per 

layer, 

 r: increases the input image resolution. 

The model is composed of multiple stages of 

Fused-MBConv and MBConv blocks. Each 

MBConv block applies a depthwise separable 

convolution with an expansion phase followed by 

a squeeze-and-excitation (SE) mechanism. The 

output of an MBConv block can be expressed as: 

                           

  ( ( ( ,  _ )))  y SE BN DWConv x W d x   (4) 

                   

Where x is the input feature map, DWConv is 

depthwise convolution, BN is batch normalization, 

and SE denotes the channel attention module. In 

early layers, EfficientNetV2-S uses Fused-

MBConv blocks that replace the separate 

expansion and depthwise convolution with a single 

3×3 convolution:     

         

   ,     
3 3

y BN Conv x Wconv


 (5) 

                                            

This design improves GPU parallelism and reduces 

training time. After the final convolutional stage, 

the feature map F∈ℝH×W×C is passed through a 

Global Average Pooling (GAP) layer and a fully 

connected Dense layer with sigmoid activation to 

perform binary classification: 
 

ˆ ( ( ) )y W GAP F b    (6) 

 

Where: 
 

1
( )

,1 1

H W
GAP F F

i ji jHW
  

 
 

(7) 

1
( )

1
z z

e
  


 

(8) 

 

This formulation allows the network to combine 

spatial features effectively and make its final 

classification decision within a broader contextual 

view. Compared to the original EfficientNet, the 

EfficientNetV2-S variant incorporates several 

refinements that enhance both accuracy and 

efficiency. Early layers employ fused operations to 

streamline computations, while a progressive 

training strategy gradually increases input 

resolution and augmentation difficulty to improve 

learning stability. In addition, the architecture has 

been carefully tuned for faster GPU inference and 

stronger convergence on small- to medium-scale 

datasets, making it well-suited for practical 

industrial applications. 

These improvements reduce training time by up to 

30% while maintaining or improving accuracy on 

tasks involving subtle visual distinctions. 

The architecture depicted in Figure 4 illustrates the 

sequential stacking of fused-MBConv and 

MBConv blocks, incorporating squeeze-and-

excitation modules and compound scaling to 

optimize the model’s capacity for depth, width, and 

resolution. 

 

 
Figure 4. The architecture of EfficientNetV2-S, consisting 

of progressive convolutional stages with fused-MBConv 

and MBConv blocks optimized for both speed and 

accuracy. 
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3.4. Addressing Class Imbalance: Class 

Weighting and Focal Loss 

One of the primary challenges encountered in 

training deep learning models for industrial defect 

classification is class imbalance, a condition where 

the number of samples in one class (typically the 

“normal” or non-defective cases) significantly 

outweighs the number of samples in the other class 

(i.e., “reject” or defective cases). In our dataset, this 

imbalance was particularly pronounced, as reject 

copper blanks—those exhibiting surface defects, 

misaligned edge strips, or incomplete copper 

deposition—occur infrequently in the production 

line of the Sarcheshmeh copper refinery. As a 

result, the training set contained several times more 

normal samples than reject ones, leading to a 

natural bias in favor of the majority class. 

This imbalance can severely hinder the model’s 

ability to detect and generalize rare but critical 

anomalies. A classifier trained on such a skewed 

dataset may achieve deceptively high accuracy 

simply by predicting the dominant class for most 

inputs, while entirely missing subtle reject cases—

particularly dangerous in real-world inspection 

scenarios where failure to identify a defect can lead 

to process interruptions or equipment damage. 

To mitigate this problem, we first adopted a class 

weighting strategy that modifies the standard 

binary cross-entropy loss to emphasize the 

minority class during optimization. Let y∈ {0, 1} 

denote the true label, and ŷ ∈ (0, 1) the predicted 

probability of the positive class (i.e., “reject”). The 

weighted binary cross-entropy loss is defined as: 

ˆ ˆlog( ) (1 ) log(1 )1 0weighted
w y y w y y    L  (9) 

In this formulation, w1 represents the weight 

assigned to the positive class (minority), while 𝑤0 

corresponds to the negative class (majority). 

Typically, 𝑤1 is set higher than 𝑤0 to compensate 

for class imbalance, and the values are calculated 

based on the inverse frequency of each class in the 

dataset. This weighting strategy ensures that the 

model pays greater attention to the 

underrepresented reject samples during training. 
 

N
w c

C N c




 
(10) 

Here, N is the total number of samples, Nc is the 

number of samples in class c, and C is the number 

of classes (2 in our binary case). This approach 

encourages the model to pay more attention to 

underrepresented reject cases, improving 

sensitivity and reducing bias. 

While class weighting helps reduce the impact of 

imbalance, it is often insufficient in scenarios 

where the classifier continues to overfit “easy” 

samples and fails to learn from hard or ambiguous 

examples. To enhance the learning process further, 

we incorporated focal loss, a modified cross-

entropy loss function that dynamically scales the 

contribution of each sample based on its 

classification difficulty. The focal loss function is 

defined as: 

(1 ) log( )
focal

p pt t t


  L  (11) 

 

Where: 

 ˆ
tp y if  y=1 , and ˆ1tp y  if  y=0 

 αt ∈[0,1] is a class-balancing parameter 

similar to class weighting 

 γ≥0 is the focusing parameter that reduces 

the contribution of well-classified samples 

The intuition behind focal loss is that it down-

weights the loss for easy examples (where pt≈1) 

and focuses more on hard or misclassified 

examples (where pt≪1). This makes it particularly 

effective in imbalanced datasets with fine-grained 

classification needs. The Focal Loss parameters, 

α=0.6 and γ=1.5, were selected after extensive 

empirical experiments with various values on the 

validation set to achieve optimal performance. The 

final loss function used for training the classifier 

was: 
 

 ˆ , ; 0.6, 1.5
final focal

y y    L L  (12) 

 

This formulation improved the network’s ability to 

detect borderline reject cases, which are often 

visually subtle and underrepresented. Moreover, it 

helped reduce false negatives—instances where 

defective blanks might be misclassified as 

normal—thereby increasing the reliability and 

robustness of the inspection system for industrial 

deployment. 

 

4. Result 

To evaluate the effectiveness of the proposed 

defect detection system, the dataset was divided 

into three distinct subsets: training, validation, and 

test sets. The training set included a total of 2,814 

images, comprising 2,300 samples labeled as 

normal blanks and 514 samples as reject blanks. 

The validation set, used for model tuning and early 

stopping, consisted of 1,202 images, with 919 

belonging to the normal class and 283 to the reject 

class. Finally, the test set, which remained unseen 

during training, included 1,250 images—973 from 

the normal category and 277 from the reject 

category. This distribution reflects a class 

imbalance, particularly in the reject class, and 
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necessitated the use of specialized training 

strategies such as focal loss and class weighting to 

mitigate potential performance degradation. In the 

following subsections, we present and analyze the 

classification results using metrics including 

accuracy, precision, recall, F1-score, AUC, and 

confusion matrix.  

Figure 5 illustrates the accuracy progression of the 

proposed model during the training process over 

100 epochs. As shown in the plot, both training and 

validation accuracy improve significantly during 

the initial epochs, with the training accuracy 

starting from approximately 75% and steadily 

approaching 100%. The validation accuracy 

follows a similar trend, rapidly increasing to 

around 97% and maintaining a stable trajectory 

throughout the later epochs.  

 
Figure 5. Accuracy trends during training and validation 

over 100 epochs using EfficientNetV2-S. 

The close alignment between training and 

validation curves suggests that the model 

generalizes well to unseen data and does not exhibit 

overfitting. This consistent accuracy is indicative 

of the model’s ability to correctly distinguish 

between normal and defective copper blanks based 

on subtle surface patterns and localized defects. 

The use of a strong backbone (EfficientNetV2-S), 

along with appropriate regularization techniques 

such as dropout and batch normalization, has likely 

contributed to this high and stable performance. 

Figure 6 presents the training and validation loss 

curves over 100 epochs. As illustrated, both loss 

functions exhibit a steep and consistent decline 

during the early training stages, reflecting rapid 

convergence and effective learning. The training 

loss begins around 0.9 and decreases smoothly to 

near-zero values, indicating successful error 

minimization on the training set. The validation 

loss closely follows the same trend, which suggests 

that the model generalizes well to unseen data and 

does not overfit. 

 
Figure 6. Loss reduction trends during training and 

validation, indicating effective model convergence. 

The close alignment between training and 

validation loss curves demonstrates that the 

regularization techniques—such as dropout, batch 

normalization, and class weighting—were 

effective in stabilizing the learning process. 

Moreover, the overall smoothness and convergence 

of the loss functions validate the suitability of the 

chosen model architecture (EfficientNetV2-S) for 

classifying surface defects in copper blanks. The 

low final loss on both datasets confirms that the 

model has learned discriminative features that 

distinguish normal blanks from reject cases, even 

under subtle or noisy variations. 

Figure 7 depicts the evolution of the Area under the 

Curve (AUC) metric for both the training and 

validation datasets over the course of 100 epochs. 

AUC is a robust measure that reflects the model’s 

ability to distinguish between classes across 

various decision thresholds. A value closer to 1.0 

indicates excellent separability, while a value of 

0.5 suggests performance equivalent to random 

guessing. As shown in the plot, the training AUC 

increases rapidly during the early stages and 

quickly approaches 1.0, maintaining a nearly 

perfect score in the later epochs. The validation 

AUC follows a similar trajectory, reaching over 

0.95 within the first 10 epochs and remaining stable 

with minimal fluctuation thereafter. The proximity 

of the validation AUC to the training curve is a 

strong indicator of the model’s generalization 

capability and suggests that the learned 

representations are robust against overfitting. The 

consistently high AUC scores confirm that the 

model performs well not only at a single 

classification threshold (like 0.5), but across the 

entire range of possible thresholds—an essential 

requirement in industrial inspection tasks where the 

cost of misclassification may vary. This reliability 

across thresholds demonstrates that the classifier is 
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highly effective in identifying both subtle and 

obvious defects on the copper blank surfaces. 

 
Figure 7. AUC progression over epochs, reflecting 

improved class separability during training and 

validation. 

Figure 8 shows the Receiver Operating 

Characteristic (ROC) curve for the proposed 

classification model, evaluated on the test dataset. 

The ROC curve represents the trade-off between 

the true positive rate (TPR) and false positive rate 

(FPR) across various classification thresholds. The 

closer the curve hugs the top-left corner, the better 

the model is at distinguishing between the two 

classes—here, normal and reject blanks. 

The computed area under the curve (AUC = 

0.9953) indicates near-perfect classification 

performance. AUC is a threshold-independent 

metric and is especially useful in imbalanced 

classification tasks such as this, where the reject 

class is underrepresented. A value above 0.99 

signifies that the model is highly capable of ranking 

positive samples higher than negative ones, 

regardless of the chosen decision threshold. 

From the shape of the curve, it is evident that the 

classifier achieves a high TPR with minimal FPR, 

confirming that the majority of reject samples are 

correctly identified without misclassifying many 

normal samples. This characteristic is critical in 

real-world copper production environments, where 

false negatives (i.e., missed defects) can lead to 

operational failures, and false positives (i.e., 

unnecessary rejections) can increase costs. 

 
Figure 8. ROC curve for the proposed model, 

demonstrating excellent separability with an AUC of 

0.9953. 

Figure 9 illustrates the Precision–Recall (PR) curve 

for the proposed classification model. The PR 

curve is especially informative in imbalanced 

classification scenarios, such as the current task 

where the number of reject samples is significantly 

lower than the normal class. Unlike the ROC curve, 

which considers true negatives, the PR curve 

focuses solely on the positive class (here, reject) 

and offers a better understanding of the trade-off 

between precision and recall. As shown, the model 

maintains a high level of precision across a wide 

range of recall values, with minimal drop-offs until 

very high recall thresholds. This behavior confirms 

that the model is able to detect most of the defective 

blanks (high recall) without producing many false 

positives (high precision). The curve remains close 

to the upper-right corner, which indicates superior 

performance. The reported Average Precision (AP) 

of 0.9871 further quantifies this performance. AP 

is computed as the area under the precision–recall 

curve and summarizes the model's ability to 

balance both objectives across all thresholds. An 

AP near 1.0 suggests that the classifier can reliably 

detect defects even when they are rare and subtle—

an essential requirement in industrial defect 

detection systems. 

Figure 10 displays the confusion matrix obtained 

from evaluating the proposed model on the test set. 

The matrix provides a detailed breakdown of 

correct and incorrect predictions across the two 

classes: Normal and Reject. Out of 973 normal 

samples, the model correctly classified 964 and 

misclassified only 9 as rejects. Similarly, among 

277 reject samples, 265 were correctly identified 

while 12 were incorrectly predicted as normal. 
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Figure 9. Precision–Recall curve with an AP of 0.9871, 

highlighting the model’s effectiveness in distinguishing 

classes under imbalanced data conditions. 

 
Figure 10. The confusion matrix shows strong 

performance on both classes, with minimal false positives 

and false negatives—especially important for reliable 

reject detection. 

This confusion matrix serves as the foundation for 

computing various evaluation metrics: 

 Accuracy: 

0.9832
TP TN

Accuracy
TP TN FP FN


 

  
 

(13) 

 Precision (for Reject class): 

  0.9671
TP

Precision
TP FP

 


 
(14) 

 Recall (Sensitivity): 

0.9567
TP

Recall
TP FN

 


 
(15) 

 F1-Score: 

1 2 0.9619
Precision Recall

F
Precision Recall


  


 

(16) 

                  

These results clearly indicate that the model 

maintains a high true positive rate for both classes 

while minimizing false alarms and missed 

detections. Particularly, the low false negative 

count (12 misclassified rejects) is critical in 

industrial contexts where failing to detect a 

defective blank could lead to downstream process 

failures or quality issues. 

 

5. Discussion 

The experimental results demonstrate that the 

proposed deep learning framework, combining 

segmentation with classification, is highly effective 

in identifying surface defects on copper blanks in 

an industrial electrorefining setting. The model 

achieved strong performance across multiple 

evaluation metrics, including accuracy, AUC, 

precision, recall, and F1-score, confirming its 

robustness in handling class imbalance and subtle 

visual anomalies. In particular, the integration of 

YOLOv8-based segmentation significantly 

improved classification reliability by eliminating 

background noise and focusing the classifier on 

relevant regions. However, to better understand the 

strengths and limitations of the model, it is 

essential to explore specific case examples, 

especially those involving misclassifications. In the 

following sections, we analyze a series of 

representative correct and incorrect predictions to 

gain insight into the model's behavior in real-world 

scenarios. 

Figure 11 provides visual examples of 

misclassified samples, offering critical insight into 

the model’s limitations. The top row shows 

instances of False Reject, where visually 

acceptable blanks were mistakenly predicted as 

defective. In these cases, factors such as surface 

texture irregularities, minor lighting artifacts, or 

subtle background shadows may have contributed 

to false positive decisions. For example, the third 

sample exhibits superficial blotches and oxidation 

stains that might have been interpreted as defect 

patterns by the classifier. The bottom row presents 

False Normal predictions, where genuinely 

defective blanks were incorrectly classified as 

normal. These samples often include edge-related 

anomalies or thin copper bridging near the top 

windows—features that may be either too fine or 

too localized for the model to detect reliably. In 

some instances, the uniformity of copper 

deposition in central regions may have outweighed 

the peripheral defects in the model’s decision-

making. These examples highlight the inherent 

challenge of classifying industrial surface 

anomalies, particularly in the presence of diverse 

background patterns, lighting variations, and fine-
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grained defects. They also emphasize the need for 

continued refinement of segmentation accuracy 

and consideration of spatial context in future model 

iterations. 

 
 Figure 11. Examples of Misclassified Blanks: False 

Rejects (Top) and False Normals (Bottom). 

Figure 12 illustrates the Grad-CAM visualization 

for a test sample, highlighting the spatial attention 

of the EfficientNetV2-S classifier during 

prediction. The yellow regions denote areas of high 

activation, indicating zones that strongly 

influenced the model’s decision, while blue and 

purple zones had minimal impact.  

 

 
Figure 12. Grad-CAM visualization showing the model’s 

focus on the central copper deposition area and lower 

edges, confirming attention to critical defect regions 

during classification. 

As shown, the model focuses primarily on the 

central and upper regions of the copper deposition 

area, where structural uniformity and deposition 

texture are most informative for classifying a blank 

as normal or reject. Interestingly, the activation 

map avoids background clutter and clamp regions 

at the top corners, suggesting that the segmentation 

pre-processing step successfully guided the 

model’s attention toward the relevant copper 

surface. However, some dispersed activation at the 

lower corners, particularly in the left area with faint 

discoloration, indicates potential sensitivity to 

peripheral noise or artifact. This type of 

visualization not only supports trust in the model’s 

interpretability but also confirms that the network 

has learned to prioritize the correct physical zones 

of interest—especially useful in applications where 

visual cues may be subtle and context-dependent. 

Table 1 provides a comparative analysis of various 

deep learning architectures evaluated on the copper 

blank surface defect dataset. The results highlight 

the performance of five baseline models 

(MobileNetV2, MobileNetV3 Small, ResNet101, 

Swin-Tiny, and DenseNet121) against the 

proposed model based on EfficientNetV2-S. Given 

the industrial context of this study, where real-time 

deployment and accurate identification of rare 

reject cases are both critical, multiple evaluation 

metrics were considered. While some architectures 

such as ResNet101 and DenseNet121 showed 

strong recall or F1-score values, they typically 

required higher computational resources. In 

contrast, MobileNetV3 Small, though lightweight, 

failed to capture fine-grained defect features 

effectively, resulting in relatively poor recall 

(0.7040). The proposed EfficientNetV2-S model 

achieved the highest overall performance, with an 

accuracy of 98.32%, precision of 96.71%, recall of 

95.67%, F1-score of 96.19%, and an AUC of 

0.9953. These results confirm its superior 

capability in detecting subtle reject patterns, while 

maintaining a lightweight architecture suitable for 

industrial environments with limited 

computational capacity.  

Table 1. EfficientNetV2-S delivers the best F1-score and 

AUC with superior efficiency. 
Model Acc Pre Recall F1 AUC 

MobileNet

V2 

0.9712 0.9617 0.9061 0.9331 0.9926 

MobileNet

V3Small 
0.8960 0.8025 0.7040 0.7500 0.8905 

ResNet101 0.9800 0.9468 0.9639 0.9553 0.9932 

Swin-Tiny 0.9328 0.9214 0.7617 0.8340 0.8716 

DenseNet1

21 
0.9768 0.9559 0.9386 0.9472 0.9916 

Proposed 

Model 

0.9832 0.9671 0.9567 0.9619 0.9953 

 

In particular, high recall was a priority in this study 

due to the critical need to minimize false 

negatives—i.e., mistakenly classifying a defective 

cathode as normal, which could lead to 

downstream processing failures. EfficientNetV2-S 

effectively balances model complexity with 

performance, making it a reliable choice for 

deployment on smart inspection systems within 

copper refineries. 

 

6. Conclusion 

This study proposes a deep learning pipeline 

combining YOLOv8 segmentation and 

EfficientNetV2-S classification for automated 

defect detection on copper cathode blanks at the 
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Sarcheshmeh Copper Refinery. By effectively 

isolating critical regions, the system ensures 

robustness against industrial background noise and 

surface variability. The results demonstrate strong 

classification performance, achieving 98.32% 

accuracy, 96.71% precision, 95.67% recall, and an 

AUC of 0.9953 on the test set. These metrics 

confirm the system’s effectiveness in 

distinguishing subtle surface anomalies that could 

otherwise compromise the stripping process or 

damage production equipment. Techniques such as 

class weighting and focal loss were essential in 

addressing the inherent class imbalance, ensuring 

high sensitivity to the underrepresented "reject" 

category. Visual analyses using confusion 

matrices, ROC and PR curves, and Grad-CAM 

heatmaps further validate the system’s 

interpretability and generalization capability. In 

particular, the Grad-CAM results highlight that the 

classifier correctly focuses on defect-prone regions 

while ignoring irrelevant structures. Overall, the 

system offers a scalable, accurate, and interpretable 

solution for automated quality inspection in metal 

refining lines. Future work may focus on 

integrating multi-modal inputs (e.g., thermal 

imaging or depth sensing) and utilizing multi-

camera setups to achieve a more comprehensive 

view of the blank edges. Additionally, real-time 

edge deployment or unsupervised anomaly 

detection could be explored to further improve 

adaptability and minimize manual intervention. 

 

References 
[1] J. Hait, R. Jana, and S. Sanyal, “Processing of copper 

electrorefining anode slime: A review,” Mineral 

Processing and Extractive Metallurgy, vol. 118, no. 4, 

pp. 240–252, 2009. 
 

[2] R. Moskalyk and A. Alfantazi, “Review of copper 

pyrometallurgical practice: today and tomorrow,” 

Minerals Engineering, vol. 16, no. 10, pp. 893-919, 

2003. 
 

[3] A. Artzer, M. Moats, and J. Bender, “Removal of 

antimony and bismuth from copper electrorefining 

electrolyte: Part I—A review,” JOM, vol. 70, no. 10, pp. 

2033–2040, Oct. 2018. 
 

[4] J. Djokić, A. M. Alfantazi, R. Moskalyk, and M. 

Moats, “Influence of electrolyte impurities from e-waste 

electrorefining on copper extraction recovery,” Metals, 

vol. 11, no. 9, Art. No. 1383, Sep. 2021. 
 

[5] P. T. Smelting, “Electrolytic refining (ISA process),” 

May 2025. [Online]. Available: 

http://www.ptsmelting.com/e-re-isa.html [Accessed: 

May 29, 2025]. 
 

[6] J. Lu, Y. Wang, Z. Li, X. Zhang, and H. Liu, “Effect 

of rapid hollow cathode plasma nitriding treatment on 

corrosion resistance and friction performance of AISI 

304 stainless steel,” Materials, vol. 16, no. 24, Art. No. 

7616, Dec. 2023. 
 

[7] K. R. Ahmed, “DSteelNet: A real-time parallel 

dilated convolutional neural network with atrous spatial 

pyramid pooling for detecting and classifying defects in 

surface steel strips,” Sensors, vol. 23, no. 1, Art. No. 

544, Jan. 2023. 
 

[8] Y. Xian, H. Zhang, Z. Liu, J. Wang, and L. Li, 

“YOT-Net: YOLOv3 combined triplet loss network for 

copper elbow surface defect detection,” Sensors, vol. 21, 

no. 21, Art. No. 7260, Nov. 2021. 
 

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, 

“ImageNet classification with deep convolutional neural 

networks,” Communications of the ACM, vol. 60, no. 6, 

pp. 84–90, Jun. 2017. 
 

[10] K. Simonyan and A. Zisserman, “Very deep 

convolutional networks for large-scale image 

recognition,” arXiv preprint arXiv: 1409.1556, 2014. 
 

[11] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, 

D. Anguelov, D. Erhan, V. Vanhoucke, and A. 

Rabinovich, “Going deeper with convolutions,” in 

Proceedings of the IEEE Conference on Computer 

Vision and Pattern Recognition (CVPR), Boston, MA, 

USA, pp. 1–9, 2015. 
 

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual 

learning for image recognition,” in Proceedings of the 

IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR), Las Vegas, NV, USA, pp. 770–

778, 2016. 
 

[13] G. Huang, Z. Liu, L. van der Maaten, and K. Q. 

Weinberger, “Densely connected convolutional 

networks,” in Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR), 

Honolulu, HI, USA, pp. 4700–4708, 2017. 
 

[14] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. 

Reed, C.-Y. Fu, and A. C. Berg, “SSD: Single Shot 

MultiBox Detector,” in Computer Vision – ECCV 2016 

(Lecture Notes in Computer Science, vol. 9905), pp. 21–

37, 2016. 
 

[15] R. Wei and Y. Bi, “Research on recognition 

technology of aluminum profile surface defects based on 

deep learning,” Materials, vol. 12, no. 10, Art. no. 1681, 

2019. 
 

[16] B. Hu and J. Wang, “Detection of PCB surface 

defects with improved Faster-RCNN and feature 

pyramid network,” IEEE Access, vol. 8, pp. 108335–

108345, 2020. 
 

[17] W. Zhao, F. Chen, H. Huang, D. Li, and W. Cheng, 

“A new steel defect detection algorithm based on deep 

learning,” Computational Intelligence and 

Neuroscience, vol. 2021, Art. No. 5592878, 2021. 
 

[18] F. Huang, B.-w. Wang, Q.-p. Li, and J. Zou, 

“Texture surface defect detection of plastic relays with 

an enhanced feature pyramid network,” Journal of 

http://www.ptsmelting.com/e-re-isa.html


Automated Surface Defect Detection in Copper Blanks Using YOLOv8 Segmentation and EfficientNetV2-S Classification 

 

Intelligent Manufacturing, vol. 34, no. 3, pp. 1409–

1425, 2023. 
 

[19] X. Chen, J. Lv, Y. Fang, and S. Du, “Online 

detection of surface defects based on improved 

YOLOV3,” Sensors, vol. 22, no. 3, Art. No. 817, 2022. 
 

[20] Y. Xie, W. Hu, S. Xie, and L. He, “Surface defect 

detection algorithm based on feature-enhanced YOLO,” 

Cognitive Computation, vol. 15, no. 2, pp. 565–579, 

2023. 
 

[21] H. Huang, X. Tang, F. Wen, and X. Jin, “Small 

object detection method with shallow feature fusion 

network for chip surface defect detection,” Scientific 

Reports, vol. 12, no. 1, Art. no. 3914, 2022. 
 

[22]B. Fan and W. Li, “Application of GCB-net based 

on defect detection algorithm for steel plates ”,Research 

square ,2022. 
 

[23] Y. Ma, J. Yin, F. Huang, and Q. Li, “Surface defect 

inspection of industrial products with object detection 

deep networks: a systematic review,” Artificial 

Intelligence Review, vol. 57, no. 12, 2024. 
 

[24] Z. Zhang, X. Huang, D. Wei, Q. Chang, J. Liu, and 

Q. Jing, “Copper nodule defect detection in industrial 

processes using deep learning,” Information, vol. 15, no. 

12, Art. No. 802, 2024. 
 

[25] G. Zhang, T. Chen, and J. Wang, “CSC-YOLO: An 

image recognition model for surface defect detection of 

copper strip and plates,” Journal of Shanghai Jiaotong 

University (Science), vol. 30, pp. 1037–1049, 2025. 
 

[26] H. Zhao, J. Liu, X. Liu, Y. Shi, and Y. Qiao, “LSD-

YOLOv5: A steel strip surface defect detection 

algorithm based on lightweight network and enhanced 

feature fusion mode,” Sensors, vol. 23, no. 14, Art. no. 

6558, 2023. 
 

[27] C. Zhao, Y. Liu, H. Zhang, J. Wang, and X. Li, 

“RDD-YOLO: A modified YOLO for detection of steel 

surface defects,” Measurement, vol. 214, Art. No. 

112776, 2023. 
 

[28] J. Shi, J. Yang, and Y. Zhang, “Research on steel 

surface defect detection based on YOLOv5 with 

attention mechanism,” Electronics, vol. 11, no. 22, Art. 

no. 3735, 2022. 
 

[29] Z. Guo, Y. Liu, Y. Zhang, X. Wang, and J. Sun, 

“MSFT-YOLO: Improved YOLOv5 based on 

transformer for detecting defects of steel surface,” 

Sensors, vol. 22, no. 9, Art. no. 3467, 2022. 
 

[30] L. Li, Y. Wang, X. Zhao, Z. Liu, and H. Chen, “The 

bearing surface defect detection method combining 

magnetic particle testing and deep learning,” Applied 

Sciences, vol. 14, no. 5, Art. no. 1747, 2024. 

 

 

 

 

 
 

[31] Y. Xia, J. Xiao, and Y. Weng, “Surface defect 

detection of polarizer based on improved Faster R-

CNN,” Optical Techniques, vol. 47, no. 6, pp. 695–702, 

2021. 
 

[32] Y. Xian, H. Zhang, Z. Liu, J. Wang, and X. Li, “An 

EA-based pruning on improved YOLOv3 for rapid 

copper elbow surface defect detection,” Engineering 

Applications of Artificial Intelligence, vol. 123, Art. No. 

106412, 2023. 
 

[33] B. Zhou, H. Chen, J. Luo, P. Li, B. Xiang, and K. 

Li, “AEB-YOLO: An efficient multi-scale defect 

detection algorithm for copper strips,” AIP Advances, 

vol. 15, no. 9, Art. No. 095310, 2025. 
 

[34] L. Zhang, Z. Wang, Y. Ma, and G. Li, “Steel 

surface defect detection algorithm based on improved 

YOLOv10,” Scientific Reports, vol. 15, Art. No. 32827, 

2025. 
 

[35] J. Cao, Z. Wang, Y. Wang, X. Ma, and H. Li, “A 

graph-based approach for module library development 

in industrialized construction,” Computers in Industry, 

vol. 139, Art. No. 103659, 2022. 
 

[36] Y. Fang, L. Sun, Z. Wang, and J. Chen, 

“Modulation of porphyrin photoluminescence by 

nanoscale spacers on silicon substrates,” Applied 

Surface Science, vol. 285, pp. 572–576, 2013. 
 

[37] D. Ma, Y. Liu, X. Chen, J. Zhang, and Z. Wang, 

“Multi-sensing signals diagnosis and CNN-based 

detection of porosity defect during Al alloys laser 

welding,” Journal of Manufacturing Systems, vol. 62, 

pp. 334–346, 2022. 
 

[38] M. Bellaoui, K. Bouchouicha, and I. Oulimar, 

“Estimation of daily global solar radiation based on 

MODIS satellite measurements: The case study of Adrar 

region (Algeria),” Measurement, vol. 183, Art. No. 

109802, 2021. 
 

[39] M. Tan and Q. V. Le, “EfficientNetV2: Smaller 

models and faster training,” in Proceedings of the 

International Conference on Machine Learning (ICML), 

pp. 10096–10106, 2021. 
 

[40] S. A. Amiri and Z. Davoudi, "Enhanced Deep 

Learning Approaches for Wildfire Detection Using 

Satellite Imagery," Journal of AI and Data Mining, vol. 

13, no. 4, pp. 491–500, Oct. 2025. 



 .x x x xسال  ،xشماره  ،کاویمجله هوش مصنوعی و داده  و همکاران                                                                                                         قیومی زاده 

 

و  YOLOv8 یبندقطعه با استفاده از  یکاتد یدر صفحات مس یسطح وبیخودکار ع صیتشخ

 EfficientNetV2-S یبندطبقه

 

  ،4یحلاوت یهاد ،3یینایافسانه ام ،2ییخسرو رضا ،1یاضیف ی، عل*،1زادهیومیق نیحس

 5جعفری محمدصادق ،6یمعصوم علی ،6معمارزاده هادی ،5طاهرنژاد یدمه

 .رانی)عج( رفسنجان، رفسنجان، ا عصریبرق، دانشگاه ول مهندسی گروه 1     

 .رانیا بد،یم بد،یدانشگاه م ،یپزشک یگروه مهندس 2

 .رانیمجتمع مس سرچشمه، رفسنجان، ا ،یستگیآموزش و توسعه شا امور ریمد 3

 .رانیو توسعه، مجتمع مس سرچشمه، رفسنجان، ا قتحقی واحد 4

 .رانیو توسعه، مجتمع مس سرچشمه، رفسنجان، ا قیتحق امور ،یو مهندس یفن تحقیقات  5

 .رانیمجتمع مس سرچشمه، رفسنجان، ا ،گریپالایشگاه و ریخته امور 6

 03/01/2025 پذیرش؛ 19/12/2025 بازنگری؛ 20/09/2025 ارسال

 چکیده:

شخ یبرا قیعم یریادگیبر  یسامانه هوشمند مبتن کیپژوهش،  نیدر ا س یسطح وبیخودکار ع صیت صفحات م ستفاده در فرا یکاتد یدر   ندیمورد ا

شبکه  کیمهم صفحه و  ینواح یجداساز یبرا YOLOv8بر  یمبتن یبندمدل قطعه کیشامل  یشنهادیارائه شده است. چارچوب پ نگینیفایالکترور

 یهالبه و بخش ینوارها ،یمسخخ یبا اسخختخران نواح یبند. مرحله قطعهباشخخدیم وبیع یینها صیو تشخخخ لیتحل یبرا EfficientNetV2-S یبندطبقه

 ریتصخخو 52۶۶داده مورد اسخختفاده شخخامل . مجموعهدهدیم شیرا افزا یبندرا کاهش داده و دقت طبقه یطیمح یزهایو نو نهیزماثر پس ب،یمسخختعد ع

سب ست. براتوازن کلاسعدم یبوده که دارا یواقع یصنعت طیشده از محیگذاربرچ  نهیها و تابع هزکلاس یدهوزن یهاچالش از روش نیرفع ا یها ا

 درصخخد، 9۶٫۷1 مثبت دقت درصخخد، 9۸٫32به دقت  یشخخنهادیه مدل پک دهدیمجموعه آزمون نشخخان م یرو یتجرب جیفوکال اسخختفاده شخخده اسخخت. نتا

صد 9۶٫19برابر  F1 ازیامت صد،در 95٫۶۷ بازخوانی ست 0٫9953 یمنحن رزی سطح و در ست. تحل افتهی د صر یهالیا  زین Grad-CAMبر  یمبتن یب

کنترل  یرا برا یشنهادیروش پ ییحاصل، کارا جیاست. نتا یطیمح طینور و شرا راتییآن در برابر تغ یداریو پا بیمعنادار ع یتمرکز مدل بر نواح انگریب

 .کندیم دییمس تأ شیپالا یخطوط صنعت درخودکار  تیفیک

 ،در کنترل کیفیت قیعم یریادگی ،EfficientNetV2-S ،یصنعت ریتصاو یبندطبقه ،یسطح وبیع صیمس، تشخ نگینیفایالکترور :کلمات کلیدی

 .یدر متالورژ نیماش یینایب

 


