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 Detecting driver distraction during driving is of critical importance 

due to its significant role in increasing road accidents. This study aims 

to present a hybrid model based on Spatio-Temporal Graph 

Convolutional Networks (ST-GCN) and the attention mechanism for 

identifying driver distraction. In this research, skeletal body data of 

drivers were extracted from the 3D Drive&Act dataset and used as 

input for the proposed model. The model leverages spatial and 

temporal graph convolution layers, along with attention layers, to 

simultaneously analyze the spatiotemporal features of driver 

movements.  Experimental results demonstrate that the proposed 

model achieves higher accuracy in detecting driver distraction 

compared to previous models, particularly under complex driving 

scenarios. Experimental results show that our proposed model 

achieves an accuracy of 97.47% on the Drive&Act dataset, 

significantly outperforming previous methods. This system can serve 

as an intelligent warning tool to reduce road accidents and enhance 

transportation safety. 
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1. Introduction 

Human activity recognition in videos and motion 

data represents a fundamental challenge in the 

fields of computer vision [1-5] and deep learning 

[6-10], with widespread applications in areas such 

as surveillance, security, human-computer 

interaction, and robotics. A particularly critical 

application in this domain is the detection of driver 

distraction during driving [1]. Driving is a 

multifaceted task requiring the simultaneous 

coordination of cognitive, physical, and 

sensorimotor skills, including processing visual 

information, controlling motion, maintaining 

environmental awareness, and making rapid 

decisions [11]. However, many drivers engage in 

secondary activities, such as using mobile phones, 

adjusting in-car entertainment systems, or 

conversing with passengers [12]. Collectively, 

these behaviors are referred to as driver distraction, 

which significantly diminishes attention to the road 

and constitutes a serious threat to road safety. 

Research has shown that driver distraction is a 

leading cause of road accidents [1]. In the United 

States, approximately one-fourth of traffic 

accidents are attributed to distracted driving [1]. 

Similarly, in Iran, an estimated 60% of accidents 

result from driver inattention. The rising 

prevalence of smartphones and in-car multimedia 

systems has further exacerbated this issue, 

elevating the risk of distracted driving [11]. 

To address this growing concern, the development 

of intelligent systems for the automatic detection of 

driver distraction has become imperative. Deep 

learning, a subset of artificial intelligence [13,14], 

has emerged as a powerful tool for analyzing driver 

behavior with high accuracy [12]. These systems 

leverage video data from in-cabin cameras to detect 

distractions such as mobile phone usage, looking 

away from the road, or engaging in physical 

distractions, providing real-time alerts to drivers 

[1]. Deep learning models are particularly effective 

for this task due to their ability to automatically 
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extract hierarchical features from raw input data 

[15-17], adapt to diverse environments, and 

generalize across a variety of driving scenarios. 

Compared to traditional distraction detection 

methods, which often rely on handcrafted features 

such as edge detection, color segmentation, and 

motion tracking, deep learning offers several 

advantages. Traditional methods are highly 

sensitive to variations in lighting, occlusions, and 

camera angles, and often require extensive manual 

tuning [18]. These approaches also struggle to 

generalize across different driving environments. 

In contrast, deep learning models, particularly 

those based on convolutional neural networks 

(CNNs) [19] and graph-based architectures [20], 

are capable of automatically learning and 

extracting meaningful features from raw data 

without the need for manual intervention [21]. 

Moreover, deep learning methods are more robust 

to environmental variations, such as changes in 

illumination and background noise, making them 

more suitable for real-world applications [13]. 

Furthermore, advanced architectures such as 

Spatio-Temporal Graph Convolutional Networks 

(ST-GCN)  [22] and Transformers [23] enable the 

simultaneous modeling of spatial and temporal 

dependencies in driver movements, leading to 

significantly improved accuracy in detecting 

distractions. Driver behavior classification 

networks are inspired by architectures commonly 

used for human activity recognition [1]. These 

networks can be broadly categorized into RGB 

image-based networks and human pose-based 

networks. While RGB image-based models 

analyze raw pixel data to detect driver behavior, 

they often face challenges such as lighting 

variations, background noise, and occlusions [10]. 

In contrast, human pose-based networks extract 

skeletal joint positions in 2D or 3D, which makes 

them more robust to environmental changes [24]. 

Pose-based models are computationally more 

efficient and less sensitive to variations in camera 

angles, backgrounds, and lighting conditions, 

making them particularly well-suited for real-

world applications [25,26]. 

This study proposes a deep learning-based model 

aimed at improving the accuracy of driver 

distraction detection while addressing the 

challenges mentioned above. The model enables 

real-time distraction detection, reduces the risk of 

accidents caused by driver inattention, and 

provides timely and precise alerts. It performs 

robustly under varying lighting conditions and 

adapts to individual behavioral differences. Such a 

system holds the potential to be integrated into 

smart vehicles and traffic monitoring frameworks, 

contributing significantly to road safety. 

The proposed model follows a hybrid approach that 

combines Graph Convolutional Network (GCN) 

[27,28] and Transformer [29,30] for driver activity 

recognition. The GCN component extracts spatial 

features, such as skeletal joint positions, from input 

motion data. These joints are represented as graph-

structured data, allowing the model to efficiently 

capture spatial relationships between different 

body parts. After extracting spatial features, the 

Transformer component models temporal 

dependencies between video frames, enabling the 

model to understand motion patterns over time. 

To enhance model performance, several key 

components are incorporated. The spatial attention 

mechanism determines the relative importance of 

each body joint in detecting distractions, ensuring 

that critical movement patterns are effectively 

captured. Graph convolutional layers refine joint 

feature representations by updating them based on 

neighboring relationships. The Transformer 

encoder further processes sequential data, 

capturing long-term dependencies between 

movements. Additionally, a focal loss function is 

employed to mitigate class imbalance by 

emphasizing underrepresented distraction 

categories. 

To evaluate the model, the 3D Drive&Act dataset 

was employed, which contains a diverse set of 

human activities performed in a driving 

environment [31]. The 3D Drive&Act dataset is 

one of the most challenging benchmarks for driver 

distraction classification, and experimental results 

on this dataset demonstrate that the proposed 

model outperforms existing state-of-the-art 

methods [31]. 

 

2. Related Works 

Given that driver distraction is widely 

acknowledged as one of the leading causes of road 

accidents, a substantial body of research has been 

dedicated to investigating this issue [1]. The 

existing literature typically classifies driver 

distraction into two primary categories: physical 

distraction and cognitive distraction. 

Physical distraction refers to activities that require 

the driver to engage in actions unrelated to the 

primary task of driving [32]. Examples include 

talking to passengers, using a mobile phone, eating 

or drinking, and adjusting the vehicle's audio 

system [33]. These activities often result in a 

temporary loss of vehicle control, which 

significantly increases the risk of accidents. 

In contrast, cognitive distraction is considered a 

more insidious threat [12]. It occurs when the 
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driver's mental focus is diverted away from driving, 

even in the absence of visible physical indicators of 

distraction [34]. Unlike physical distraction, 

cognitive distraction is more difficult to detect, as 

it does not necessarily involve observable gestures 

or movements. 

To address physical distraction, some studies have 

concentrated on detecting and analyzing drivers' 

body movements. These approaches typically 

employ video-based or sensor-based systems to 

monitor critical physical cues, such as hand 

positions, head orientation, and other bodily signals 

that may indicate distraction. 

 

2.1. Commercial Systems 

In the automotive sector, prominent manufacturers 

such as Toyota, Ford, and Mercedes-Benz have 

incorporated driver behavior monitoring systems 

into their vehicles [11]. These systems are designed 

to detect indicators of distraction, drowsiness, and 

diminished attention. Typically, they utilize in-

vehicle cameras and computer vision technology to 

assess the driver's state, issuing timely alerts when 

signs of distraction or drowsiness are detected [35]. 

 

2.2. Scientific Research 

In academic research, various approaches have 

been proposed to detect driver distraction by 

analyzing facial features, including gaze direction, 

head movements, and eye distance [6,9,36]. These 

methods often employ machine learning 

techniques, with particular emphasis on neural 

networks, to enhance the accuracy of distraction 

detection. For example, one study utilized 

convolutional neural networks (CNNs) to extract 

facial features and applied clustering techniques to 

classify instances of driver distraction [34]. 

Additionally, other studies have leveraged video- 

and image-based systems, which are particularly 

effective when combined with image processing 

techniques. These studies typically focus on 

analyzing the driver's head and facial movements 

in video footage, assessing how these movements 

interact with changing road conditions [35]. 

 

2.3. Datasets 

Numerous datasets have been curated to facilitate 

research in the field of driver behavior analysis. 

Notable examples include datasets such as Ohn et 

al. [37], Brain4Cars [38], and Drive&Act [31], 

which serve as valuable resources for training 

machine learning models aimed at detecting driver 

distraction. These datasets provide rich visual data 

about drivers and their surrounding environments, 

making them instrumental for analyzing driver 

behaviors, particularly under real-world conditions 

[39]. 

In this study, we adopt a driver action recognition 

approach that leverages skeletal key points. Recent 

years have witnessed a growing interest in pose-

based action recognition, particularly in the context 

of autonomous vehicles. The goal of this task is to 

classify driver behavior into predefined categories. 

These actions may occur while the driver is 

actively operating the vehicle or when they are a 

passenger in an autonomous vehicle setting. 

Some studies have concentrated on facial pose 

analysis to determine the driver's gaze direction, 

while others focus on analyzing the full-body pose. 

Convolutional neural networks (CNNs) have been 

extensively utilized for classifying actions based on 

pose information. For example, one study 

combined spatial features extracted via CNNs with 

geometric features to predict the corresponding 

driver action [12]. Another approach proposed a 

two-stream recurrent neural network (RNN) [40] 

architecture to simultaneously model both 

temporal and spatial dynamics [41]. 

 

2.4. Graph Neural Networks and ST-GCN 

Graph neural networks (GNNs) are well-suited for 

modeling driver behavior because they operate 

directly on graph-structured data, enabling the 

representation of complex relationships between 

entities such as body joints or objects in a scene. To 

further exploit this capability in a spatio-temporal 

setting, we employ spatio-temporal graph 

convolutional networks (ST-GCN). 

ST-GCN have been widely adopted for video 

analysis and pose-based activity recognition, 

particularly in applications related to autonomous 

driving and human–computer interaction. In these 

models, human body joints are represented as 

nodes in a graph, and their spatial relationships are 

encoded as edges. By extending the graph structure 

across consecutive frames, ST-GCN can jointly 

capture spatial dependencies between body parts 

and temporal dynamics over time. 

In practice, ST-GCN employ graph convolutions to 

extract spatial information from the human 

skeleton while simultaneously modeling temporal 

dependencies across video frames [28]. This joint 

modeling of spatial and temporal features improves 

the accuracy of recognizing a wide range of human 

activities, including driver behavior analysis, social 

interaction understanding, and complex body 

motion recognition. 

A key advantage of ST-GCN for activity 

recognition is their ability to integrate spatial and 

temporal information within a unified framework, 

rather than treating them separately. This makes 
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ST-GCN particularly suitable for analyzing 

intricate driver behaviors in realistic and 

autonomous driving environments. In our work, we 

use an ST-GCN backbone to model the spatio-

temporal dynamics of the driver’s skeletal 

keypoints, as illustrated in Figure 1. 
 

3. Method 
In this study, a hybrid approach combining ST-

GCN and the attention mechanism has been 

employed to analyze spatio-temporal skeletal data 

for the identification and prediction of driver 

behaviors and distraction activities during driving. 

  

3.2. Model 

The model proposed in this study is built upon the 

ST-GCN, which integrates graph convolutional 

networks with specialized temporal analysis layers. 

The primary objective of utilizing this architecture 

is to effectively analyze and simulate both spatial 

and temporal interactions, which are critical for 

accurately identifying and predicting driver 

behaviors. 

This model is specifically designed to detect driver 

actions that could lead to distractions or pose 

potential risks. The ST-GCN processes skeletal 

data as spatio-temporal graphs, where each node 

represents a body joint, and the connections 

between nodes model the spatial relationships 

between these joints. These graphs evolve over 

time, with data from each frame of driver activity 

being sequentially fed into the network as input. 

 

3.3. Input 

The input to the neural network comprises the 3D 

coordinates of human body joints. For each joint, 

the x, y, and z values are recorded across time 

(frames). For example, in the case of a video 

featuring 25 joints and 90 frames, the input data is 

organized into an array with dimensions of 90 × 25 

× 3. Our model is intentionally designed to handle 

situations where keypoint data is missing, such as 

when lower body parts are occluded due to camera 

angles or clothing. In such cases, the keypoints 

corresponding to these occluded regions are 

assigned a value of zero, as illustrated in Figure 2. 

Despite these missing data points, the model 

compensates effectively by utilizing spatial graph 

convolutions and attention mechanisms, ensuring 

that high accuracy is maintained even with 

incomplete or noisy input data. 

 

3.4. Model Architecture 

3.4.1. Spatial Attention Layer 

To improve the network's performance, a spatial 

attention layer is incorporated. At this stage of the 

network, each body joint of the driver is assigned a 

specific weight, representing its significance in 

identifying particular activities. The spatial 

attention layer facilitates the network in extracting 

motion and spatial features from various body key 

points with greater accuracy. 

When compared to traditional sequential models, 

such as Long Short-Term Memory (LSTM) and 

Gated Recurrent Units (GRU), the attention 

mechanism presents several distinct advantages. 

While LSTM and GRU models are effective at 

capturing temporal dependencies, they face 

challenges such as vanishing gradients, high 

computational complexity, and difficulties in 

processing long-range dependencies. In contrast, 

attention mechanisms can selectively focus on the 

most relevant features across all frames, without 

the constraints imposed by sequential processing. 

This ability significantly enhances the model's 

capacity to capture key spatio-temporal patterns, 

leading to improved performance in driver 

distraction detection. 

Furthermore, the attention mechanism enables the 

model to dynamically adapt to different distraction 

scenarios by emphasizing crucial body joints, 

thereby ensuring greater robustness in varying 

driving conditions. 

The spatial attention module assigns a normalized 

importance weight to each joint independently, 

utilizing a learnable parameter vector. These 

weights are applied to amplify the contribution of 

critical joints in the input data. It is essential to note 

that this module does not directly model inter-joint 

relationships. Instead, the spatial dependencies 

between joints are captured by the subsequent 

graph convolution layers, which use a predefined 

adjacency matrix to model these relationships. 

To implement spatial attention, we define a 

learnable parameter tensor of shape (1, 1, 1, 25), 

which is applied directly to the input tensor with 

shape (N, C, T, V), where: 

 N: batch size 

 C: number of channels 

 T: number of time frames 

 V: number of joints (25 in our case) 

The attention tensor contains 25 scalar weights, 

each corresponding to one joint. These weights are 

normalized using a softmax function over the joint 

dimension (V) and then broadcast-multiplied 

across the input tensor. This process allows the 

model to emphasize or suppress specific joints 

based on their relevance to the target activity. 

Importantly, the attention is computed 

independently per joint, without explicitly 

modeling inter-joint dependencies. Such 

dependencies are subsequently captured by the 
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Graph Convolution layers, which process the 

skeletal topology using an adjacency matrix. 

 

 

3.4.2. Spatial Graph Convolution Layer 

In this layer, spatial relationships between body 

joints are processed using predefined graphs, 

which represent the anatomical connections 

between these joints. These graphs are crucial for 

identifying the driver's movements and different 

postures. This layer enables the model to 

effectively extract complex spatial features from 

skeletal data, thereby enhancing its ability to 

recognize and analyze body movements with high 

accuracy. 

 

3.4.3. Temporal Graph Convolution Layer 

This layer is responsible for processing temporal 

features. By incorporating this layer, the model is 

capable of analyzing the driver's motion changes 

over time, thereby detecting sequential and 

temporal relationships across frames. 

This layer is particularly beneficial for identifying 

activities that evolve gradually over time, such as 

drowsiness or distraction, where the signs of these 

behaviors develop progressively rather than 

abruptly. 

 

3.4.4. Transformer Encoder 

Finally, a Transformer Encoder layer is 

incorporated into the model to enhance its ability to 

capture long-term temporal relationships. This 

component of the model simulates temporal 

dependencies between frames, enabling the 

detection of long-term changes in driver 

movements and behaviors. 

The inclusion of the Transformer enables the 

model to effectively simulate complex, sequential 

driver activities that unfold over various time 

intervals, thereby improving its capacity to 

recognize behaviors that evolve over extended 

periods. 

 

3.4.5. Output Layer 

After the extraction of spatio-temporal features, the 

network's output is passed through prediction 

layers, which transform the extracted features into 

the corresponding activity classes of the driver. The 

final outputs of the model are presented as 

categorized results, indicating the detected driver 

behavior. 

Figure 3 illustrates the complete data processing 

pipeline implemented in our proposed model. As 

shown, the process begins with the input of raw 

video sequences, from which 3D skeletal keypoints 

are extracted using OpenPose. These keypoints are 

then structured into a spatio-temporal graph, which 

serves as the input to the ST-GCN block. After 

extracting spatial and short-term temporal features, 

the resulting representations are forwarded to the 

Transformer encoder to capture long-term 

dependencies. Finally, classification layers 

generate the predicted driver activity. This pipeline 

ensures an end-to-end and efficient workflow from 

raw video input to final behavior classification, 

highlighting the modular yet integrated 

architecture of our model. 

 

3.4.6. Training 

The proposed model is trained using a focal loss 

function [42], which is specifically designed to 

address classification problems with imbalanced 

data. In the context of driver activity recognition, 

Figure 1: Overview of the model architecture. This diagram provides a comprehensive representation of the 

proposed system’s pipeline. It begins with the input of 3D skeletal data, followed by the processing through the 

ST-GCN block for extracting spatial and short-term temporal features. Subsequently, the Transformer encoder 

is applied to capture long-range temporal dependencies. 
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certain activities may occur less frequently than 

others. By employing the focal loss function, the 

model's accuracy is improved, particularly in 

recognizing less frequently observed classes, thus 

enhancing its performance across all activity 

categories. 

 

3.4.7. Experimental Setup 

The model was trained for 300 epochs using a batch 

size of 64 and a learning rate of 0.01 with the SGD 

optimizer. The dataset was randomly divided into 

training and test sets without any subject-based 

separation. No data augmentation techniques were 

applied during training. The model was trained on 

the Drive&Act dataset, utilizing 3D skeletal 

sequences extracted through OpenPose. 

To further assess the model's robustness under 

challenging conditions, we analyzed frames where 

keypoint data was partially missing. These 

conditions include occlusions due to bulky 

clothing, object interference, and camera angles 

from behind the driver. We identified such frames 

across several action classes. For instance: 

 Frames showing heavy clothing occlusion 

appear across multiple action classes. 

 Frames with keypoints hidden behind objects, 

such as hands obscured by a magazine, are 

particularly common in the "Read/Write 

Magazine" class, which achieves over 90% 

accuracy, as shown in Figure 4. 

 Frames where the subject faces away from the 

camera, resulting in missing frontal keypoints, 

mostly belong to the "Park Exit" class, which 

achieves close to 90% accuracy. 

These examples in Figure 2 demonstrate that even 

with partially missing keypoints, the model retains 

strong performance, highlighting the effectiveness 

of the spatial attention and graph-based design in 

handling incomplete data. 

 

3.5. Architectural Design and Innovation 

Although the individual components used in our 

model, ST-GCN, spatial attention, and 

Transformer, are well-known, the innovation lies in 

how these modules are systematically integrated 

and adapted for the task of driver distraction 

detection using 3D skeletal data. Unlike 

conventional approaches that rely on RGB or depth 

images, we use graph-based skeletal input, which 

reduces computational cost and improves 

generalization. 

In our architecture, the ST-GCN blocks are 

responsible for capturing both spatial and short-

term temporal features, using spatio-temporal 

graph convolutions on joint data. The output of 

these blocks is reshaped and passed to a 

Transformer encoder, which models long-range 

temporal dependencies across the entire motion 

sequence. This sequential integration, ST-GCN 

followed by Transformer, is specifically designed 

to combine local joint-level motion with global 

temporal understanding. 

The use of Focal Loss further enhances 

performance on rare distraction events by focusing 

the training process on hard-to-classify samples. 

This design enables the model to maintain both 

high accuracy and efficiency, making it suitable for 

real-time driver monitoring systems. 

 

4. Discussion 

The dataset utilized in this research is the 

Drive&Act dataset, which is specifically designed 

for human action recognition in the context of 

autonomous vehicles. This dataset includes data 

from 15 distinct individuals performing a variety of 

actions, captured from 6 different viewpoints. This 

dataset provides two levels of classification for the 

actions in all sequences, as outlined below: 

General Tasks: This represents the highest 

classification level, consisting of 12 main 

categories of general tasks. The goal of this study 

is to achieve the highest accuracy at this level of 

classification [39]. 

 

Figure 2. Sample frames illustrating the model’s robustness to missing keypoints caused by various challenges. 
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Figure 3. Data processing pipeline from video input to final 

predictions in the proposed model. 

 

Figure 4. A sample of four frames illustrating the driver's 

state and the corresponding class in the dataset. 

 

 More Specific Activities: At the second level, 

activities are further subdivided into 34 distinct 

classes. Each class corresponds to a specific action 

that may vary depending on individual driver 

preferences. These activities include more detailed 

actions, such as opening and closing a water bottle. 

Since the primary objective of this study is to 

classify the general action of the driver, the general 

task data is most suitable for our analysis. 

Therefore, this data will be utilized for training and 

validation, as described in the results section. Our 

task is to classify the entire sequence of actions, as 

predefined in the dataset, with the corresponding 

class label. 

To process the input data, we employed a neural 

network consisting of multiple layers. The model 

was trained for 300 epochs using the stochastic 

gradient descent (SGD) optimizer with a learning 

rate of 0.01 to optimize the model weights. The 

model utilizes a graph to model the relationships 

between body joints. This graph is composed of 

various layers, including SpatialGraphConvolution 

and STGC_block layers, which are specifically 

designed to extract both spatial and temporal 

features from the input data. Each STGC_block 

layer incorporates spatial attention and graph 

convolution operations, enabling the model to learn 

complex relationships between different joints. For 

processing temporal information, a Transformer 

encoder layer is used. These layers allow the model 

to learn intricate temporal dependencies within the 

data and use them to predict the final activity 

classes. The model employs Focal Loss for 

optimization, a loss function specifically designed 

for imbalanced datasets. This function allows the 

model to focus more on the less frequent, 

underrepresented classes, thereby improving 

performance across all categories. 

 

5. Results 

We applied our proposed architecture to the 

Drive&Act dataset, and Figure 5 illustrates the 

accuracy for each class in the test set. When 

compared to methods such as Squeezeformer [39], 

which also provide accuracy metrics for each class, 

our model demonstrates a significant improvement 

in accuracy across all classes. Figure 6 presents the 

class-wise accuracy of the proposed model. It was 

observed that the use of focal loss significantly 

improved performance on low-frequency actions, 

such as 'take off sunglasses', which are typically 

challenging to classify. The model's ability to focus 

on these minority classes underscores the 

effectiveness of focal loss in addressing issues 

related to imbalanced data. In particular, several 

underrepresented classes, such as “Put On 

Sunglasses,” “Take Off Sunglasses,” and “Put On 

Jacket”, showed poor performance in earlier 

configurations without focal loss. These classes 

suffered from high misclassification rates due to 

their limited number of training samples. However, 

after incorporating focal loss, the model 

demonstrated substantial improvements in these 

categories, achieving notably higher accuracy. This 

validates the focal loss function's role in directing 

the model's attention to minority classes and 

improving overall classification balance. 

To evaluate the contribution of each component 

within the proposed architecture, we conducted 

internal experiments comparing various model 

variants. As shown in Table 1, we started with a 

baseline model that utilized only the ST-GCN, 

which achieved an accuracy of 80%. We then 

progressively incorporated the spatial attention 

layer and Transformer encoder. The inclusion of 

the spatial attention layer resulted in a noticeable 
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improvement, increasing the accuracy to 90%. 

Finally, adding the Transformer encoder further 

enhanced the model's performance, achieving a 

final accuracy of 97.47%. This analysis highlights 

the significant contributions of each individual 

component to the overall performance of the 

model. 

When compared to other methods and models that 

rely solely on keypoint data of the driver's body, 

the results obtained by our model demonstrate 

higher accuracy. A detailed comparison of these 

results is provided in Table 4 and Figure 6. 

Additionally, the confusion matrix for the final 

model is presented in Figure 7, and Table 2 shows 

the results of different hyperparameters. 

Figure 5. Comparison of the accuracy of the proposed 

model's results with the Squeezeformer model. 

Figure 6. Comparison of different methods and the results 

obtained with the proposed method. 

 
Table 1. Performance of different model variants. 

Model Variant Accuracy (%) 

Baseline (ST-GCN only) 80% 

ST-GCN + Spatial Attention Layer  90% 

ST-GCN + Transformer Encoder  93.5% 

ST-GCN + Spatial Attention + Transformer 

Encoder 
97.47% 

 

Due to the efficiency of the graph-based 

representation, which significantly reduces the data 

volume, the entire training process was completed 

in 4 hours, demonstrating that both training and 

inference times are fast, with a relatively low 

computational load. As shown in Table 3, we 

present a detailed breakdown of the model's 

training time, inference time, GPU memory usage, 

and overall latency, highlighting the computational 

efficiency and real-time viability of the proposed 

system. 
 

Table 2. The results obtained with different 

hyperparameters. 

 
Epoc

h 

Batch_Si

ze 

Dropo

ut 

Dim_Feedf

orward 

Lr Accur

acy 

80 16 0.3 128 0.01 76 
80 16 0.3 256 0.01 73 

100 16 0.3 128 0.01 72 

100 16 0.5 256 0.01 73 
100 32 0.3 128 0.01 78 

100 32 0.3 256 0.005 78 

120 32 0.5 256 0.005 77 
120 32 0.5 512 0.005 79 

120 64 0.3 128 0.005 80 

150 64 0.3 256 0.005 82 
200 256 0.4 128 0.001 38 

250 64 0.4 128 0.01 97 

 

Figure 7 presents the confusion matrix for our final 

model, where we observe notable 

misclassifications between similar action classes. 

For example, "eat/drink" and "work" are frequently 

confused due to overlapping hand and upper-body 

movements. This overlap is especially pronounced 

when these actions are viewed from specific angles 

or when subtle variations in movement occur. The 

confusion matrix further highlights how activities 

such as "read/writing newspaper" and "work" share 

similar postures, leading to frequent 

misclassifications. Both activities involve seated 

positions with hand movements, which the model 

struggles to differentiate in certain contexts, 

particularly when the movement is subtle or 

partially obstructed. 

This pattern of misclassification can likely be 

attributed to the contextual and postural similarities 

between these actions. The model appears to have 

difficulty distinguishing between activities that 

involve similar upper-body movements and hand 

gestures. Additionally, the limited data variety for 

certain actions in the dataset may exacerbate this 

issue, making it more challenging for the model to 

generalize across diverse conditions. 

In Section 5, we provide a detailed analysis of the 

recurring misclassifications observed in the 

confusion matrix. We discuss how actions such as 

"eat/drink" and "work" share similar hand and 

upper-body movement patterns, which often lead 

to misclassifications. Furthermore, we highlight 

the contextual ambiguity between activities like 

"read/writing newspaper" and "work", where the 

postural similarities complicate the model's ability 

to distinguish between the two. 

 



Detection of Driver Distraction Using Spatio-Temporal Graph Convolutional Networks (ST-GCN) and Attention Mechanism 

 

Figure 7. The confusion matrix in the final model. 

 
Table 3. Performance and resource usage summary. 

Experiment Details 

Training Time 4 hours 

Inference Time per Video 
100 ms per 90-frame video (3 

seconds at 30 FPS) 

GPU Model Used NVIDIA T4 GPU 

Batch Size 64 

Video Length 
90 frames (approximately 3 

seconds at 30 FPS) 

3D Skeletal Data (Joints) 25 joints 

Average Memory Usage 

(Training) 
4 GB 

Average Memory Usage 

(Inference) 
3.5 GB 

Overall Latency (Processing 

one video) 

200 ms per 90-frame video (from 
input to output) 

Resource Utilization 
Low (due to efficient graph-

based representation) 
 

5.1 Proposed Architecture 

The proposed architecture demonstrates superior 

performance compared to other existing 

approaches, yielding improved results. The key 

enhancement in this architecture is the integration 

of ST-GCN with attention mechanisms, which 

enables the model to more effectively capture and 

understand the relationships within the data. 

 
6. Discussion and Conclusion 

This study introduced an innovative approach for 

detecting driver distraction during driving by 

integrating spatio-temporal graph convolutional 

networks (ST-GCN), Attention Mechanisms, and 

Transformers. The primary objective of this 

research was to develop an efficient and accurate 

model for identifying a wide range of driving 

activities and distraction behaviors. This objective 

was successfully achieved, with the model 

achieving an impressive accuracy of 97.47%, 

surpassing the performance of other related studies. 

Although this study primarily focused on 

architectural innovation and performance 

validation using the Drive&Act dataset, future 

work will incorporate statistical testing to further 

assess the significance of model improvements 

over baseline methods. 
 
Table 4. Comparison of different methods and the results 

obtained. 
Accuracy Method 

37.18 Pose[31] 

39.37 Two-Stream[41] 

40.56 st-MLP[32] 

44.60 Squeezeformer[39] 

49.54 C3D[43] 

55.04 P3D ResNet[44] 

55.67 Three-Stream[45] 

69.57 I3D Net[46] 

97.47 ST-GCN + Transformer 

 

The model was trained for 300 epochs on a Google 

Colab environment using an NVIDIA T4 GPU. 

Each input sequence consisted of 90 frames (3 

seconds at 30 FPS), with skeletal data extracted 

from 25 keypoints. Unlike traditional pixel-based 

methods, this graph-based input significantly 

reduces the data size, resulting in faster processing 

times. While detailed latency benchmarks were not 

included in this study, the model demonstrated 

efficient inference during testing, suggesting its 

potential for real-time deployment. Future work 

will involve quantitative measurements of latency 

and computational requirements to better assess the 

model's viability for practical applications. 
The proposed model, which integrates spatial 

attention layers and the Transformer encoder, 

effectively extracts spatio-temporal features from 

the data. Experimental results demonstrated that 

this approach accurately identified driving 

behaviors and distractions, achieving excellent 

performance in distinguishing complex activities. 

The incorporation of the Focal Loss function 

further contributed to enhancing the model’s 

accuracy, particularly when handling imbalanced 

data. 

This research makes a significant contribution to 

the field of driver distraction detection by 

presenting an effective combination of Graph 

Neural Networks and Transformers, thereby 

showcasing its potential for real-world 

applications. Potential applications of this model 

include integration into Advanced Driver-

Assistance Systems (ADAS) and proactive alert 
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systems in intelligent vehicles, both of which could 

significantly improve road safety. 

For future research, it is recommended to utilize 

larger and multi-source datasets, such as data from 

vehicle sensors, thermal videos, and driver’s 

biological data. Additionally, enhancing the model 

architecture through the use of deeper neural 

networks and advanced data augmentation 

techniques could further improve the model's 

accuracy and reliability. 

While the Drive&Act dataset remains the most 

comprehensive resource for 3D pose-based driver 

activity recognition, it has limitations in terms of 

environmental diversity, particularly regarding 

lighting variations and real-world complexity. 

Additionally, given the importance of accurate 

keypoint detection, we utilized the most reliable 

camera viewpoint available. Future research should 

focus on experiments with more diverse datasets 

and explore the potential of transfer learning to 

assess the model’s robustness in uncontrolled, real-

world driving conditions. 

The current study is based exclusively on the 

Drive&Act dataset under controlled conditions, 

which limits the model’s generalizability to unseen 

drivers, varied vehicle interiors, and diverse 

lighting conditions. Future work will involve cross-

subject evaluations and testing on more 

heterogeneous datasets. Furthermore, integrating 

multi-modal data (e.g., combining skeletal and 

RGB data) and applying ensemble or smoothing 

strategies could significantly enhance both the 

accuracy and robustness of the model, particularly 

in real-world driver-assistance systems. 

Another promising direction for future research is 

the application of automated hyperparameter 

tuning methods, such as grid search or Bayesian 

optimization, to optimize training configurations 

and potentially enhance accuracy further. 
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 .x x x xسال  ،xشماره  ،کاویمجله هوش مصنوعی و داده                                                                                                                   و داوری راستگو

 

 توجه زمیو مکان یزمان-ییکانولوشنال گراف فضا یهاراننده با استفاده از شبکه یپرتحواس ییشناسا

 

  *و راضیه راستگو مهدی داوری

 .انشکده مهندسی برق و کامپیوتر، دانشگاه سمنان، سمنان، ایراند

 16/09/2025 پذیرش؛ 03/06/2025 بازنگری؛ 02/05/2025 ارسال

 مقاله نیدارد. ا یاتصادفات جاده شیدر افزا ینقش قابل توجه رایبرخوردار است، ز ییبالا تیاز اهم یراننده هنگام رانندگ یپرتحواس ییشناسا چکیده:

انجام  دهرانن یپرتحواس ییشناسا یتوجه برا زمیو مکان (ST-GCN) یزمان-ییکانولوشنال گراف فضا یهابر شبکه یمبتن یبیمدل ترک کیبا هدف ارائه 

استفاده  یشنهادیمدل پ یعنوان وروداستخراج و به Drive&Act یبعدبدن رانندگان از مجموعه داده سه یاسکلت یها، دادهمقاله نیشده است. در ا

حرکات راننده را  یزمان-ییفضا یهایژگیتوجه، و یهاهیهمراه با لا یو زمان ییکانولوشنال گراف فضا یهاهیاز لا یریگبا بهره یشنهادیاند. مدل پشده

 یرانندگ یوهایدر سنار ژهیوبه، راننده یپرتحواس ییدر شناسا یدقت بالاتر یشنهادیکه مدل پ دهدینشان م یتجرب جی. نتاکندیم لیزمان تحلطور همبه

 Drive&Actمجموعه داده  یبر رو ار ٪9۷.۴۷ما دقت  یشنهادیکه مدل پ دهدینشان م هاشیآزما جینتا .دارد نیشیپ یهانسبت به مدل ،دهیچیپ

کاهش تصادفات  یابزار هشدار هوشمند برا کیعنوان به تواندیم ستمیس نیبرتر است. ا یقبل یهااز روش یطور قابل توجهدست آورده و عملکرد آن بهبه

 .ردیونقل مورد استفاده قرار گحمل یمنیا شیو افزا یاجاده

 .یدیبدن، نقاط کل تیبرآورد وضع ق،یعم یریادگیراننده،  یپرتحواس ییشناسا :کلمات کلیدی

 


