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Sign language is a structured, non-vocal form of communication
primarily used by individuals who are deaf or hard of hearing, who
often face challenges interacting with non-signers. To address this,
translation systems between sign and spoken language are essential,
encompassing sign language recognition and production. In this work,
we focus on sign language production and propose a deep learning
framework for generating skeleton-based video representations of
sign language at the word level. Our approach employs a conditional
Generative Adversarial Network (cGAN) with transformer
embeddings in both the generator and discriminator, augmented with
bone-length and joint-angle constraints and a classifier-guided loss to
ensure anatomically plausible and semantically consistent gestures.
We further introduce a novel loss function to improve human
keypoint generation for sign representation. Extensive experiments on
three benchmark datasets demonstrate that our method outperforms
state-of-the-art approaches according to statistical (MMD) and
perceptual (FID) metrics, while qualitative analyses confirm that the
generated gestures are temporally smooth, anatomically accurate, and
semantically meaningful. These results highlight the effectiveness of

our model in advancing word-level sign language synthesis.

1. Introduction

Sign language is a complex, structured form of
communication used primarily by individuals who
are deaf or hard of hearing, relying on both manual
elements, such as hand gestures and movements,
and non-manual elements, including facial
expressions, body posture, and mouth shapes to
convey meaning and grammatical structure [1,2].
Globally, over 5% of the population requires
treatment for hearing impairments, with more than
60 million completely deaf individuals, and
projections estimate that by 2050, over 2.5 billion
people will experience some degree of hearing loss
[3,4]. Given this widespread prevalence,
developing systems for translating between sign
language and spoken language is essential for
effective communication [5,6]. The lack of a
universal sign language and the existence of
distinct regional sign languages introduce
significant challenges for robust translation

systems [7,8]. Moreover, many deaf individuals are
not literate in written spoken languages, making
sign  language their primary mode of
communication [9,10]. Unlike spoken languages,
sign languages have unique grammatical rules and
can express multiple meanings simultaneously
within a single gesture, with sequential structuring
that differs from spoken language [11,12]. While
substantial progress has been made in sign
language recognition (SLR), which translates signs
into spoken language [13], sign language
production (SLP), generating signs from spoken
input, remains less explored [14]. Key challenges
in SLP include accurately modeling hand
orientation, movement, location, and shape, as well
as addressing limited large-scale datasets and
regional variations [15], all of which are critical for
enhancing communication accessibility for the
deaf and hard-of-hearing communities.
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In the realm of sign language synthesis, various
approaches leverage different input modalities
[16,17]. While RGB-based models are effective in
producing visually realistic outputs, our study
adopts a skeleton-based approach due to its
significant advantages in this domain. Skeleton-
based methods inherently filter out extraneous
visual information such as background noise,
varying lighting conditions, and clothing artifacts,
allowing the model to focus exclusively on the
essential joint movements [18]. This significantly
reduces data complexity, accelerates training
convergence, and enhances the robustness of the
model [19]. Furthermore, this approach naturally
facilitates the enforcement of anatomical
plausibility through direct manipulation of joint
positions, leading to physically realistic
movements. These methods also offer higher
computational  efficiency, making  them
particularly suitable for potential real-time
applications, and provide greater interpretability by
directly modeling the core kinematics of sign.
These benefits underscore the practicality and
reliability of leveraging skeletal representations for
comprehensive sign language modeling.

To address these challenges and advance the field
of sign language production, this research makes
the following key contributions that the integration
of all these contributions in a unified framework is
the main novelty of this work:

* A deep neural network is designed to synthesize
skeletal animations of sign language at the lexical
level through a conditioned adversarial generative
framework. The generator and discriminator
incorporate transformer-based sequence
embeddings, leveraging the attention mechanism to
capture long-range and complex dependencies
across sign sequences. This selection is motivated
by the Transformer's ability to model holistic
relationships between sequence elements, ensuring
semantically coherent and anatomically plausible
gestures. While LSTM and ST-GCN are effective
for certain tasks, they tend to capture dependencies
through recurrence or local graph operations,
which can make representing global sequence
context less direct; therefore, our choice is
conceptually grounded in the Transformer's more
direct attention-based mechanism for modeling
holistic sequence relationships.

* A newly devised cost objective was formulated
and implemented to refine the precision of bodily
landmark creation for representing signed
communication, while integrating bone-length and
joint-angle constraints, as well as a classifier-
guided loss to further improve semantic alignment
and physical plausibility.

* The merit of our system was validated via
assessments on a trio of standard data repositories,
yielding considerable advancements in efficacy
relative to contemporary methodologies and
evaluated using both statistical (MMD) and
perceptual (FID) metrics, complemented by
qualitative analyses confirming that the generated
gestures are temporally natural, anatomically
plausible, and semantically meaningful.

2. Related works

Overall, we can categorize languages worldwide
into two main types: those based on voice and
hearing and those based on visual perception and
movement [20-23]. The latter category includes
sign languages, which are primarily used by deaf
and hard-of-hearing individuals. To facilitate
communication, translation systems play a crucial
role. SLP generates sign language from another
modality, while SLR interprets sign language into
spoken or written form [8]. SLP can be categorized
based on its input type: it may rely on spoken
language input (such as text) or visual input (such
as images and videos). Visual inputs can be
represented in two ways: RGB frames, which
contain high-resolution visual information but with
higher complexity, and skeletal representations,
which offer a lower-complexity alternative by
focusing on key movement points rather than full
visual details [2] (Figure 1).
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Figure 1. lllustration of categories in SLP.

With recent advancements in deep learning and
computer vision, significant progress has been
made in sign language recognition and production,
as well as in related fields. Several researchers have
explored different approaches to these tasks. For
instance, the authors in [14] and [24] have worked
on SLR from RGB videos using deep learning
architectures. More specifically, [24] employed
Convolutional Neural Networks (CNNSs), while
[14] leveraged Long Short-Term Memory (LSTM)
and Gated Recurrent Units (GRU), which are
feedback-based learning models. Meanwhile,
Natarajan et al. [4] proposed a hybrid approach for
SLR in RGB videos, integrating CNNs with
Bidirectional Long Short-Term Memory (CNN
BIiLSTM) networks. Additionally, Amorim et al.
[17] focused on skeleton-based recognition using
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Spatial-Temporal Graph Convolutional Networks
(ST-GCNSs). Similarly, Jiang et al. [11] worked
with skeleton data for SLR.

Beyond SLR, recent studies have advanced SLP as
well. For instance, Saunders et al. [7] introduced a
model based on Progressive Transformers for end-
to-end SLP, enabling direct translation of spoken
language text into continuous 3D sign pose
sequences. Qi et al. [20] developed a method
leveraging latent diffusion models to generate sign
language videos from text. Their work focuses on
generating RGB videos. Walsh et al. [25] proposed
a "sign stitching™ approach, which constructs sign
language sequences using dictionary examples and
then refines them with a Generative Adversarial
Network (GAN). Azevedo et al. [26] focused on
generating non-manual gestures, particularly facial
expressions, by integrating sentiment and semantic
information  using  Spatio-Temporal  Graph
Convolutional Networks (ST-GCNSs).

In the closely related field of human action
generation, researchers have explored skeleton-
based methods. Ivashechkin et al. [27] and Wang
et al. [28] have both worked on skeleton-based
human action generation but with different
architectures. Ivashechkin et al. used a CNN-based
approach, while Wang et al. employed a BiLSTM
model for sequence generation. Yazdian et al. [29]
investigated co-speech gesture generation using
Vector Quantized Variational Autoencoders (VQ-
VAE).

In the closely related fields of human motion
estimation and action recognition, researchers have
developed fundamental methods to analyze and
understand human movement. Early works in pose
estimation relied on statistical approaches such as
Deformable Part Models (DPMs) [30], which
partition the body into parts to estimate joint
positions. With the advancement of deep learning,
models like OpenPose [31] and High-Resolution
Network (HRNet) [32] have demonstrated superior
accuracy in predicting keypoint locations from
visual data, providing reliable  skeletal
representations. Building on pose estimation,
action recognition methods aim to classify
activities based on body pose sequences. While
earlier methods utilized handcrafted features with
traditional machine learning models [33], recent
deep learning methods such as Spatio-Temporal
Graph Convolutional Networks (ST-GCNs) [34]
and 3D CNNs [35] have shown state-of-the-art
performance. A notable contribution in this area is
the study by Rezaee et al. [36], which modeled
abnormal walking of the elderly to predict fall risks
using a Kalman filter and motion estimation
approach. This work illustrates the application of

motion estimation techniques for detecting
abnormal movement patterns in real-world health-
related scenarios.

In this work, we introduce a state-of-the-art model
applicable to both sign language production and
human action generation. We apply it to Persian
Sign Language, focusing on manual gestures, and
American Sign Language, incorporating facial
expressions, body movements, and hand gestures.
Our model demonstrates versatility and robustness
across both domains.

3. Primitive concept

In this section, we briefly review Generative
Adversarial Networks (GANs) [37], Conditional
Generative Adversarial Networks (CGANSs) [38],
and Transformer Encoder [39].

3.1. GANs

GANs were introduced in 2014 [10] (Figure 2). As
a deep learning-based generative model designed
to learn the distribution of input data and generate
new data that closely resemble it. A GAN consists
of two main components: a generator and a
discriminator. The generator takes a random noise
vector as input and produces synthetic data, aiming
to generate samples that appear similar to real data.
The discriminator, on the other hand, is a binary
classifier that distinguishes between real data,
sampled from the true distribution Px, and
generated data, sampled from the generator’s
distribution Pz. The generator and discriminator
are trained in a competitive framework, where the
generator continuously improves to fool the
discriminator, while the discriminator learns to
differentiate real from fake samples. This
adversarial process is formulated as a minimax
game:

mGin mng (D.G)E mpm(x)log[D OI+E ZDPZ(Z)Iog[l—D(G @)l
1)

In (1), V(D, G) represents the value function, which
encapsulates the adversarial loss to be minimized
(min) and maximized (max) by the generator (G)
and discriminator(D), respectively. The first
term, Expyaraco [logD(x)], represents the
expected log-likelihood of the discriminator
correctly identifying real data samples x drawn
from the true data distribution Pygtq(x), Where
D(x) denotes the probability that the discriminator
classifies x as real. The symbol E, refers to the
expectation, or average, over the real data samples
x. This term drives the discriminator to correctly
classify real data points. The second term,
E,ps)[log(1 — D(G(2)))], corresponds to the
expected log-likelihood of the discriminator
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correctly classifying fake samples generated by the
generator G from a noise vector z, with E,
denoting the expectation over the noise vectors z,
which are drawn from the prior distribution P, .
Here, G(z) represents the generator’s output given
z. The log refers to the logarithm. The generator
aims to minimize this term by producing fake
samples that closely resemble real data, while the
discriminator maximizes it by distinguishing fake
samples from the real ones.

3.2. CGANs

Real/Fakse

Generatoy Discriminator

Figure 2. Schematic of the GAN Model.

CGANSs were introduced [37] as an extension of
GANSs to address a key limitation: the lack of
control over the generated data. While standard
GANs are powerful generative models, they do not
provide a mechanism to specify which type of data
should be generated. This can lead to mode
collapse, where the model produces samples from
only a subset of the possible data distribution while
ignoring others. In CGANSs, additional control is
introduced by conditioning both the generator and
the discriminator on auxiliary information, such as
class labels. This means that a label y is provided
as input to both components, guiding the generator
to produce samples corresponding to the specified
class and helping the discriminator distinguish
between real and generated samples within each
class. The objective function of CGANSs is
formulated as:

minmaxv @.GE . 00l yI+E 2o () l00ll-DE (2 .y).y)]
)

In (2), the formula elements are similar to standard
GANSs, as explained in part 3.1, with the key
difference being the inclusion of the condition y,
which represents a label of the data. The generator
G(z,y) takes a noise vector z and a condition y (the
label), guiding it to produce samples that match the
specified condition. The class labels. This means
that a label y is provided as an input to both
components, guiding the generator to produce
samples corresponding to the specified class and
helping the discriminator distinguish between real
and generated samples within each class.

3.3. Transformer Encoder

The Transformer model [39] is a deep learning
architecture designed for processing sequential
data. Unlike traditional sequential models, the
Transformer  leverages parallel  computing,
significantly improving efficiency by processing
entire sequences simultaneously. Additionally, it
excels in capturing long-range dependencies within
sequences. The model consists of six layers, with
self-attention serving as its core mechanism,
enabling it to weigh the importance of different
input elements dynamically.

To summarize the layers of the Transformer model,
the process begins with input embedding, which
encodes the input sequence into a continuous
vector representation. This is followed by
positional encoding, which preserves the order of
elements in the sequence by adding position-
specific information to the embedding. Next, the
multi-head attention mechanism enables the model
to capture dependencies between different
elements in the sequence. To achieve this, each
input element generates three vectors: query(Q),
key(K), and value(V). The attention mechanism
computes the relationship between elements by
taking the dot product of the query vector of one
element with the transpose key vector (KT) of all
other elements. This result is then scaled by the

square root of the key dimension (\/d_k) and passed
through a softmax function to obtain attention
scores. The output is computed by performing a
weighted sum of the value vectors based on these
attention scores. The mathematical formulation of
self-attention is given by:

Attention =Softmax[Q'K ' ]*V
vd. ©
In (3), Q (Query) represents the vector used to
request information from other elements, K (Key)
determines how much attention to pay to each
element, and ¥V (Value) contains the actual
information used in the output. The key dimension
(d) scales the dot product of queries and keys for
stable training.
Following the multi-head attention layer, residual
connections are applied, where the original input is
added to the output of the attention mechanism.
This sum is then normalized using layer
normalization. The output is then passed through a
position-wise feed-forward network (FFN), which
applies a transformation independently to each
token in the sequence. Another residual connection
is applied, followed by layer normalization. In this
manner, the input sequence undergoes a series of
transformations, effectively encoding contextual
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information.  Mathematically, this encoding
process can be represented as:

F..=Enc(F.,) 4)
In (4), F;;, represents the input, F,,; represents the
output of the encoding process, and Enc refers to
the overall encoding process. This structured
approach enables the Transformer to efficiently
model long-range dependencies in sequential data
while leveraging parallel computation for
improved performance.

4. Proposed sign skeleton CGAN

A CGAN s proposed for generating skeleton-
based isolated signs, where each frame consists of
key points representing the human body and face.
These key points are connected to reconstruct the
human skeleton, capturing the essential body and
facial movements involved in sign language
gestures. This is a challenging task as it requires the
generation of human-like, temporally consistent
poses and movements, reflecting natural sign
language motions. To accomplish this, we leverage
the capabilities of the CGAN, which integrates a
generator and a discriminator to work
adversarially. The generator produces synthetic
data, while the discriminator attempts to
distinguish between real and generated data. Our
CGAN model employs a dual-input mechanism for
the generator, which takes both random noise and
a conditional data label as inputs. The use of class
labels as input was an intentional choice to allow
the model to accurately learn the temporal and
spatial structure of individual words. While textual
input such as full sentences could be used,
prioritizing word-level input ensures reliable and
coherent word generation and keeps the system
manageable, reflecting a deliberate focus on word-
level performance rather than a limitation of the
architecture. The random noise allows the
generator to explore a diverse set of possible
outputs, while the conditional label guides the
generation process by providing specific
information about the target gesture or pose. The
discriminator, on the other hand, evaluates both
real and generated data along with their
corresponding labels. It differentiates between real
data and generated data, providing feedback that
helps refine the generator’s ability to produce
realistic and accurate sign language frames. In
addition to the generator and discriminator, we
introduce a classifier responsible for classifying
both real and generated data with respect to their
corresponding class labels (Figure 3).

In our proposed model, we aim to generate the
skeleton human body parts, including the body,
hands, and face, based on specific requirements.

This generation process is highly complex because
the produced data must not only resemble real
human body structures but also represent
meaningful gestures necessary for conveying sign
language words. Due to this fundamental
challenge, we employ a Transformer Encoder in
our proposed adversarial generative model for both
the generator and the discriminator. The
Transformer architecture is particularly suitable for
this task as it effectively captures dependencies
within and across frames, ensuring coherent and
realistic motion representation. Moreover, by
leveraging  self-attention  mechanisms, the
Transformer can model long-range relationships
between key points, which is essential for
generating fluid and natural movements. This
capability is especially important in SLP, where
subtle variations in motion carry significant
linguistic meaning. By incorporating this approach,
our model aims to enhance the accuracy and
expressiveness of generated gestures, making them
more interpretable and reliable for real-world
applications.

The loss function is a crucial component of deep
learning models, as it enables the model to improve
its performance and learn essential features during
training. In conditional GANSs, there are two
distinct loss functions: one for the discriminator (2)
and one for the generator (5).

LG:Ezupz(z)[log(D(G(Z’y)‘z))] (5)
In (5), L represents the generator loss, which the

generator aims to minimize. The term
E,-ps(z)denotes the expected value over the noise

vector z. The generator G takes this noise z and the
condition label y to produce a fake sample G(z, y).
The discriminator D then receives the generated
sample and the label y to decide whether the
sample is real or fake. By minimizing this loss, the
generator learns to produce realistic samples that
match the condition y and successfully fool the
discriminator.

In our proposed model, we use the standard CGAN
discriminator loss function (2), while the generator
loss function incorporates the standard CGAN loss
along with three additional components (6). The
first term relates to the classifier, which categorizes
both real and generated data into their
corresponding classes, ensuring that the generated
samples align with the target class labels. The
second term is related to the skeletal structure of
the human body, and the third concerns the
orientation of joints. By incorporating these
parameters, we ensure that the generated outputs
maintain anatomical accuracy and realistic motion.
These adjustments preserve the natural
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relationships between body parts, ensuring that the
generated movements adhere to  human
biomechanics. Furthermore, we account for the
natural limitations of body orientation—such as the
fact that certain joint movements, like bending a
knee, have specific constraints (e.g., the knee
cannot bend in the opposite direction). This
consideration helps ensure more realistic and
anatomically plausible motion. Additionally, we
make all confidence terms in the generator’s loss
function trainable, enabling the model to
dynamically adjust its learning priorities. This
adaptability enhances the generator’s ability to
refine its output, leading to higher-quality, more
expressive, and contextually accurate motion
representations.

Lo, =reg . *Le+reg, *(real _cl_loss +fake cl _loss)+ (6)
reg _bone *bone _loss +reg _angle *angle _loss

The proposed generator loss function (6), Lgp,
includes several key components. L is the
standard conditional GAN generator loss, weighted
reg_GAN, a trainable confidence parameter. The
term reg_class is the trainable confidence for the
classification loss, which includes both
real_cl_loss, the loss for real data classification,
and fake_cl_loss, the loss for fake data
classification. The component bone_loss,
weighted by reg_bone, a trainable parameter, is
the bone length loss that calculates the difference
in bone lengths between real and generated data.
Similarly, angle_loss, scaled by reg_angle,
which is also trainable, computes the difference in
joint angles between real and fake samples.

5. Results
In this section, details of the datasets,
implementation, and experimental results are
presented.

5.1. Datasets

To evaluate the performance of our proposed
model, three diverse and widely recognized
datasets are used. These datasets span different sign
languages and human motion capture data,
providing a comprehensive evaluation across
various domains. One of the datasets is RKS-
PERSIANSIGN [40], which is designed for
Persian Sign Language. It contains video
sequences of native signers with annotations for
gestures and movements. The dataset includes data
from 10 performers, spanning 100 classes, and
consists of 10,000 samples [40]. Another dataset
we used is ASLLVD (American Sign Language
Lexicon Video Dataset), a comprehensive
collection of American Sign Language videos with

annotations for hand shapes, locations, and
movements. This dataset serves as a benchmark for
sign language recognition and generation, and it
includes data from 6 performers, covering 3,300
classes, with a total of 9,800 samples [41].
Additionally, we used H3.6M (Human3.6M), a
large-scale motion capture dataset widely used for
human motion analysis and action recognition. It
contains recordings of diverse actions with detailed
3D joint annotations. This dataset includes data
from 11 performers, spanning 17 classes, and
consists of 3,600,000 samples [42].
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Figure 3. An overview of the proposed model.

5.2. Implementation details

Our model implementation is executed on Google
Colab using Python and TensorFlow, providing an
efficient environment for deep learning tasks. The
model is trained for 20 epochs with a mini-batch
size of 64, utilizing the Adam optimizer to optimize
the parameters [40], with a decay rate of 0.5 applied
every 5 epochs. The discriminator’s learning rate is
fixed at a smaller value of 0.00001 to ensure
balanced training. To further stabilize the training
process, momentum values of 0.5 and 0.9 are used
for the first and second moments of the Adam
optimizer, respectively. These configurations
ensure stable, effective training and help the model
achieve optimal performance over time.

5.3. Experimental results

Here, the performance of the proposed model is
evaluated through experiments on three diverse
datasets: RKS-PERSIANSIGN, ASLLVD, and
H3.6M (Human3.6M). Our evaluation considers
various aspects, such as structural configurations,
model parameters, and loss functions, to
understand their impacts on the model's output. The
model's performance is assessed using the
Maximum Mean Discrepancy (MMD) metric
across all experiments. The results are presented in
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(Table 1), illustrating the performance of different
configurations. In Table 2, we compare our model
with baseline models using the Human3.6M
dataset, while Table 3 compares our base model
with the improved model on the RKS-
PERSIANSIGN and ASLLVD  datasets.
Additionally, the outputs are shown in Figures 4, 5,
and 6, which display the output frames for these
datasets. Besides MMD, we evaluate the generated
gestures using the FID metric and conduct
gualitative analyses to confirm that the gestures are
temporally natural, anatomically plausible, and
semantically meaningful. The resulting FID scores
for the optimal setup demonstrate strong
performance across datasets: RKS-
PERSIANSIGN: 25.50, ASLLVD: 26.50, and
H3.6M: 23.50.

6. Discussion

In this study, we proposed a novel approach for
generating world-level skeleton sign language
videos by integrating a CGAN with a Transformer
Encoder. Our evaluation involved three diverse
datasets: RKS-PERSIANSIGN, ASLLVD, and
H3.6M, and we experimented with various
configurations to optimize our model’s
performance. Initially, we evaluated the efficacy of
BiLSTM networks for both the generator and
discriminator. However, when we replaced the
generator with a Transformer, we observed a
notable improvement in performance. The best
results were achieved when we employed
Transformers in  both the generator and
discriminator, as evidenced by the lowest MMD
scores, indicating superior performance in
generating realistic sign language movements. This
result suggests that the Transformer architecture is
highly effective in capturing the complex temporal
dependencies involved in sign language
generation.  Subsequently, we focused on
optimizing key learning parameters, particularly
the learning rates and the number of iterations for
the generator. We found that a higher learning rate
for the generator (0.0003) compared to the
discriminator (0.00001) led to more stable
convergence.  Additionally,  adjusting  the
generator's iterations significantly improved the
guality of the generated sequences, striking a
balance between efficient training and model
performance. We also experimented the
Transformer architecture configurations,

specifically the number of attention heads and
layers. Through our experiments, we determined
that 13 attention heads and 6 layers produced the
best performance, enabling the model to effectively
capture multi-dimensional relationships while
maintaining computational efficiency. Finally, we
enhanced the model’s loss function by introducing
additional components related to bone length and
joint orientation, alongside the standard CGAN and
classification losses. The base loss function
initially included CGAN and classification losses
with non-trainable confidence parameters. In
contrast, our second loss function extended this by
incorporating two additional components, bone
length and joint orientation, along with trainable
confidence parameters for all four components.
This modification enabled the model to better adapt
and achieve more accurate results, outperforming
the original loss function, which used non-trainable
coefficients for these components. To evaluate the
model’s performance, the MMD metric has been
used, which measures the similarity between
generated and real data. Our model consistently
showed lower MMD scores compared to baseline
models, indicating that the generated sign language
movements were more realistic and aligned with
real-world data. These results demonstrate the
potential of combining CGANs with Transformer
encoders for generating high-quality sign language
videos, providing a strong foundation for future
advancements in this area. Besides MMD, we also
assessed perceptual quality using FID and
performed qualitative analyses, which confirmed
that the generated gestures are temporally smooth,
anatomically  accurate, and  semantically
meaningful. It is worth mention that the proposed
model focuses on generating individual sign
language words, not arbitrary sequences. The
Transformer, with its Attention mechanism, is
specifically designed to learn the correct order and
relationships between sequence elements, ensuring
that the generated movements preserve the proper
temporal and spatial structure of each word.
Therefore, the model does not produce motions
blindly, but generates coherent sequences that
reflect the intended signs. The choice of
Transformer was motivated precisely by this ability
to capture dependencies across all elements in the
sequence, which is crucial for meaningful sign
generation.
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Table 1. Results of structural configurations, model parameters, model configuration, loss function and the impact of the
classifier module for the three datasets (RKS-PERSIANSIGN, ASLLVD, Human3.6M) based on the MMD metric (lower
values indicate better performance).

Discriminator ~ Generator Generator Learning Number Number  Loss Classifier module RKS- ASLLVD Human3.6
training rate of heads of layers function PERSIANSIGN
iterations

BiLSTM BILSTM 2 D 0.00001 13 6 Base Y 0.1440 0.1797 0.2104
G 0.0003 model

BiLSTM BILSTM 2 D 0.00001 13 6 Base N 0.2430 0.2624 0.2945
G 0.0003 model

BiLSTM Transformer 2 D 0.00001 13 6 Base Y 0.1360 0.0876 0.1251
G 0.0003 model

Transformer  Transformer 2 D 0.00001 13 6 Base Y 0.1280 0.0829 0.1237
G 0.0003 model

Transformer  Transformer 4 D 0.00001 13 6 Base Y 0.1320 0.0835 0.1255
G 0.0003 model

Transformer ~ Transformer 2 D 0.0002 13 6 Base Y 0.1390 0.0877 0.1286
G 0.0002 model

Transformer  Transformer 2 D 0.00001 18 6 Base Y 0.1420 0.0831 0.1275
G 0.0003 model

Transformer  Transformer 2 D 0.00001 13 9 Base Y 0.1340 0.0872 0.1328
G 0.0003 model

Transformer ~ Transformer 2 D 0.00001 13 6 Proposed Y 0.0980 0.0821 0.1209
G 0.0003 model

Table 2. Comparison of our model with baseline models
using the Human3.6M dataset based on the MMD metric
(lower values indicate better performance) [14].

Table 3. Comparison between our base model and our
proposed model on the RKS-PERSIANSIGN and
ASLLVD datasets based on the MMD metric (lower

values indicate better performance).

Habibieetal. Caietal. Zhenyi Wang et al. Our proposed model
Dataset Basel model ~ Our proposed model
0.452 0.419 0.195 0.120

RKS- PERSIANSIGN 0.1440 0.0980
ASLLVD 0.1797 0.0821

(a)

(b)

(c)

Figure 4. Visual results (synthetic data (right), Ground Truth (left)) on the RKS-PERSIANSIGN dataset: (a) Narahat, (b)
Salam, (c) Tabrik.

(a)

(b)

Figure 5. Visual results (synthetic data (right), Ground Truth (left)) on the ASLLVD dataset: (a) place, (b) poss.
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Figure 6. Visual results (synthetic data (right), Ground Truth (left)) on the Human3.6M dataset: (a) walking, (b)
walking together.

7. Conclusion

In this paper, we proposed a model for generating
skeleton-based sign language videos through the
output of skeletal representations of sign language
gestures. The model integrates a CGAN with a
Transformer Encoder, along with an additional
classifier to categorize the generated data into
predefined classes. We rigorously evaluated the
model on three datasets: RKS-PERSIANSIGN,
ASLLVD, and H3.6M, demonstrating superior
performance compared to baseline models. The
results highlight the model’s ability to effectively
capture complex body movements, making it
particularly suitable for sign language production
and related applications. By combining the power
of a CGAN and a Transformer Encoder, the model
was optimized to generate realistic body shapes
and motions, showcasing its potential for a wide
range of real-world applications in gesture
recognition, motion synthesis, and human-
computer interaction. Our evaluations, including
both quantitative and qualitative assessments,
confirm that the generated gestures are temporally
coherent, anatomically plausible, and semantically
meaningful, addressing potential concerns about
motion realism. While our current model achieves
robust word-level sign generation by focusing on
primary skeletal keypoints, we acknowledge that
critical non-manual components, such as facial
expressions, gaze direction, and head posture,
significantly contribute to the full expressive scope
and grammatical nuances of sign language
communication. Incorporating these elements
represents an important direction for future work.
Furthermore, our current research deliberately
focuses on isolated word-level synthesis.
Extending the model to handle more complex
linguistic structures, such as sentence- or dialogue-
level sign language generation, presents unique
challenges given the distinct grammatical rules and
simultaneous semantic expressions inherent in sign

languages. Addressing these complexities is a
natural progression for future research to enhance
the model's real-world applicability.
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