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In this study, an intelligent deep learning—based system is proposed
for the automated detection of surface defects in copper cathode
blanks used in the electrorefining process. The proposed pipeline
combines a YOLOv8-based segmentation model with an
EfficientNetV2-S classifier to localize and analyze defect-relevant
regions of each blank. The segmentation module identifies the main
copper regions, edge strips, and defect-prone areas associated with
surface anomalies such as scratches, dents, misalignment, and
discoloration, effectively reducing background interference and
improving classification reliability. The dataset includes 5,266
labeled images with a significant class imbalance, addressed using
focal loss and class weighting during training. Experimental results
on the test set demonstrate strong performance, achieving 98.32%
accuracy, 96.71% precision, 95.67% recall, an F1-score of 96.19%,
and an AUC of 0.9953. Grad-CAM visualizations and error analysis
further confirm that the model consistently focuses on meaningful
defect regions while remaining robust to background and illumination
variations. These results highlight the effectiveness of the proposed
approach for reliable quality control in industrial copper
electrorefining lines.

1. Introduction

Copper electrorefining is a well-established
metallurgical process that enables the production of
copper with very high purity levels, often
exceeding 99.99% [1, 2]. In this process, impure
copper from smelting serves as the anode, while
stainless steel cathodes act as reusable substrates
onto which copper ions are deposited. Despite
continuous improvements in cell design and
electrolyte chemistry, maintaining uniform and
defect-free  deposition remains a persistent
challenge. Even small anomalies in the deposited
layer can complicate the stripping stage, causing
excessive adhesion or incomplete separation of the

copper from the cathode [3, 4]. Such problems not
only lower process efficiency but also increase
operational costs through equipment damage and
production downtime. Figure 1 provides a
schematic overview of the electrorefining setup
[5].

The durability of stainless steel cathodes, which are
designed to undergo numerous production cycles,
is another critical factor in sustaining efficient
electrorefining  operations [6]. Mechanical
deformation or surface damage to these blanks
accelerates replacement requirements and disrupts
production continuity. In large-scale industrial
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facilities, such as the Sarcheshmeh Copper
Complex in Rafsanjan, Iran, surface defect
identification has traditionally relied on visual
inspection by human operators.
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Figure 1. Schematic overview of the copper
electrorefining process. The figure is an original redraw
by the authors and does not reproduce any previously
published illustration; it is based on the general process
description reported in [5].

While simple in principle, manual inspection
suffers from significant limitations, including
operator fatigue, subjective judgment, and reduced
reliability under harsh industrial conditions.
Exposure to electrolyte fumes, high temperatures,
and chemically aggressive environments further
degrade inspection accuracy and pose health and
safety risks to operators.

Delayed or inaccurate detection of surface defects
allows defective blanks to progress to subsequent
production stages, potentially causing equipment
damage, increased scrap rates, and deterioration of
final product quality. Over time, the physical and
mental demands placed on human inspectors also
elevate the risk of workplace accidents and
operational inefficiencies. These challenges
highlight the need for automated inspection
solutions that can operate consistently and reliably
under real-world electrorefining conditions.

In this context, advanced image processing and
deep learning techniques offer a promising
alternative to conventional inspection methods. By
enabling continuous, rapid, and objective defect
detection, such approaches can significantly reduce
human error, minimize operational downtime, and
lower overall production costs. Accordingly, this
study develops an intelligent inspection system that
combines a YOLOv8-based model for detecting
and segmenting critical regions of copper blanks
with an EfficientNetV2-S network for the final
classification of surface defects.

By focusing analysis on defect-relevant regions
rather than entire images, the proposed approach
aims to enhance detection accuracy while
maintaining  robustness to  environmental
variability commonly encountered in industrial
electrorefining lines.

2. Related work

Ensuring reliable detection of surface defects is
essential for maintaining product quality and
production-line efficiency [7]. Early industrial
inspection systems largely depended on manual
visual checks or classical image-processing
techniques such as thresholding, Gabor filtering,
and wavelet-based feature extraction [8]. While
these approaches can perform adequately in
controlled settings, they often degrade under real
factory conditions where lighting fluctuations,
specular reflections, and background texture
variations are unavoidable—particularly when
defects are subtle, small, or embedded in noisy
surface patterns [8].

With the shift toward data-driven solutions, deep
learning—especially convolutional neural
networks (CNNs)—has become the dominant
paradigm for automated surface inspection.
Following major breakthroughs in large-scale
visual recognition, CNN backbones such as
AlexNet, VGG, and ResNet have been widely
adopted for defect classification and recognition in
industrial applications [9-13]. However, pure
image-level classification only indicates whether a
defect exists and does not provide spatial
localization. This limitation motivated the adoption
of object detection frameworks that simultaneously
localize and recognize defect regions [14].
Two-stage detectors (e.g., Faster R-CNN) have
been successfully adapted for inspection tasks,
often by strengthening multi-scale representation
and proposal quality. Representative enhancements
include feature pyramid integration for improved
detection of small defects [15], guided-anchor
strategies and backbone optimizations for PCB and
metal inspection [16], and deformable convolution
or refined suppression techniques for steel-related
applications [17]. Despite strong accuracy, two-
stage pipelines typically involve heavier
computation and slower inference, which can be
restrictive for real-time deployment on production
lines.

To meet real-time constraints, many recent studies
have moved toward one-stage detectors such as
SSD and YOLO [14]. Numerous YOLO variants
have been tailored for industrial defect detection by
improving feature fusion, reducing model
complexity, and strengthening small-target
sensitivity. For example, YOT-Net extended
YOLOvV3 using triplet-loss learning for copper
elbow inspection [8], and other works combined
YOLO backbones with lightweight networks to
achieve favorable speed-accuracy trade-offs on
metallic defect datasets [19]. Variants of YOLOv4
and YOLOv5 have incorporated lightweight
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designs, shallow—deep fusion, pruning strategies,
and attention mechanisms to enhance detection
under complex textures [20-23]. More recent
anchor-free developments and improved label
assignment schemes (e.g., YOLOv6) further
improved robustness and localization quality in
challenging scenarios [17].

Within metal-surface inspection, copper-related
studies increasingly adopt YOLO due to its balance
of speed and accuracy. For instance, Zhang et al.
integrated a lightweight backbone and attention
mechanisms to detect nodules on cathode plates
while maintaining real-time capability [24]. CSC-
YOLO, derived from a YOLOv4-tiny design with
cross-region fusion and channel attention, reported
strong accuracy on copper strip/plate defect
datasets with high throughput [25]. Similar trends
are observed in steel inspection, where modified
YOLO pipelines (e.g., Res2Net backbones,
double-FPN designs, and transformer/attention
augmentation) consistently report measurable
gains over baseline models [26-29]. Recent 2025
studies continue this direction: Zhou et al. proposed
AEB-YOLOvV8n for copper strips, improving
MAP@0.5 while reducing parameters and
computation, with explicit emphasis on small-
defect representation and efficient multi-scale
fusion [33]. Likewise, Zhang et al. introduced an
improved YOLOv10-based model (LAM-
YOLOvV10n) for steel surface defects, reporting a
precision gain over the YOLOv10n baseline while
targeting practical real-time constraints [34].
Beyond YOLO-centric detectors, researchers have
explored alternative backbones and hybrid designs
to improve feature quality and deployment
efficiency. EfficientNet-based modifications have
been used to balance accuracy and inference cost,
including attempts to replace standard YOLO
backbones with EfficientNet variants combined
with attention modules [30]. ResNet-based designs
remain common for multi-scale defect recognition
and PCB inspection, especially when paired with
attention and feature pyramid strategies [16, 31]. In
parallel, unsupervised and generative approaches
(e.g., autoencoders and GANs) have been
investigated for anomaly detection, particularly
when defect labels are scarce or class distributions
are highly imbalanced. Lightweight deployment
has also been addressed through pruning and edge-
oriented optimization, enabling faster inference on
embedded GPUs without a major loss in accuracy
[32].

Although prior studies demonstrate that YOLO-
based detectors can localize defects efficiently,
most existing pipelines emphasize bounding-box
detection on generic metal datasets (often copper

strips or steel plates) and do not explicitly address
inspection requirements where (i) background
suppression is crucial, (ii) defect regions are small
and visually ambiguous, and (iii) downstream
decision-making depends on fine-grained region
analysis rather than coarse localization. In copper
electrorefining environments, reflections, surface
texture variability, and operational artifacts can
further complicate detection. Moreover, many
defect inspection workflows treat localization and
final classification as a single-stage objective,
whereas practical quality-control settings may
benefit from a structured pipeline that first isolates
critical regions and then performs a dedicated
classification with loss functions tailored to class
imbalance. These gaps motivate the proposed two-
stage system in this work, where YOLOv8-based
segmentation is used to focus on key regions and
suppress irrelevant background before
EfficientNetV2-S performs defect classification
under focal loss and class-weighting constraints.

3. Method

3.1. Dataset

In this study, to train and evaluate the proposed
system for automated surface defect detection in
copper blanks, a dedicated dataset comprising
5,266 real images was collected from the
electrorefining process at the Sarcheshmeh Copper
Refinery in Rafsanjan, lIran. The data were
gathered over several weeks through continuous
sampling in collaboration with the plant’s quality
control team. Image acquisition was carried out
using a Basler acA1300-200uc industrial camera,
known for its high resolution and suitability for
harsh environments. The camera was mounted in a
fixed position to ensure a consistent angle and
distance relative to the blank in all samples.

To ensure high image quality and consistency
during acquisition, a high-precision Time-of-Flight
(ToF) laser distance sensor (wavelength: 940 nm,
Class 1, measurement range: 1 cmto 5 m, accuracy:
+1.5 cm) was employed to measure the distance
between the camera and the blank surface in real
time. Images were only captured when the
measured distance was within a predefined range
and the reflected signal from the blank surface met
the required intensity threshold. This automated
validation mechanism ensured that only high-
quality images under optimal visual and geometric
conditions were stored in the dataset, thereby
minimizing noise and inconsistencies.

Maintaining standardization in image acquisition is
crucial in computer vision and deep learning
applications, particularly in industrial
environments where minor deviations in lighting,
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angle, or object placement can significantly impact
model performance. To enhance dataset diversity
and simulate real-world production conditions,
image capture was conducted at different times of
day and under varying workshop conditions,
including the presence of electrolyte vapor, natural
and artificial light fluctuations, and changes in
humidity. This approach resulted in a dataset that
better represents real operating conditions and
improves the generalization capability of the
trained model.

The dataset was divided into two primary
categories: Normal, representing blanks with
consistent copper deposition and no critical flaws,
and Reject, which includes blanks with significant
issues that can interfere with the stripping process.
As shown in Figure 2.a, normal blanks exhibit a
smooth and uniform copper layer. In contrast,
Figures 2.b—2.f present typical defective cases. In
Figure 2.b, the copper layer bridges across the two
upper windows of the blank, preventing proper
separation. Figure 2.c highlights the absence of the
edge strip, allowing copper to spread over the
edges and increasing the likelihood of damage.
Figure 2.d shows incomplete deposition in the
lower part of the blank, signaling a failure in the
process. In Figure 2.e, the edge strip is present but
misaligned, leading to abnormal copper overflow
around it. Lastly, Figure 2.f depicts a bent and
damaged upper window, which can cause
mechanical interference in the stripping equipment.

(d) Q) ®

Figure 2. Sample images of copper blanks. (a) Normal
blank with uniform copper deposition. (b—f) Various
defect types including: copper bridging upper windows
(b), missing edge strip (c), incomplete lower deposition
(d), misaligned edge strip (e), and deformed upper
window (f).

Together, these examples illustrate the range and
complexity of defects in the Reject class and
reinforce the necessity for reliable, automated

inspection systems.

3.2. Segmentation
Semantic segmentation plays a crucial role in
computer vision tasks that require precise

localization and classification of each pixel in an
image. In contrast to traditional classification
models that assign a single label to the entire
image, segmentation models analyze the spatial
structure of the image to determine which pixels
belong to which object or region [35]. This is
particularly important in industrial inspection
problems where the shape, position, and boundary
of an object directly affect its functional
assessment. In surface defect detection scenarios,
segmentation can isolate regions of interest—such
as the surface of the product—while ignoring
irrelevant  background information, thereby
improving the accuracy and robustness of
subsequent classification stages. By leveraging
segmentation, the system is empowered to focus on
specific zones of the object under inspection, which
is essential when defects are subtle, localized, and
possibly embedded in noisy surroundings [36].

In our study, early experiments showed that using
classification alone on full-frame images often led
to misclassification—especially in borderline cases
where the defect was visually subtle or narrowly
localized. In several instances, the classifier
sometimes confused background textures, lighting
variations, or equipment markings with actual
defects. This confusion led to both false positive
and false negative results [37]. This issue became
more prominent due to the nature of the copper
blanks used in electrorefining: although the
position of each blank was fixed, variations in
surface oxidation, lighting reflection, and
environmental conditions introduced significant
background noise. Furthermore, some reject
conditions, such as incomplete copper deposition at
the bottom or a thin bridge of copper between the
top windows, were small in size and located at the
periphery. Without spatial filtering, these features
could be easily overlooked by a deep classifier
trained on the entire image. Therefore, we decided
to incorporate a segmentation stage as a
preprocessing step to extract only the relevant
regions of the blank from the original image. This
not only reduced input complexity but also allowed
the classifier to focus exclusively on the critical
areas where defects are likely to occur.
YOLOvV8-seg was adopted as the segmentation
backbone due to its practical balance between mask
quality and inference efficiency for industrial
deployment. Compared with earlier YOLO
generations commonly used in defect inspection
(e.g., YOLOV5/YOLOvV7), YOLOV8 employs a
more modern head design and training strategy that
reduces sensitivity to anchor settings and improves
localization of small, low-contrast regions—an
important requirement in our application where
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defects may appear as thin copper bridges, edge-
strip anomalies, or incomplete deposition near
boundaries. In addition, as a one-stage instance
segmentation model, YOLOV8-seqg directly outputs
pixel-level masks with a compact architecture,
enabling standardized cropping and background
suppression prior to classification. This provides a
favorable speed-accuracy trade-off compared with
heavier two-stage alternatives such as Mask R-
CNN or semantic segmentation pipelines like
DeepLab, particularly under the practical
constraints of memory usage and real-time
inference. In our preliminary trials, the
segmentation-guided input reduced
misclassifications caused by background textures
and illumination artifacts while maintaining the
throughput needed for online quality control in
copper refineries [38].

Mathematically, the YOLOvV8 model is designed as
a single-stage detector that maps an input image
XERMPW=310 a set of predictions including bounding
boxes b=(x,y,w,h), class probabilities p€[0,1]¢,
and binary segmentation masks me{0,1}**W. The
model optimizes a multi-part loss function:

LosSy oL ove = Amask -5 mask * Zhox L0SShox
/1cls I‘Oss‘cls

+1)

In this formulation, the total loss is expressed as a
weighted sum of three components. The
classification term (Aqs) measures how well the
model distinguishes between classes and is
typically implemented using Binary Cross-
Entropy. The regression term (Anox) €valuates the
accuracy of bounding box localization, often with
a loss such as CloU. The mask term (Amask) applies
binary cross-entropy to the predicted segmentation
masks to ensure precise pixel-level delineation.
The A coefficients act as balancing factors,
regulating the relative contribution of each
component to the overall optimization process.
This unified design allows YOLOV8 to jointly
capture object existence, spatial location, and
precise  contours, leading to  substantial
improvements in identifying small, fine-grained, or
low-contrast defects—characteristics commonly
observed in the reject samples of our dataset.

In training the YOLOV8 segmentation model,
labeling was carried out at the blank-surface level,
including the copper deposition zone, edge strips,
and potential defect regions. This choice stemmed
from the observation that distinguishing normal
from reject blanks often depends on very fine
details—such as slight miscoverage of copper or
small bridging—that are only meaningful within
the geometry of the blank itself. Conversely, the
surrounding scene introduced irrelevant variations

in lighting, textures, and background structures that
could confuse the model. Focusing annotations
solely on the blank region eliminated this noise,
resulting in clearer masks and more consistent
preprocessing. Such structured labeling not only
enabled precise cropping but also enhanced the
overall robustness and interpretability of the defect
detection pipeline.

Figure 3 demonstrates how preprocessing
improves blank-region segmentation. In the left
panel (a), the raw camera image contains
background artifacts and environmental noise that
can interfere with reliable feature extraction. In
contrast, the right panel (b) shows the outcome
after YOLO-based segmentation and cropping,
where a clear and standardized view of the blank
surface is obtained, providing a more suitable input
for downstream analysis and classification.

@ (b)

Figure 3: (a) Example of a raw input image captured
from the production line, including background clutter;
(b) Preprocessed and segmented blank region using
YOLOWS, isolating the area of interest for reliable defect
detection.

3.3. Classification Using EfficientNetV2-S

Accurate classification of copper blank surfaces—
particularly in distinguishing between normal and
reject categories—requires a model capable of
detecting fine-grained visual differences across
localized regions. In our dataset, many of the reject
cases were characterized by subtle anomalies such
as incomplete copper deposition, narrow bridging
between zones, or slight deformations in edge
areas, all of which were difficult to capture without
a high-capacity yet detail-sensitive network. These
challenges ruled out the use of shallow models or
standard CNNs, which often fail to detect nuanced
surface-level inconsistencies, especially when
trained on small or imbalanced datasets. To address
these demands, we selected EfficientNetV2-S, a
state-of-the-art convolutional neural network that
combines efficient scaling, faster convergence, and
enhanced representational capacity. Its compound
scaling method allows the model to maintain a
good trade-off  between  accuracy and
computational cost—making it suitable for
deployment in industrial environments while
ensuring robustness in detecting delicate surface
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defects. The network’s proven performance in
various fine-grained classification benchmarks
further supported its adoption in our pipeline [39,
40].

For the classification task, we selected
EfficientNetV2-S, a modern convolutional neural
network architecture that offers a strong trade-off
between accuracy and computational efficiency.
This model is particularly well-suited for our
application, as distinguishing between normal and
reject copper blanks often depends on fine-grained
local features such as incomplete copper
deposition, irregular connections near the
windows, or subtle anomalies around the edge strip
area. These features are challenging to capture
using conventional CNNs, especially under
varying illumination and industrial background
noise. All images were resized to a resolution of
384x384 and normalized using standard ImageNet
statistics:

X —u (2)

Xnorm =

EfficientNetV2 is based on compound scaling,
which uniformly scales the depth d, width w, and
resolution r of the network using a set of fixed
coefficients (a, B, v) subject to the constraint:

aﬂzyz ~ 2, for a 2x increase in FLOPs @)

The goal is to maintain optimal accuracy while
increasing the model size within a bounded
computational budget. Each scaling factor
contributes as follows:
e d: increases network depth (number of
layers),
e W: increases the number of channels per
layer,
e 1 increases the input image resolution.
The model is composed of multiple stages of
Fused-MBConv and MBConv blocks. Each
MBConv block applies a depthwise separable
convolution with an expansion phase followed by
a squeeze-and-excitation (SE) mechanism. The
output of an MBConv block can be expressed as:

y = SE(BN (DWConv (x, W _d))) + x 4

Where x is the input feature map, DWConv is
depthwise convolution, BN is batch normalization,
and SE denotes the channel attention module. In
early layers, EfficientNetV2-S uses Fused-
MBConv blocks that replace the separate
expansion and depthwise convolution with a single
3x3 convolution:

y =BN (Conv 33 (x Weonv )) ®)

This design improves GPU parallelism and reduces
training time. After the final convolutional stage,
the feature map FER™W*C is passed through a
Global Average Pooling (GAP) layer and a fully
connected Dense layer with sigmoid activation to
perform binary classification:

y =ocW -GAP(F)+b) (6)

Where:

1 W @)
GAP(F)=-——— Z > F
HW i=1j=1 ']

®)
o(z) =

l+e

This formulation allows the network to combine
spatial features effectively and make its final
classification decision within a broader contextual
view. Compared to the original EfficientNet, the
EfficientNetV2-S variant incorporates several
refinements that enhance both accuracy and
efficiency. Early layers employ fused operations to
streamline computations, while a progressive
training strategy gradually increases input
resolution and augmentation difficulty to improve
learning stability. In addition, the architecture has
been carefully tuned for faster GPU inference and
stronger convergence on small- to medium-scale
datasets, making it well-suited for practical
industrial applications.

These improvements reduce training time by up to
30% while maintaining or improving accuracy on
tasks involving subtle visual distinctions.

The architecture depicted in Figure 4 illustrates the
sequential stacking of fused-MBConv and
MBConv blocks, incorporating squeeze-and-
excitation modules and compound scaling to
optimize the model’s capacity for depth, width, and
resolution.

Input “f” ) =) \

' Conm3»3

J PuedMAConv! Quu0  Su Staged \m 4

Fused MBConvd

MBConva -
' M onvh
§ :Coavie1&Pooling&FC

Stagoh Stages

Figure 4. The architecture of EfflClentNetVZ -S, consisting
of progressive convolutional stages with fused-MBConv
and MBConv blocks optimized for both speed and
accuracy.
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3.4. Addressing Class Imbalance: Class
Weighting and Focal Loss

One of the primary challenges encountered in
training deep learning models for industrial defect
classification is class imbalance, a condition where
the number of samples in one class (typically the
“normal” or non-defective cases) significantly
outweighs the number of samples in the other class
(i.e., “reject” or defective cases). In our dataset, this
imbalance was particularly pronounced, as reject
copper blanks—those exhibiting surface defects,
misaligned edge strips, or incomplete copper
deposition—occur infrequently in the production
line of the Sarcheshmeh copper refinery. As a
result, the training set contained several times more
normal samples than reject ones, leading to a
natural bias in favor of the majority class.

This imbalance can severely hinder the model’s
ability to detect and generalize rare but critical
anomalies. A classifier trained on such a skewed
dataset may achieve deceptively high accuracy
simply by predicting the dominant class for most
inputs, while entirely missing subtle reject cases—
particularly dangerous in real-world inspection
scenarios where failure to identify a defect can lead
to process interruptions or equipment damage.

To mitigate this problem, we first adopted a class
weighting strategy that modifies the standard
binary cross-entropy loss to emphasize the
minority class during optimization. Let ye {0, 1}
denote the true label, and y € (0, 1) the predicted

probability of the positive class (i.e., “reject”). The
weighted binary cross-entropy loss is defined as:

Luweighted = 1Y 109(Y) —w (L~ y) log(L-y) 9)

In this formulation, wl represents the weight
assigned to the positive class (minority), while wo
corresponds to the negative class (majority).
Typically, ws is set higher than wo to compensate
for class imbalance, and the values are calculated
based on the inverse frequency of each class in the
dataset. This weighting strategy ensures that the
model pays greater attention to the
underrepresented reject samples during training.

N (10)
C -Ng¢

Here, N is the total number of samples, N¢ is the
number of samples in class c, and C is the number
of classes (2 in our binary case). This approach
encourages the model to pay more attention to
underrepresented  reject  cases, improving
sensitivity and reducing bias.
While class weighting helps reduce the impact of
imbalance, it is often insufficient in scenarios
where the classifier continues to overfit “easy”

We

samples and fails to learn from hard or ambiguous
examples. To enhance the learning process further,
we incorporated focal loss, a modified cross-
entropy loss function that dynamically scales the
contribution of each sample based on its
classification difficulty. The focal loss function is
defined as:

L ocal =~ - Py ) log(py ) (11)

Where:

e p,=yif y=1,andp, =1-Yy if y=0

e o €[0,1] is a class-balancing parameter
similar to class weighting

e v>0 is the focusing parameter that reduces
the contribution of well-classified samples

The intuition behind focal loss is that it down-
weights the loss for easy examples (where pi=1)
and focuses more on hard or misclassified
examples (where pi<<1). This makes it particularly
effective in imbalanced datasets with fine-grained
classification needs. The Focal Loss parameters,
0=0.6 and y=1.5, were selected after extensive
empirical experiments with various values on the
validation set to achieve optimal performance. The
final loss function used for training the classifier
was:

Lfinal = HocallY Y i =08, =15) (12)

This formulation improved the network’s ability to
detect borderline reject cases, which are often
visually subtle and underrepresented. Moreover, it
helped reduce false negatives—instances where
defective blanks might be misclassified as
normal—thereby increasing the reliability and
robustness of the inspection system for industrial
deployment.

4. Result

To evaluate the effectiveness of the proposed
defect detection system, the dataset was divided
into three distinct subsets: training, validation, and
test sets. The training set included a total of 2,814
images, comprising 2,300 samples labeled as
normal blanks and 514 samples as reject blanks.
The validation set, used for model tuning and early
stopping, consisted of 1,202 images, with 919
belonging to the normal class and 283 to the reject
class. Finally, the test set, which remained unseen
during training, included 1,250 images—973 from
the normal category and 277 from the reject
category. This distribution reflects a class
imbalance, particularly in the reject class, and
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necessitated the use of specialized training
strategies such as focal loss and class weighting to
mitigate potential performance degradation. In the
following subsections, we present and analyze the
classification results using metrics including
accuracy, precision, recall, F1-score, AUC, and
confusion matrix.

Figure 5 illustrates the accuracy progression of the
proposed model during the training process over
100 epochs. As shown in the plot, both training and
validation accuracy improve significantly during
the initial epochs, with the training accuracy
starting from approximately 75% and steadily
approaching 100%. The validation accuracy
follows a similar trend, rapidly increasing to
around 97% and maintaining a stable trajectory
throughout the later epochs.

Accuracy over Epochs

ACTuracy

20 40 60 B0 10¢
Epochs

Figure 5. Accuracy trends during training and validation
over 100 epochs using EfficientNetV2-S.

The close alignment between training and
validation curves suggests that the model
generalizes well to unseen data and does not exhibit
overfitting. This consistent accuracy is indicative
of the model’s ability to correctly distinguish
between normal and defective copper blanks based
on subtle surface patterns and localized defects.
The use of a strong backbone (EfficientNetV2-S),
along with appropriate regularization techniques
such as dropout and batch normalization, has likely
contributed to this high and stable performance.
Figure 6 presents the training and validation loss
curves over 100 epochs. As illustrated, both loss
functions exhibit a steep and consistent decline
during the early training stages, reflecting rapid
convergence and effective learning. The training
loss begins around 0.9 and decreases smoothly to
near-zero values, indicating successful error
minimization on the training set. The validation
loss closely follows the same trend, which suggests
that the model generalizes well to unseen data and
does not overfit.

Loss over Epochs

0 20 A0 &0 80 100
Epochs

Figure 6. Loss reduction trends during training and
validation, indicating effective model convergence.

The close alignment between training and
validation loss curves demonstrates that the
regularization techniques—such as dropout, batch
normalization, and class weighting—were
effective in stabilizing the learning process.
Moreover, the overall smoothness and convergence
of the loss functions validate the suitability of the
chosen model architecture (EfficientNetV2-S) for
classifying surface defects in copper blanks. The
low final loss on both datasets confirms that the
model has learned discriminative features that
distinguish normal blanks from reject cases, even
under subtle or noisy variations.

Figure 7 depicts the evolution of the Area under the
Curve (AUC) metric for both the training and
validation datasets over the course of 100 epochs.
AUC is a robust measure that reflects the model’s
ability to distinguish between classes across
various decision thresholds. A value closer to 1.0
indicates excellent separability, while a value of
0.5 suggests performance equivalent to random
guessing. As shown in the plot, the training AUC
increases rapidly during the early stages and
quickly approaches 1.0, maintaining a nearly
perfect score in the later epochs. The validation
AUC follows a similar trajectory, reaching over
0.95 within the first 10 epochs and remaining stable
with minimal fluctuation thereafter. The proximity
of the validation AUC to the training curve is a
strong indicator of the model’s generalization
capability and suggests that the learned
representations are robust against overfitting. The
consistently high AUC scores confirm that the
model performs well not only at a single
classification threshold (like 0.5), but across the
entire range of possible thresholds—an essential
requirement in industrial inspection tasks where the
cost of misclassification may vary. This reliability
across thresholds demonstrates that the classifier is
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highly effective in identifying both subtle and
obvious defects on the copper blank surfaces.

AUC over Epochs

( 20 40 60 80 100
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Figure 7. AUC progression over epochs, reflecting
improved class separability during training and
validation.

Figure 8 shows the Receiver Operating
Characteristic (ROC) curve for the proposed
classification model, evaluated on the test dataset.
The ROC curve represents the trade-off between
the true positive rate (TPR) and false positive rate
(FPR) across various classification thresholds. The
closer the curve hugs the top-left corner, the better
the model is at distinguishing between the two
classes—here, normal and reject blanks.

The computed area under the curve (AUC =
0.9953) indicates near-perfect classification
performance. AUC is a threshold-independent
metric and is especially useful in imbalanced
classification tasks such as this, where the reject
class is underrepresented. A value above 0.99
signifies that the model is highly capable of ranking
positive samples higher than negative ones,
regardless of the chosen decision threshold.

From the shape of the curve, it is evident that the
classifier achieves a high TPR with minimal FPR,
confirming that the majority of reject samples are
correctly identified without misclassifying many
normal samples. This characteristic is critical in
real-world copper production environments, where
false negatives (i.e., missed defects) can lead to
operational failures, and false positives (i.e.,
unnecessary rejections) can increase costs.

-

Figure 8. ROC curve for the proposed model,
demonstrating excellent separability with an AUC of
0.9953.

Figure 9 illustrates the Precision—Recall (PR) curve
for the proposed classification model. The PR
curve is especially informative in imbalanced
classification scenarios, such as the current task
where the number of reject samples is significantly
lower than the normal class. Unlike the ROC curve,
which considers true negatives, the PR curve
focuses solely on the positive class (here, reject)
and offers a better understanding of the trade-off
between precision and recall. As shown, the model
maintains a high level of precision across a wide
range of recall values, with minimal drop-offs until
very high recall thresholds. This behavior confirms
that the model is able to detect most of the defective
blanks (high recall) without producing many false
positives (high precision). The curve remains close
to the upper-right corner, which indicates superior
performance. The reported Average Precision (AP)
of 0.9871 further quantifies this performance. AP
is computed as the area under the precision—recall
curve and summarizes the model's ability to
balance both objectives across all thresholds. An
AP near 1.0 suggests that the classifier can reliably
detect defects even when they are rare and subtle—
an essential requirement in industrial defect
detection systems.

Figure 10 displays the confusion matrix obtained
from evaluating the proposed model on the test set.
The matrix provides a detailed breakdown of
correct and incorrect predictions across the two
classes: Normal and Reject. Out of 973 normal
samples, the model correctly classified 964 and
misclassified only 9 as rejects. Similarly, among
277 reject samples, 265 were correctly identified
while 12 were incorrectly predicted as normal.
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Precuon-Aecs rve

Figure 9. Precision—Recall curve with an AP of 0.9871,
highlighting the model’s effectiveness in distinguishing
classes under imbalanced data conditions.

Confusion Matrix

800

Noermal

600

True Label

400

e

- 200

Normal Reject
Predicted Label

Figure 10. The confusion matrix shows strong
performance on both classes, with minimal false positives
and false negatives—especially important for reliable
reject detection.

This confusion matrix serves as the foundation for
computing various evaluation metrics:

e Accuracy:

TP +TN (13)
Accuracy = ~ 0.9832
TP +TN +FP +FN

o Precision (for Reject class):

. TP (14)
Precision = —— ~ 0.9671
TP +FP
e Recall (Sensitivity):
TP (15)
Recall = —— ~ 0.9567
TP +FN
e F1-Score:
Precision - Recall (16)
F1=2- ~ 0.9619

Precision + Recall

These results clearly indicate that the model
maintains a high true positive rate for both classes
while minimizing false alarms and missed
detections. Particularly, the low false negative
count (12 misclassified rejects) is critical in
industrial contexts where failing to detect a
defective blank could lead to downstream process
failures or quality issues.

5. Discussion

The experimental results demonstrate that the
proposed deep learning framework, combining
segmentation with classification, is highly effective
in identifying surface defects on copper blanks in
an industrial electrorefining setting. The model
achieved strong performance across multiple
evaluation metrics, including accuracy, AUC,
precision, recall, and F1-score, confirming its
robustness in handling class imbalance and subtle
visual anomalies. In particular, the integration of
YOLOv8-based  segmentation  significantly
improved classification reliability by eliminating
background noise and focusing the classifier on
relevant regions. However, to better understand the
strengths and limitations of the model, it is
essential to explore specific case examples,
especially those involving misclassifications. In the
following sections, we analyze a series of
representative correct and incorrect predictions to
gain insight into the model's behavior in real-world
scenarios.

Figure 11 provides visual examples of
misclassified samples, offering critical insight into
the model’s limitations. The top row shows
instances of False Reject, where visually
acceptable blanks were mistakenly predicted as
defective. In these cases, factors such as surface
texture irregularities, minor lighting artifacts, or
subtle background shadows may have contributed
to false positive decisions. For example, the third
sample exhibits superficial blotches and oxidation
stains that might have been interpreted as defect
patterns by the classifier. The bottom row presents
False Normal predictions, where genuinely
defective blanks were incorrectly classified as
normal. These samples often include edge-related
anomalies or thin copper bridging near the top
windows—features that may be either too fine or
too localized for the model to detect reliably. In
some instances, the uniformity of copper
deposition in central regions may have outweighed
the peripheral defects in the model’s decision-
making. These examples highlight the inherent
challenge of classifying industrial surface
anomalies, particularly in the presence of diverse
background patterns, lighting variations, and fine-
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grained defects. They also emphasize the need for
continued refinement of segmentation accuracy
and consideration of spatial context in future model

" R
"R

Figure 11. Examples of Misclassified Blanks: False
Rejects (Top) and False Normals (Bottom).

Figure 12 illustrates the Grad-CAM visualization
for a test sample, highlighting the spatial attention
of the EfficientNetV2-S classifier during
prediction. The yellow regions denote areas of high
activation, indicating zones that strongly
influenced the model’s decision, while blue and
purple zones had minimal impact.

Figure 12. Grad-CAM visualization showing the model’s
focus on the central copper deposition area and lower
edges, confirming attention to critical defect regions
during classification.

As shown, the model focuses primarily on the
central and upper regions of the copper deposition
area, where structural uniformity and deposition
texture are most informative for classifying a blank
as normal or reject. Interestingly, the activation
map avoids background clutter and clamp regions
at the top corners, suggesting that the segmentation
pre-processing step successfully guided the
model’s attention toward the relevant copper
surface. However, some dispersed activation at the
lower corners, particularly in the left area with faint
discoloration, indicates potential sensitivity to
peripheral noise or artifact. This type of
visualization not only supports trust in the model’s

interpretability but also confirms that the network
has learned to prioritize the correct physical zones
of interest—especially useful in applications where
visual cues may be subtle and context-dependent.
Table 1 provides a comparative analysis of various
deep learning architectures evaluated on the copper
blank surface defect dataset. The results highlight
the performance of five baseline models
(MobileNetV2, MobileNetV3 Small, ResNet101,
Swin-Tiny, and DenseNet121) against the
proposed model based on EfficientNetV2-S. Given
the industrial context of this study, where real-time
deployment and accurate identification of rare
reject cases are both critical, multiple evaluation
metrics were considered. While some architectures
such as ResNetl01 and DenseNet121 showed
strong recall or F1-score values, they typically
required higher computational resources. In
contrast, MobileNetV3 Small, though lightweight,
failed to capture fine-grained defect features
effectively, resulting in relatively poor recall
(0.7040). The proposed EfficientNetV2-S model
achieved the highest overall performance, with an
accuracy of 98.32%, precision of 96.71%, recall of
95.67%, Fl-score of 96.19%, and an AUC of
0.9953. These results confirm its superior
capability in detecting subtle reject patterns, while
maintaining a lightweight architecture suitable for
industrial environments with limited
computational capacity.

Table 1. EfficientNetV2-S delivers the best F1-score and
AUC with superior efficiency.

Model Acc Pre Recall F1 AUC
MobileNet  0.9712 0.9617 0.9061 0.9331  0.9926
V2

MobileNet 0.8960 0.8025 0.7040 0.7500  0.8905
V3Small
ResNet101  0.9800 0.9468 0.9639  0.9553  0.9932
Swin-Tiny  0.9328 09214 0.7617 0.8340 0.8716
DenseNetl 0.9768 0.9559 0.9386 0.9472  0.9916
21
Proposed  0.9832 0.9671 0.9567 0.9619  0.9953
Model

In particular, high recall was a priority in this study
due to the critical need to minimize false
negatives—i.e., mistakenly classifying a defective
cathode as normal, which could lead to
downstream processing failures. EfficientNetV2-S
effectively balances model complexity with
performance, making it a reliable choice for
deployment on smart inspection systems within
copper refineries.

6. Conclusion

This study proposes a deep learning pipeline
combining YOLOv8  segmentation and
EfficientNetV2-S classification for automated
defect detection on copper cathode blanks at the
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Sarcheshmeh Copper Refinery. By effectively
isolating critical regions, the system ensures
robustness against industrial background noise and
surface variability. The results demonstrate strong
classification performance, achieving 98.32%
accuracy, 96.71% precision, 95.67% recall, and an
AUC of 0.9953 on the test set. These metrics
confirm the system’s effectiveness in
distinguishing subtle surface anomalies that could
otherwise compromise the stripping process or
damage production equipment. Techniques such as
class weighting and focal loss were essential in
addressing the inherent class imbalance, ensuring
high sensitivity to the underrepresented "reject”
category. Visual analyses using confusion
matrices, ROC and PR curves, and Grad-CAM
heatmaps  further validate the system’s
interpretability and generalization capability. In
particular, the Grad-CAM results highlight that the
classifier correctly focuses on defect-prone regions
while ignoring irrelevant structures. Overall, the
system offers a scalable, accurate, and interpretable
solution for automated quality inspection in metal
refining lines. Future work may focus on
integrating multi-modal inputs (e.g., thermal
imaging or depth sensing) and utilizing multi-
camera setups to achieve a more comprehensive
view of the blank edges. Additionally, real-time
edge deployment or unsupervised anomaly
detection could be explored to further improve
adaptability and minimize manual intervention.
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