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 Magnetic Resonance Imaging (MRI) often suffers from noise and 

Intensity Non-Uniformity (INU), making segmentation a challenging 

task. The Fuzzy C-Means (FCM) algorithm, a widely used clustering 

method for image segmentation, is highly sensitive to noise, and its 

convergence rate depends on data distribution. FCM employs the 

Euclidean distance metric, which fails to adapt to variations in data 

point distributions within compact and similarly shaped clusters. 

Additionally, this metric is not locally adaptive to different cluster 

shapes. This paper introduces a Conditional Spatial Gustafson-Kessel 

Clustering Algorithm based on Information Theory (CSGKIT) to 

address these challenges. First, information theory is incorporated to 

enhance the algorithm's robustness against noise and improve 

segmentation accuracy. Second, the Mahalanobis distance replaces 

the Euclidean distance to better accommodate cluster shapes during 

the clustering process. Finally, a conditional spatial approach uses a 

fuzzy-weighted membership matrix to incorporate local spatial 

interactions between neighboring pixels. The proposed CSGKIT 

algorithm is evaluated on two datasets: the BrainWeb simulated 

dataset and the Open Access Series of Imaging Studies (OASIS) 

dataset. Experimental results indicate that CSGKIT outperforms other 

FCM-based algorithms in segmentation accuracy across various 

tissue types. 
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1. Introduction 

Various imaging techniques, such as X-rays, 

Positron Emission Tomography (PET), Computed 

Tomography (CT), and Magnetic Resonance 

Imaging (MRI), are widely employed in medical 

analysis. Among these, MRI stands out as a non-

invasive, radiation-free method that provides 

excellent soft tissue contrast, making it particularly 

suitable for brain tissue differentiation [1]. The 

human brain consists of soft tissues such as White 

Matter (WM), Gray Matter (GM), and 

Cerebrospinal Fluid (CSF), making MRI ideal for 

brain tissue analysis [2]. Different MRI sequences 

produce distinct gray-level intensity patterns that 

provide complementary information about tissue 

characteristics [3]. Commonly used modalities 

include T1-Weighted, T2-Weighted, and Fluid-

Attenuated Inversion Recovery (FLAIR). T₁-

Weighted images highlight healthy tissues, T₂-

Weighted images emphasize pathological areas, 

and FLAIR detects edema by suppressing water 

signals [4-6]. 

Segmentation is a primary challenge in medical 

image analysis, particularly for disease diagnosis 

[7]. MRI images often contain artifacts such as 

noise, Intensity Non-Uniformity (INU, also known 

as bias field, which is a smooth spatial variation of 

intensities caused by scanner or coil 

inhomogeneities), and partial volume effects, 

complicating segmentation. Brain-specific tasks, 

such as tumor detection, further increase 

complexity. Manual segmentation is common but 

time-consuming and susceptible to variability [8, 
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9]. Automated methods, including thresholding, 

clustering, contour-based techniques, and deep 

learning, have been developed to address these 

issues [8, 10, 11]. Thresholding methods [12, 13] 

struggle with noise and intensity variations [14], 

while contour-based methods [15, 16] are sensitive 

to parameter tuning and INU [17]. Deep learning 

provides robust results but requires large datasets, 

slow training, and complex models [10, 11]. 

Clustering, widely used for image segmentation, 

groups similar data points into distinct clusters. 

This study emphasizes clustering-based methods to 

address segmentation challenges in MRI images. 

Li et al. [18] introduced the Multiplicative Intrinsic 

Component Optimization (MICO) method, which 

leverages an energy framework for simultaneous 

tissue segmentation and MRI bias field estimation. 

MICO employs orthogonal basis functions for bias 

field estimation and a level-set approach dependent 

on image gradients, but its computational 

complexity is high due to frequent reinitialization 

and sensitivity to noise from the lack of local 

spatial information [19]. Although popular, the 

fuzzy c-means (FCM) algorithm does not account 

for pixel correlations, prompting the development 

of Conditional Spatial FCM (CSFCM) [20]. 

However, its inability to handle uncertainties in 

MRI images limits the robustness of CSFCM. 

Elazab et al. [21] developed Adaptively 

Regularized Kernel-based FCM (ARKFCM), 

which improves handling of local variations but 

struggles with edge over-smoothing and non-

spherical data distributions [22]. Qiao et al. [23] 

utilized Gaussian Mixture Models (GMM) and K-

means for stroke lesion segmentation, but these 

methods are affected by INU and sensitivity to 

initialization. To address INU and noise, Parakash 

and Kumari [24] proposed the Spatial FCM and 

Expectation-Maximization with Bias Correction 

(SFCMEMBC). However, SFCMEMBC performs 

poorly under severe INU and noise conditions, and 

GMM methods rely on Gaussian assumptions and 

have slow convergence. 

Meta-heuristic algorithms are widely used in 

medical image analysis. Singh et al. [25] presented 

Multi-Objective Particle Swarm Optimization 

(MOPSO) for MRI denoising and segmentation. 

Ghosh et al. [26] introduced the Chaotic Firefly 

Algorithm (CFA) to address the initialization 

sensitivity of FCM, but CFA’s effectiveness 

depends on the choice of chaotic map. The FCM 

algorithm often suffers from local optimization 

issues, with convergence highly dependent on 

initial conditions. It can be formulated as: (i) a 

discrete optimization problem by initializing 

membership degrees for each search agent, or (ii) a 

continuous optimization problem by initializing 

cluster centers [27]. Verma et al. [28] applied 

Particle Swarm Optimization (FCMPSO), and 

Tongbram et al. [29] used the Whale Optimization 

Algorithm (FCMWOA) for continuous 

optimization. Conversely, Fahmi and Shamsi [27] 

employed Grey Wolf Optimization (FCMGWO) 

for discrete optimization, which outperformed 

continuous approaches in segmentation tasks. 

Despite their advantages, meta-heuristic 

algorithms are time-consuming, and many, such as 

PSO and Firefly Algorithm (FA), require precise 

parameter tuning to balance exploration and 

exploitation, affecting segmentation accuracy if 

misconfigured. Classical thresholding methods, 

such as Otsu and Kapur's, struggle with multiple 

thresholds. To improve this, Bandyopadhyay et al. 

[30] developed the Altruistic Harris Hawk 

Optimization (AHHO) algorithm, though it is 

computationally expensive and performs poorly on 

images with broad valleys or flat regions in the 

histogram, often neglecting spatial information. 

A robust FCM algorithm was proposed by Kouhi 

et al. [31] for brain MRI segmentation, integrating 

spatial constraints and local membership matrix 

information. While effective, its double 

membership calculation per iteration increases 

computational complexity. Tavakoli et al. [32] 

enhanced FCM with dual estimation using both 

original and denoised images for improved 

segmentation. Kumar et al. [33] introduced a 

kernel-based FCM with spatial neighborhood 

information to handle noise and vagueness, though 

picture fuzzy systems often lack robustness against 

noise and outliers. Accurate white matter 

segmentation, crucial for estimating reduced white 

matter volume—a marker for neurological 

disorders—remains challenging. Vinurajkumar 

and Anandhavelu [34] improved FCM with a 

histogram-based membership matrix and Lagrange 

multiplier approach but faced sensitivity to 

initialization and difficulties with minor white 

matter discontinuities. Kumar et al. [35] developed 

BCIFCMSNI to address noise and bias field 

artifacts, while Solanki and Kumar [36] proposed 

PIFCMS. However, both rely on precise parameter 

tuning, limiting their practicality. Kumar et al. [37] 

introduced FBKPCS with two regularization terms, 

though it struggles with random noise and requires 

parameter tuning. Mohammadi et al. [38] 

combined FCM and a modified watershed 

algorithm for meningioma segmentation in 

contrast-enhanced T1-weighted MRI. Singh et al. 

[39] proposed the IFLICM algorithm to handle 

INU and noise, and Jafrasteh et al. [40] introduced 

ESFCM with weighted least squares and structural 
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similarity index-based polynomial bias field 

correction. 

This study proposes a Conditional Spatial 

Gustafson-Kessel Clustering Algorithm based on 

Information Theory (CSGKIT) to address 

challenges in brain tissue segmentation in MRI 

images. The algorithm provides robust and 

accurate segmentation across diverse image 

conditions: 

1. Elliptical Cluster Adaptability: Unlike FCM-

based methods (e.g., ARKFCM, CSFCM, 

SFCMEM, and BCIFCMSNI) that assume hyper-

spherical clusters and use Euclidean distance, 

CSGKIT adopts an elliptical geometry with the 

Mahalanobis distance metric. This enhances 

adaptability for compact and irregularly shaped 

clusters, such as those in the CSF region. 

2. Noise and INU Robustness: CSGKIT effectively 

handles noise and INU through a novel objective 

function, ensuring improved segmentation under 

challenging conditions. 

3. Integration of Spatial Context: Building on 

CSFCM [20], CSGKIT employs a conditional 

spatial strategy that incorporates local spatial 

information via a fuzzy weighted membership 

matrix, enhancing robustness to noise and 

improving accuracy. 

4. Application of Information Theory: By 

leveraging information theory, CSGKIT further 

enhances accuracy and edge preservation under 

noise and INU conditions, with minimal parameter 

tuning required. 

Experimental evaluations demonstrate that 

CSGKIT outperforms its counterparts discussed in 

the literature, delivering superior segmentation 

accuracy and robustness under diverse imaging 

conditions. 

The rest of this article is organized as follows: 

Section 2 reviews related work on fuzzy clustering 

algorithms. Section 3 details the proposed 

methodology. Section 4 explores the experimental 

results, and Section 5 tries to make a conclusion 

along with potentials for future research. 

2. Related Works 

The FCM algorithm, introduced by Bezdek [41], 

incorporated a membership matrix 𝑢𝑖𝑗 into the K-

means algorithm to elevate its performance. For a 

grayscale image I with N pixels indexed by i, let

 ,p x yi i i  denote the spatial coordinates of the i-the 

pixel and  g I pi i denote its gray-level (intensity) 

value 1, 2, ,i N  . The set of cluster centers is

 , , ,1 2V v v vC  that v j denotes the coordinate of the 

j-th cluster center in the feature space. A 

membership matrix Uij  is assigned to pixel i in the 

j-th cluster (j=1, 2,…, c). The cost function in FCM is 

defined as follows: 

 
2

1 1

N c q
J U g v

FCM ij i j
i j

  
 

 
(1) 

with the following constraint: 

1 

1

c
U iij

j

 


  
(2) 

where v j and q (q>1) are cluster center and fuzzy 

exponent, respectively. 

In the FCM, the membership function and cluster 

centers will be updated iteratively as follows: 
11
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(4) 

Algorithm 1 summarizes the algorithmic steps for 

FCM. 
Algorithm 1 

Steps of FCM Clustering. 

Input: MRI image, count of cluster centers, fuzzy 

exponent q, and stop criterion η 

Step 1: Initializing membership matrix U(t) 

Step 2: Updating cluster centers V(t+1) using (4). 

Step 3: Updating membership matrix U(t+1) using (3). 

Step 4: if    1
max

t t
U U 


  , then proceed, otherwise set 

1t t   and return to Step 2 

Output: cluster centers and membership matrix. 

Szilágyi et al. [42] proposed the Enhanced FCM 

(EnFCM) algorithm, which exploits gray-level 

histograms to improve computational efficiency in 

MRI brain image segmentation. By a linear-

weighted sum of local neighborhood information 

and the original image, EnFCM reduces 

computational time. To address its limitations, Cai 

et al. [43] incorporated a local similarity index to 

introduce the Fast Generalized FCM (FGFCM) 

algorithm, which improves noise robustness and 

detail preservation through a non-linear-weighted 

sum, while also achieving lower computational 

time. However, both EnFCM and FGFCM require 

parameter tuning to balance robustness and detail 

preservation. To overcome this, Krinidis and 

Chatzis [44] substituted parameters with a fuzzy 

local similarity index to develop the Fuzzy Local 

Information C-Means (FLICM) algorithm. Despite 

its improvements, FLICM’s fixed spatial distance 

is less effective with varying local image 

information. Gong et al. [45] addressed this by 

introducing the Kernel-based Weighted Fuzzy 

Local Information C-Means (KWFLICM) 

algorithm, which handles intensity 
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inhomogeneities and noise, although its high 

computational complexity remains a limitation. Lei 

et al. [46] integrated morphological reconstruction 

and membership filtering to suggest the Fast and 

Robust FCM (FRFCM), which reduces 

computational time using gray-level histograms. 

However, FRFCM may produce overly smooth 

contours, compromising segmentation. Wang et al. 

[47] further attempted handling segmentation 

under unknown noise conditions by developing the 

Weighted 2 -norm Regularization (WRFCM) 

algorithm from the Residual-Driven FCM 

(RFCM).  

Traditional FCM assumes spherical clusters, which 

work well for uniformly sized and shaped clusters. 

However, the Gustafson-Kessel (GK) algorithm is 

more effective in identifying ellipsoidal clusters of 

varying sizes and orientations [48, 49]. It should be 

noted that the terms “spherical” and “ellipsoidal” 

clusters describe the geometry of clusters in the 

feature (parameter) space rather than the physical 

shape of regions in the image domain. By locally 

adapting the distance metric through covariance 

matrix estimation, the Mahalanobis distance—

rather than the Euclidean distance—is used in the 

GK algorithm to identify clusters with distinct 

geometrical shapes [50, 51]. The GK algorithm’s 

cost function is defined as follows: 

   . . .

1 1

N c Tq
J U g v A g v
GK ij i j j i j

i j

   
 

 
(5) 

where 𝐴𝑗 is a positive definite symmetric norm 

matrix. By applying the Lagrange multiplier 

technique, the Equation 5 will be reformulated as 

an unconstrained optimization problem 

minimizing next cost function: 

 

. . .
1 1

1

1 1

.
1

TN c q
J U g v A g vGK ij ji j i j

i j

N c
U

i ij
i j

c
det Aj j j

j



 

   
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 
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 
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 

 

 

(6) 

where 𝛽𝑗 a set of Lagrange multipliers. Also, 𝜌𝑗 

represents the cluster volume, typically considered 

to 1 for all clusters. 

The membership function, cluster centers, and 

covariance matrix are updated as follows: 

   

   

1
1

. .
1

. .
1

T q
t t tg v A g v

i r r i rtU
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 
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  (9) 
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1

1 1. .
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t t nA det F F
j i i i

    
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(10) 

where Fi models the weighted scatter of samples 

around the cluster center and reflects the geometric 

structure of the cluster.  

The algorithmic steps for GK are summarized in 

Algorithm 2. 
Algorithm 2 

Steps of GK Clustering. 

Input: MRI image, number of cluster centers, fuzzy 

exponent q, and stop criterion η. 

Step 1: Initializing membership matrix U(t). 

Step 2: Updating cluster centers V(t+1) using (8). 

Step 3: Updating covariance matrix F(t+1) using (9). 

Step 4: Updating norm matrix A(t+1) using (10). 

Step 5: Updating membership matrix U(t+1) using (7). 

Step 6: if    1
max

t t
U U 


  , then proceed, otherwise set 

1t t   and return to Step 2. 

Output: cluster centers, covariance matrix, and 

membership matrix. 

 3. Proposed Algorithm  

We propose the cost function of the CSGKIT 

algorithm for MRI image segmentation, defined as 

follows: 

   . . . .

1 1

N c TqJ U g v A g vCSGKIT i ij i j j i j
i j

   
 

 
 

(11) 

where i is an extra weighting coefficient designed 

to eliminate noisy samples. This coefficient 

represents the probability of image pixels and is 

determined by maximizing the mutual information 

between pixels value and cluster centers.  

By applying the Lagrange multiplier technique, the 

Equation 11 will be transformed into an 

unconstrained optimization problem, minimizing 

the following cost function: 

 

. . . .
1 1

1

1 1

.
1

TN c q
J U g v A g vCSGKIT i ij ji j i j

i j
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i j

c
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 
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 
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 

 

 

 

 

(12) 

where λ would be a Lagrange multiplier. 

The derivative of J
CSGKIT

with respect to uij and 

setting it equal to zero yields: 

   1
. . . . . 0

TJ qCSGKIT q U g v A g v
i ij i j j i j iU

ij

 
 

    


 
(13) 

Equation 13 is acquired by simplifying the relation 

and having λ. Equation 14 is utilized to update the 

membership matrix: 
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   

   
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i r r i rtU
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(14) 

To obtain the cluster centers, the partial differential 

equation of 𝐽𝐶𝑆𝐺𝐾𝐼𝑇 with respect to v j is computed 

and then set equal to zero: 

 2 . . . 0

1

NJ qCSGKIT U g v A
i ij i j jv ij



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Equation 16 is utilized to update the cluster centers: 
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In the next step, the partial differential equation of 

𝐽𝐶𝑆𝐺𝐾𝐼𝑇 with respect to 𝐴𝑗 is computed and then set 

equal to zero: 
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(17) 

By solving Equation 17, the corresponding 

solutions for 𝐴𝑗 is obtained as follows: 

     

 

. . .
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In the final step, the mutual information between 

the input data 𝑋 = {𝑔1, 𝑔2, … , 𝑔𝑁} and the membership 

matrix distribution (U) is used to estimate 𝜉𝑖. Here, 

𝑔𝑁 represents the intensity of the j-th pixel in the 

MRI images. Mutual information based on 

information theory can be defined as follows [52]: 

      , , |
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|1 1 1
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(20) 

where ℰ𝑖 is probability of i-th pixel and equal to 𝜉𝑖. 

Also, ℰ𝑗|𝑖 is equal to 𝑢𝑖𝑗. Therefore, Equation 20 can 

be modified as follows: 
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By applying the Lagrange multiplier technique and 

considering 1

1

N

i
i

 


condition, Equation 21 can be 

reformulated as an unconstrained optimization 

problem, minimizing the next cost function: 
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To obtain the i , the partial differential equation of 

J
CSGKIT

 with respect to i  is computed and then set 

equal to zero:  
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Finally, according to Equation 23 and restricting 

condition, 𝜉𝑖 can be updated as follows: 
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(24) 

Utilizing Equation 24 makes the proposed 

algorithm robust to noise. This process continues 

until the condition below is satisfied [52]: 
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(25) 

where 𝛿 is a small value that is equal to 1e-5. 

In MRI image processing, neighboring pixels are 

often highly correlated and depend on each other. 

The FCM algorithm performs inadequately without 

considering the correlation between neighboring 

pixels. Therefore, motivated by the concept of 

CSFCM [20], this study incorporates the local 

spatial relationships among neighboring pixels to 

employ a conditional spatial approach via a fuzzy 

weighted membership matrix. ij  is the first spatial 

conditional variable, which defines the degree of 

belonging of pixel gk to the i-th cluster. This 

variable is used as follows: 

.

0 1

Uij ij ij

ij

 


 

 
(26) 

where ij represents the involvement level of pixel 

gk in the i-th cluster and is computed by the 

following expression: 

 

1
Uij ij

M j N x

  
ò

 
(27) 

where  N x is the square neighborhood with the 

pixel g at its center and M refers to the overall count 

of pixels in there. An expansive neighborhood may 

cause over-smoothing of edges and increase the 

misclassification rate of pixels [20]. In this study, 

to achieve the desired neighborhood level, we 

empirically set   3 3N x   .  
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The global membershipUij and local membership 

ij are assumed to be independent of each other. 

Two conditional variables, namely the weighted 

membership 𝑍𝑖𝑗 and cluster centerW j are defined as 

follows by combining the global and local 

memberships: 
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(29) 

where L and P represent controller variables that 

define the relative significance of the membership 

functions. The mentioned variables establish a 

balance between global and local memberships to 

reconstruct the eventual membership values and 

cluster centers. Here, these parameters are set 

experimentally as P=L=2. For more detail about 

conditional spatial approach, refer to [20].  

However, relying solely on Zij andW j fails to attend 

the uncertainty degree that might exist in actual 

MRI images. This limitation may result in noisy 

pixels not being properly clustered within their 

neighborhood. To address this issue, the geometric 

mean of the global and local information is utilized, 

as follows: 

.newU U Z
ij ij ij
  (30)  

.newv v W
j j j
  (31) 

The algorithmic steps for the presented CSGKIT 

are summarized in Algorithm 3. 
Algorithm 3 

Steps of Proposed CSGKIT Algorithm. 

Input: MRI image, number of cluster centers, fuzzy 

exponent q, controller parameters (P, L), square 

neighborhood N(x)=3, initialization of cluster centers and 

input data distribution, and stop criterion η.  

Step 1: Initializing membership matrix U(t). 

Step 2: Updating covariance matrix F(t+1) using (18). 

Step 3: Updating norm matrix A(t+1) using (19). 

Step 4: Updating membership matrix U(t+1) using (14). 

Step 5: Calculating i values using (25) until the 

condition of Equation 25 is met. 

Step 6: Updating the conditional spatial membership 

using (26). 

Step 7: Updating the weighted membership using (28).  

Step 8: Updating joint cluster centers using (29). 

Step 9: Updating cluster centers using (16).  

Step 10: if    1
max

t t
U U 


  , then proceed, otherwise set 

1t t  and return to Step 2. 

Output: new membership matrix (Equation 30), new 

cluster centers (Equation 31).  

4. Experimental Results  

We now present the experimental results and 

numerical analysis performed on grayscale MRI 

images. We also provide a comparative evaluation 

of the proposed algorithm against existing 

algorithms in the literature, including MICO [18], 

GMM [23], CSFCM [20], ARKFCM [21], 

FCMPSO [28], FCMWOA [29], FCMGWO [27], 

AHHO [30], SFCMEMBC [24], BCIFCMSNI 

[35], FRFCM [46], RFCM [47], and FBKPCS [37]. 

Both visual and quantitative comparisons are 

included. The experiments were conducted on an 

ACER desktop equipped with 16 GB of RAM and 

an Intel Core i7 CPU (2.60 GHz). To quantitatively 

evaluate the performance of the methods, we used 

three main criteria: Jaccard Similarity (JS), Dice 

Similarity (DS), and Correctly Matched Segments 

(CMS) [53]. 

Jaccard Similarity Coefficient (JS): The similarity 

between two images can be quantified by this 

metric, which is defined as: 

 ,
A B

JS A B
A B





 (32) 

Dice Similarity Coefficient (DS): The overlap 

between two images, specifically the ground truth 

(GT) and the segmented image, can be quantified 

by this metric, which is defined as: 

 
2

,
A B

DS A B
A B





 (33) 

Contour Matching Score (CS): The contour 

alignment between the ground truth and the 

segmented image can be evaluated by this metric. 

The CS index ranges from 0 to 1, where a score of 

1 indicates an impeccable match of object contours 

in the ground truth and the predicted image. This 

index is defined as: 

2. .c cP R
CS

c cP R



 

(34) 

where cR and cP represent recall and precision, 

respectively. High DS, JS, and CS indicate a good 

performance of a clustering method with accurate 

segmentation and contour alignment. 

4.1. Data Description 

To evaluate the proposed CSGKIT algorithm 

against other methods, we conducted experiments 

on two brain MRI datasets: the BrainWeb 

simulated dataset [54] and the Open Access Series 

of Imaging Studies (OASIS) dataset [55]. The 

BrainWeb dataset includes simulated brain MRI 

images with varying INU levels (20%, 40%) and 

noise levels (3%, 9%). The images have a 

resolution of 1 mm and dimensions of 181 × 217 × 

181, with ground truth available for different brain 

tissues. Segmentation was performed on T1-

weighted images, focusing on slices 80 to 120. The 

OASIS dataset comprises a cross-sectional 

collection of 416 subjects aged 18 to 96 years, 

including 100 individuals clinically diagnosed with 

very mild to moderate Alzheimer’s disease. For 
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this study, 200 T1-weighted MRI images were 

randomly selected, with skull stripping applied via 

morphological operations prior to segmentation. 

 

4.2. Parameter Setting  
In the numerical implementation of our proposed 

algorithm and the compared algorithms, several 

constant parameters need to be configured. For this 

study, three key parameters were defined: the fuzzy 

exponent (q), the minimum error threshold (𝜂), and 

the maximum iterations. These parameters were set 

to q=2, 𝜂 = 10−5, and a maximum of 50 iterations 

for both all algorithms. In this study, the number of 

cluster centers C is set to 4, corresponding to the 

main brain tissue types including white matter 

(WM), gray matter (GM), cerebrospinal fluid 

(CSF) and the background. This selection ensures 

that each tissue class is captured by a distinct 

cluster, facilitating accurate and interpretable 

segmentation of MRI brain images. In the proposed 

algorithm, the local neighborhood is empirically 

defined as a 3×3 window centered at each pixel. 

This neighborhood size is chosen to effectively 

capture local spatial correlations among 

neighboring pixels, which is essential for 

preserving fine tissue boundaries while mitigating 

the influence of isolated noisy pixels. Through 

additional experiments with larger neighborhoods 

(e.g., 5×5 and 7×7), the results illustrated that while 

larger windows further smooth the membership 

maps, they may inadvertently blur edges and 

reduce sensitivity to subtle structural variations in 

the MRI data. Conversely, smaller neighborhoods 

may fail to capture sufficient local context, leading 

to increased susceptibility to noise. Therefore, the 

3×3 region provides an optimal compromise, 

ensuring that local spatial information enhances the 

clustering process without sacrificing boundary 

definition or tissue differentiation. This choice is 

aligned with prior studies demonstrating that 

moderate neighborhood sizes in conditional spatial 

clustering yield robust segmentation results for 

brain MRI images. Also, the parameters P and L 

control the relative weighting of global and local 

memberships in the conditional spatial approach. 

In our experiments, different combinations 

(P,L)=(1,2),(2,1),(2,2) were tested. The 

combination (2,2) was found to yield the most 

effective segmentation results and was therefore 

adopted. In the MICO algorithm, the degree of 

Legendre polynomials was opted for P=3. For the 

CSFCM algorithm, controller parameters were set 

to p=q=2. For FCMPSO, as reported in [28], the 

population size (n), cognitive coefficient, social 

coefficient, and inertia weight are set as n=60, 

2
1 1

c c  , and ω=1, respectively. For FCMWOA and 

FCMGWO, the population size was n=12. For 

ARKFCM, no additional parameters beyond the 

fuzzy exponent, error threshold, and number of 

clusters were required. In the AHHO algorithm, 

parameters were configured as per the reported 

values, except for the number of thresholds. In 

BCIFCMSNI, Sugeno’s negation parameter was 

set to β = 1.7, the spatial regularization parameter to 

α = 1.5, and the neighborhood size to 3×3. For 

FRFCM, the structure element (SE) used for 

morphological reconstruction (MR) was defined as 

a square of size 3×3. In RFCM, the decreasing rate 

of the weighting matrix was controlled by the 

parameter, which was set to ξ = 0.0008. The β 

parameter in RFCM was configured based on the 

standard deviation of the image data, reflecting its 

association with noise levels. Lastly, for FBKPCS, 

two key parameters were defined: the bound and 

the spatial parameter, which were set to C = 0.5 and 

α = 0.3, respectively. 
 

4.3. Experimental Results on Brain Web 

Dataset  
The segmentation performance was evaluated on 

simulated T1-weighted brain MRI images with 

INU levels of 20% and 40%, and noise levels of 3% 

and 9%, focusing on slices 80–120. Figure 1 shows 

qualitative segmentation results on an axial slice 

(slice 86) corrupted with 40% INU and 9% noise. 

Quantitative performance was assessed using DS, 

JS, and CS metrics, with average results for WM, 

GM, and CSF presented in Tables 1–3. Figure 2 

plots the average DS values for brain tissues across 

slices 80–120 with 9% noise and 40% INU. Key 

insights from these results are discussed below: 

(1) According to Table 1, the proposed algorithm 

produces better results than other methods in WM 

segmentation. Based on the CS criterion, the MICO 

algorithm struggles to accurately identify WM 

boundaries under high noise (9%) and INU levels 

(20% and 40%), although it performs well under 

lower noise (3%) conditions. Figure 2 highlights 

MICO’s difficulties, particularly for slices 104–

113. GMM, sensitive to noise and outliers due to 

its normal distribution assumption, also fails to 

segment WM effectively under these conditions, as 

shown in Table 1. The CSFCM demonstrates the 

best DS and JS values for WM segmentation at 9% 

noise and 20% INU, maintaining consistency 

across slices but underperforming with compact 

clusters like CSF. While ARKFCM achieves good 

WM segmentation, Figure 2 reveals limitations for 

slices 99–104. FCMPSO is less effective under 

high noise and INU, often mislabeling background 

pixels as GM, and struggles with slices 90–109. 

Conversely, FCMWOA performs better across 
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these slices, requiring fewer parameter 

adjustments, emphasizing PSO's limitations for 

FCM optimization. Discrete optimization in 

FCMGWO surpasses the continuous optimization 

of FCMPSO and FCMWOA, yielding more stable 

results (Figure 2). Additionally, as shown in Figure 

1(g–i), FCMGWO resolves misclassification 

issues seen in FCMPSO and FCMWOA. The 

AHHO delivers comparable performance to 

FCMGWO but is more time-consuming and noise-

sensitive due to its thresholding approach. 

SFCMEMBC performs well for WM segmentation 

but is less effective for GM and CSF, showing 

consistent results across slices (Fig. 2). 

BCIFCMSNI struggles with bias field corrections, 

particularly for slices 109–120, as evidenced by its 

low JS values in Table 1. Under varying noise (3%, 

9%) and INU (20%, 40%) conditions, FRFCM, 

RFCM, and CSGKIT show robust WM 

segmentation. CSGKIT’s reliance on information 

theory rather than MR enhances its robustness over 

FRFCM and RFCM. Table 1 indicates that 

CSGKIT achieves excellent edge preservation and 

contour matching, while Figure 2 confirms 

consistent performance across slices. Although 

FBKPCS is robust under varying conditions, its 

primary drawback lies in the manual tuning 

required for spatial and bounded parameters. 

(2) As detailed in Table 2, the CSGKIT algorithm 

excels over other methods in GM segmentation 

under various noise and INU levels, particularly 

based on the CS criterion. CSGKIT demonstrates 

robust edge preservation and accuracy, achieving 

an average CS value of 98% under 9% noise and 

20% INU, the highest among all methods, and 

performs best under 9% noise and 40% INU. The 

MICO algorithm performs poorly for GM 

segmentation based on DS and JS criteria due to its 

sensitivity to noise and INU. However, it achieves 

satisfactory results under low noise (3%) based on 

the CS criterion, effectively identifying GM 

boundaries. MICO struggles under high noise 

(9%), failing to segment GM accurately, unlike the 

consistently robust CSGKIT. FCMPSO exhibits 

the poorest performance across all conditions, 

frequently mislabeling background pixels as GM. 

While FCMWOA improves under low noise, it 

lacks robustness under higher noise and INU 

levels. Figure 2 shows BCIFCMSNI performs well 

for slices 80–85 and 92–102 but fails elsewhere, 

making it unreliable for GM segmentation. Three 

algorithms—CSFCM, FBKPCS, and CSGKIT—

deliver reliable GM segmentation. However, 

CSFCM’s spherical distance criterion limits its 

effectiveness for compact clusters. In contrast, 

CSGKIT achieves the highest DS values and excels 

in segmenting GM with detailed precision, as 

shown in Figure 2. Unlike GMM and 

SFCMEMBC, which fail due to normal 

distribution assumptions, CSGKIT preserves edges 

and captures fine details, outperforming its peers. 

(3) CSF regions, composed of compact and small 

clusters, pose challenges for FCM-based 

approaches due to their reliance on Euclidean 

distance. Figure 1(m) shows that FRFCM 

mislabels CSF regions as GM, and Table 3 

confirms that FCM-based methods struggle with 

CSF segmentation, especially when clusters vary in 

size and shape. This underscores their inadequacy 

for datasets with ellipsoidal clusters. The MICO 

algorithm performs better with compact clusters, as 

reflected in Table 3, but its performance is 

surpassed by CSGKIT. Among FCM-based 

methods, SFCMEMBC performs the poorest, 

frequently mislabeling CSF pixels as GM (Figure 

1(k)). CSGKIT consistently achieves the highest 

scores across evaluation criteria, delivering stable 

performance under varying noise and INU levels. 

Its ability to detect ellipsoidal clusters of diverse 

sizes and orientations ensures robust and accurate 

CSF segmentation. 

(4) The Table 4 highlights differences in 

computational efficiency among the algorithms. 

Iterative optimization methods like FCMPSO, are 

computationally expensive. Contour-based 

algorithms, also have longer execution times due to 

the dependency of their edge-stopping functions on 

the image gradient, increasing overhead. In 

contrast, FRFCM and CSGKIT demonstrate the 

shortest execution times. However, both face 

limitations when cluster sizes and shapes vary 

significantly. Despite this, FBKPCS and CSGKIT 

deliver robust segmentation performance on 

images with noise and INU, achieving these results 

with minimal elapsed time. 

 

 

 

 

 
Figure 2. Performance of all assessed algorithms, including our 

proposed CSGKIT algorithm, in terms of the average DS 

criterion for WM, GM, and CSF across slices 80-120 of the 

Brain Web MRI dataset with 9% noise and 40% INU. 
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Table 1. Numerical results of all assessed algorithms, including our proposed CSGKIT algorithm, for WM segmentation on the Brain Web 

simulated dataset. 

Criteria 

 

 

        Methods 

DS (%) ↑ JS (%) ↑ CS (%) ↑ 

3% Noise 9% Noise 3% Noise 9% Noise 3% Noise 9% Noise 

20% INU 

(μ±S.D) 
40% INU 

(μ±S.D) 
20% INU 

(μ±S.D) 
40% INU 

(μ±S.D) 
20% INU 

(μ±S.D) 
40% INU 

(μ±S.D) 
20% INU 

(μ±S.D) 
40% INU 

(μ±S.D) 
20% INU 

(μ±S.D) 

40% INU 

(μ±S.D) 
20% INU 

(μ±S.D) 
40% INU 

(μ±S.D) 

MICO 93.30±0.45 94.24±1.45 84.06±0.56 84.55±5.06 87.86±0.67 89.61±1.37 72.76±0.67 73.50±6.24 95.20±0.76 97.15±0.93 77.34±0.39 78.26±3.99 

GMM 95.68±0.36 91.94±0.16 85.43±2.70 84.59±2.66 91.75±0.36 85.13±0.26 74.70±3.74 73.39±3.99 98.38±0.38 91.03±0.26 78.44±1.72 78.20±3.14 

CSFCM 95.76±0.26 93.91±0.15 94.25±1.24 91.16±1.36 91.91±0.48 88.55±0.25 89.16±2.19 85.49±2.41 98.57±0.29 95.96±0.15 97.89±1.07 93.59±2.06 

ARKFCM 94.96±3.59 92.91±4.47 93.11±3.01 90.63±31.58 91.90±4.37 86.88±4.21 87.19±2.99 82.97±30.73 98.57±2.52 93.55±1.76 94.27±0.64 89.80±7.50 

FCMPSO 79.62±2.34 84.80±1.64 62.97±1.94 71.14±16.25 72.48±2.57 77.81±1.89 51.15±1.78 59.54±13.16 90.96±2.36 91.34±2.44 73.11±0.72 75.79±7.80 

FCMWOA 91.76±3.67 88.65±3.79 80.35±3.05 82.20±15.06 85.51±3.34 81.55±3.35 69.31±2.98 70.88±14.18 92.52±3.22 87.27±3.36 76.92±3.24 77.76±10.05 

FCMGWO 95.63±0.26 94.09±0.65 88.05±1.66 87.34±1.83 92.02±0.41 89.55±0.37 78.69±2.62 77.57±2.85 98.60±0.25 97.21±0.64 82.85±3.95 82.84±3.67 

AHHO 95.12±0.26 93.70±0.49 88.21±1.78 87.60±1.96 92.28±0.38 89.98±0.46 78.94±2.82 77.98±3.06 99.04±0.24 96.41±0.37 83.34±3.49 83.53±3.25 

SFCMEMBC 95.72±0.18 94.44±1.54 93.91±1.52 91.31±1.62 91.85±0.31 89.50±2.72 88.55±2.67 85.76±2.68 98.63±0.17 96.80±1.59 98.08±1.39 93.87±1.86 

BCIFCMSNI 88.89±2.48 84.87±1.93 85.76±2.83 85.25±10.14 81.91±1.63 76.08±1.52 75.44±3.01 74.97±2.24 80.09±1.76 69.95±2.17 82.13±2.47 78.66±8.5 

FRFCM 94.17±0.32 94.26±0.37 93.52±2.10 91.59±2.48 91.75±0.39 89.18±0.44 87.88±3.03 85.19±3.06 97.93±0.34 95.48±0.37 96.66±2.91 93.25±2.78 

RFCM 94.36±0.22 93.19±0.41 93.79±2.43 91.17±2.45 90.63±0.36 87.29±0.34 88.84±3.21 85.83±3.18 97.26±0.27 94.14±0.21 97.05±2.88 93.41±2.98 

FBKPCS 96.03±0.26 94.47±1.45 90.64±1.82 89.53±1.82 91.60±0.39 89.91±2.36 82.92±2.87 81.09±2.93 99.08±0.25 97.32±1.53 88.66±2.62 87.70±2.57 

CSGKIT 96.37±0.68 94.64±1.03 92.82±1.43 91.87±1.42 92.83±0.64 90.50±1.04 86.65±2.33 86.00±2.46 99.20±0.62 97.37±0.78 94.17±1.42 93.89±1.84 

 

Table 2. Numerical results of all assessed algorithms, including our proposed CSGKIT algorithm, for GM segmentation on the Brain Web 

simulated dataset. 

Criteria 

 

 

        Methods 

DS (%) ↑ JS (%) ↑ CS (%) ↑ 

3% Noise 9% Noise 3% Noise 9% Noise 3% Noise 9% Noise 

20% INU 

(μ±S.D) 
40% INU 

(μ±S.D) 
20% INU 

(μ±S.D) 
40% INU 

(μ±S.D) 
20% INU 

(μ±S.D) 
40% INU 

(μ±S.D) 
20% INU 

(μ±S.D) 
40% INU 

(μ±S.D) 
20% INU 

(μ±S.D) 

40% INU 

(μ±S.D) 
20% INU 

(μ±S.D) 
40% INU 

(μ±S.D) 

MICO 87.52±0.43 89.10±0.74 75.04±0.43 75.69±3.65 78.30±0.68 80.61±0.70 60.33±0.47 61.20±3.96 97.60±0.31 97.36±0.57 91.90±0.41 92.20±4.16 

GMM 91.80±0.34 87.44±0.23 80.02±2.61 79.13±2.51 84.88±0.35 77.76±0.37 66.78±3.13 65.54±3.46 98.73±0.28 94.48±0.23 91.84±2.09 91.33±2.60 

CSFCM 90.19±0.24 88.48±0.18 89.32±1.08 86.56±1.17 82.20±0.38 79.39±0.29 80.72±1.75 76.60±1.78 96.76±0.15 95.85±0.16 97.60±1.15 95.45±1.41 

ARKFCM 84.38±3.52 78.00±3.38 77.57±1.75 74.35±23.20 75.05±3.38 66.57±3.23 65.63±1.73 61.22±21.17 97.00±1.21 95.19±1.23 95.69±0.56 94.21±7.93 

FCMPSO 67.34±3.01 67.86±3.23 59.15±2.09 58.82±12.87 52.28±2.87 57.22±2.98 45.45±1.73 44.66±12.43 92.63±1.22 91.64±1.29 88.40±0.82 88.22±6.78 

FCMWOA 78.84±2.60 76.73±2.55 67.94±3.69 68.44±9.70 68.44±2.46 65.35±2.35 53.36±3.41 53.65±10.76 95.67±1.15 93.54±1.08 91.58±3.52 91.77±7.62 

FCMGWO 91.39±0.36 90.10±0.48 81.03±1.39 80.33±1.56 83.37±0.47 82.17±0.45 68.13±1.96 67.15±2.18 98.62±0.28 98.10±0.35 94.16±1.30 93.80±1.37 

AHHO 91.77±0.31 90.44±0.47 81.37±1.26 80.81±1.41 85.02±0.45 82.49±0.49 68.60±1.78 67.82±1.98 98.58±0.19 98.21±0.52 94.41±1.16 94.15±1.31 

SFCMEMBC 84.40±0.25 83.41±2.30 83.92±2.65 82.78±2.17 73.09±0.38 71.61±3.43 72.37±3.42 70.68±3.18 92.33±0.20 91.41±1.97 93.99±1.86 92.89±1.78 

BCIFCMSNI 68.95±2.71 66.74±2.61 69.81±2.53 67.96±3.25 61.00±1.72 58.92±1.64 55.58±1.21 55.00±1.05 89.79±1.89 84.78±1.37 93.94±2.51 91.18±4.13 

FRFCM 89.51±0.48 88.22±0.56 86.81±1.16 85.21±1.98 81.09±0.61 78.98±0.32 76.74±0.91 74.12±2.53 94.86±0.19 93.75±0.21 94.70±0.46 93.11±2.25 

RFCM 89.27±0.52 87.13±0.41 88.25±1.24 86.01±2.54 80.66±0.54 77.21±0.45 78.80±0.90 75.22±2.22 95.04±0.13 94.08±0.13 95.41±0.34 94.19±2.14 

FBKPCS 91.58±0.32 90.27±1.72 84.66±1.16 83.48±1.26 84.72±0.47 82.20±2.49 73.41±1.78 71.66±1.87 98.52±0.21 98.24±1.02 96.20±0.95 95.44±1.16 

CSGKIT 92.81±0.69 90.70±0.85 87.89±1.03 86.68±1.04 86.62±1.01 83.10±1.29 78.41±1.74 76.93±1.78 99.34±0.51 98.42±0.81 97.69±0.76 96.77±1.17 
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4.4. Experimental Results on OASIS Dataset 

For further examination, the segmentation 

performance was repeated for evaluation on T1-

weighted MRI images from the OASIS dataset. 

Figure 3 shows qualitative results for an OASIS 

image, while Table 5 summarizes the average 

values of DS, JS, and CS for WM, GM, and CSF. 

Additionally, Figure 4 presents a boxplot 

comparing the average DS values for WM, GM, 

and CSF across the algorithms. Key insights from 

these results are as follows: 

(1) Table 5 demonstrates that the proposed 

CSGKIT algorithm secures the top DS values in 

WM and GM segmentation, JS in WM 

segmentation, and CS in WM and GM 

segmentation.  

(2) Population-based approaches, such as 

FCMPSO and FCMWOA, along with ARKFCM, 

exhibit the poorest performance. Figure 3(g) shows 

that FCMPSO often misclassifies the background 

as WM, while Figure 3(h) highlights FCMWOA's 

frequent mislabeling of CSF as the background. 

Although FCMGWO outperforms FCMPSO and 

FCMWOA, it remains inadequate for CSF 

segmentation due to the reliance of FCM-based 

methods on Euclidean distance, which is unsuitable 

for compact clusters like CSF. Similarly, the 

AHHO algorithm, while effective for WM and GM 

segmentation, struggles with CSF. Figures 3(i) and 

3(j) illustrate that both FCMGWO and AHHO 

frequently misclassify CSF as the background. 

(3) The OASIS dataset's high INU levels make bias 

correction-based methods, such as MICO and 

BCIFCMSNI, highly effective for WM and GM 

segmentation. However, BCIFCMSNI performs 

poorly in CSF segmentation. Figure 3(l) shows that 

while BCIFCMSNI efficiently identifies WM, 

GM, and CSF pixels, MICO excels in CSF 

segmentation but falls short in WM segmentation 

compared to the proposed CSGKIT algorithm. As 

shown in Table 5, CSFCM is unsuitable for real 

MRI image segmentation under INU conditions 

due to the increased computational complexity 

from incorporating a bias term into the FCM cost 

function. Despite not relying on bias estimation, 

the CSGKIT algorithm outperforms its 

counterparts in brain tissue segmentation. 

(4) The FRFCM, RFCM, and FBKPCS algorithms 

perform well in WM and GM segmentation but 

struggle with accurate CSF segmentation due to its 

compact, small clusters. These methods are less 

suitable for CSF, which plays a critical role in 

clearing metabolic waste from the brain. As shown 

in Table 5, the CSGKIT algorithm, by utilizing the 

Mahalanobis distance instead of the Euclidean 

distance, proves more effective for clustering 

compact data like CSF. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Visual results of different algorithms in the 

segmentation of a simulated MRI image (Brain Web, slice 86) 

with 40% INU and 9% noise. (a) Input, (b) Ground truth, (c) 

MICO, (d) GMM, (e) CSFCM, (f) ARKFCM, (g) FCMPSO, 

(h) FCMWOA, (i) FCMGWO, (j) AHHO, (k) SFCMEMBC, 

(l) BCIFCMSNI, (m) FRFCM, (n) RFCM, (o) FBKPCS, and 

(p) proposed CSGKIT. 
 

 
Figure 4. Boxplot comparing the proposed CSGKIT algorithm 

and other methods in terms of average DS criterion for WM, 

GM, and CSF on the OASIS dataset. 
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(5) Figure 4 helps discern that the proposed 

CSGKIT algorithm attains higher segmentation 

accuracy for brain tissues compared to other 

methods. Notably, CSGKIT exhibits the lowest 

standard deviation, indicating consistent 

performance across WM, GM, and CSF 

segmentation. As shown in Figure 3, all algorithms, 

except CSGKIT, frequently mislabel CSF pixels, 

leading to suboptimal segmentation. In contrast, 

CSGKIT effectively and accurately segments CSF 

tissue, demonstrating its robustness. 

(6) The quantitative evaluation presented in Tables 

5 and 6 clearly demonstrates the superior 

performance of the proposed algorithm compared 

to a wide range of benchmark segmentation 

methods. In terms of the DS, JS, and CS criteria, 

proposed algorithm consistently achieved the 

highest mean values across all brain tissues (WM, 

GM, and CSF), with relatively low standard 

deviations (μ ± S.D.), reflecting its robustness and 

stability in handling structural and intensity 

variations in MRI data. Specifically, CSGKIT 

obtained DS values of 95.87%, 87.43%, and 

83.42% for WM, GM, and CSF, respectively, and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

maintained superior performance in JS (91.31%, 

76.83%, 73.70%) and CS (98.02%, 96.64%, 

91.22%) criteria, outperforming all competing 

methods by a statistically significant margin. To 

verify the reliability of these improvements, a two-

sample t-test was performed between the results of 

the proposed algorithm and each competing 

method under all evaluation criteria. The resulting 

p-values (ρ) are provided in Table 6. As shown, 

most p-values are below the 0.05 threshold, 

indicating that the observed improvements are 

statistically significant at the 95% confidence level. 

Only a few isolated cases (such as the WM region 

under DS criterion versus FCMGWO and 

FBKPCS) exhibited p-values above 0.05, 

suggesting that the differences in those specific 

cases were not statistically significant. 

Nonetheless, the overall statistical evidence 

strongly supports the superior segmentation 

accuracy and consistency of the proposed method. 

These findings confirm that the CSGKIT algorithm 

not only achieves higher segmentation precision 

but also demonstrates statistically validated 

improvements through rigorous t-test analysis. The 

Table 3. Numerical results of all assessed algorithms, including our proposed CSGKIT algorithm, for CSF segmentation on the Brain Web 

simulated dataset. 

Criteria 

 

 

        Methods 

DS (%) ↑ JS (%) ↑ CS (%) ↑ 

3% Noise 9% Noise 3% Noise 9% Noise 3% Noise 9% Noise 

20% INU 

(μ±S.D) 
40% INU 

(μ±S.D) 
20% INU 

(μ±S.D) 
40% INU 

(μ±S.D) 
20% INU 

(μ±S.D) 
40% INU 

(μ±S.D) 
20% INU 

(μ±S.D) 
40% INU 

(μ±S.D) 
20% INU 

(μ±S.D) 

40% INU 

(μ±S.D) 
20% INU 

(μ±S.D) 
40% INU 

(μ±S.D) 

MICO 87.44±0.46 88.44±0.78 82.70±0.46 83.37±4.11 77.89±0.41 79.44±0.49 70.70±0.68 71.67±6.09 97.63±0.19 98.35±0.45 95.13±0.42 95.07±3.61 

GMM 89.80±0.54 85.44±0.50 84.52±2.58 84.08±2.48 81.66±0.58 74.92±0.78 73.27±3.64 72.60±3.73 98.69±0.15 97.03±0.17 96.46±1.66 95.85±1.66 

CSFCM 83.17±0.41 84.63±0.35 85.08±1.96 84.60±2.18 71.40±0.61 73.51±0.52 74.23±3.02 73.38±3.32 93.13±0.25 94.02±0.22 96.29±1.69 95.31±1.39 

ARKFCM 67.08±1.21 64.95±1.26 63.10±0.61 65.98±10.69 56.76±1.50 53.84±1.57 52.12±0.93 53.59±13.16 93.07±1.33 91.24±1.42 90.41±0.59 90.50±11.40 

FCMPSO 72.41±3.15 80.39±2.78 65.03±3.06 65.66±12.09 62.27±3.04 71.56±2.75 51.22±2.96 52.37±13.30 92.62±1.03 94.78±1.05 88.33±1.12 88.94±10.14 

FCMWOA 75.57±1.47 74.22±1.79 67.34±1.75 68.01±11.98 62.76±1.78 61.36±2.00 52.62±2.96 52.80±13.13 92.46±1.28 91.45±1.77 89.35±4.52 89.80±11.07 

FCMGWO 88.65±0.35 89.50±0.69 82.56±2.50 82.18±2.73 80.07±0.56 81.19±0.59 70.38±3.64 69.83±3.92 98.34±0.29 98.21±0.28 95.14±1.20 94.91±1.12 

AHHO 89.34±0.42 89.69±0.49 83.17±2.14 82.94±2.13 80.89±0.64 81.76±0.58 71.24±3.17 70.91±3.14 98.77±0.18 98.50±0.48 95.67±1.28 95.56±1.14 

SFCMEMBC 60.79±0.58 61.37±5.52 67.56±4.18 68.73±3.97 43.92±0.62 44.50±5.94 51.34±3.27 52.59±4.21 83.07±0.42 82.72±4.07 87.75±4.25 88.27±3.20 

BCIFCMSNI 57.04±1.27 47.29±1.06 52.09±0.87 64.26±1.08 49.83±1.31 51.52±0.97 44.07±0.95 58.89±1.94 73.80±1.04 59.06±1.02 74.64±2.62 76.33±1.25 

FRFCM 82.52±1.21 83.69±1.09 82.15±1.01 82.13±2.73 70.43±0.95 72.11±0.84 70.10±0.79 70.06±3.27 87.97±0.65 88.54±0.72 88.51±0.93 89.19±2.32 

RFCM 83.73±0.77 83.62±0.85 83.80±0.62 83.08±2.89 72.07±0.65 71.92±0.73 76.16±0.48 71.18±3.45 89.00±0.72 89.52±0.68 89.98±0.88 91.02±2.55 

FBKPCS 88.84±0.44 89.41±2.89 85.14±1.98 85.15±2.21 80.09±0.55 81.14±3.04 74.95±3.08 74.20±3.38 98.21±0.22 98.03±0.91 96.72±0.96 96.48±0.71 

CSGKIT 91.87±1.13 91.19±1.26 89.29±1.57 88.68±1.75 85.06±1.26 83.96±1.41 80.69±2.40 79.76±2.67 99.27±0.47 99.13±0.88 98.60±0.44 98.30±0.30 

Table 4. Average execution times of various algorithms on the Brain Web dataset with 40% INU and 9% noise.  

All values are presented in seconds.  
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4.17 1.20 0.76 1.87 4.15 3.05 6.50 19.40 0.61 2.85 0.05 0.62 0.39 0.34 
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combination of adaptive information-theoretic 

measures and conditional spatial information 

contributes to its ability to minimize boundary 

ambiguity and enhance tissue differentiation, 

leading to more accurate and stable MRI brain 

segmentation results. 

(7) Table 7 presents the average running times for  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

various algorithms. The results indicate that 

FCMPSO, FCMWOA, FCMGWO, and AHHO 

algorithms are computationally expensive. 

Similarly, contour-based methods like MICO have 

longer execution times. In contrast, the FRFCM 

and CSGKIT algorithms demonstrate the lowest 

execution times, highlighting their efficiency 

compared to other approaches. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. Numerical results of all assessed algorithms, including our proposed CSGKIT algorithm, for segmentation task on the 

OASIS dataset.  

Criteria 

                      

Methods 

DS (%) ↑ JS (%) ↑ CS (%) ↑ 

WM 

(μ±S.D) 

GM 

(μ±S.D) 

CSF 

(μ±S.D) 

WM 

(μ±S.D) 

GM 

(μ±S.D) 

CSF 

(μ±S.D) 

WM 

(μ±S.D) 

GM 

(μ±S.D) 

CSF 

(μ±S.D) 

MICO 91.79±0.25 86.03±0.52 88.54±0.70 84.92±0.42 75.82±0.75 80.06±1.02 94.55±0.27 95.43±0.19 94.83±0.55 

GMM 90.14±0.40 77.61±1.73 75.21±1.36 82.26±0.62 65.74±1.69 62.03±1.63 93.09±0.33 90.42±1.08 82.67±1.56 

CSFCM 94.09±0.12 80.62±1.13 69.56±1.94 88.85±0.21 68.91±1.48 56.66±2.27 97.01±0.19 94.12±0.45 85.62±1.26 

ARKFCM 93.15±0.72 70.50±1.85 57.21±2.67 87.66±0.77 57.44±2.19 44.87±2.71 95.48±0.74 92.09±0.66 77.83±1.71 

FCMPSO 80.17±2.29 67.26±2.35 53.98±2.51 72.06±2.72 55.05±2.51 41.17±2.49 89.59±1.13 91.57±0.69 80.84±1.36 

FCMWOA 86.84±1.18 71.56±2.21 60.71±2.26 78.27±1.50 59.63±2.31 47.12±2.22 86.35±1.83 91.85±0.78 83.00±1.91 

FCMGWO 95.12±0.12 82.19±1.03 68.56±1.87 90.61±0.21 70.98±1.39 55.20±2.16 97.01±0.12 95.14±0.36 84.44±1.09 

AHHO 95.08±0.13 83.44±1.00 71.36±1.85 90.32±0.24 72.70±1.32 58.53±2.16 97.26±0.12 95.62±0.34 85.94±1.09 

SFCMEMBC 93.94±0.25 82.82±0.92 68.73±1.18 88.66±0.37 71.57±1.17 53.51±1.31 97.16±0.56 92.09±0.59 81.46±1.71 

BCIFCMSNI 93.35±0.23 87.10±0.61 83.73±1.59 87.61±0.39 78.39±0.85 74.37±1.75 96.66±0.19 96.04±0.23 93.44±0.94 

FRFCM 93.95±0.12 78.17±1.12 66.53±1.91 88.61±0.20 65.11±1.46 52.77±2.22 95.60±0.19 93.89±0.42 83.67±1.27 

RFCM 94.42±0.14 82.26±0.94 71.83±1.85 89.46±0.24 71.24±1.23 59.31±2.13 96.60±0.20 94.57±0.40 86.47±1.21 

FBKPCS 95.06±0.12 81.18±1.11 67.78±1.93 90.47±0.22 69.72±1.50 54.47±2.23 97.11±0.13 95.08±0.39 83.91±1.15 

CSGKIT 95.87±0.12 87.43±0.62 83.42±1.33 91.31±0.19 76.83±1.07 73.70±1.53 98.02±0.15 96.64±0.21 91.22±1.01 

 

Table 6. Statistical significance (p-values) of segmentation performance differences between the proposed CSGKIT algorithm and 

competing methods across DS, JS, and CS criteria for WM, GM, and CSF tissues on OASIS dataset. 

Criteria 

                      

Methods 

DS Criterion JS Criterion CS Criterion  

WM  GM CSF WM GM CSF WM GM CSF 

MICO 1.10e-43 0.9965 1.44e-12 4.17e-46 0.6142 3.30e-11 7.71e-30 0.1584 1.25e-12 

GMM 6.30e-45 3.76e-10 6.92e-09 9.54e-50 7.04e-13 6.97e-11 2.08e-45 5.28e-12 3.37e-09 

CSFCM 5.63e-53 1.03e-29 1.12e-54 5.68e-54 4.20e-33 2.16e-58 1.86e-07 4.08e-35 8.65e-33 

ARKFCM 3.27e-05 1.48e-49 1.84e-56 8.48e-10 1.02e-42 1.73e-65 4.73e-05 2.46e-30 3.88e-44 

FCMPSO 2.90e-17 5.93e-24 5.07e-37 9.47e-19 4.87e-25 2.21e-38 7.38e-20 2.82e-20 1.56e-22 

FCMWOA 2.28e-19 1.88e-15 5.75e-26 1.31e-24 1.39e-16 2.15e-28 3.58e-15 5.73e-13 1.91e-06 

FCMGWO 0.0655 1.17e-21 1.38e-60 0.0681 7.30e-23 5.33e-63 4.88e-05 3.01e-17 1.07e-45 

AHHO 0.1812 1.05e-26 3.35e-57 0.2153 1.62e-27 2.46e-60 0.0051 2.38e-19 4.82e-43 

SFCMEMBC 2.88e-10 0.0016 1.28e-15 1.11e-12 8.86e-04 3.81e-18 0.5018 7.72e-12 1.19e-06 

BCIFCMSNI 3.23e-18 0.0400 0.3250 4.71e-19 0.0571 0.2939 7.77e-06 0.0583 1.81e-04 

FRFCM 4.99e-20 3.60e-14 1.74e-40 1.22e-20 4.30e-16 2.10e-44 2.56e-16 3.36e-22 3.56e-18 

RFCM 5.28e-32 2.01e-53 1.18e-59 5.57e-33 7.42e-59 1.39e-62 8.85e-43 5.35e-44 6.24e-47 

FBKPCS 0.1188 1.23e-24 4.70e-60 0.1170 1.02e-25 3.50e-63 0.0038 1.90e-17 6.46e-50 

 

Table 7. Average execution times of various algorithms on the OASIS dataset.  

All values are presented in seconds.  
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Figure 3. Visual results of different algorithms in the 

segmentation of a sample from the OASIS dataset. (a) 

Input, (b) Ground truth, (c) MICO, (d) GMM, (e) 

CSFCM, (f) ARKFCM, (g) FCMPSO, (h) FCMWOA, (i) 

FCMGWO, (j) AHHO, (k) SFCMEMBC, (l) 

BCIFCMSNI, (m) FRFCM, (n) RFCM, (o) FBKPCS, and 

(p) proposed CSGKIT. 

 

 

5. Conclusion and Future Work  

Traditional FCM-based approaches rely on 

Euclidean distance for clustering, which fails to 

account for variations in distances within compact 

and similarly shaped clusters. This limitation is 

particularly problematic for CSF, a compact cluster 

critical for clearing metabolic waste from the brain. 

The reliance on Euclidean distance often leads to 

misclassification of CSF into other classes. 

Additionally, noise and INU negatively impact 

clustering performance. To address these 

challenges, this study proposed the CSGKIT 

algorithm for tissue segmentation in T1-weighted 

MRI images. Unlike conventional approaches, 

CSGKIT does not require computing distances 

among pixels within local spatial neighborhoods. 

Our algorithm introduces three key innovations: (i) 

information theory enhances robustness to noise 

and improves segmentation accuracy; (ii) 

Mahalanobis distance replaces Euclidean distance, 

providing better handling of compact and irregular 

clusters like CSF; and (iii) a conditional spatial 

approach incorporates local spatial relationships 

through a fuzzy weighted membership matrix. The 

proposed algorithm is computationally efficient, 

does not require complex parameter tuning, and 

achieves high segmentation accuracy. 

Experimental evaluations on the BrainWeb 

simulated and OASIS datasets demonstrated that 

the CSGKIT algorithm outperforms peer methods 

in robustness to noise and INU. Additionally, it 

maintains consistent performance across all image 

slices and effectively preserves edges under 

varying conditions. While the CSGKIT algorithm 

shows promising results, it does not fully leverage 

the neighboring information of each pixel, which 

could further enhance segmentation accuracy. 

Future work may explore integrating neighboring 

information more effectively to improve 

segmentation outcomes. Furthermore, developing 

an adaptive mechanism within the Gustafson-

Kessel framework to automatically select the 

number of clusters could be a potential direction for 

improvement. Lastly, incorporating bias field 

correction into the CSGKIT cost function may 

further enhance its robustness. Additionally, 

although this study focuses on T1-weighted MRI 

images as the standard protocol for structural brain 

imaging, future research should investigate 

extending CSGKIT to other MRI modalities such 

as T2-weighted and FLAIR images, which may 

require modality-specific parameter optimization 

to account for different tissue contrast 

characteristics. 

 

 
References 

[1] S. Kollem, C. R. Prasad, J. Ajayan, V. Malathy and 

A. Subbarao, "Brain tumor MRI image segmentation 

using an optimized multi-kernel FCM method with a 

pre-processing stage," Multimedia Tools and 

Applications, vol. 82, no. 14, pp. 20741–20770, 2023. 
 

[2] S. Alagarsamy, V. Govindaraj and A. Senthilkumar, 

"Automated brain tumor segmentation for MR brain 

images using artificial bee colony combined with 

interval type-II fuzzy technique," IEEE Transactions on 

Industrial Informatics, vol. 19, no. 11, pp. 11150–11159, 

2023. 
 

[3] C. Singh, S. K. Ranade, D. Kaur and A. Bala, "An 

Intuitionistic Fuzzy C-Means and Local Information-

Based DCT Filtering for Fast Brain MRI Segmentation," 

Journal of Imaging Informatics in Medicine, vol. 1, no. 

1, pp. 1–24, 2024. 
 

[4] J. Lyu, X. Chen, S. A. AlQahtani and M. S. Hossain, 

"Multi-modality MRI fusion with patch complementary 

pre-training for internet of medical things-based smart 

healthcare," Information Fusion, vol. 107, pp. 102342, 

2024. 
 



Jafargholkhanloo et al./ Journal of AI and Data Mining, x(x): xxx-xxx, xxxx 
 

[5] N. Aboubakr, M. Popova and J. L. Crowley, "Color-

based fusion of MRI modalities for brain tumor 

segmentation," in Proc. Int. Conf. on Medical Imaging 

and Computer-Aided Diagnosis (MICAD), pp. 89–97, 

2021. 
 

[6] A. Alijamaat, A. R. NikravanShalmani and P. Bayat, 

"Diagnosis of Multiple Sclerosis Disease in Brain MRI 

Images using Convolutional Neural Networks based on 

Wavelet Pooling," Journal of AI and Data Mining, vol. 

9, no. 2, pp. 161-168, 2021. 
 

[7] M. Hassan, I. Murtza, A. Hira, S. Ali and S. K. 

Kifayat, "Robust spatial fuzzy GMM based MRI 

segmentation and carotid artery plaque detection in 

ultrasound images," Computer Methods and Programs 

in Biomedicine, vol. 175, pp. 179–192, 2019. 
 

[8] S. Natarajan, V. Govindaraj, Y. Zhang, P. R. 

Murugan, K. Balasubramanian, K. Kandasamy and K. 

Ejaz, "Minimally parametrized segmentation 

framework with dual metaheuristic optimisation 

algorithms and FCM for detection of anomalies in MR 

brain images," Biomedical Signal Processing and 

Control, vol. 78, pp. 103866, 2022. 
 

[9] I. Khatri, D. Kumar and A. Gupta, "A noise robust 

kernel fuzzy clustering based on picture fuzzy sets and 

KL divergence measure for MRI image segmentation," 

Applied Intelligence, vol. 53, no. 13, pp. 16487–16518, 

2023. 
 

[10] E. H. Houssein, N. Abdalkarim, K. Hussain and E. 

Mohamed, "Accurate multilevel thresholding image 

segmentation via oppositional Snake Optimization 

algorithm: Real cases with liver disease," Computers in 

Biology and Medicine, vol. 169, pp. 107922, 2024. 
 

[11] M. B. Bawil, M. Shamsi, A. S. Bavil and S. 

Danishvar, "Specialized gray matter segmentation via a 

generative adversarial network: application on brain 

white matter hyperintensities classification," Frontiers 

in Neuroscience, vol. 18, pp. 1–10, 2024. 
 

[12] E. H. Houssein, M. M. Emam and A. A. Ali, "An 

efficient multilevel thresholding segmentation method 

for thermography breast cancer imaging based on 

improved chimp optimization algorithm," Expert 

Systems with Applications, vol. 185, pp. 115651, 2021. 
 

[13] G. Ma and X. Yue, "An improved whale 

optimization algorithm based on multilevel threshold 

image segmentation using the Otsu method," 

Engineering Applications of Artificial Intelligence, vol. 

113, pp. 104960, 2022. 
 

[14] T. Lang and T. Sauer, "Feature-Adaptive 

Interactive Thresholding of Large 3D Volumes," arXiv 

preprint, arXiv:2210.06961, 2022. 
 

[15] B. Dong, G. Weng, Q. Bu, Z. Zhu and J. Ni, "An 

active contour model based on shadow image and 

reflection edge for image segmentation," Expert 

Systems with Applications, vol. 238, pp. 122330, 2024. 
 

[16] Y. Chen, L. Wu, G. Wang, H. He, G. Weng and H. 

Chen, "An active contour model for image segmentation 

using morphology and nonlinear Poisson’s equation," 

Optik, vol. 287, pp. 170997, 2023. 
 

[17] H. Zia, A. Niaz and K. N. Choi, "Active Contour 

Model for Image Segmentation," in Proc. Asia Conf. on 

Advanced Robotics, Automation, and Control 

Engineering (ARACE), pp. 1–6, 2022. 
 

[18] C. Li, J. C. Gore and C. Davatzikos, "Multiplicative 

intrinsic component optimization (MICO) for MRI bias 

field estimation and tissue segmentation," Magnetic 

Resonance Imaging, vol. 32, no. 7, pp. 913–923, 2014. 
 

[19] P. D. Dunning and H. A. Kim, "Introducing the 

sequential linear programming level-set method for 

topology optimization," Structural and 

Multidisciplinary Optimization, vol. 51, no. 3, pp. 631–

643, 2015. 
 

[20] S. K. Adhikari, J. K. Sing, D. K. Basu and M. 

Nasipuri, "Conditional spatial fuzzy C-means clustering 

algorithm for segmentation of MRI images," Applied 

Soft Computing, vol. 34, pp. 758–769, 2015 
 

[21] A. Elazab, C. Wang, F. Jia, J. Wu, G. Li and Q. Hu, 

"Segmentation of brain tissues from magnetic resonance 

images using adaptively regularized kernel‐based fuzzy 

C‐means clustering," Computational and Mathematical 

Methods in Medicine, vol. 2015, no. 1, pp. 485495, 

2015. 
 

[22] J. Song and Z. Zhang, "A modified robust FCM 

model with spatial constraints for brain MR image 

segmentation," Information, vol. 10, no. 2, pp. 74, 2019. 
 

[23] J. Qiao, X. Cai, Q. Xiao, Z. Chen, P. Kulkarni, C. 

Ferris and S. Sridhar, "Data on MRI brain lesion 

segmentation using K-means and Gaussian Mixture 

Model-Expectation Maximization," Data in Brief, vol. 

27, pp. 104628, 2019. 
 

[24] R. Meena Prakash, R. Shantha and S. Kumari, 

"Spatial fuzzy C-means and expectation maximization 

algorithms with bias correction for segmentation of MR 

brain images," Journal of Medical Systems, vol. 41, no. 

9, pp. 1–9, 2017. 
 

[25] M. Singh, A. Verma and N. Sharma, "Multi-

objective noise estimator for the applications of de-

noising and segmentation of MRI data," Biomedical 

Signal Processing and Control, vol. 46, pp. 249–259, 

2018. 
 

[26] P. Ghosh, K. Mali and S. K. Das, "Chaotic firefly 

algorithm-based fuzzy C-means algorithm for 

segmentation of brain tissues in magnetic resonance 

images," Journal of Visual Communication and Image 

Representation, vol. 54, pp. 63–79, 2018. 
 

[27] A. F. Jafargholkhanloo and M. Shamsi, 

"Cephalometry analysis of facial soft tissue based on 

two orthogonal views applicable for facial plastic 

surgeries," Multimedia Tools and Applications, vol. 82, 

no. 20, pp. 30643–30668, 2023. 
 

[28] H. Verma, D. Verma and P. K. Tiwari, "A 

population based hybrid FCM-PSO algorithm for 



Conditional Spatial Gustafson-Kessel Clustering Algorithm Based on Information Theory for Segmenting Brain MRI Images 

 

clustering analysis and segmentation of brain image," 

Expert Systems with Applications, vol. 167, pp. 114121, 

2021. 
 

[29] S. Tongbram, B. A. Shimray, L. S. Singh and N. 

Dhanachandra, "A novel image segmentation approach 

using FCM and whale optimization algorithm," Journal 

of Ambient Intelligence and Humanized Computing, 

vol. 12, no. 8, pp. 1–15, 2021. 
 

[30] R. Bandyopadhyay, R. Kundu, D. Oliva and R. 

Sarkar, "Segmentation of brain MRI using an altruistic 

Harris Hawks’ Optimization algorithm," Knowledge-

Based Systems, vol. 232, pp. 107468, 2021. 
 

[31] A. Kouhi, H. Seyedarabi and A. Aghagolzadeh, 

"Robust FCM clustering algorithm with combined 

spatial constraint and membership matrix local 

information for brain MRI segmentation," Expert 

Systems with Applications, vol. 146, pp. 113159, 2020. 
 

[32] M. Tavakoli-Zaniani, Z. Sedighi-Maman and M. H. 

F. Zarandi, "Segmentation of white matter, grey matter 

and cerebrospinal fluid from brain MR images using a 

modified FCM based on double estimation," Biomedical 

Signal Processing and Control, vol. 68, pp. 102615, 

2021. 
 

[33] D. Kumar, I. Khatri, A. Gupta and R. Gusain, 

"Kernel picture fuzzy clustering with spatial 

neighborhood information for MRI image 

segmentation," Soft Computing, vol. 26, no. 22, pp. 

12717–12740, 2022. 
 

[34] S. Vinurajkumar and S. Anandhavelu, "An 

Enhanced Fuzzy Segmentation Framework for 

extracting white matter from T1-weighted MR images," 

Biomedical Signal Processing and Control, vol. 71, pp. 

103093, 2022. 
 

[35] D. Kumar, R. K. Agrawal and P. Kumar, "Bias-

corrected intuitionistic fuzzy c-means with spatial 

neighborhood information approach for human brain 

MRI image segmentation," IEEE Transactions on Fuzzy 

Systems, vol. 30, no. 3, pp. 687–700, 2020. 
 

[36] R. Solanki and D. Kumar, "Probabilistic 

intuitionistic fuzzy c-means algorithm with spatial 

constraint for human brain MRI segmentation," 

Multimedia Tools and Applications, vol. 82, no. 22, pp. 

33663–33692, 2023. 
 

[37] P. Kumar, R. K. Agrawal and D. Kumar, "Fast and 

robust spatial fuzzy bounded k-plane clustering method 

for human brain MRI image segmentation," Applied 

Soft Computing, vol. 133, pp. 109939, 2023. 
 

[38] S. Mohammadi, S. Ghaderi, K. Ghaderi, M. 

Mohammadi and M. H. Pourasl, "Automated 

segmentation of meningioma from contrast-enhanced 

T1-weighted MRI images in a case series using a 

marker-controlled watershed segmentation and fuzzy C-

means clustering machine learning algorithm," 

International Journal of Surgery Case Reports, vol. 111, 

pp. 108818, 2023. 
 

[39] C. Singh, S. K. Ranade, D. Kaur and A. Bala, "A 

novel approach for brain MRI segmentation and image 

restoration under intensity inhomogeneity and noisy 

conditions," Biomedical Signal Processing and Control, 

vol. 87, pp. 105348, 2024. 
 

[40] B. Jafrasteh, M. Lubián-Gutiérrez, S. P. Lubián-

López and I. Benavente-Fernández, "Enhanced Spatial 

Fuzzy C-Means Algorithm for Brain Tissue 

Segmentation in T1 Images," Neuroinformatics, vol. 

2024, no. 1, pp. 1–14, 2024. 
 

[41] J. C. Bezdek, R. Ehrlich, and W. Full, "FCM: The 

fuzzy c-means clustering algorithm," Computers & 

Geosciences, vol. 10, no. 2–3, pp. 191–203, 1984. 
 

[42] L. Szilagyi, Z. Benyo, S. M. Szilágyi and H. S. 

Adam, "MR brain image segmentation using an 

enhanced fuzzy c-means algorithm," in Proc. 25th Annu. 

Int. Conf. IEEE Engineering in Medicine and Biology 

Society, vol. 1, pp. 724–726, 2003. 
 

[43] W. Cai, S. Chen and D. Zhang, "Fast and robust 

fuzzy c-means clustering algorithms incorporating local 

information for image segmentation," Pattern 

Recognition, vol. 40, no. 3, pp. 825–838, 2007. 
 

[44] S. Krinidis and V. Chatzis, "A robust fuzzy local 

information C-means clustering algorithm," IEEE 

Transactions on Image Processing, vol. 19, no. 5, pp. 

1328–1337, 2010. 
 

[45] M. Gong, Y. Liang, J. Shi, W. Ma and J. Ma, 

"Fuzzy c-means clustering with local information and 

kernel metric for image segmentation," IEEE 

Transactions on Image Processing, vol. 22, no. 2, pp. 

573–584, 2012. 
 

[46] T. Lei, X. Jia, Y. Zhang, L. He, H. Meng and A. K. 

Nandi, "A significantly fast and robust fuzzy c-means 

clustering algorithm based on morphological 

reconstruction and membership filtering," IEEE 

Transactions on Fuzzy Systems, vol. 26, no. 5, pp. 

3027–3041, 2018. 
 

[47] C. Wang, W. Pedrycz, Z. Li and M. Zhou, 

"Residual-driven fuzzy C-means clustering for image 

segmentation," IEEE/CAA Journal of Automatica 

Sinica, vol. 8, no. 4, pp. 876–889, 2020. 
 

[48] R. Krishnapuram and J. Kim, "A note on the 

Gustafson–Kessel and adaptive fuzzy clustering 

algorithms," IEEE Transactions on Fuzzy Systems, vol. 

7, no. 4, pp. 453–461, 1999. 
 

[49] D. Dovžan and I. Škrjanc, "Recursive clustering 

based on a Gustafson–Kessel algorithm," Evolving 

Systems, vol. 2, no. 1, pp. 15–24, 2011. 
 

[50] R. Babuka, P. J. Van der Veen and U. Kaymak, 

"Improved covariance estimation for Gustafson–Kessel 

clustering," in Proc. 2002 IEEE World Congress on 

Computational Intelligence, vol. 2, pp. 1081–1085, 

2002. 
 

[51] D. E. Gustafson and W. C. Kessel, "Fuzzy 

clustering with a fuzzy covariance matrix," in Proc. 

1978 IEEE Conf. Decision and Control including the 



Jafargholkhanloo et al./ Journal of AI and Data Mining, x(x): xxx-xxx, xxxx 
 

17th Symposium on Adaptive Processes, pp. 761–766, 

1979. 
 

[52] Z. Wang, Q. Song, Y. C. Soh and K. Sim, "An 

adaptive spatial information-theoretic fuzzy clustering 

algorithm for image segmentation," Computer Vision 

and Image Understanding, vol. 117, no. 10, pp. 1412–

1420, 2013. 
 

[53] A. F. Jafargholkhanloo and M. Shamsi, 

"Quantitative analysis of facial soft tissue using 

weighted cascade regression model applicable for facial 

plastic surgery," Signal Processing: Image 

Communication, vol. 121, pp. 117086, 2024. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[54] BrainWeb [online], available: 

https://brainweb.bic.mni.mcgill.ca/cgi/brainweb1 
 

[55] D. S. Marcus, T. H. Wang, J. Parker, J. G. 

Csernansky, J. C. Morris and R. L. Buckner, "Open 

Access Series of Imaging Studies (OASIS): Cross-

sectional MRI data in young, middle aged, 

nondemented, and demented older adults," Journal of 

Cognitive Neuroscience, vol. 19, no. 9, pp. 1498–1507, 

2007. 

https://brainweb.bic.mni.mcgill.ca/cgi/brainweb1


 .x x x xسال  ،xشماره  ،کاویمجله هوش مصنوعی و داده                                                                                            و همکاران              جعفرقلخانلو

 

کسل مکانی شرطی براساس تئوری -مغز با استفاده از الگوریتم گستافسون MRIبندی تصاویر بخش

 اطلاعات 

 

 2مهدی بشیری باویل و 2موسی شمسی، *1علی فهمی جعفرقلخانلو

  .رانیا ن،ینم ،یلیدانشگاه محقق اردب ن،ینو یهایدانشکده فناور ،یگروه علوم مهندس 1

 .رانیا ز،یسهند، تبر یدانشگاه صنعت ،یپزشک یدانشکده مهندس ک،یوالکتریگروه ب 2

 30/11/2025 پذیرش؛ 24/10/2025 بازنگری؛ 20/08/2025 ارسال

 چکیده:

 یجد یهارا با چالش های مغزیبافت یبندبخش ندیفرآ و بودههمراه  (INU)شدت  یو ناهمگن زی( معمولًا با نوMRI) یسیمغناط دیتشد یربرداریتصو

 اریبس زینسبت به نو پزشکی بوده که ریتصاو یبندشپرکاربرد در بخ یهااز روش یکی، که (FCM)میانگین -C یفاز یبندخوشه تمی. الگورکندیمواجه م

نقاط داده  عیتوز راتییانطباق با تغ ییکه توانا کندیاستفاده م یدسیفاصله اقل اریاز مع تمیالگور نیها وابسته است. اداده عیآن به توز ییبوده و نرخ همگرا

 تمیالگور کیمقاله،  نیا در .ستیها سازگار نمتفاوت خوشه یهابا شکل ینظر محل از نیمشابه را ندارد و همچن یهافشرده و با شکل یهادر خوشه

. در گام نخست، از شودیم ارائه هاتیمحدود نیمنظور غلبه بر ابه (CSGKIT) اطلاعات تئوریبر  مبتنی کسل–گستافسون یمکان یشرط یبندخوشه

 اریعنوان معبه سیفاصله ماهالانوب، بعدیگام  دراستفاده شده است.  یبندو بهبود دقت بخش زیدر برابر نو تمیمقاومت الگور شیافزا یاطلاعات برا تئوری

 کی ت،یدر نها. ها داردناهمسان خوشه یهایها و پراکندگبا شکل قیدر تطب یشتریب تیقابل ،یدسیکه نسبت به فاصله اقل شودیکار گرفته مشباهت به

 تمیالگور .کندیم حاظمجاور را در مدل ل یهاکسلیپ انیم یمحل یتعاملات مکان ،یفاز شدهیدهوزن تیعضو سیماتر کارگیریبهبا  یشرط یمکان کردیرو

 جیقرار گرفته است. نتا یابی، مورد ارزOASISو مجموعه داده  BrainWeb شدهیسازهیداده، شامل داده شب گاهیدو پا یبر رو CSGKIT یشنهادیپ

ها انواع مختلف بافت یبنددر بخش ی، از دقت بالاترFCMبر  یمبتن یهاتمیالگور ریبا سا سهیدر مقا CSGKIT تمیکه الگور دهدینشان م یتجرب

 برخوردار است.

 .بندی تصویر، تئوری اطلاعاتکسل مکانی شرطی، بخش-های مغزی، گستافسونبندی بافتبخش :کلمات کلیدی

 


