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Abstract

Detecting driver distraction during driving is of critical importance
due to its significant role in increasing road accidents. This study aims
to present a hybrid model based on Spatio-Temporal Graph
Convolutional Networks (ST-GCN) and the attention mechanism for
identifying driver distraction. In this research, skeletal body data of
drivers were extracted from the 3D Drive&Act dataset and used as
input for the proposed model. The model leverages spatial and
temporal graph convolution layers, along with attention layers, to

Article Info

Avrticle History:
Received 02 May 2025
Revised 03 June 2025
Accepted 16 September 2025

DOI:10.22044/jadm.2025.16157.2735

Keywords:
Driver Distraction Detection,
Deep Learning, Pose Estimation,

Keypoints. simultaneously analyze the spatiotemporal features of driver
movements. Experimental results demonstrate that the proposed
model achieves higher accuracy in detecting driver distraction

*Corresponding author: compared to previous models, particularly under complex driving
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achieves an accuracy of 97.47% on the Drive&Act dataset,
significantly outperforming previous methods. This system can serve
as an intelligent warning tool to reduce road accidents and enhance
transportation safety.

1. Introduction

Human activity recognition in videos and motion
data represents a fundamental challenge in the
fields of computer vision [1-5] and deep learning
[6-10], with widespread applications in areas such
as surveillance, security, human-computer
interaction, and robotics. A particularly critical
application in this domain is the detection of driver
distraction during driving [1]. Driving is a
multifaceted task requiring the simultaneous
coordination of cognitive, physical, and
sensorimotor skills, including processing visual
information, controlling motion, maintaining
environmental awareness, and making rapid
decisions [11]. However, many drivers engage in
secondary activities, such as using mobile phones,
adjusting in-car entertainment systems, or
conversing with passengers [12]. Collectively,
these behaviors are referred to as driver distraction,
which significantly diminishes attention to the road
and constitutes a serious threat to road safety.

Research has shown that driver distraction is a
leading cause of road accidents [1]. In the United
States, approximately one-fourth of traffic
accidents are attributed to distracted driving [1].
Similarly, in Iran, an estimated 60% of accidents
result from driver inattention. The rising
prevalence of smartphones and in-car multimedia
systems has further exacerbated this issue,
elevating the risk of distracted driving [11].

To address this growing concern, the development
of intelligent systems for the automatic detection of
driver distraction has become imperative. Deep
learning, a subset of artificial intelligence [13,14],
has emerged as a powerful tool for analyzing driver
behavior with high accuracy [12]. These systems
leverage video data from in-cabin cameras to detect
distractions such as mobile phone usage, looking
away from the road, or engaging in physical
distractions, providing real-time alerts to drivers
[1]. Deep learning models are particularly effective
for this task due to their ability to automatically
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extract hierarchical features from raw input data
[15-17], adapt to diverse environments, and
generalize across a variety of driving scenarios.
Compared to traditional distraction detection
methods, which often rely on handcrafted features
such as edge detection, color segmentation, and
motion tracking, deep learning offers several
advantages. Traditional methods are highly
sensitive to variations in lighting, occlusions, and
camera angles, and often require extensive manual
tuning [18]. These approaches also struggle to
generalize across different driving environments.
In contrast, deep learning models, particularly
those based on convolutional neural networks
(CNNSs) [19] and graph-based architectures [20],
are capable of automatically learning and
extracting meaningful features from raw data
without the need for manual intervention [21].
Moreover, deep learning methods are more robust
to environmental variations, such as changes in
illumination and background noise, making them
more suitable for real-world applications [13].
Furthermore, advanced architectures such as
Spatio-Temporal Graph Convolutional Networks
(ST-GCN) [22] and Transformers [23] enable the
simultaneous modeling of spatial and temporal
dependencies in driver movements, leading to
significantly improved accuracy in detecting
distractions.  Driver  behavior classification
networks are inspired by architectures commonly
used for human activity recognition [1]. These
networks can be broadly categorized into RGB
image-based networks and human pose-based
networks. While RGB image-based models
analyze raw pixel data to detect driver behavior,
they often face challenges such as lighting
variations, background noise, and occlusions [10].
In contrast, human pose-based networks extract
skeletal joint positions in 2D or 3D, which makes
them more robust to environmental changes [24].
Pose-based models are computationally more
efficient and less sensitive to variations in camera
angles, backgrounds, and lighting conditions,
making them particularly well-suited for real-
world applications [25,26].

This study proposes a deep learning-based model
aimed at improving the accuracy of driver
distraction detection while addressing the
challenges mentioned above. The model enables
real-time distraction detection, reduces the risk of
accidents caused by driver inattention, and
provides timely and precise alerts. It performs
robustly under varying lighting conditions and
adapts to individual behavioral differences. Such a
system holds the potential to be integrated into

smart vehicles and traffic monitoring frameworks,
contributing significantly to road safety.

The proposed model follows a hybrid approach that
combines Graph Convolutional Network (GCN)
[27,28] and Transformer [29,30] for driver activity
recognition. The GCN component extracts spatial
features, such as skeletal joint positions, from input
motion data. These joints are represented as graph-
structured data, allowing the model to efficiently
capture spatial relationships between different
body parts. After extracting spatial features, the
Transformer ~ component  models  temporal
dependencies between video frames, enabling the
model to understand motion patterns over time.
To enhance model performance, several key
components are incorporated. The spatial attention
mechanism determines the relative importance of
each body joint in detecting distractions, ensuring
that critical movement patterns are effectively
captured. Graph convolutional layers refine joint
feature representations by updating them based on
neighboring relationships. The Transformer
encoder further processes sequential data,
capturing long-term  dependencies  between
movements. Additionally, a focal loss function is
employed to mitigate class imbalance by
emphasizing underrepresented distraction
categories.

To evaluate the model, the 3D Drive&Act dataset
was employed, which contains a diverse set of
human activities performed in a driving
environment [31]. The 3D Drive&Act dataset is
one of the most challenging benchmarks for driver
distraction classification, and experimental results
on this dataset demonstrate that the proposed
model outperforms existing state-of-the-art
methods [31].

2. Related Works

Given that driver distraction is widely
acknowledged as one of the leading causes of road
accidents, a substantial body of research has been
dedicated to investigating this issue [1]. The
existing literature typically classifies driver
distraction into two primary categories: physical
distraction and cognitive distraction.

Physical distraction refers to activities that require
the driver to engage in actions unrelated to the
primary task of driving [32]. Examples include
talking to passengers, using a mobile phone, eating
or drinking, and adjusting the vehicle's audio
system [33]. These activities often result in a
temporary loss of wvehicle control, which
significantly increases the risk of accidents.

In contrast, cognitive distraction is considered a
more insidious threat [12]. It occurs when the



Detection of Driver Distraction Using Spatio-Temporal Graph Convolutional Networks (ST-GCN) and Attention Mechanism

driver's mental focus is diverted away from driving,
even in the absence of visible physical indicators of
distraction [34]. Unlike physical distraction,
cognitive distraction is more difficult to detect, as
it does not necessarily involve observable gestures
or movements.

To address physical distraction, some studies have
concentrated on detecting and analyzing drivers'
body movements. These approaches typically
employ video-based or sensor-based systems to
monitor critical physical cues, such as hand
positions, head orientation, and other bodily signals
that may indicate distraction.

2.1. Commercial Systems

In the automotive sector, prominent manufacturers
such as Toyota, Ford, and Mercedes-Benz have
incorporated driver behavior monitoring systems
into their vehicles [11]. These systems are designed
to detect indicators of distraction, drowsiness, and
diminished attention. Typically, they utilize in-
vehicle cameras and computer vision technology to
assess the driver's state, issuing timely alerts when
signs of distraction or drowsiness are detected [35].

2.2. Scientific Research

In academic research, various approaches have
been proposed to detect driver distraction by
analyzing facial features, including gaze direction,
head movements, and eye distance [6,9,36]. These
methods often employ machine learning
techniques, with particular emphasis on neural
networks, to enhance the accuracy of distraction
detection. For example, one study utilized
convolutional neural networks (CNNSs) to extract
facial features and applied clustering techniques to
classify instances of driver distraction [34].
Additionally, other studies have leveraged video-
and image-based systems, which are particularly
effective when combined with image processing
techniques. These studies typically focus on
analyzing the driver's head and facial movements
in video footage, assessing how these movements
interact with changing road conditions [35].

2.3. Datasets

Numerous datasets have been curated to facilitate
research in the field of driver behavior analysis.
Notable examples include datasets such as Ohn et
al. [37], Braind4Cars [38], and Drive&Act [31],
which serve as valuable resources for training
machine learning models aimed at detecting driver
distraction. These datasets provide rich visual data
about drivers and their surrounding environments,
making them instrumental for analyzing driver

behaviors, particularly under real-world conditions
[39].

In this study, we adopt a driver action recognition
approach that leverages skeletal key points. Recent
years have witnessed a growing interest in pose-
based action recognition, particularly in the context
of autonomous vehicles. The goal of this task is to
classify driver behavior into predefined categories.
These actions may occur while the driver is
actively operating the vehicle or when they are a
passenger in an autonomous vehicle setting.

Some studies have concentrated on facial pose
analysis to determine the driver's gaze direction,
while others focus on analyzing the full-body pose.
Convolutional neural networks (CNNs) have been
extensively utilized for classifying actions based on
pose information. For example, one study
combined spatial features extracted via CNNs with
geometric features to predict the corresponding
driver action [12]. Another approach proposed a
two-stream recurrent neural network (RNN) [40]
architecture to simultaneously model both
temporal and spatial dynamics [41].

2.4. Graph Neural Networks and ST-GCN
Graph neural networks (GNNs) are well-suited for
modeling driver behavior because they operate
directly on graph-structured data, enabling the
representation of complex relationships between
entities such as body joints or objects in a scene. To
further exploit this capability in a spatio-temporal
setting, we employ spatio-temporal graph
convolutional networks (ST-GCN).

ST-GCN have been widely adopted for video
analysis and pose-based activity recognition,
particularly in applications related to autonomous
driving and human—computer interaction. In these
models, human body joints are represented as
nodes in a graph, and their spatial relationships are
encoded as edges. By extending the graph structure
across consecutive frames, ST-GCN can jointly
capture spatial dependencies between body parts
and temporal dynamics over time.

In practice, ST-GCN employ graph convolutions to
extract spatial information from the human
skeleton while simultaneously modeling temporal
dependencies across video frames [28]. This joint
modeling of spatial and temporal features improves
the accuracy of recognizing a wide range of human
activities, including driver behavior analysis, social
interaction understanding, and complex body
motion recognition.

A key advantage of ST-GCN for activity
recognition is their ability to integrate spatial and
temporal information within a unified framework,
rather than treating them separately. This makes
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ST-GCN particularly suitable for analyzing
intricate  driver behaviors in realistic and
autonomous driving environments. In our work, we
use an ST-GCN backbone to model the spatio-
temporal dynamics of the driver’s skeletal
keypoints, as illustrated in Figure 1.

3. Method

In this study, a hybrid approach combining ST-
GCN and the attention mechanism has been
employed to analyze spatio-temporal skeletal data
for the identification and prediction of driver
behaviors and distraction activities during driving.

3.2. Model

The model proposed in this study is built upon the
ST-GCN, which integrates graph convolutional
networks with specialized temporal analysis layers.
The primary objective of utilizing this architecture
is to effectively analyze and simulate both spatial
and temporal interactions, which are critical for
accurately identifying and predicting driver
behaviors.

This model is specifically designed to detect driver
actions that could lead to distractions or pose
potential risks. The ST-GCN processes skeletal
data as spatio-temporal graphs, where each node
represents a body joint, and the connections
between nodes model the spatial relationships
between these joints. These graphs evolve over
time, with data from each frame of driver activity
being sequentially fed into the network as input.

3.3. Input

The input to the neural network comprises the 3D
coordinates of human body joints. For each joint,
the X, y, and z values are recorded across time
(frames). For example, in the case of a video
featuring 25 joints and 90 frames, the input data is
organized into an array with dimensions of 90 x 25
x 3. Our model is intentionally designed to handle
situations where keypoint data is missing, such as
when lower body parts are occluded due to camera
angles or clothing. In such cases, the keypoints
corresponding to these occluded regions are
assigned a value of zero, as illustrated in Figure 2.
Despite these missing data points, the model
compensates effectively by utilizing spatial graph
convolutions and attention mechanisms, ensuring
that high accuracy is maintained even with
incomplete or noisy input data.

3.4. Model Architecture

3.4.1. Spatial Attention Layer

To improve the network's performance, a spatial
attention layer is incorporated. At this stage of the

network, each body joint of the driver is assigned a
specific weight, representing its significance in
identifying particular activities. The spatial
attention layer facilitates the network in extracting
motion and spatial features from various body key
points with greater accuracy.

When compared to traditional sequential models,
such as Long Short-Term Memory (LSTM) and
Gated Recurrent Units (GRU), the attention
mechanism presents several distinct advantages.
While LSTM and GRU models are effective at
capturing temporal dependencies, they face
challenges such as vanishing gradients, high
computational complexity, and difficulties in
processing long-range dependencies. In contrast,
attention mechanisms can selectively focus on the
most relevant features across all frames, without
the constraints imposed by sequential processing.
This ability significantly enhances the model's
capacity to capture key spatio-temporal patterns,
leading to improved performance in driver
distraction detection.

Furthermore, the attention mechanism enables the
model to dynamically adapt to different distraction
scenarios by emphasizing crucial body joints,
thereby ensuring greater robustness in varying
driving conditions.

The spatial attention module assigns a normalized
importance weight to each joint independently,
utilizing a learnable parameter vector. These
weights are applied to amplify the contribution of
critical joints in the input data. It is essential to note
that this module does not directly model inter-joint
relationships. Instead, the spatial dependencies
between joints are captured by the subsequent
graph convolution layers, which use a predefined
adjacency matrix to model these relationships.

To implement spatial attention, we define a
learnable parameter tensor of shape (1, 1, 1, 25),
which is applied directly to the input tensor with
shape (N, C, T, V), where:

e N: batch size

e C: number of channels

e T: number of time frames

e V:number of joints (25 in our case)

The attention tensor contains 25 scalar weights,
each corresponding to one joint. These weights are
normalized using a softmax function over the joint
dimension (V) and then broadcast-multiplied
across the input tensor. This process allows the
model to emphasize or suppress specific joints
based on their relevance to the target activity.
Importantly, the attention is  computed
independently per joint, without explicitly
modeling  inter-joint  dependencies.  Such
dependencies are subsequently captured by the
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Graph Convolution layers, which process the
skeletal topology using an adjacency matrix.
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Figure 1: Overview of the model architecture. This diagram provides a comprehensive representation of the
proposed system’s pipeline. It begins with the input of 3D skeletal data, followed by the processing through the
ST-GCN block for extracting spatial and short-term temporal features. Subsequently, the Transformer encoder

is applied to capture long-range temporal dependencies.

3.4.2. Spatial Graph Convolution Layer

In this layer, spatial relationships between body
joints are processed using predefined graphs,
which represent the anatomical connections
between these joints. These graphs are crucial for
identifying the driver's movements and different
postures. This layer enables the model to
effectively extract complex spatial features from
skeletal data, thereby enhancing its ability to
recognize and analyze body movements with high
accuracy.

3.4.3. Temporal Graph Convolution Layer

This layer is responsible for processing temporal
features. By incorporating this layer, the model is
capable of analyzing the driver's motion changes
over time, thereby detecting sequential and
temporal relationships across frames.

This layer is particularly beneficial for identifying
activities that evolve gradually over time, such as
drowsiness or distraction, where the signs of these
behaviors develop progressively rather than
abruptly.

3.4.4. Transformer Encoder

Finally, a Transformer Encoder layer is
incorporated into the model to enhance its ability to
capture long-term temporal relationships. This
component of the model simulates temporal
dependencies between frames, enabling the
detection of long-term changes in driver
movements and behaviors.

intervals, thereby improving its capacity to
recognize behaviors that evolve over extended
periods.

3.4.5. Output Layer

After the extraction of spatio-temporal features, the
network’'s output is passed through prediction
layers, which transform the extracted features into
the corresponding activity classes of the driver. The
final outputs of the model are presented as
categorized results, indicating the detected driver
behavior.

Figure 3 illustrates the complete data processing
pipeline implemented in our proposed model. As
shown, the process begins with the input of raw
video sequences, from which 3D skeletal keypoints
are extracted using OpenPose. These keypoints are
then structured into a spatio-temporal graph, which
serves as the input to the ST-GCN block. After
extracting spatial and short-term temporal features,
the resulting representations are forwarded to the
Transformer encoder to capture long-term
dependencies.  Finally, classification layers
generate the predicted driver activity. This pipeline
ensures an end-to-end and efficient workflow from
raw video input to final behavior classification,
highlighting the modular yet integrated
architecture of our model.

3.4.6. Training

The proposed model is trained using a focal loss
function [42], which is specifically designed to
address classification problems with imbalanced
data. In the context of driver activity recognition,
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certain activities may occur less frequently than
others. By employing the focal loss function, the
model's accuracy is improved, particularly in
recognizing less frequently observed classes, thus
enhancing its performance across all activity
categories.

3.4.7. Experimental Setup
The model was trained for 300 epochs using a batch
size of 64 and a learning rate of 0.01 with the SGD
optimizer. The dataset was randomly divided into
training and test sets without any subject-based
separation. No data augmentation techniques were
applied during training. The model was trained on
the Drive&Act dataset, utilizing 3D skeletal
sequences extracted through OpenPose.
To further assess the model's robustness under
challenging conditions, we analyzed frames where
keypoint data was partially missing. These
conditions include occlusions due to bulky
clothing, object interference, and camera angles
from behind the driver. We identified such frames
across several action classes. For instance:

e Frames showing heavy clothing occlusion
appear across multiple action classes.

e Frames with keypoints hidden behind objects,
such as hands obscured by a magazine, are
particularly common in the "Read/Write
Magazine" class, which achieves over 90%
accuracy, as shown in Figure 4.

o Frames where the subject faces away from the
camera, resulting in missing frontal keypoints,
mostly belong to the "Park Exit" class, which
achieves close to 90% accuracy.

These examples in Figure 2 demonstrate that even

with partially missing keypoints, the model retains

strong performance, highlighting the effectiveness
of the spatial attention and graph-based design in
handling incomplete data.

3.5. Architectural Design and Innovation

A. Driver wearing a thick jacket  B. Hands hidden behind a object

Although the individual components used in our
model, ST-GCN, spatial attention, and
Transformer, are well-known, the innovation lies in
how these modules are systematically integrated
and adapted for the task of driver distraction
detection using 3D skeletal data. Unlike
conventional approaches that rely on RGB or depth
images, we use graph-based skeletal input, which
reduces computational cost and improves
generalization.

In our architecture, the ST-GCN blocks are
responsible for capturing both spatial and short-
term temporal features, using spatio-temporal
graph convolutions on joint data. The output of
these blocks is reshaped and passed to a
Transformer encoder, which models long-range
temporal dependencies across the entire motion
sequence. This sequential integration, ST-GCN
followed by Transformer, is specifically designed
to combine local joint-level motion with global
temporal understanding.

The use of Focal Loss further enhances
performance on rare distraction events by focusing
the training process on hard-to-classify samples.
This design enables the model to maintain both
high accuracy and efficiency, making it suitable for
real-time driver monitoring systems.

4. Discussion

The dataset utilized in this research is the
Drive&Act dataset, which is specifically designed
for human action recognition in the context of
autonomous vehicles. This dataset includes data
from 15 distinct individuals performing a variety of
actions, captured from 6 different viewpoints. This
dataset provides two levels of classification for the
actions in all sequences, as outlined below:
General Tasks: This represents the highest
classification level, consisting of 12 main
categories of general tasks. The goal of this study
is to achieve the highest accuracy at this level of
classification [39].

C. Subject facing away from camera

Figure 2. Sample frames illustrating the model’s robustness to missing keypoints caused by various challenges.
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Figure 3. Data processing pipeline from video input to final
predictions in the proposed model.

Take over steenng Read newspaper

Figure 4. A sample of four frames illustrating the driver's
state and the corresponding class in the dataset.

More Specific Activities: At the second level,
activities are further subdivided into 34 distinct
classes. Each class corresponds to a specific action
that may vary depending on individual driver
preferences. These activities include more detailed
actions, such as opening and closing a water bottle.
Since the primary objective of this study is to
classify the general action of the driver, the general
task data is most suitable for our analysis.
Therefore, this data will be utilized for training and
validation, as described in the results section. Our
task is to classify the entire sequence of actions, as
predefined in the dataset, with the corresponding
class label.

To process the input data, we employed a neural
network consisting of multiple layers. The model
was trained for 300 epochs using the stochastic
gradient descent (SGD) optimizer with a learning
rate of 0.01 to optimize the model weights. The
model utilizes a graph to model the relationships
between body joints. This graph is composed of

various layers, including Spatial GraphConvolution
and STGC_block layers, which are specifically
designed to extract both spatial and temporal
features from the input data. Each STGC_block
layer incorporates spatial attention and graph
convolution operations, enabling the model to learn
complex relationships between different joints. For
processing temporal information, a Transformer
encoder layer is used. These layers allow the model
to learn intricate temporal dependencies within the
data and use them to predict the final activity
classes. The model employs Focal Loss for
optimization, a loss function specifically designed
for imbalanced datasets. This function allows the
model to focus more on the less frequent,
underrepresented classes, thereby improving
performance across all categories.

5. Results

We applied our proposed architecture to the
Drive&Act dataset, and Figure 5 illustrates the
accuracy for each class in the test set. When
compared to methods such as Squeezeformer [39],
which also provide accuracy metrics for each class,
our model demonstrates a significant improvement
in accuracy across all classes. Figure 6 presents the
class-wise accuracy of the proposed model. It was
observed that the use of focal loss significantly
improved performance on low-frequency actions,
such as 'take off sunglasses', which are typically
challenging to classify. The model's ability to focus
on these minority classes underscores the
effectiveness of focal loss in addressing issues
related to imbalanced data. In particular, several
underrepresented classes, such as “Put On
Sunglasses,” “Take Off Sunglasses,” and “Put On
Jacket”, showed poor performance in earlier
configurations without focal loss. These classes
suffered from high misclassification rates due to
their limited number of training samples. However,
after incorporating focal loss, the model
demonstrated substantial improvements in these
categories, achieving notably higher accuracy. This
validates the focal loss function's role in directing
the model's attention to minority classes and
improving  overall  classification  balance.
To evaluate the contribution of each component
within the proposed architecture, we conducted
internal experiments comparing various model
variants. As shown in Table 1, we started with a
baseline model that utilized only the ST-GCN,
which achieved an accuracy of 80%. We then
progressively incorporated the spatial attention
layer and Transformer encoder. The inclusion of
the spatial attention layer resulted in a noticeable
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improvement, increasing the accuracy to 90%.
Finally, adding the Transformer encoder further
enhanced the model's performance, achieving a
final accuracy of 97.47%. This analysis highlights
the significant contributions of each individual
component to the overall performance of the
model.

When compared to other methods and models that
rely solely on keypoint data of the driver's body,
the results obtained by our model demonstrate
higher accuracy. A detailed comparison of these
results is provided in Table 4 and Figure 6.
Additionally, the confusion matrix for the final
model is presented in Figure 7, and Table 2 shows
the results of different hyperparameters.

Figure 5. Comparison of the accuracy of the proposed
model's results with the Squeezeformer model.

Figure 6. Comparison of different methods and the results
obtained with the proposed method.

Table 1. Performance of different model variants.

Model Variant Accuracy (%)
Baseline (ST-GCN only) 80%

ST-GCN + Spatial Attention Layer 90%

ST-GCN + Transformer Encoder 93.5%
ST-GCN + Spatial Attention + Transformer 97.47%
Encoder

Due to the efficiency of the graph-based
representation, which significantly reduces the data
volume, the entire training process was completed
in 4 hours, demonstrating that both training and
inference times are fast, with a relatively low
computational load. As shown in Table 3, we

present a detailed breakdown of the model's
training time, inference time, GPU memory usage,
and overall latency, highlighting the computational
efficiency and real-time viability of the proposed
system.

Table 2. The results obtained with different

hyperparameters.

Epoc Batch_Si Dropo  Dim_Feedf Lr Accur
h ze ut orward acy
80 16 0.3 128 0.01 76
80 16 0.3 256 0.01 73
100 16 0.3 128 0.01 72
100 16 0.5 256 0.01 73
100 32 0.3 128 0.01 78
100 32 0.3 256 0.005 78
120 32 0.5 256 0.005 77
120 32 0.5 512 0.005 79
120 64 0.3 128 0.005 80
150 64 0.3 256 0.005 82
200 256 04 128 0.001 38
250 64 0.4 128 0.01 97

Figure 7 presents the confusion matrix for our final
model, where we observe notable
misclassifications between similar action classes.
For example, "eat/drink" and "work" are frequently
confused due to overlapping hand and upper-body
movements. This overlap is especially pronounced
when these actions are viewed from specific angles
or when subtle variations in movement occur. The
confusion matrix further highlights how activities
such as "read/writing newspaper" and "work" share
similar ~ postures, leading to  frequent
misclassifications. Both activities involve seated
positions with hand movements, which the model
struggles to differentiate in certain contexts,
particularly when the movement is subtle or
partially obstructed.

This pattern of misclassification can likely be
attributed to the contextual and postural similarities
between these actions. The model appears to have
difficulty distinguishing between activities that
involve similar upper-body movements and hand
gestures. Additionally, the limited data variety for
certain actions in the dataset may exacerbate this
issue, making it more challenging for the model to
generalize across diverse conditions.

In Section 5, we provide a detailed analysis of the
recurring misclassifications observed in the
confusion matrix. We discuss how actions such as
"eat/drink" and "work" share similar hand and
upper-body movement patterns, which often lead
to misclassifications. Furthermore, we highlight
the contextual ambiguity between activities like
"read/writing newspaper" and "work", where the
postural similarities complicate the model's ability
to distinguish between the two.
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Figure 7. The confusion matrix in the final model.

Table 3. Performance and resource usage summary.

Experiment

Details

Training Time
Inference Time per Video

GPU Model Used
Batch Size

Video Length

3D Skeletal Data (Joints)
Average Memory Usage
(Training)

Average Memory Usage
(Inference)

Overall Latency (Processing
one video)

Resource Utilization

4 hours

100 ms per 90-frame video (3
seconds at 30 FPS)

NVIDIA T4 GPU

64

90 frames (approximately 3
seconds at 30 FPS)

25 joints

4GB

35GB

200 ms per 90-frame video (from
input to output)

Low (due to efficient graph-
based representation)

5.1 Proposed Architecture

The proposed architecture demonstrates superior
performance compared to other existing
approaches, yielding improved results. The key
enhancement in this architecture is the integration
of ST-GCN with attention mechanisms, which
enables the model to more effectively capture and
understand the relationships within the data.

6. Discussion and Conclusion

This study introduced an innovative approach for
detecting driver distraction during driving by
integrating spatio-temporal graph convolutional
networks (ST-GCN), Attention Mechanisms, and
Transformers. The primary objective of this
research was to develop an efficient and accurate
model for identifying a wide range of driving
activities and distraction behaviors. This objective
was successfully achieved, with the model
achieving an impressive accuracy of 97.47%,
surpassing the performance of other related studies.

Although this study primarily focused on
architectural  innovation and  performance
validation using the Drive&Act dataset, future
work will incorporate statistical testing to further
assess the significance of model improvements
over baseline methods.

Table 4. Comparison of different methods and the results

obtained.
Method Accuracy
Pose[31] 37.18
Two-Stream[41] 39.37
st-MLP[32] 40.56
Squeezeformer[39] 44.60
C3D[43] 49.54
P3D ResNet[44] 55.04
Three-Stream[45] 55.67
13D Net[46] 69.57
ST-GCN + Transformer 97.47

The model was trained for 300 epochs on a Google
Colab environment using an NVIDIA T4 GPU.
Each input sequence consisted of 90 frames (3
seconds at 30 FPS), with skeletal data extracted
from 25 keypoints. Unlike traditional pixel-based
methods, this graph-based input significantly
reduces the data size, resulting in faster processing
times. While detailed latency benchmarks were not
included in this study, the model demonstrated
efficient inference during testing, suggesting its
potential for real-time deployment. Future work
will involve quantitative measurements of latency
and computational requirements to better assess the
model's viability for practical applications.

The proposed model, which integrates spatial
attention layers and the Transformer encoder,
effectively extracts spatio-temporal features from
the data. Experimental results demonstrated that
this approach accurately identified driving
behaviors and distractions, achieving excellent
performance in distinguishing complex activities.
The incorporation of the Focal Loss function
further contributed to enhancing the model’s
accuracy, particularly when handling imbalanced
data.

This research makes a significant contribution to
the field of driver distraction detection by
presenting an effective combination of Graph
Neural Networks and Transformers, thereby
showcasing its  potential for  real-world
applications. Potential applications of this model
include integration into Advanced Driver-
Assistance Systems (ADAS) and proactive alert
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systems in intelligent vehicles, both of which could
significantly improve road safety.

For future research, it is recommended to utilize
larger and multi-source datasets, such as data from
vehicle sensors, thermal videos, and driver’s
biological data. Additionally, enhancing the model
architecture through the use of deeper neural
networks and advanced data augmentation
techniques could further improve the model's
accuracy and reliability.

While the Drive&Act dataset remains the most
comprehensive resource for 3D pose-based driver
activity recognition, it has limitations in terms of
environmental diversity, particularly regarding
lighting variations and real-world complexity.
Additionally, given the importance of accurate
keypoint detection, we utilized the most reliable
camera viewpoint available. Future research should
focus on experiments with more diverse datasets
and explore the potential of transfer learning to
assess the model’s robustness in uncontrolled, real-
world driving conditions.

The current study is based exclusively on the
Drive&Act dataset under controlled conditions,
which limits the model’s generalizability to unseen
drivers, varied vehicle interiors, and diverse
lighting conditions. Future work will involve cross-
subject evaluations and testing on more
heterogeneous datasets. Furthermore, integrating
multi-modal data (e.g., combining skeletal and
RGB data) and applying ensemble or smoothing
strategies could significantly enhance both the
accuracy and robustness of the model, particularly
in real-world driver-assistance systems.

Another promising direction for future research is
the application of automated hyperparameter
tuning methods, such as grid search or Bayesian
optimization, to optimize training configurations
and potentially enhance accuracy further.

References

[1] K. Young, M. Regan, and M. Hammer, "Driver distraction:
A review of the literature," Distracted Driving, 2007, pp. 379—
405.

[2] A.M. Ahmadi, K. Kiani, R. Rastgoo, "A Transformer-
based model for abnormal activity recognition in video,"
Journal of Modeling in Engineering, vol. 22, no. 76, pp. 213-
221, 2024.

[3] R. Rastgoo, K. Kiani, S. Escalera, "Video-based isolated
hand sign language recognition using a deep cascaded model,"
Multimedia Tools and Applications, vol. 79, pp. 22965-22987,
2020.

[4] F. Bagherzadeh, R. Rastgoo, "Deepfake image detection
using a deep hybrid convolutional neural network," Journal of
Modeling in Engineering, vol. 21, no. 75, pp. 19-28, 2023.
[5] M. Talebian, K. Kiani, R. Rastgoo, "A Deep Learning-
based Model for Fingerprint Verification," Journal of Al and
Data Mining, vol. 12, no. 2, pp. 241-248, 2024.

[6] H. Zaferani, K. Kiani, R. Rastgoo, "Real-time face
verification on mobile devices using margin distillation,"
Multimedia Tools and Applications, vol. 82, no. 28, pp.
44155-44173, 2023.

[7] S. Zarbafi, K. Kiani, R. Rastgoo, "Spoken Persian digits
recognition using deep learning,” Journal of Modeling in
Engineering, vol. 21, no. 74, pp. 163-172, 2023.

[8] N. Majidi, K. Kiani, R. Rastgoo, "A deep model for super-
resolution enhancement from a single image," Journal of Al
and Data Mining, vol. 8, no. 4, pp. 451-460, 2020.

[9] R. Rastgoo, K. Kiani, "Face recognition using fine-tuning
of Deep Convolutional Neural Network and transfer learning,"
Journal of Modeling in Engineering, vol. 17, no. 58, pp. 103-
111, 2019.

[10] F. Alinezhad, K. Kiani, R. Rastgoo, "A Deep Learning-
based Model for Gender Recognition in Mobile Devices,"
Journal of Al and Data Mining, vol. 11, no. 2, pp. 229-236,
2023.

[11] T. Stewart, "Overview of motor vehicle crashes in 2020,"
United States Department of Transportation, National
Highway Traffic Safety, 2022.

[12] M. Wau, et al., "Pose-aware multi-feature fusion network
for driver distraction recognition," in ICPR, 2021.

[13] R. Rastgoo, K. Kiani, S. Escalera, "Sign Language
Recognition: A Deep Survey," Expert Systems with
Applications, vol. 164, 113794, 2020.

[14] R. Rastgoo, K. Kiani, S. Escalera, "A transformer model
for boundary detection in continuous sign language,”
Multimedia Tools and Applications, vol. 83, pp. 8993189948,
2024.

[15] R. Rastgoo, K. Kiani, S. Escalera, "Hand pose aware
multimodal isolated sign language recognition,” Multimedia
Tools and Applications, vol. 80, pp. 127-163, 2021.

[16] R. Rastgoo, K. Kiani, S. Escalera, M. Sabokrou, "Multi-
modal zero-shot dynamic hand gesture recognition,” Expert
Systems with Applications, vol. 247, 123349, 2024.

[17] R. Rastgoo, K. Kiani, S. Escalera, "A deep co-attentive
hand-based video question answering framework using multi-
view skeleton," Multimedia Tools and Applications, vol. 82,
pp. 1401-1429, 2023.

[18] R. Rastgoo, K. Kiani, S. Escalera, "ZS-GR: zero-shot
gesture recognition from RGB-D videos," Multimedia Tools
and Applications, vol. 82, pp. 43781-43796, 2023.

[19] R. Rastgoo, K. Kiani, S. Escalera, "Hand sign language
recognition using multi-view hand skeleton," Expert Systems
with Applications, vol. 158, 113336, 2020.

[20] R. Rastgoo, K. Kiani, S. Escalera, "A non-anatomical
graph structure for boundary detection in continuous sign
language,” Scientific Reports, vol. 15, 25683, 2025.

[21] R. Rastgoo, K. Kiani, S. Escalera, "Real-time isolated
hand sign language recognition using deep networks and
SVD," Journal of Ambient Intelligence and Humanized
Computing, vol. 13, pp. 591-611, 2022.

[22] A. Holzbock, et al., "A spatio-temporal multilayer
perceptron for gesture recognition,” in 2022 IEEE Intelligent
Vehicles Symposium (1V), IEEE, 2022.

[23] N. Esfandiari, K. Kiani, R. Rastgoo, "A conditional
generative chatbot using transformer model," Journal of
Modeling in Engineering, vol. 23, no. 82, pp. 99-113, 2025.



Detection of Driver Distraction Using Spatio-Temporal Graph Convolutional Networks (ST-GCN) and Attention Mechanism

[24] R. Rastgoo, K. Kiani, S. Escalera, "Diffusion-Based
Continuous Sign Language Generation with Cluster-Specific
Fine-Tuning and Motion-Adapted  Transformer,” in
Proceedings of the Computer Vision and Pattern Recognition
Workshop, pp. 4088-4097, 2025.

[25] R. Rastgoo, K. Kiani, S. Escalera, V. Athitsos, M.
Sabokrou, "A survey on recent advances in Sign Language
Production," Expert Systems with Applications, vol. 243,
122846, 2024.

[26] R. Rastgoo, K. Kiani, S. Escalera, "Sign language
production; A review," in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
Workshop, pp. 3451-3461, 2021.

[27] R. Rastgoo, K. Kiani, S. Escalera, "A Non-Anatomical
Graph Structure for isolated hand gesture separation in
continuous gesture sequences,” arXiv:2207.07619, 2022.

[28] Yan, S., Y. Xiong, and D. Lin, "Spatial temporal graph
convolutional  networks  for  skeleton-based  action
recognition,” in Proceedings of the AAAI Conference on
Artificial Intelligence, 2018.

[29] Vaswani, A., "Attention is all you need,” Advances in
Neural Information Processing Systems, 2017.

[30] N. Esfandiari, K. Kiani, R. Rastgoo, "Development of a
Persian Mobile Sales Chatbot based on LLMs and
Transformer," Journal of Al and Data Mining, vol. 12, no. 4,
pp. 465-472, 2024.

[31] M. Martin, et al., "Drive&act: A multi-modal dataset for
fine-grained driver behavior recognition in autonomous
vehicles," in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019.

[32] M. Martin, D. Lerch, and M. Voit, "Viewpoint invariant
3d driver body pose-based activity recognition,” in 2023 IEEE
Intelligent Vehicles Symposium (1V), IEEE, 2023.

[33] T.A. Dingus, et al., "Driver crash risk factors and
prevalence evaluation using naturalistic driving data,"
Proceedings of the National Academy of Sciences, vol. 113,
no. 10, pp. 2636-2641, 2016.

[34] N. Moslemi, M. Soryani, and R. Azmi, "Computer vision-
based recognition of driver distraction: A review,"
Concurrency and Computation: Practice and Experience, vol.
33, no. 24, 6475, 2021.

[35] S. Kaplan, et al., "Driver behavior analysis for safe
driving: A survey," IEEE Transactions on Intelligent
Transportation Systems, vol. 16, no. 6, pp. 3017—3032, 2015.

[36] M.H. Sigari, et al., "A review on driver face monitoring
systems for fatigue and distraction detection,” International
Journal of Advanced Science and Technology, vol. 64, pp. 73—
100, 2014.

[37] E. Ohn-Bar, et al., "Head, eye, and hand patterns for driver
activity recognition,” in 2014 22nd International Conference
on Pattern Recognition, IEEE, 2014.

[38] A. Jain, et al., "Car that knows before you do: Anticipating
maneuvers via learning temporal driving models,” in
Proceedings of the IEEE International Conference on
Computer Vision, 2015.

[39] P. Pardo-Decimavilla, et al., "Do You Act Like You Talk?
Exploring Pose-based Driver Action Classification with
Speech Recognition Networks,” in 2024 IEEE Intelligent
Vehicles Symposium (1V), IEEE, 2024.

[40] N. Esfandiari, K. Kiani, R. Rastgoo, "A new transformer-
based generative chatbot using CycleGAN approach," Neural
Computing and Applications, vol. 37, no. 31, pp. 26125-
26156.

[41] H. Wang, and L. Wang, "Modeling temporal dynamics
and spatial configurations of actions using two-stream
recurrent neural networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2017.

[42] T. Lin, "Focal Loss for Dense Object Detection," arXiv
preprint arXiv:1708.02002, 2017.

[43] D. Tran, et al., "Learning spatiotemporal features with 3d
convolutional networks," in Proceedings of the IEEE
International Conference on Computer Vision, 2015.

[44] Z. Qiu, T. Yao, and T. Mei, "Learning spatio-temporal
representation with pseudo-3d residual networks,” in
Proceedings of the IEEE International Conference on
Computer Vision, 2017.

[45] M. Martin, et al., "Body pose and context information for
driver secondary task detection," in 2018 IEEE Intelligent
Vehicles Symposium (I1V), IEEE, 2018.

[46] J. Carreira, and A. Zisserman, "Quo vadis, action
recognition? a new model and the kinetics dataset,” in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017.



XXXXJLaJ(oJLoJ;L;jKoJ/_)j‘}_CMUZ}Q@ &3l 5 8K,

4 gi p il g (Floj-lad BI,5 JUlglgls glaasiuds jloolaswl b ouddly (J p plg> (bl

Ty andl) 965310 G
2Ol ) ey liousr ¢y Lioms oELEGIS « 33 gunolS g (31 (oo 0USLND

YoYOI AN Gl VYOI 5/ ¥ (6,550 YO0/ Y |

allie ol oyl glools cldolas il38l o cazgs BB (i 1) atel Jlo 65 0 oYU Cosal 51 Sadily alfam saiily 5wl (olulis 100
el sadily 5 p wls> olulids sy 4z g5 0355 5 (ST-GCN) s olas 15 Jliglsils sleaSius (e (oS 5 Joe S5 &l Baa by
soliiul (golpiion Jaw (599,9 Olgeds gzl 5ew! DIVE&ACT somaw ools dcgame 5l pBaily oy oSl sloosls wallie ()0 el oo
Iy oausly S o Sloj- olad o Shg g sloa¥ Lol a Jloy g olad BIF JUigdels sbaa¥ 5l 6,uFo 00 b solpaing Jow ailoas
Sl gl ) ogar conisly Fnlsm plolid jo (VL CES olgidny Joe &S w0 o0 (LiS (025 b S o0 Jelod lejes b
Drive&AcCt osls acgame 59, » |, 7aV ¥V cés b ol Joe a5 ss oo olis b ialesT ol ols ot sloJae 4 s ooz
Slolar jzalS gly aredsn jloia )l S lsieds ails o pia opl ool 5y (LS sla g, 5l ez LB jsbas T 5 Slee g 05,51 Casoay

255 1,8 eolaiul 850 Jaig fax el S5 g (losl>

‘_gé..lf bl (N Cumdg O)Jﬁ (Gaos 6)53[; ‘oJ.L.ﬂ) ‘5:):‘)»‘? b_:l.wLu.u ‘5\'\*15 Sl




