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 In recent years, the application of deep learning techniques has 

revolutionized various domains, including the realm of sports 

analytics. The analysis of ball tracking and trajectory in sports has 

become an increasingly vital area of research, driven by 

advancements in technology and the growing demand for data-driven 

insights in athletic performance. In volleyball, a sport characterized 

by rapid movements and strategic play, the ability to accurately track 

the trajectory of the ball is crucial for both training and competitive 

analysis. This paper proposes novel deep learning models for accurate 

volleyball ball detection and tracking. By incorporating attention 

mechanisms into the YOLOv8 and YOLOv10 architecture, our 

models significantly improve performance, particularly in 

challenging situations involving occlusions and fast movements. The 

proposed models were compared to baseline and other models across 

several metrics. Specifically, they achieved precision (94.2% and 

94.7%, respectively) and recall (88.1% and 87.6%, respectively) as 

well as real-time processing speeds, making them suitable for various 

sports analytics applications. 
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1. Introduction

Object tracking, a fundamental task in computer 

vision, finds critical applications in diverse 

domains including surveillance systems [1], 

robotics [2], and human-computer interaction [3-

15]. Notably, sports video analysis presents a 

significant demand for robust object tracking 

methodologies, driven by advancements in 

Artificial Intelligence, computer vision, and deep 

learning techniques [16-21] and the proliferation of 

high-performance cameras [22]. The majority of 

viewers of ball-based sports focus on the ball's 

position and movement [23]. 

Ball tracking, a specialized case of single-object 

tracking and small object detection, is a critical task 

in computer vision [24]. Given the rapid and 

unpredictable movements of balls in sports, these 

systems must be capable of high-speed, real-time 

tracking [25]. The challenges associated with 

tracking small objects, such as limited pixel 

information and potential occlusions, make this 

task particularly demanding. Moreover, the 

dynamic nature of sports environments, with 

varying lighting conditions and background clutter, 

further complicates the tracking process [23]. 

Sports video analysis has gained significant 

traction due to its numerous applications and 

potential commercial benefits [25]. Ball tracking is 

a critical component of most sports analysis 

systems, as it enables detailed analysis of game 

play [24] Systems like Hawk-Eye have 

revolutionized sports by providing precise 2D and 

3D trajectories of balls, aiding referees and 

enhancing the overall viewing experience [24]. 

However, real-time ball tracking in dynamic sports 

environments presents significant challenges, such 

as varying lighting conditions, occlusions, and 

high-speed motion [26]. Advanced computer 

vision techniques, including deep learning, are 

increasingly being employed to address these 

challenges. 

The challenges and limitations in ball sports are 

primarily associated with the characteristics of the 
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ball itself. These characteristics, including speed, 

shape, and size, significantly influence the choice 

of algorithms and approaches. Additionally, player 

occlusion presents a common challenge in model 

and algorithm design. In volleyball, numerous 

challenges exist, such as occlusions, misdetections, 

varying lighting conditions, similar colors between 

the ball and the environment, camera quality, 

varying frame rates, and the fast pace of the game 

[26]. These challenges must be addressed through 

novel approaches. Figure 1 illustrates the ball in 

various states, including simple, occluded, motion 

blur, and blended with the background. This paper 

aims to address these challenges by proposing a 

novel approach for ball tracking, leveraging 

advanced deep learning techniques to achieve 

robust and accurate performance. Our main 

contributions can be listed as follows: 

1. We propose two novel volleyball detection 

models by integrating an attention mechanism into 

the YOLOv8 and YOLOv10 architectures, leading 

to improved accuracy in detecting volleyballs 

across various object scales. 

2. By applying Convolutional Block Attention 

Module (CBAM), we can effectively extract spatial 

and channel-wise information which is crucial for 

small object detection. 

The remainder of this paper is organized as 

follows. Section 2 reviews recent relevant works. 

Section 3 presents the proposed model, followed by 

an evaluation of its performance on a real-world 

dataset, comparing the results with those obtained 

from alternative approaches. Finally, Section 4 

concludes the paper and outlines directions for 

future research. 

 

 
Figure 1. Ball in different modes such as simple mode, 

occlusion, motion blur, and cluttered with background. 

2. Related Works 

In recent years, there has been a surge in research 

and development of artificial intelligence 

applications within the sports domain [27]. Various 

approaches, including conventional machine 

learning and deep learning, have been employed to 

detect and track balls in sports videos. While 

conventional machine learning models have shown 

promising results, deep learning techniques have 

emerged as a powerful tool, offering significant 

improvements in accuracy and robustness [26]. 

Previous studies have explored a range of 

techniques, such as color-based tracking [28], 

Template Matching [25,29], Mean-Shift algorithm 

[30], Hough transform [31], Background 

Estimation [32] to localize and track balls. 

However, these methods often struggle in 

challenging scenarios, such as occlusions, varying 

lighting conditions, and rapid ball motion [33]. To 

address these limitations, researchers have 

increasingly turned to deep learning, leveraging 

Convolutional Neural Networks (CNNs) and 

Recurrent Neural Networks (RNNs) to extract 

relevant features and predict ball trajectories [33]. 

More details of recent works in these two 

categories (conventional machine learning and 

deep learning) will be presented in the following 

sub-sections. 

 

2.1. Conventional machine learning methods 

The algorithm proposed by Xinguo Yu et al. [28] 

includes four steps for ball tracking in soccer video. 

The first step is to estimate ball size then detect ball 

candidates. After that the algorithm generates 

candidate trajectories and processes ball trajectory. 

Finally, while the proposed algorithm achieves a 

high accuracy of about 81% for ball location 

detection, this still indicates a significant margin 

for error, particularly in complex scenarios where 

the ball is not clearly visible. Another approach to 

track soccer ball was presented by Norihiro Ishii et 

al. [29], who employed Template Matching to 

enhance the detection process when the ball's 

movement is minimal. The authors proposed an 

algorithm that narrows the search area for the ball 

based on its state. Additionally, an adaptive 

approach employed to select the most suitable ball 

extraction method based on the current frame and 

the ball's movement. On the other hand, if the ball 

is in front of a player, the detection algorithm may 

mistakenly identify parts of the player as the ball, 

leading to incorrect tracking results. Bodhisattwa 

Chakraborty et al. [32] proposed a trajectory-based 

approach to detect and track a ball in basketball. 

The initial step involves segmenting moving 

objects from the background using a three-frame 

difference method and an edge detection technique 

is utilized to further distinguish the moving objects 

from the background. Morphological operations 

are also applied to the segmented objects. 

However, the framework also faces challenges due 

to motion blurring, especially at critical moments 

like when the ball is released from a player's hand. 

Sukadev Meher et al. [34] proposed a trajectory-

based ball detection and tracking algorithm 
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specifically designed for volleyball videos to 

classify various game states. Their proposed model 

utilizes an approximate median filtering algorithm 

to remove the background, generating potential 

ball detections using the Hough transform and 

shape and size features. An interpolation method 

based on the Kalman filter was used to detect and 

fill in missing ball detections due to occlusions 

along the trajectory. Although the proposed 

method aims for real-time processing, the 

complexity of the algorithm may hinder its 

performance in live settings where quick decisions 

are necessary. In another study, Kurowski et al. 

[25] proposed a model for ball tracking in short 

volleyball rallies. The proposed method comprises 

two stages: training and ball tracking. It leverages 

background subtraction based on a Gaussian 

Mixture Model (GMM). In the second stage, the 

resulting foreground images are analyzed to detect 

the ball. Template matching based on a quarter-ball 

template is applied in this model. The method relies 

heavily on background subtraction techniques, 

which may not always be effective in varying 

lighting conditions typical in sports halls. Overall, 

such methods are often highly sensitive to 

environmental factors like lighting changes, 

occlusions, background clutter, and camera 

motion, leading to inaccurate tracking or failures. 

These methods also exhibit limited robustness to 

scale variations, shape deformations, and fast 

motion. 

 

2.2. Deep learning methods 

According to [33], Huang proposed a method for 

identifying volleyball trajectories using a graph 

convolutional neural network. The author 

employed the YOLOv4 model to identify regions 

of interest with high confidence. Subsequently, to 

extract deep and high-level features, the model was 

combined with a graph convolutional network. 

Finally, the DeepSORT [35] tracking algorithm 

was utilized to estimate the volleyball trajectory. 

One of the primary challenges highlighted is the 

low detection accuracy. In another study, Han et al. 

proposed a model named HMMATrack [36] for 

ball tracking using a neural network and a custom 

architecture based on improving multi-scale 

feature enhancement and multi-level collaborative 

matching to enhance tracking performance from 

various perspectives. In the neural network part, 

two object detection models, CenterNet and MNet, 

were used. While the authors proposed methods to 

enhance detection and tracking, increasing the 

resolution of input images to improve detection can 

lead to exponential increases in computational 

requirements. Wang and Chen have introduced a 

model named TrackNetV3 [37] for badminton 

shuttlecock tracking. TrackNetV3 comprises two 

primary modules: trajectory prediction and 

refinement. The trajectory prediction module 

leverages a predicted background as auxiliary 

information to accurately locate the shuttlecock 

amidst visual distractions. The tracking neural 

network within TrackNetV3 adopts a U-Net 

architecture, incorporating convolutional layers 

and skip connections. As demonstrated in [38], 

Jorge Armando et al. proposed a semi-supervised 

model for soccer ball detection and tracking. The 

proposed framework leverages the YOLOv7 

convolutional neural network and incorporates the 

focal loss function. To track ball trajectories and 

perform in-depth analysis, DeepSORT was used 

for object tracking. Vanyi Chao et al. [39] proposed 

a novel approach to detect volleyball trajectory in 

videos. The core of the proposed method is the 

MaxViT Sequential model, which is designed to 

track high-speed, tiny balls in sports broadcasting 

videos. Additionally, the proposed method 

achieved accuracy of 85%. While the model aims 

to address issues like blurriness and occlusions, it 

still relies on the quality of the input frames. If the 

video quality is significantly low, the model's 

performance may be adversely affected. Overall, 

achieving real-time performance with these models 

remains a challenge, often limited by 

computational cost and latency. In robotics 

researches, Setiawardhana et al. [40] proposed a 

method to capture images and videos of the ball's 

movement in real-time via goalkeeper robot. The 

captured images are labeled and organized into a 

dataset that includes various lighting conditions 

and ball positions to train the YOLOv8 model for 

object detection. Once the ball is detected, the 

method uses a simple Convolutional Neural 

Network (CNN) to predict the ball's arrival position 

based on the data. 

 

3. Proposed methods 

The proposed methodology incorporates 

architectural modifications in YOLOv8 [41] and 

YOLOv10 [42] models, specifically utilizing 

convolutional block attention modules, to enhance 

ball detection and tracking performance. More 

details of the modules embedded in the proposed 

model will be presented in the following sub-

sections.  

 
3.1. Convolutional Block Attention Module 

The objective of employing attention mechanisms 

is to enhance the representation of salient regions 

by directing the network's focus to significant 

features and suppressing irrelevant information. 
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Attention blocks not only indicate where to focus 

but also improve the representation of these salient 

regions. In this paper, a convolutional block 

attention module is utilized to achieve this goal 

[43].  
 

 

Figure 2. Convolutional Block Attention Module 

architecture [25]. 

Given the intermediate feature map, F ∈ ℝC×H×W, 

as input, this module sequentially computes a 1D 

channel attention map, Mc ∈ ℝC×1×1, and a 2D 

spatial attention map, Ms ∈ ℝ1×H×W. The channel 

attention map is a vector containing weights that 

indicate the significance of each feature channel, 

while the spatial attention map is a 2D map 

containing weights that indicate the spatial 

importance or pixel-wise significance of an image. 

During the multiplication and calculation process, 

the significant values in both the channel and 

spatial dimensions are propagated, resulting in a 

refined output, F′′. The computation process of the 

attention maps is as follows: 

( )cF M F F    (1) 

( )sF M F F     (2) 

where F is Given an intermediate feature map as 

input, Mc and Ms are channel attention map and 

spatial attention map, respectively. 

 
Figure 3. Channel attention and Spatial attention modules 

architecture [25]. 

Channel Attention Module. The channel 

attention map is generated by exploiting the inter-

channel relationships of features. To capture spatial 

information, both average pooling and max pooling 

are simultaneously employed. This approach 

significantly enhances the network's 

representational power by leveraging the benefits 

of both pooling operations, rather than relying on 

either independently, and extracts more 

discriminative features for each object. The 

computation process of the channel attention maps 

is as follows: 

1 0 1 0 max

( ) ( ( ( )) ( ( )))

( ( ( )) ( ( )))

c

c c

avg

M F MLP AvgPool F MLP MaxPool F

W W F W W F





 

 
 

(3) 

where the sigmoid function is represented by σ, 

W0 ∈ ℝ
C

r
×C

 , W1 ∈ ℝC×
C

r . W0 and  W1 are the MLP 

weights. Also, ReLU is used as the activation 

function. 

Spatial Attention Module. Unlike the channel 

attention module, the spatial attention module 

focuses on "where" an informative and feature-rich 

part is located, complementing the channel 

attention. To compute spatial attention, average 

pooling and max pooling operations are initially 

applied along the channel axis and concatenated to 

form an effective feature descriptor. 

(7 7)

(7 7)

max

( ) ( ([ ( ); ( )]))

( ([ ; ]))

s

s s

avg

M F f AvgPool F MaxPool F

f F F













 (4) 

 where f 7×7 is a convolutional layer with a 7x7 

kernel size is applied to generate the spatial 

attention map. As illustrated in Figure 4, this 

module can be implemented as a residual network 

by adding the input to the output. 

 

Figure 4. Residual Convolutional Block Attention Module 

[43]. 

 

3.2. Architecture 

In the first proposed method, the primary 

architecture is based on the YOLOv8 object 

detection model. This model employs 

convolutional block, C2f module, SPPF module, 

and detect block. The C2f module is designed to 

improve the flow of information and gradients 

within the network, leading to more effective 

feature extraction. SPPF Allows the network to 

accept images of varying sizes and makes the 

model more robust to different input sizes. It pools 

the feature maps at different scales and then 

concatenates them. SPPF is a faster version of SPP. 

Figure 5-(a) presents a detailed illustration of this 

architecture. As depicted in Figure 5-(a), the 

modifications were made to the upper part or head 

of the model. To avoid increasing computational 

costs, we implemented only one additional block 

(the purple block). 



Improving Ball Detection in Volleyball Using Deep Learning 

In the second proposed method, the YOLOv10 

object detection model architecture is employed. 

Given its newer version compared to YOLOv8, it 

has demonstrated improved performance on 

various metrics and reduced the number of 

parameters. However, it exhibits weaker 

performance in detecting small objects compared 

to YOLOv8. Figure 5-(b) illustrates second method 

architecture. similar to YOLOv8, this model 

utilizes attention block to enhance feature 

extraction, implemented as residual convolutional 

attention blocks. 

 

4. Evaluation 

In this section, details of the implementation 

environment, hyperparameters, dataset, and 

experimental results and discussion are presented. 

  

4.1. Implementation environment 

Given the significance of the Graphics Processing 

Unit (GPU) in deep learning model 

experimentation and performance evaluation, the 

proposed methods were trained on the Kaggle 

environment equipped with a GeForce Tesla P100 

GPU featuring 16GB of graphics memory and 

29GB of RAM. 

 

4.2. Hyperparameters 

Both proposed models were trained using identical 

hyperparameters for 100 epochs with the SGD 

optimizer, a learning rate of 0.01, and a momentum 

of 0.937. The batch size was set to 16. 

 

4.3. Dataset  

In this paper, we utilize the VolleyVision dataset 

[44], a collection of 25,239 images extracted from 

volleyball match videos. The dataset's strength lies 

in its large size, encompassing both indoor and 

beach volleyball matches. Through data 

augmentation, the dataset was further expanded to 

include diverse images with varying lighting 

conditions and duplicates. The dataset was divided 

into three subsets: 17,679 images for training, 5021 

for validation, and 2,539 for testing. 

 

4.4. Experimental results  

4.4.1. Baseline Comparison 

Evaluation results of the proposed models, 

compared to the baseline model, on the 

VolleyVision validation set (5021 images) are 

presented in Tables 1 and 2, using metrics such as 

precision, recall, mAP50 and mAP50-95. The 

results highlight the effectiveness of our approach. 

 

Table 1. Comparison of first proposed model and baseline 

model evaluation on the VolleyVision. 

 Precisio

n (%) 

Recal

l (%) 

mAP5

0 (%) 

mAP50

-95 (%) 

YOLOv8n 92.9 82.9 89.8 57.9 

YOLOv8n+RCBA
M 

93.5 83.1 90.2 58.4 

YOLOv8s 93.8 86.2 92.2 61.4 

YOLOv8s+RCBAM 94 86.6 92.8 62 

YOLOv8m 93.7 86.2 92.4 61.7 

YOLOv8m+RCBA

M 
94 88.5 93.4 63.5 

YOLOv8l 94.5 87 93.3 63.4 

YOLOv8l+RCBAM 94.2 87.3 93.6 63.7 
YOLOv8x 93.9 88.7 94.1 64.3 
YOLOv8x+RCBA

M 

93.6 88.1 93.8 64.2 

 

As shown in Tables 1 and 2, the proposed models 

exhibited relatively better performance in the 

evaluation results, indicating the effectiveness of 

the attention block in enhancing feature extraction 

compared to the baseline model. For example, 

YOLOv8m with RCBAM increases by 0.3%, 

Figure 5: (a) The first modification of YOLOv8 architecture with Residual Convolutional Block Attention Module, (b) The 

second modification of YOLOv8 architecture with Residual Convolutional Block Attention Module.    

(a) (b) 
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2.3%, 0.1% and 2.2% in precision, recall, mAP50 

and mAP50-95, respectively. In the first proposed 

method, only YOLOv8x with an attention block 

demonstrated slightly lower performance by 0.3%, 

0.6%, 0.3% and 0.01% in precision, recall, mAP50 

and mAP50-95, respectively. While in the second 

proposed method, the YOLOv10b with an attention 

block evaluation results decreases in recall by 1.1% 

and the YOLOv10l with an attention block 

evaluation results decreases in precision by 0.3%. 
 

Table 2. Comparison of second proposed model and 

baseline model evaluation on the VolleyVision. 

 Precision 

(%) 

Recall 

(%) 

mAP50 

(%) 

mAP50-

95 (%) 

YOLOv10n 92.7 80.6 88.4 56.8 

YOLOv10n+RCBAM 92.8 80.9 88.5 57 

YOLOv10s 93.6 84.6 91.4 60 

YOLOv10s+RCBAM 94.1 84.7 91.7 60.4 

YOLOv10m 94.3 85.7 92.6 61.6 

YOLOv10m+RCBAM 94.7 86 92.5 61.8 

YOLOv10b 94.2 87.6 93.2 62.3 
YOLOv10b+RCBAM 94.3 86.5 93.2 62.5 

YOLOv10l 94.5 86 92.8 62 

YOLOv10l+RCBAM 94.2 86.9 93 62.1 

YOLOv10x 93.8 86.5 92.7 61.7 

YOLOv10x+RCBAM 94 87.2 92.9 61.7 

 

4.4.2. Performance Evaluation 

Tables 3 and 4 present the inference time of the first 

proposed model and its baseline, as well as the 

evaluation time of the second proposed model and 

its baseline on the validation set, along with the 

number of trainable parameters. The impact of the 

graphics processor on the execution time is evident. 

These evaluations were conducted using a GeForce 

Tesla P100 GPU. The execution time encompasses 

pre-processing, detection, and post-processing 

stages. 
 

Table 3. Inference Time and Parameter Comparison of 

Baseline and modified YOLOv8 Models. 

 Inference time (ms) Parameters 

YOLOv8n 3.1 3005843 

YOLOv8n+RCBAM 3.5 3055541 
YOLOv8s 5.7 11125971 

YOLOv8s+RCBAM 6.3 11323573 

YOLOv8m 11.7 25856883 
YOLOv8m+RCBAM 12.5 26284149 

YOLOv8l 19.8 43607379 

YOLOv8l+RCBAM 20.9 44395701 
YOLOv8x 28 68124531 

YOLOv8x+RCBAM 29.5 69355669 

 

The added attention block did not significantly 

affect the speed or parameter count of our models, 

as shown in Tables 3 and 4. The performance gains 

justify the minor speed trade-off.  

Tables 5 and 6 present a comparison of the 

proposed models with two other models, 

HMMATrack and GE-YOLOv4, in terms of FPS, 

precision and AP50, respectively. It is worth noting 

that some metrics were not available for all models 

and are therefore omitted. 

 

Table 4. Inference Time and Parameter Comparison of 

Baseline and modified YOLOv10 Models. 

 Inference time 

(ms) 

Parameters 

YOLOv10n 3 2694806 

YOLOv10n+RCBAM 3.4 2744504 
YOLOv10s 6.2 8035734 

YOLOv10s+RCBAM 6.5 8233336 
YOLOv10m 12 16451542 

YOLOv10m+RCBAM 12.7 16895352 

YOLOv10b 16.9 20412694 
YOLOv10b+RCBAM 17.8 21201016 

YOLOv10l 20.3 25717910 

YOLOv10l+RCBAM 21.3 26506232 
YOLOv10x 29.9 31586006 

YOLOv10x+RCBAM 31.2 32817144 

 
Table 5. performance comparison of first proposed model 

and other models. 

 FPS Precision (%) AP50 (%) 

YOLOv8n+RCBAM 285 93.5 90.2 

YOLOv8s+RCBAM 158 94 92.8 
YOLOv8m+RCBAM 80 94 93.4 

YOLOv8l+RCBAM 47 94.2 93.6 

YOLOv8x+RCBAM 33 93.6 93.8 
HMMATrack/Mnet  28.2 82.7 N/A 

GE-YOLOv4 34 N/A 66.2 

 

Based on the results and comparison of the 

proposed models with two other models, it can be 

concluded that the proposed models exhibit higher 

execution speed and better accuracy. Furthermore, 

the proposed models demonstrate a quantitatively 

better performance in detecting small objects such 

as volleyballs, making them suitable for real-time 

systems. 

 
Table 6. performance comparison of second proposed 

model and other models. 

 FPS Precision (%) AP50 (%) 

YOLOv10n+RCBAM 294 92.8 88.5 
YOLOv10s+RCBAM 153 94.1 91.7 

YOLOv10m+RCBAM 78 94.7 92.5 

YOLOv10b+RCBAM 56 94.3 93.2 
YOLOv10l+RCBAM 46 94.2 93 

YOLOv10x+RCBAM 32 94 92.9 

HMMATrack.Mnet  28.2 82.7 N/A 
GE-YOLOv4 34 N/A 66.2 

 

The comparisons show that CBAM enhances 

YOLOv8 and YOLOv10 for small object detection 

by making the network focus on the most 

informative feature channels and precise spatial 

locations. This attention mechanism refines feature 

representations, making small objects more 

distinguishable from the background. 

 

4.4.3. Statistical Analysis 

To assess the comparative object detection 

performance of the proposed models, a statistical 
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analysis was conducted between the baseline 

YOLOv8s model and YOLOv8s with a Residual 

CBAM (Convolutional Block Attention Module). 

Both models were evaluated across 10 randomly 

sampled, identical subsets (each containing 254 

images) drawn from the comprehensive 

VolleyVision test set. A paired samples t-test was 

employed for each metric to account for the 

dependency introduced by evaluating both models 

on the same image subsets. According to Table 7, 

According to Table 7, for mAP50, the paired 

samples t-test indicated a statistically significant 

difference between the two models. YOLOv8s 

with Residual CBAM (Mean mAP50: 0.9208) 

demonstrated superior performance compared to 

the baseline YOLOv8s (Mean mAP50: 0.9132), 

with a mean improvement of approximately 0.0076 

(95% CI [0.004, 0.0112]). The statistical results 

were 𝑡(9)=4.8131, 𝑝=0.001. Similarly, for mAP50-

95, a statistically significant difference was also 

observed. YOLOv8s with Residual CBAM (Mean 

mAP50-95: 0.6165) again outperformed YOLOv8s 

(Mean mAP50-95: 0.6071) by a mean of 

approximately 0.0094 (95% CI [0.004, 0.0148]). 

The corresponding statistical values were 

𝑡(9)=3.9335, 𝑝=0.0034. 

These results collectively suggest that YOLOv8s 

with Residual CBAM consistently and 

significantly outperforms the baseline YOLOv8s 

across both mAP50 and mAP50-95 metrics on this 

dataset. This highlights the enhanced overall 

detection accuracy and localization capabilities 

contributed by the Convolutional Block Attention 

Module, confirming its positive impact on 

detection performance. 

Given the high speed of the YOLO detection model 

and the integration of convolutional attention 

blocks, which introduced minimal speed 

degradation but enhanced feature extraction for 

small objects and ultimately improved accuracy, 

the proposed models can be effectively employed 

in real-time systems. As a future work, we aim to 

utilize new attention blocks and effective fusion in 

the middle layers of prominent object detection 

models in order to extract important features, 

especially in small object projects. Also, for 

achieving better results, collecting a dataset 
 

Table 7. Paired Samples T-Test Results for YOLOv8s vs. 

YOLOv8s with Residual CBAM. 

 mAP50 mAP50-95 

𝑝 value 0.001 0.0034 

𝑡 statistic 4.8131 3.9335 

95% CI 0.004 – 0.0112 0.004 – 0.0148 

 

4.4.4. Visual Detection Analysis 

We present a qualitative analysis through visual 

examples of ball detections on predicted video 

frames. Figures 6 showcases our models' 

robustness and effectiveness. 

To complement our visual detection examples and 

gain deeper insight into the internal workings of 

our proposed models, we have further included 

visualizations of mean feature maps. Specifically, 

Figure 6 illustrates the comparison on 5 frames in 

order using YOLOv8n with Kalman filter vs 

YOLOv8n with residual CBAM. Moreover, Figure 

7 presents the average activation patterns across 

channels within the C2f and Convolutional Block 

Attention Module (CBAM) modules. The C2F 

module, positioned earlier in the feature extraction 

pipeline, is crucial for efficiently aggregating 

features and creating rich representations. 

Following this, the CBAM adaptively refines these 

features by highlighting salient spatial regions and 

emphasizing critical channels. This sequence 

provides a qualitative understanding of how the  

 

Figure 6. Volleyball prediction results comparison on 5 frames in order: YOLOv8n with Kalman filter (top row) vs 

YOLOv8n with residual CBAM (bottom row). 
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Figure 7. C2f module and Residual Convolutional Block Attention Module feature map example. 

 

C2f module first generates robust feature 

representations, which are then further refined by 

CBAM's attention mechanism. 

 

5. Conclusion 

In this paper, we introduced two proposed models 

for volleyball ball detection and tracking using 

attention blocks, which demonstrated superior 

performance compared to the baseline model and 

two other state-of-the-art models. A 

comprehensive comparison between the proposed 

models and other models was also 

conducted.appropriate to the work domain and 

considering all model conditions is recommended. 
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 قیعم یریادگیبا استفاده از  بالیتوپ وال ییبهبود شناسا

 

  *وو راضیه راستگ یانیکوروش ک، یاندشتیم یدیمحمد جد

 ، ایراندانشگاه سمنان، سمنان وتر،یدانشکده برق و کامپ

 15/08/2025 پذیرش؛ 06/05/2025 بازنگری؛ 23/02/2025 ارسال

 چکیده:

سال صه تحل یمختلف یهاحوزه ق،یعم یریادگی یهاکیکاربرد تکن ر،یاخ یهادر  ش لیاز جمله عر ست. تحل یورز س لیرا متحول کرده ا  یریو ردگ ریم

 محورداده یهاافتهی یرو به رشد برا یو تقاضا یفناور یهاشرفتیاز پ یشده است که ناش لیتبد یاتیح ندهیفزا یقاتیحوزه تحق کیتوپ در ورزش به 

ستراتژ یو باز عیکه با حرکات سر یورزش بال،یاست. در وال یدر عملکرد ورزش  یهالیتحل یتوپ برا ریمس قیدق یابیرد ییتوانا شود،یمشخص م کیا

س یو رقابت ینیتمر  بیکند. با ترکیم شنهادیپ بالیتوپ وال قیدق یابیو رد ییشناسا یرا برا یدیجد قیعم یریادگی یهامقاله مدل نیمهم است. ا اریب

شده به یها، مدلYOLOv10و  YOLOv8 یتوجه در معمار یهاسمیمکان شند،یعملکرد را بهبود م یطور قابل توجهارائه  سنار ژهیوبه بخ  یوهایدر 

مختلف نشان  یارهایعدر م یمدل ها، عملکرد بهتر گریو د هیبا مدل پا سهیدر مقا یشنهادیپ یهاتوپ. مدل عیمانند انسداد و حرکت سر زیچالش برانگ

که  افتندیدرصد( و سرعت بلادرنگ دست  87.6درصد و  88.1 بی)به ترت Recallدرصد(،  94.7و  94.2 بیبه دقت )به ترت یشنهادیپ یهادادند. مدل

 استفاده نمود. یورزش لیمختلف تحل یها ستمیس یتوان برا یآنها را م

 .یچشیپ یماژول توجه، شبکه عصب ق،یعم یریادگی بال،یتوپ وال ییشناسا :کلمات کلیدی

 


