Journal of Artificial Intelligence and Data Mining (JAIDM)

Journal homepage: http://jad.shahroodut.ac.ir

BRYDY

Shahrood University of
Technology

Research paper

Improving Ball Detection in Volleyball Using Deep Learning
Mohammad Jadidi Miandashti, Kourosh Kiani, and Razieh Rastgoo”

Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran.

Abstract

In recent years, the application of deep learning techniques has
revolutionized various domains, including the realm of sports
analytics. The analysis of ball tracking and trajectory in sports has
become an increasingly vital area of research, driven by
advancements in technology and the growing demand for data-driven
K . insights in athletic performance. In volleyball, a sport characterized
eywords: . . .

Volleyball ~ Detection,  Deep by rapid movements and strategic play, the ability to accurately track
Learning, Convolutional Neural the trajectory of the ball is crucial for both training and competitive
Network, Attention Mechanism analysis. This paper proposes novel deep learning models for accurate

volleyball ball detection and tracking. By incorporating attention

mechanisms into the YOLOv8 and YOLOvV10 architecture, our
*Corresponding author: models significantly improve performance, particularly in
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challenging situations involving occlusions and fast movements. The
proposed models were compared to baseline and other models across
several metrics. Specifically, they achieved precision (94.2% and
94.7%, respectively) and recall (88.1% and 87.6%, respectively) as
well as real-time processing speeds, making them suitable for various
sports analytics applications.
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1. Introduction

Obiject tracking, a fundamental task in computer
vision, finds critical applications in diverse
domains including surveillance systems [1],
robotics [2], and human-computer interaction [3-
15]. Notably, sports video analysis presents a
significant demand for robust object tracking
methodologies, driven by advancements in
Acrtificial Intelligence, computer vision, and deep
learning techniques [16-21] and the proliferation of
high-performance cameras [22]. The majority of
viewers of ball-based sports focus on the ball's
position and movement [23].

Ball tracking, a specialized case of single-object
tracking and small object detection, is a critical task
in computer vision [24]. Given the rapid and
unpredictable movements of balls in sports, these
systems must be capable of high-speed, real-time
tracking [25]. The challenges associated with
tracking small objects, such as limited pixel
information and potential occlusions, make this
task particularly demanding. Moreover, the

dynamic nature of sports environments, with
varying lighting conditions and background clutter,
further complicates the tracking process [23].
Sports video analysis has gained significant
traction due to its numerous applications and
potential commercial benefits [25]. Ball tracking is
a critical component of most sports analysis
systems, as it enables detailed analysis of game
play [24] Systems like Hawk-Eye have
revolutionized sports by providing precise 2D and
3D trajectories of balls, aiding referees and
enhancing the overall viewing experience [24].
However, real-time ball tracking in dynamic sports
environments presents significant challenges, such
as varying lighting conditions, occlusions, and
high-speed motion [26]. Advanced computer
vision techniques, including deep learning, are
increasingly being employed to address these
challenges.

The challenges and limitations in ball sports are
primarily associated with the characteristics of the
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ball itself. These characteristics, including speed,
shape, and size, significantly influence the choice
of algorithms and approaches. Additionally, player
occlusion presents a common challenge in model
and algorithm design. In volleyball, numerous
challenges exist, such as occlusions, misdetections,
varying lighting conditions, similar colors between
the ball and the environment, camera quality,
varying frame rates, and the fast pace of the game
[26]. These challenges must be addressed through
novel approaches. Figure 1 illustrates the ball in
various states, including simple, occluded, motion
blur, and blended with the background. This paper
aims to address these challenges by proposing a
novel approach for ball tracking, leveraging
advanced deep learning techniques to achieve
robust and accurate performance. Our main
contributions can be listed as follows:

1. We propose two novel volleyball detection
models by integrating an attention mechanism into
the YOLOV8 and YOLOV10 architectures, leading
to improved accuracy in detecting volleyballs
across various object scales.

2. By applying Convolutional Block Attention
Module (CBAM), we can effectively extract spatial
and channel-wise information which is crucial for
small object detection.

The remainder of this paper is organized as
follows. Section 2 reviews recent relevant works.
Section 3 presents the proposed model, followed by
an evaluation of its performance on a real-world
dataset, comparing the results with those obtained
from alternative approaches. Finally, Section 4
concludes the paper and outlines directions for
future research.
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Figure 1. Ball in different modes such as simple mode,
occlusion, motion blur, and cluttered with background.

2. Related Works

In recent years, there has been a surge in research
and development of artificial intelligence
applications within the sports domain [27]. VVarious
approaches, including conventional machine
learning and deep learning, have been employed to
detect and track balls in sports videos. While
conventional machine learning models have shown
promising results, deep learning techniques have

emerged as a powerful tool, offering significant
improvements in accuracy and robustness [26].
Previous studies have explored a range of
techniques, such as color-based tracking [28],
Template Matching [25,29], Mean-Shift algorithm
[30], Hough transform [31], Background
Estimation [32] to localize and track balls.
However, these methods often struggle in
challenging scenarios, such as occlusions, varying
lighting conditions, and rapid ball motion [33]. To
address these limitations, researchers have
increasingly turned to deep learning, leveraging
Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs) to extract
relevant features and predict ball trajectories [33].
More details of recent works in these two
categories (conventional machine learning and
deep learning) will be presented in the following
sub-sections.

2.1. Conventional machine learning methods

The algorithm proposed by Xinguo Yu et al. [28]
includes four steps for ball tracking in soccer video.
The first step is to estimate ball size then detect ball
candidates. After that the algorithm generates
candidate trajectories and processes ball trajectory.
Finally, while the proposed algorithm achieves a
high accuracy of about 81% for ball location
detection, this still indicates a significant margin
for error, particularly in complex scenarios where
the ball is not clearly visible. Another approach to
track soccer ball was presented by Norihiro Ishii et
al. [29], who employed Template Matching to
enhance the detection process when the ball's
movement is minimal. The authors proposed an
algorithm that narrows the search area for the ball
based on its state. Additionally, an adaptive
approach employed to select the most suitable ball
extraction method based on the current frame and
the ball's movement. On the other hand, if the ball
is in front of a player, the detection algorithm may
mistakenly identify parts of the player as the ball,
leading to incorrect tracking results. Bodhisattwa
Chakraborty et al. [32] proposed a trajectory-based
approach to detect and track a ball in basketball.
The initial step involves segmenting moving
objects from the background using a three-frame
difference method and an edge detection technique
is utilized to further distinguish the moving objects
from the background. Morphological operations
are also applied to the segmented objects.
However, the framework also faces challenges due
to motion blurring, especially at critical moments
like when the ball is released from a player's hand.
Sukadev Meher et al. [34] proposed a trajectory-
based ball detection and tracking algorithm
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specifically designed for volleyball videos to
classify various game states. Their proposed model
utilizes an approximate median filtering algorithm
to remove the background, generating potential
ball detections using the Hough transform and
shape and size features. An interpolation method
based on the Kalman filter was used to detect and
fill in missing ball detections due to occlusions
along the trajectory. Although the proposed
method aims for real-time processing, the
complexity of the algorithm may hinder its
performance in live settings where quick decisions
are necessary. In another study, Kurowski et al.
[25] proposed a model for ball tracking in short
volleyball rallies. The proposed method comprises
two stages: training and ball tracking. It leverages
background subtraction based on a Gaussian
Mixture Model (GMM). In the second stage, the
resulting foreground images are analyzed to detect
the ball. Template matching based on a quarter-ball
template is applied in this model. The method relies
heavily on background subtraction techniques,
which may not always be effective in varying
lighting conditions typical in sports halls. Overall,
such methods are often highly sensitive to
environmental factors like lighting changes,
occlusions, background clutter, and camera
motion, leading to inaccurate tracking or failures.
These methods also exhibit limited robustness to
scale variations, shape deformations, and fast
motion.

2.2. Deep learning methods

According to [33], Huang proposed a method for
identifying volleyball trajectories using a graph
convolutional neural network. The author
employed the YOLOv4 model to identify regions
of interest with high confidence. Subsequently, to
extract deep and high-level features, the model was
combined with a graph convolutional network.
Finally, the DeepSORT [35] tracking algorithm
was utilized to estimate the volleyball trajectory.
One of the primary challenges highlighted is the
low detection accuracy. In another study, Han et al.
proposed a model named HMMATrack [36] for
ball tracking using a neural network and a custom
architecture based on improving multi-scale
feature enhancement and multi-level collaborative
matching to enhance tracking performance from
various perspectives. In the neural network part,
two object detection models, CenterNet and MNet,
were used. While the authors proposed methods to
enhance detection and tracking, increasing the
resolution of input images to improve detection can
lead to exponential increases in computational
requirements. Wang and Chen have introduced a

model named TrackNetV3 [37] for badminton
shuttlecock tracking. TrackNetV3 comprises two
primary modules: trajectory prediction and
refinement. The trajectory prediction module
leverages a predicted background as auxiliary
information to accurately locate the shuttlecock
amidst visual distractions. The tracking neural
network within TrackNetV3 adopts a U-Net
architecture, incorporating convolutional layers
and skip connections. As demonstrated in [38],
Jorge Armando et al. proposed a semi-supervised
model for soccer ball detection and tracking. The
proposed framework leverages the YOLOv7
convolutional neural network and incorporates the
focal loss function. To track ball trajectories and
perform in-depth analysis, DeepSORT was used
for object tracking. Vanyi Chao et al. [39] proposed
a novel approach to detect volleyball trajectory in
videos. The core of the proposed method is the
MaxViT Sequential model, which is designed to
track high-speed, tiny balls in sports broadcasting
videos. Additionally, the proposed method
achieved accuracy of 85%. While the model aims
to address issues like blurriness and occlusions, it
still relies on the quality of the input frames. If the
video quality is significantly low, the model's
performance may be adversely affected. Overall,
achieving real-time performance with these models
remains a challenge, often limited by
computational cost and latency. In robotics
researches, Setiawardhana et al. [40] proposed a
method to capture images and videos of the ball's
movement in real-time via goalkeeper robot. The
captured images are labeled and organized into a
dataset that includes various lighting conditions
and ball positions to train the YOLOv8 model for
object detection. Once the ball is detected, the
method uses a simple Convolutional Neural
Network (CNN) to predict the ball's arrival position
based on the data.

3. Proposed methods

The  proposed methodology  incorporates
architectural modifications in YOLOv8 [41] and
YOLOvV10 [42] models, specifically utilizing
convolutional block attention modules, to enhance
ball detection and tracking performance. More
details of the modules embedded in the proposed
model will be presented in the following sub-
sections.

3.1. Convolutional Block Attention Module

The objective of employing attention mechanisms
is to enhance the representation of salient regions
by directing the network's focus to significant
features and suppressing irrelevant information.
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Attention blocks not only indicate where to focus
but also improve the representation of these salient
regions. In this paper, a convolutional block
attention module is utilized to achieve this goal
[43].

Convolutional Block Attention Module

Figure 2. Convolutional Block Attention Module
architecture [25].

Given the intermediate feature map, F € RO*HXW,
as input, this module sequentially computes a 1D
channel attention map, M, € R**x1 and a 2D
spatial attention map, Mg € R™>H*W_The channel
attention map is a vector containing weights that
indicate the significance of each feature channel,
while the spatial attention map is a 2D map
containing weights that indicate the spatial
importance or pixel-wise significance of an image.
During the multiplication and calculation process,
the significant values in both the channel and
spatial dimensions are propagated, resulting in a
refined output, F"’. The computation process of the
attention maps is as follows:

=M. (F)®F )
F'=M (F)®F' 2
where F is Given an intermediate feature map as

input, M. and Mg are channel attention map and
spatial attention map, respectively.
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Figure 3. Channel attention and Spatial attention modules
architecture [25].

Channel Attention Module. The channel
attention map is generated by exploiting the inter-
channel relationships of features. To capture spatial
information, both average pooling and max pooling
are simultaneously employed. This approach
significantly enhances the network'’s
representational power by leveraging the benefits
of both pooling operations, rather than relying on
either independently, and extracts more
discriminative features for each object. The

computation process of the channel attention maps
is as follows:
M (F) = o(MLP (AvgPool (F)) + MLP (MaxPool (F))) ~ (3)

= UM’lNVO(Fa(\:/g ) +W16N0(Fr§ax)))

where the sigmoid function is represented by o,

C C
W, € R, W, € R+, W, and W, are the MLP
weights. Also, ReLU is used as the activation
function.

Spatial Attention Module. Unlike the channel
attention module, the spatial attention module
focuses on "where™ an informative and feature-rich
part is located, complementing the channel
attention. To compute spatial attention, average
pooling and max pooling operations are initially
applied along the channel axis and concatenated to
form an effective feature descriptor.

M, (F)=a(f ™" ([AvgPool (F); MaxPool (F)]))

ol (2 F) @
where f7*7 is a convolutional layer with a 7x7
kernel size is applied to generate the spatial
attention map. As illustrated in Figure 4, this
module can be implemented as a residual network
by adding the input to the output.
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ResBlock + CBAM

Figure 4. Residual Convolutional Block Attention Module
[43].

3.2. Architecture

In the first proposed method, the primary
architecture is based on the YOLOv8 object
detection model. This model employs
convolutional block, C2f module, SPPF module,
and detect block. The C2f module is designed to
improve the flow of information and gradients
within the network, leading to more effective
feature extraction. SPPF Allows the network to
accept images of varying sizes and makes the
model more robust to different input sizes. It pools
the feature maps at different scales and then
concatenates them. SPPF is a faster version of SPP.
Figure 5-(a) presents a detailed illustration of this
architecture. As depicted in Figure 5-(a), the
modifications were made to the upper part or head
of the model. To avoid increasing computational
costs, we implemented only one additional block
(the purple block).
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In the second proposed method, the YOLOvV10
object detection model architecture is employed.
Given its newer version compared to YOLOVS, it
has demonstrated improved performance on
various metrics and reduced the number of
parameters. However, it exhibits weaker
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performance in detecting small objects compared
to YOLOVS8. Figure 5-(b) illustrates second method
architecture. similar to YOLOvV8, this model
utilizes attention block to enhance feature
extraction, implemented as residual convolutional
attention blocks.
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Figure 5: (a) The first modification of YOLOV8 architecture with Residual Convolutional Block Attention Module, (b) The
second modification of YOLOV8 architecture with Residual Convolutional Block Attention Module.

4, Evaluation

In this section, details of the implementation
environment, hyperparameters, dataset, and
experimental results and discussion are presented.

4.1. Implementation environment

Given the significance of the Graphics Processing
Unit (GPU) in deep learning model
experimentation and performance evaluation, the
proposed methods were trained on the Kaggle
environment equipped with a GeForce Tesla P100
GPU featuring 16GB of graphics memory and
29GB of RAM.

4.2. Hyperparameters

Both proposed models were trained using identical
hyperparameters for 100 epochs with the SGD
optimizer, a learning rate of 0.01, and a momentum
of 0.937. The batch size was set to 16.

4.3. Dataset

In this paper, we utilize the VolleyVision dataset
[44], a collection of 25,239 images extracted from
volleyball match videos. The dataset's strength lies
in its large size, encompassing both indoor and
beach volleyball ~matches. Through data
augmentation, the dataset was further expanded to
include diverse images with varying lighting
conditions and duplicates. The dataset was divided
into three subsets: 17,679 images for training, 5021
for validation, and 2,539 for testing.

4.4. Experimental results

4.4.1. Baseline Comparison

Evaluation results of the proposed models,
compared to the baseline model, on the
VolleyVision validation set (5021 images) are
presented in Tables 1 and 2, using metrics such as
precision, recall, mAP50 and mAP50-95. The
results highlight the effectiveness of our approach.

Table 1. Comparison of first proposed model and baseline
model evaluation on the VolleyVision.

Precisio Recal mAP5 mAP50
n (%) 1 (%) 0(%) -95 (%)

YOLOv8n 92.9 82.9 89.8 57.9
YOLOv8n+RCBA 93.5 83.1 90.2 58.4
M

YOLOv8s 93.8 86.2 92.2 61.4
YOLOvV8s+RCBAM 94 86.6 92.8 62
YOLOv8m 93.7 86.2 92.4 61.7
YOLOvV8mM+RCBA 94 88.5 93.4 63.5
M

YOLOv8I 94.5 87 93.3 63.4
YOLOV8I+RCBAM 94.2 87.3 93.6 63.7
YOLOv8x 93.9 88.7 94.1 64.3
YOLOvV8x+RCBA 93.6 88.1 93.8 64.2
M

As shown in Tables 1 and 2, the proposed models
exhibited relatively better performance in the
evaluation results, indicating the effectiveness of
the attention block in enhancing feature extraction
compared to the baseline model. For example,
YOLOv8m with RCBAM increases by 0.3%,
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2.3%, 0.1% and 2.2% in precision, recall, mAP50
and mAP50-95, respectively. In the first proposed
method, only YOLOv8x with an attention block
demonstrated slightly lower performance by 0.3%,
0.6%, 0.3% and 0.01% in precision, recall, mAP50
and mAP50-95, respectively. While in the second
proposed method, the YOLOv10b with an attention
block evaluation results decreases in recall by 1.1%
and the YOLOv10l with an attention block
evaluation results decreases in precision by 0.3%.

Table 2. Comparison of second proposed model and
baseline model evaluation on the VolleyVision.

Precision Recall mAP50 mAP50-

(%) (%) (%) 95(%)

YOLOv10n 92.7 80.6 88.4 56.8
YOLOv10n+RCBAM 92.8 80.9 88.5 57

YOLOv10s 93.6 84.6 91.4 60

YOLOvV10s+RCBAM 94.1 84.7 91.7 60.4
YOLOv10m 94.3 85.7 92.6 61.6
YOLOv10m+RCBAM 94.7 86 92.5 61.8
YOLOv10b 94.2 87.6 93.2 62.3
YOLOvV10b+RCBAM 94.3 86.5 93.2 62.5
YOLOv10l 94.5 86 92.8 62

YOLOV10l1+RCBAM 94.2 86.9 93 62.1
YOLOv10x 93.8 86.5 92.7 61.7
YOLOv10x+RCBAM 94 87.2 92.9 61.7

that some metrics were not available for all models
and are therefore omitted.

Table 4. Inference Time and Parameter Comparison of
Baseline and modified YOLOv10 Models.

Inference time Parameters
(ms)
YOLOv10n 3 2694806
YOLOv10n+RCBAM 3.4 2744504
YOLOvV10s 6.2 8035734
YOLOv10s+RCBAM 6.5 8233336
YOLOv10m 12 16451542
YOLOvV10m+RCBAM 12.7 16895352
YOLOv10b 16.9 20412694
YOLOvV10b+RCBAM 17.8 21201016
YOLOv10I 20.3 25717910
YOLOV10l+RCBAM 21.3 26506232
YOLOv10x 29.9 31586006
YOLOV10x+RCBAM 31.2 32817144

4.4.2. Performance Evaluation

Tables 3 and 4 present the inference time of the first
proposed model and its baseline, as well as the
evaluation time of the second proposed model and
its baseline on the validation set, along with the
number of trainable parameters. The impact of the
graphics processor on the execution time is evident.
These evaluations were conducted using a GeForce
Tesla P100 GPU. The execution time encompasses
pre-processing, detection, and post-processing
stages.

Table 3. Inference Time and Parameter Comparison of
Baseline and modified YOLOV8 Models.

Inference time (ms)  Parameters
YOLOvV8n 31 3005843
YOLOv8n+RCBAM 35 3055541
YOLOV8s 5.7 11125971
YOLOv8s+RCBAM 6.3 11323573
YOLOv8m 11.7 25856883
YOLOv8m+RCBAM 125 26284149
YOLOv8I 19.8 43607379
YOLOV8I+RCBAM 20.9 44395701
YOLOV8x 28 68124531
YOLOvV8x+RCBAM 29.5 69355669

The added attention block did not significantly
affect the speed or parameter count of our models,
as shown in Tables 3 and 4. The performance gains
justify the minor speed trade-off.

Tables 5 and 6 present a comparison of the
proposed models with two other models,
HMMATrack and GE-YOLOV4, in terms of FPS,
precision and AP50, respectively. It is worth noting

Table 5. performance comparison of first proposed model
and other models.

FPS  Precision (%)  AP50 (%)

YOLOv8n+RCBAM 285 93.5 90.2
YOLOv8s+RCBAM 158 94 92.8
YOLOv8m+RCBAM 80 94 93.4
YOLOvV8I+RCBAM 47 94.2 93.6
YOLOvV8x+RCBAM 33 93.6 93.8
HMMATrack/Mnet 28.2 82.7 N/A
GE-YOLOv4 34 N/A 66.2

Based on the results and comparison of the
proposed models with two other models, it can be
concluded that the proposed models exhibit higher
execution speed and better accuracy. Furthermore,
the proposed models demonstrate a quantitatively
better performance in detecting small objects such
as volleyballs, making them suitable for real-time
systems.

Table 6. performance comparison of second proposed
model and other models.

FPS  Precision (%) AP50 (%)

YOLOv10n+RCBAM 294 92.8 88.5
YOLOvV10s+RCBAM 153 94.1 91.7
YOLOvV10m+RCBAM 78 94.7 92.5
YOLOvV10b+RCBAM 56 94.3 93.2
YOLOV10I+RCBAM 46 94.2 93

YOLOvV10x+RCBAM 32 94 92.9
HMMATrack.Mnet 28.2 82.7 N/A
GE-YOLOv4 34 N/A 66.2

The comparisons show that CBAM enhances
YOLOvV8 and YOLOv10 for small object detection
by making the network focus on the most
informative feature channels and precise spatial
locations. This attention mechanism refines feature
representations, making small objects more
distinguishable from the background.

4.4 3. Statistical Analysis
To assess the comparative object detection
performance of the proposed models, a statistical
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analysis was conducted between the baseline
YOLOV8s model and YOLOv8s with a Residual
CBAM (Convolutional Block Attention Module).
Both models were evaluated across 10 randomly
sampled, identical subsets (each containing 254
images) drawn from the comprehensive
VolleyVision test set. A paired samples t-test was
employed for each metric to account for the
dependency introduced by evaluating both models
on the same image subsets. According to Table 7,
According to Table 7, for mAPS50, the paired
samples t-test indicated a statistically significant
difference between the two models. YOLOVSs
with Residual CBAM (Mean mAP50: 0.9208)
demonstrated superior performance compared to
the baseline YOLOv8s (Mean mAP50: 0.9132),
with a mean improvement of approximately 0.0076
(95% CI [0.004, 0.0112]). The statistical results
were t(9)=4.8131, p=0.001. Similarly, for mAP50-
95, a statistically significant difference was also
observed. YOLOv8s with Residual CBAM (Mean
mMAP50-95: 0.6165) again outperformed YOLOV8s
(Mean mAP50-95: 0.6071) by a mean of
approximately 0.0094 (95% CI [0.004, 0.0148]).
The corresponding statistical values were
t(9)=3.9335, p=0.0034.

These results collectively suggest that YOLOv8s
with  Residual CBAM  consistently and
significantly outperforms the baseline YOLOv8s
across both mAP50 and mAP50-95 metrics on this
dataset. This highlights the enhanced overall
detection accuracy and localization capabilities
contributed by the Convolutional Block Attention
Module, confirming its positive impact on
detection performance.

Given the high speed of the YOLO detection model
and the integration of convolutional attention
blocks, which introduced minimal speed
degradation but enhanced feature extraction for

eyball .73 yolleyboll 0.64

small objects and ultimately improved accuracy,
the proposed models can be effectively employed
in real-time systems. As a future work, we aim to
utilize new attention blocks and effective fusion in
the middle layers of prominent object detection
models in order to extract important features,
especially in small object projects. Also, for
achieving better results, collecting a dataset

Table 7. Paired Samples T-Test Results for YOLOVSs vs.
YOLOVvS8s with Residual CBAM.

mAPS50 mAP50-95
p value 0.001 0.0034
t statistic 4.8131 3.9335
95% ClI 0.004 - 0.0112 0.004 —0.0148

4.4.4. Visual Detection Analysis

We present a qualitative analysis through visual
examples of ball detections on predicted video
frames. Figures 6 showcases our models'
robustness and effectiveness.

To complement our visual detection examples and
gain deeper insight into the internal workings of
our proposed models, we have further included
visualizations of mean feature maps. Specifically,
Figure 6 illustrates the comparison on 5 frames in
order using YOLOv8n with Kalman filter vs
YOLOv8n with residual CBAM. Moreover, Figure
7 presents the average activation patterns across
channels within the C2f and Convolutional Block
Attention Module (CBAM) modules. The C2F
module, positioned earlier in the feature extraction
pipeline, is crucial for efficiently aggregating
features and creating rich representations.
Following this, the CBAM adaptively refines these
features by highlighting salient spatial regions and
emphasizing critical channels. This sequence
provides a qualitative understanding of how the

Figure 6. Volleyball prediction results comparison on 5 frames in order: YOLOv8n with Kalman filter (top row) vs
YOLOv8n with residual CBAM (bottom row).
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Figure 7. C2f module and Residual Convolutional Block Attention Module feature map example.

C2f module first generates robust feature
representations, which are then further refined by
CBAM's attention mechanism.

5. Conclusion

In this paper, we introduced two proposed models
for volleyball ball detection and tracking using
attention blocks, which demonstrated superior
performance compared to the baseline model and
two  other  state-of-the-art  models. A
comprehensive comparison between the proposed
models and other models was also
conducted.appropriate to the work domain and
considering all model conditions is recommended.
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