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 Sign language is a structured, non-vocal form of communication 

primarily used by individuals who are deaf or hard of hearing, who 

often face challenges interacting with non-signers. To address this, 

translation systems between sign and spoken language are essential, 

encompassing sign language recognition and production. In this work, 

we focus on sign language production and propose a deep learning 

framework for generating skeleton-based video representations of 

sign language at the word level. Our approach employs a conditional 

Generative Adversarial Network (cGAN) with transformer 

embeddings in both the generator and discriminator, augmented with 

bone-length and joint-angle constraints and a classifier-guided loss to 

ensure anatomically plausible and semantically consistent gestures. 

We further introduce a novel loss function to improve human 

keypoint generation for sign representation. Extensive experiments on 

three benchmark datasets demonstrate that our method outperforms 

state-of-the-art approaches according to statistical (MMD) and 

perceptual (FID) metrics, while qualitative analyses confirm that the 

generated gestures are temporally smooth, anatomically accurate, and 

semantically meaningful. These results highlight the effectiveness of 

our model in advancing word-level sign language synthesis. 
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1. Introduction 

Sign language is a complex, structured form of 

communication used primarily by individuals who 

are deaf or hard of hearing, relying on both manual 

elements, such as hand gestures and movements, 

and non-manual elements, including facial 

expressions, body posture, and mouth shapes to 

convey meaning and grammatical structure [1,2]. 

Globally, over 5% of the population requires 

treatment for hearing impairments, with more than 

60 million completely deaf individuals, and 

projections estimate that by 2050, over 2.5 billion 

people will experience some degree of hearing loss 

[3,4]. Given this widespread prevalence, 

developing systems for translating between sign 

language and spoken language is essential for 

effective communication [5,6]. The lack of a 

universal sign language and the existence of 

distinct regional sign languages introduce 

significant challenges for robust translation 

systems [7,8]. Moreover, many deaf individuals are 

not literate in written spoken languages, making 

sign language their primary mode of 

communication [9,10]. Unlike spoken languages, 

sign languages have unique grammatical rules and 

can express multiple meanings simultaneously 

within a single gesture, with sequential structuring 

that differs from spoken language [11,12]. While 

substantial progress has been made in sign 

language recognition (SLR), which translates signs 

into spoken language [13], sign language 

production (SLP), generating signs from spoken 

input, remains less explored [14]. Key challenges 

in SLP include accurately modeling hand 

orientation, movement, location, and shape, as well 

as addressing limited large-scale datasets and 

regional variations [15], all of which are critical for 

enhancing communication accessibility for the 

deaf and hard-of-hearing communities. 
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In the realm of sign language synthesis, various 

approaches leverage different input modalities 

[16,17]. While RGB-based models are effective in 

producing visually realistic outputs, our study 

adopts a skeleton-based approach due to its 

significant advantages in this domain. Skeleton-

based methods inherently filter out extraneous 

visual information such as background noise, 

varying lighting conditions, and clothing artifacts, 

allowing the model to focus exclusively on the 

essential joint movements [18]. This significantly 

reduces data complexity, accelerates training 

convergence, and enhances the robustness of the 

model [19]. Furthermore, this approach naturally 

facilitates the enforcement of anatomical 

plausibility through direct manipulation of joint 

positions, leading to physically realistic 

movements. These methods also offer higher 

computational efficiency, making them 

particularly suitable for potential real-time 

applications, and provide greater interpretability by 

directly modeling the core kinematics of sign. 

These benefits underscore the practicality and 

reliability of leveraging skeletal representations for 

comprehensive sign language modeling. 

To address these challenges and advance the field 

of sign language production, this research makes 

the following key contributions that the integration 

of all these contributions in a unified framework is 

the main novelty of this work: 

• A deep neural network is designed to synthesize 

skeletal animations of sign language at the lexical 

level through a conditioned adversarial generative 

framework. The generator and discriminator 

incorporate transformer-based sequence 

embeddings, leveraging the attention mechanism to 

capture long-range and complex dependencies 

across sign sequences. This selection is motivated 

by the Transformer's ability to model holistic 

relationships between sequence elements, ensuring 

semantically coherent and anatomically plausible 

gestures. While LSTM and ST-GCN are effective 

for certain tasks, they tend to capture dependencies 

through recurrence or local graph operations, 

which can make representing global sequence 

context less direct; therefore, our choice is 

conceptually grounded in the Transformer's more 

direct attention-based mechanism for modeling 

holistic sequence relationships. 

• A newly devised cost objective was formulated 

and implemented to refine the precision of bodily 

landmark creation for representing signed 

communication, while integrating bone-length and 

joint-angle constraints, as well as a classifier-

guided loss to further improve semantic alignment 

and physical plausibility. 

• The merit of our system was validated via 

assessments on a trio of standard data repositories, 

yielding considerable advancements in efficacy 

relative to contemporary methodologies and 

evaluated using both statistical (MMD) and 

perceptual (FID) metrics, complemented by 

qualitative analyses confirming that the generated 

gestures are temporally natural, anatomically 

plausible, and semantically meaningful. 

 

2. Related works 

Overall, we can categorize languages worldwide 

into two main types: those based on voice and 

hearing and those based on visual perception and 

movement [20-23]. The latter category includes 

sign languages, which are primarily used by deaf 

and hard-of-hearing individuals. To facilitate 

communication, translation systems play a crucial 

role. SLP generates sign language from another 

modality, while SLR interprets sign language into 

spoken or written form [8]. SLP can be categorized 

based on its input type: it may rely on spoken 

language input (such as text) or visual input (such 

as images and videos). Visual inputs can be 

represented in two ways: RGB frames, which 

contain high-resolution visual information but with 

higher complexity, and skeletal representations, 

which offer a lower-complexity alternative by 

focusing on key movement points rather than full 

visual details [2] (Figure 1). 

 

 
Figure 1. Illustration of categories in SLP. 

With recent advancements in deep learning and 

computer vision, significant progress has been 

made in sign language recognition and production, 

as well as in related fields. Several researchers have 

explored different approaches to these tasks. For 

instance, the authors in [14] and [24] have worked 

on SLR from RGB videos using deep learning 

architectures. More specifically, [24] employed 

Convolutional Neural Networks (CNNs), while 

[14] leveraged Long Short-Term Memory (LSTM) 

and Gated Recurrent Units (GRU), which are 

feedback-based learning models. Meanwhile, 

Natarajan et al. [4] proposed a hybrid approach for 

SLR in RGB videos, integrating CNNs with 

Bidirectional Long Short-Term Memory (CNN 

BiLSTM) networks. Additionally, Amorim et al. 

[17] focused on skeleton-based recognition using 
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Spatial-Temporal Graph Convolutional Networks 

(ST-GCNs). Similarly, Jiang et al. [11] worked 

with skeleton data for SLR. 

Beyond SLR, recent studies have advanced SLP as 

well. For instance, Saunders et al. [7] introduced a 

model based on Progressive Transformers for end-

to-end SLP, enabling direct translation of spoken 

language text into continuous 3D sign pose 

sequences. Qi et al. [20] developed a method 

leveraging latent diffusion models to generate sign 

language videos from text. Their work focuses on 

generating RGB videos. Walsh et al. [25] proposed 

a "sign stitching" approach, which constructs sign 

language sequences using dictionary examples and 

then refines them with a Generative Adversarial 

Network (GAN). Azevedo et al. [26] focused on 

generating non-manual gestures, particularly facial 

expressions, by integrating sentiment and semantic 

information using Spatio-Temporal Graph 

Convolutional Networks (ST-GCNs). 

In the closely related field of human action 

generation, researchers have explored skeleton-

based methods. Ivashechkin et al. [27] and Wang 

et al. [28] have both worked on skeleton-based 

human action generation but with different 

architectures. Ivashechkin et al. used a CNN-based 

approach, while Wang et al. employed a BiLSTM 

model for sequence generation. Yazdian et al. [29] 

investigated co-speech gesture generation using 

Vector Quantized Variational Autoencoders (VQ-

VAE). 

In the closely related fields of human motion 

estimation and action recognition, researchers have 

developed fundamental methods to analyze and 

understand human movement. Early works in pose 

estimation relied on statistical approaches such as 

Deformable Part Models (DPMs) [30], which 

partition the body into parts to estimate joint 

positions. With the advancement of deep learning, 

models like OpenPose [31] and High-Resolution 

Network (HRNet) [32] have demonstrated superior 

accuracy in predicting keypoint locations from 

visual data, providing reliable skeletal 

representations. Building on pose estimation, 

action recognition methods aim to classify 

activities based on body pose sequences. While 

earlier methods utilized handcrafted features with 

traditional machine learning models [33], recent 

deep learning methods such as Spatio-Temporal 

Graph Convolutional Networks (ST-GCNs) [34] 

and 3D CNNs [35] have shown state-of-the-art 

performance. A notable contribution in this area is 

the study by Rezaee et al. [36], which modeled 

abnormal walking of the elderly to predict fall risks 

using a Kalman filter and motion estimation 

approach. This work illustrates the application of 

motion estimation techniques for detecting 

abnormal movement patterns in real-world health-

related scenarios. 

In this work, we introduce a state-of-the-art model 

applicable to both sign language production and 

human action generation. We apply it to Persian 

Sign Language, focusing on manual gestures, and 

American Sign Language, incorporating facial 

expressions, body movements, and hand gestures. 

Our model demonstrates versatility and robustness 

across both domains. 

 

3. Primitive concept 

In this section, we briefly review Generative 

Adversarial Networks (GANs) [37], Conditional 

Generative Adversarial Networks (CGANs) [38], 

and Transformer Encoder [39]. 

 

3.1. GANs  
GANs were introduced in 2014 [10] (Figure 2). As 

a deep learning-based generative model designed 

to learn the distribution of input data and generate 

new data that closely resemble it. A GAN consists 

of two main components: a generator and a 

discriminator. The generator takes a random noise 

vector as input and produces synthetic data, aiming 

to generate samples that appear similar to real data. 

The discriminator, on the other hand, is a binary 

classifier that distinguishes between real data, 

sampled from the true distribution  𝑃𝑥, and 

generated data, sampled from the generator’s 

distribution 𝑃𝑧. The generator and discriminator 

are trained in a competitive framework, where the 

generator continuously improves to fool the 

discriminator, while the discriminator learns to 

differentiate real from fake samples. This 

adversarial process is formulated as a minimax 

game: 

( ) ( )
( , ) log[ ( )] log[1 ( ( ))]maxmin

data Z
x x Z z

G D

V D G D x D G z
p pE E 

     

 (1)   

In (1), 𝑉(𝐷, 𝐺) represents the value function, which 

encapsulates the adversarial loss to be minimized 

(min) and maximized (max) by the generator (𝐺) 

and discriminator(𝐷), respectively. The first 

term , 𝐸x∼𝑃𝑑𝑎𝑡𝑎(𝑥) [logD(x)], represents the 

expected log-likelihood of the discriminator 

correctly identifying real data samples 𝑥 drawn 

from the true data distribution  𝑃𝑑𝑎𝑡𝑎(𝑥), where 

𝐷(𝑥) denotes the probability that the discriminator 

classifies 𝑥 as real. The symbol 𝐸𝑥  refers to the 

expectation, or average, over the real data samples 

𝑥. This term drives the discriminator to correctly 

classify real data points. The second term, 

𝐸𝑧∼𝑃𝑧(𝑧)[𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)))] , corresponds to the 

expected log-likelihood of the discriminator 
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correctly classifying fake samples generated by the 

generator G from a noise vector z, with 𝐸𝑧  

denoting the expectation over the noise vectors z, 

which are drawn from the prior distribution 𝑃𝑧(𝑧). 

Here, 𝐺(𝑧) represents the generator’s output given 

𝑧. The log refers to the logarithm. The generator 

aims to minimize this term by producing fake 

samples that closely resemble real data, while the 

discriminator maximizes it by distinguishing fake 

samples from the real ones. 

   

3.2. CGANs 

CGANs were introduced [37] as an extension of 

GANs to address a key limitation: the lack of 

control over the generated data. While standard 

GANs are powerful generative models, they do not 

provide a mechanism to specify which type of data 

should be generated. This can lead to mode 

collapse, where the model produces samples from 

only a subset of the possible data distribution while 

ignoring others. In CGANs, additional control is 

introduced by conditioning both the generator and 

the discriminator on auxiliary information, such as 

class labels. This means that a label y is provided 

as input to both components, guiding the generator 

to produce samples corresponding to the specified 

class and helping the discriminator distinguish 

between real and generated samples within each 

class. The objective function of CGANs is 

formulated as: 

( ) ( )
( , ) log[ ( , )] log[1 ( ( , ), )]maxmin

data Z
x x Z z

G D

V D G D x y D G z y y
p pE E 

(2) 

In (2), the formula elements are similar to standard 

GANs, as explained in part 3.1, with the key 

difference being the inclusion of the condition 𝑦, 

which represents a label of the data. The generator 

𝐺(𝑧, 𝑦) takes a noise vector z and a condition y (the 

label), guiding it to produce samples that match the 

specified condition. The class labels. This means 

that a label y is provided as an input to both 

components, guiding the generator to produce 

samples corresponding to the specified class and 

helping the discriminator distinguish between real 

and generated samples within each class.  

3.3. Transformer Encoder 

The Transformer model [39] is a deep learning 

architecture designed for processing sequential 

data. Unlike traditional sequential models, the 

Transformer leverages parallel computing, 

significantly improving efficiency by processing 

entire sequences simultaneously. Additionally, it 

excels in capturing long-range dependencies within 

sequences. The model consists of six layers, with 

self-attention serving as its core mechanism, 

enabling it to weigh the importance of different 

input elements dynamically.  

To summarize the layers of the Transformer model, 

the process begins with input embedding, which 

encodes the input sequence into a continuous 

vector representation. This is followed by 

positional encoding, which preserves the order of 

elements in the sequence by adding position-

specific information to the embedding. Next, the 

multi-head attention mechanism enables the model 

to capture dependencies between different 

elements in the sequence. To achieve this, each 

input element generates three vectors: query(𝑄), 

key(𝐾), and value(𝑉). The attention mechanism 

computes the relationship between elements by 

taking the dot product of the query vector of one 

element with the transpose key vector (𝐾𝑇) of all 

other elements. This result is then scaled by the 

square root of the key dimension (√𝑑𝑘) and passed 

through a softmax function to obtain attention 

scores. The output is computed by performing a 

weighted sum of the value vectors based on these 

attention scores. The mathematical formulation of 

self-attention is given by: 

.
Softmax *

T

k

Q
Attention VK

d

 
 
 
                                     (3) 

In (3), 𝑄 (Query) represents the vector used to 

request information from other elements, 𝐾 (Key) 

determines how much attention to pay to each 

element, and 𝑉 (Value) contains the actual 

information used in the output. The key dimension 

(𝑑𝑘) scales the dot product of queries and keys for 

stable training. 

Following the multi-head attention layer, residual 

connections are applied, where the original input is 

added to the output of the attention mechanism. 

This sum is then normalized using layer 

normalization. The output is then passed through a 

position-wise feed-forward network (𝐹𝐹𝑁), which 

applies a transformation independently to each 

token in the sequence. Another residual connection 

is applied, followed by layer normalization. In this 

manner, the input sequence undergoes a series of 

transformations, effectively encoding contextual 

Figure 2. Schematic of the GAN Model. 



Skeleton-Based Sign Language Generation Using a Transformer-based Generative Model 

 

information. Mathematically, this encoding 

process can be represented as: 

 out in
EncF F                                                     (4)  

In (4), 𝐹𝑖𝑛 represents the input, 𝐹out represents the 

output of the encoding process, and 𝐸𝑛𝑐 refers to 

the overall encoding process. This structured 

approach enables the Transformer to efficiently 

model long-range dependencies in sequential data 

while leveraging parallel computation for 

improved performance. 

 

4. Proposed sign skeleton CGAN 

A CGAN is proposed for generating skeleton-

based isolated signs, where each frame consists of 

key points representing the human body and face. 

These key points are connected to reconstruct the 

human skeleton, capturing the essential body and 

facial movements involved in sign language 

gestures. This is a challenging task as it requires the 

generation of human-like, temporally consistent 

poses and movements, reflecting natural sign 

language motions. To accomplish this, we leverage 

the capabilities of the CGAN, which integrates a 

generator and a discriminator to work 

adversarially. The generator produces synthetic 

data, while the discriminator attempts to 

distinguish between real and generated data. Our 

CGAN model employs a dual-input mechanism for 

the generator, which takes both random noise and 

a conditional data label as inputs. The use of class 

labels as input was an intentional choice to allow 

the model to accurately learn the temporal and 

spatial structure of individual words. While textual 

input such as full sentences could be used, 

prioritizing word-level input ensures reliable and 

coherent word generation and keeps the system 

manageable, reflecting a deliberate focus on word-

level performance rather than a limitation of the 

architecture. The random noise allows the 

generator to explore a diverse set of possible 

outputs, while the conditional label guides the 

generation process by providing specific 

information about the target gesture or pose. The 

discriminator, on the other hand, evaluates both 

real and generated data along with their 

corresponding labels. It differentiates between real 

data and generated data, providing feedback that 

helps refine the generator’s ability to produce 

realistic and accurate sign language frames. In 

addition to the generator and discriminator, we 

introduce a classifier responsible for classifying 

both real and generated data with respect to their 

corresponding class labels (Figure 3). 

In our proposed model, we aim to generate the 

skeleton human body parts, including the body, 

hands, and face, based on specific requirements. 

This generation process is highly complex because 

the produced data must not only resemble real 

human body structures but also represent 

meaningful gestures necessary for conveying sign 

language words. Due to this fundamental 

challenge, we employ a Transformer Encoder in 

our proposed adversarial generative model for both 

the generator and the discriminator. The 

Transformer architecture is particularly suitable for 

this task as it effectively captures dependencies 

within and across frames, ensuring coherent and 

realistic motion representation. Moreover, by 

leveraging self-attention mechanisms, the 

Transformer can model long-range relationships 

between key points, which is essential for 

generating fluid and natural movements. This 

capability is especially important in SLP, where 

subtle variations in motion carry significant 

linguistic meaning. By incorporating this approach, 

our model aims to enhance the accuracy and 

expressiveness of generated gestures, making them 

more interpretable and reliable for real-world 

applications. 

The loss function is a crucial component of deep 

learning models, as it enables the model to improve 

its performance and learn essential features during 

training. In conditional GANs, there are two 

distinct loss functions: one for the discriminator (2) 

and one for the generator (5). 

     [log , , ]
Z

G Z z
D G z y z

PL E                         (5) 

In (5), 𝐿𝐺 represents the generator loss, which the 

generator aims to minimize. The term 

𝐸𝑧∼𝑃𝑧(𝑧)denotes the expected value over the noise 

vector 𝑧. The generator 𝐺 takes this noise 𝑧 and the 

condition label 𝑦 to produce a fake sample 𝐺(𝑧, 𝑦). 

The discriminator 𝐷 then receives the generated 

sample and the label 𝑦 to decide whether the 

sample is real or fake. By minimizing this loss, the 

generator learns to produce realistic samples that 

match the condition 𝑦 and successfully fool the 

discriminator. 

In our proposed model, we use the standard CGAN 

discriminator loss function (2), while the generator 

loss function incorporates the standard CGAN loss 

along with three additional components (6). The 

first term relates to the classifier, which categorizes 

both real and generated data into their 

corresponding classes, ensuring that the generated 

samples align with the target class labels. The 

second term is related to the skeletal structure of 

the human body, and the third concerns the 

orientation of joints. By incorporating these 

parameters, we ensure that the generated outputs 

maintain anatomical accuracy and realistic motion. 

These adjustments preserve the natural 
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relationships between body parts, ensuring that the 

generated movements adhere to human 

biomechanics. Furthermore, we account for the 

natural limitations of body orientation—such as the 

fact that certain joint movements, like bending a 

knee, have specific constraints (e.g., the knee 

cannot bend in the opposite direction). This 

consideration helps ensure more realistic and 

anatomically plausible motion. Additionally, we 

make all confidence terms in the generator’s loss 

function trainable, enabling the model to 

dynamically adjust its learning priorities. This 

adaptability enhances the generator’s ability to 

refine its output, leading to higher-quality, more 

expressive, and contextually accurate motion 

representations. 

 * * _ _ _ _

_ * _ _ * _

Gp Ggan class
real cl loss fake cl loss

reg bone bone loss reg angle angle loss

reg regL L   



 (6)  

The proposed generator loss function (6), 𝐿Gp, 

includes several key components. 𝐿𝐺   is the 

standard conditional GAN generator loss, weighted 

𝑟𝑒𝑔_𝐺𝐴𝑁, a trainable confidence parameter. The 

term 𝑟𝑒𝑔_𝑐𝑙𝑎𝑠𝑠 is the trainable confidence for the 

classification loss, which includes both 

𝑟𝑒𝑎𝑙_𝑐𝑙_𝑙𝑜𝑠𝑠, the loss for real data classification, 

and 𝑓𝑎𝑘𝑒_𝑐𝑙_𝑙𝑜𝑠𝑠, the loss for fake data 

classification. The component 𝑏𝑜𝑛𝑒_𝑙𝑜𝑠𝑠, 

weighted by 𝑟𝑒𝑔_𝑏𝑜𝑛𝑒, a trainable parameter, is 

the bone length loss that calculates the difference 

in bone lengths between real and generated data. 

Similarly, 𝑎𝑛𝑔𝑙𝑒_𝑙𝑜𝑠𝑠, scaled by 𝑟𝑒𝑔_𝑎𝑛𝑔𝑙𝑒, 

which is also trainable, computes the difference in 

joint angles between real and fake samples. 

 

5. Results 

In this section, details of the datasets, 

implementation, and experimental results are 

presented. 

 

5.1. Datasets 

To evaluate the performance of our proposed 

model, three diverse and widely recognized 

datasets are used. These datasets span different sign 

languages and human motion capture data, 

providing a comprehensive evaluation across 

various domains. One of the datasets is RKS-

PERSIANSIGN [40], which is designed for 

Persian Sign Language. It contains video 

sequences of native signers with annotations for 

gestures and movements. The dataset includes data 

from 10 performers, spanning 100 classes, and 

consists of 10,000 samples [40]. Another dataset 

we used is ASLLVD (American Sign Language 

Lexicon Video Dataset), a comprehensive 

collection of American Sign Language videos with 

annotations for hand shapes, locations, and 

movements. This dataset serves as a benchmark for 

sign language recognition and generation, and it 

includes data from 6 performers, covering 3,300 

classes, with a total of 9,800 samples [41]. 

Additionally, we used H3.6M (Human3.6M), a 

large-scale motion capture dataset widely used for 

human motion analysis and action recognition. It 

contains recordings of diverse actions with detailed 

3D joint annotations. This dataset includes data 

from 11 performers, spanning 17 classes, and 

consists of 3,600,000 samples [42]. 

 

 

5.2. Implementation details  

Our model implementation is executed on Google 

Colab using Python and TensorFlow, providing an 

efficient environment for deep learning tasks. The 

model is trained for 20 epochs with a mini-batch 

size of 64, utilizing the Adam optimizer to optimize 

the parameters [40], with a decay rate of 0.5 applied 

every 5 epochs. The discriminator’s learning rate is 

fixed at a smaller value of 0.00001 to ensure 

balanced training. To further stabilize the training 

process, momentum values of 0.5 and 0.9 are used 

for the first and second moments of the Adam 

optimizer, respectively. These configurations 

ensure stable, effective training and help the model 

achieve optimal performance over time. 

 

5.3. Experimental results 

Here, the performance of the proposed model is 

evaluated through experiments on three diverse 

datasets: RKS-PERSIANSIGN, ASLLVD, and 

H3.6M (Human3.6M). Our evaluation considers 

various aspects, such as structural configurations, 

model parameters, and loss functions, to 

understand their impacts on the model's output. The 

model's performance is assessed using the 

Maximum Mean Discrepancy (MMD) metric 

across all experiments. The results are presented in 

Figure 3. An overview of the proposed model. 
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(Table 1), illustrating the performance of different 

configurations. In Table 2, we compare our model 

with baseline models using the Human3.6M 

dataset, while Table 3 compares our base model 

with the improved model on the RKS-

PERSIANSIGN and ASLLVD datasets. 

Additionally, the outputs are shown in Figures 4, 5, 

and 6, which display the output frames for these 

datasets. Besides MMD, we evaluate the generated 

gestures using the FID metric and conduct 

qualitative analyses to confirm that the gestures are 

temporally natural, anatomically plausible, and 

semantically meaningful. The resulting FID scores 

for the optimal setup demonstrate strong 

performance across datasets: RKS-

PERSIANSIGN: 25.50, ASLLVD: 26.50, and 

H3.6M: 23.50. 

 

6. Discussion 

In this study, we proposed a novel approach for 

generating world-level skeleton sign language 

videos by integrating a CGAN with a Transformer 

Encoder. Our evaluation involved three diverse 

datasets: RKS-PERSIANSIGN, ASLLVD, and 

H3.6M, and we experimented with various 

configurations to optimize our model’s 

performance. Initially, we evaluated the efficacy of 

BiLSTM networks for both the generator and 

discriminator. However, when we replaced the 

generator with a Transformer, we observed a 

notable improvement in performance. The best 

results were achieved when we employed 

Transformers in both the generator and 

discriminator, as evidenced by the lowest MMD 

scores, indicating superior performance in 

generating realistic sign language movements. This 

result suggests that the Transformer architecture is 

highly effective in capturing the complex temporal 

dependencies involved in sign language 

generation. Subsequently, we focused on 

optimizing key learning parameters, particularly 

the learning rates and the number of iterations for 

the generator. We found that a higher learning rate 

for the generator (0.0003) compared to the 

discriminator (0.00001) led to more stable 

convergence. Additionally, adjusting the 

generator's iterations significantly improved the 

quality of the generated sequences, striking a 

balance between efficient training and model 

performance. We also experimented the 

Transformer architecture configurations, 

specifically the number of attention heads and 

layers. Through our experiments, we determined 

that 13 attention heads and 6 layers produced the 

best performance, enabling the model to effectively 

capture multi-dimensional relationships while 

maintaining computational efficiency. Finally, we 

enhanced the model’s loss function by introducing 

additional components related to bone length and 

joint orientation, alongside the standard CGAN and 

classification losses. The base loss function 

initially included CGAN and classification losses 

with non-trainable confidence parameters. In 

contrast, our second loss function extended this by 

incorporating two additional components, bone 

length and joint orientation, along with trainable 

confidence parameters for all four components. 

This modification enabled the model to better adapt 

and achieve more accurate results, outperforming 

the original loss function, which used non-trainable 

coefficients for these components. To evaluate the 

model’s performance, the MMD metric has been 

used, which measures the similarity between 

generated and real data. Our model consistently 

showed lower MMD scores compared to baseline 

models, indicating that the generated sign language 

movements were more realistic and aligned with 

real-world data. These results demonstrate the 

potential of combining CGANs with Transformer 

encoders for generating high-quality sign language 

videos, providing a strong foundation for future 

advancements in this area. Besides MMD, we also 

assessed perceptual quality using FID and 

performed qualitative analyses, which confirmed 

that the generated gestures are temporally smooth, 

anatomically accurate, and semantically 

meaningful. It is worth mention that the proposed 

model focuses on generating individual sign 

language words, not arbitrary sequences. The 

Transformer, with its Attention mechanism, is 

specifically designed to learn the correct order and 

relationships between sequence elements, ensuring 

that the generated movements preserve the proper 

temporal and spatial structure of each word. 

Therefore, the model does not produce motions 

blindly, but generates coherent sequences that 

reflect the intended signs. The choice of 

Transformer was motivated precisely by this ability 

to capture dependencies across all elements in the 

sequence, which is crucial for meaningful sign 

generation. 
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Table 1. Results of structural configurations, model parameters, model configuration, loss function and the impact of the 

classifier module for the three    datasets (RKS-PERSIANSIGN, ASLLVD, Human3.6M) based on the MMD metric (lower 

values indicate better performance). 

Discriminator Generator Generator 

training 

iterations 

 

Learning 

rate 

Number 

of heads 

Number 

of layers 

Loss 

function 

Classifier module RKS-

PERSIANSIGN 

ASLLVD Human3.6 

BiLSTM BiLSTM 2 D 0.00001 

G 0.0003 

13 6 Base 

model 

Y 0.1440 0.1797 0.2104 

BiLSTM BiLSTM 2 D 0.00001 

G 0.0003 

13 6 Base 

model 

N 0.2430  0.2624 0.2945 

BiLSTM Transformer 2 D 0.00001 

G 0.0003 

13 6 Base 

model 

Y 0.1360 0.0876 0.1251 

Transformer Transformer 2 D 0.00001 
G 0.0003 

13 6 Base 
model 

Y 0.1280 0.0829 0.1237 

Transformer Transformer 4 D 0.00001   

G 0.0003 

13 6 Base 

model 

Y 0.1320 0.0835 0.1255 

Transformer Transformer 2 D 0.0002   

G 0.0002 

13 6 Base 

model 

Y 0.1390 0.0877 0.1286 

Transformer Transformer 2 D 0.00001 
G 0.0003 

18 6 Base 
model 

Y 0.1420 0.0831 0.1275 

Transformer Transformer 2 D 0.00001 

G 0.0003 

13 9 Base 

model 

Y 0.1340 0.0872 0.1328 

Transformer Transformer 2 D 0.00001 

G 0.0003 

13 6 Proposed 

model 

Y 0.0980 0.0821 0.1209 

Table 2. Comparison of our model with baseline models 

using the Human3.6M dataset based on the MMD metric 

(lower values indicate better performance) [14]. 

Habibie et al. Cai et al. Zhenyi Wang et al. Our proposed model 

0.452 0.419 0.195 0.120 

 

 

Table 3. Comparison between our base model and our 

proposed model on the RKS-PERSIANSIGN and 

ASLLVD datasets based on the MMD metric (lower 

values indicate better performance). 

Dataset Basel model Our proposed model 

RKS- PERSIANSIGN 0.1440 0.0980 

ASLLVD 0.1797 0.0821 

.  

Figure 4. Visual results (synthetic data (right), Ground Truth (left)) on the RKS-PERSIANSIGN dataset: (a) Narahat, (b) 

Salam, (c) Tabrik. 

Figure 5. Visual results (synthetic data (right), Ground Truth (left)) on the ASLLVD dataset: (a) place, (b) poss. 
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7. Conclusion 

In this paper, we proposed a model for generating 

skeleton-based sign language videos through the 

output of skeletal representations of sign language 

gestures. The model integrates a CGAN with a 

Transformer Encoder, along with an additional 

classifier to categorize the generated data into 

predefined classes. We rigorously evaluated the 

model on three datasets: RKS-PERSIANSIGN, 

ASLLVD, and H3.6M, demonstrating superior 

performance compared to baseline models. The 

results highlight the model’s ability to effectively 

capture complex body movements, making it 

particularly suitable for sign language production 

and related applications. By combining the power 

of a CGAN and a Transformer Encoder, the model 

was optimized to generate realistic body shapes 

and motions, showcasing its potential for a wide 

range of real-world applications in gesture 

recognition, motion synthesis, and human-

computer interaction. Our evaluations, including 

both quantitative and qualitative assessments, 

confirm that the generated gestures are temporally 

coherent, anatomically plausible, and semantically 

meaningful, addressing potential concerns about 

motion realism. While our current model achieves 

robust word-level sign generation by focusing on 

primary skeletal keypoints, we acknowledge that 

critical non-manual components, such as facial 

expressions, gaze direction, and head posture, 

significantly contribute to the full expressive scope 

and grammatical nuances of sign language 

communication. Incorporating these elements 

represents an important direction for future work. 

Furthermore, our current research deliberately 

focuses on isolated word-level synthesis. 

Extending the model to handle more complex 

linguistic structures, such as sentence- or dialogue-

level sign language generation, presents unique 

challenges given the distinct grammatical rules and 

simultaneous semantic expressions inherent in sign 

languages. Addressing these complexities is a 

natural progression for future research to enhance 

the model's real-world applicability. 
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 چکیده:

که اغلب در تعامل با  یافراد رد؛یگیشنوا مورد استفاده قرار مکم ایاز ارتباط است که عمدتاً توسط افراد ناشنوا  ییرآوایساختارمند و غ یزبان اشاره شکل

و  تشخیصکه شامل  ،یزبان اشاره و زبان گفتار انیترجمه م یهامشکل، سامانه نیرفع ا یمواجه هستند. برا ییهابه زبان اشاره با چالش رآشنایافراد غ

شاره م دیتول ستند. در ا یضرور شوند،یزبان ا شاره تمرکز کرده و  دیپژوهش، ما بر تول نیه  یهاشینما دیتول یبرا قیعم یریادگیچارچوب  کیزبان ا

بر ترنسفورمر در هر  یمبتن یشرط یتخاصمشبکه مولد  کیاز  یشنهادی. روش پمیکنیم شنهادیبر اسکلت از زبان اشاره در سطح واژه پ یمبتن ییویدیو

توستتط  شتتدهتیهدا انیتابع ز کیهمراه مفاصتتل، به هیطول استتتخوان و زاو یهاتیو با اعمال محدود کندیاستتتفاده م کنندهکیدو بخش مولد و تفک

نقاط  دیبهبود تول یبرا دیجد انیتابع ز کی ن،ی. علاوه بر اکندیم دیتول نستتتجمم ییقابل قبول و از نظر معنا یکیاز نظر آناتوم ییهابند، حرکتدستتتته

نسبت به  یشنهادیپ که روش دهندینشان م اریداده معسه مجموعه یگسترده بر رو یهاشیشده است. آزما یزبان اشاره معرف شیدر نما یانسان یدیکل

تهیپ یهاروش مار یارهایموجود، از نظر مع شتتترف یتأ یفیک یهالیتحل نیدارد. همچن یعملکرد برتر (FID) یو ادراک( MMD) یآ که  کنندیم دی

ست شدهیتول یهاژ ستند. ا ییو از نظر معنا قیدق یکیروان، از نظر آناتوم یاز نظر زمان د شان جینتا نیمعنادار ه شن در  یشنهادیمدل پ یدهنده اثربخ

  زبان اشاره در سطح واژه است. دیتول شبردیپ
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