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Article Info Abstract

Magnetic Resonance Imaging (MRI) often suffers from noise and
Intensity Non-Uniformity (INU), making segmentation a challenging
task. The Fuzzy C-Means (FCM) algorithm, a widely used clustering
method for image segmentation, is highly sensitive to noise, and its
convergence rate depends on data distribution. FCM employs the
Euclidean distance metric, which fails to adapt to variations in data
point distributions within compact and similarly shaped clusters.
Additionally, this metric is not locally adaptive to different cluster
shapes. This paper introduces a Conditional Spatial Gustafson-Kessel
Clustering Algorithm based on Information Theory (CSGKIT) to
address these challenges. First, information theory is incorporated to
enhance the algorithm's robustness against noise and improve
segmentation accuracy. Second, the Mahalanobis distance replaces
the Euclidean distance to better accommodate cluster shapes during
the clustering process. Finally, a conditional spatial approach uses a
fuzzy-weighted membership matrix to incorporate local spatial
interactions between neighboring pixels. The proposed CSGKIT
algorithm is evaluated on two datasets: the BrainWeb simulated
dataset and the Open Access Series of Imaging Studies (OASIS)
dataset. Experimental results indicate that CSGKIT outperforms other
FCM-based algorithms in segmentation accuracy across various
tissue types.
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1. Introduction

Various imaging techniques, such as X-rays, Attenuated Inversion Recovery (FLAIR). Ti-

Positron Emission Tomography (PET), Computed
Tomography (CT), and Magnetic Resonance
Imaging (MRI), are widely employed in medical
analysis. Among these, MRI stands out as a non-
invasive, radiation-free method that provides
excellent soft tissue contrast, making it particularly
suitable for brain tissue differentiation [1]. The
human brain consists of soft tissues such as White
Matter (WM), Gray Matter (GM), and
Cerebrospinal Fluid (CSF), making MRI ideal for
brain tissue analysis [2]. Different MRI sequences
produce distinct gray-level intensity patterns that
provide complementary information about tissue
characteristics [3]. Commonly used modalities
include T1-Weighted, T2-Weighted, and Fluid-

Weighted images highlight healthy tissues, T--
Weighted images emphasize pathological areas,
and FLAIR detects edema by suppressing water
signals [4-6].

Segmentation is a primary challenge in medical
image analysis, particularly for disease diagnosis
[7]. MRI images often contain artifacts such as
noise, Intensity Non-Uniformity (INU, also known
as bias field, which is a smooth spatial variation of
intensities caused by scanner or coil
inhomogeneities), and partial volume effects,
complicating segmentation. Brain-specific tasks,
such as tumor detection, further increase
complexity. Manual segmentation is common but
time-consuming and susceptible to variability [8,
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9]. Automated methods, including thresholding,
clustering, contour-based techniques, and deep
learning, have been developed to address these
issues [8, 10, 11]. Thresholding methods [12, 13]
struggle with noise and intensity variations [14],
while contour-based methods [15, 16] are sensitive
to parameter tuning and INU [17]. Deep learning
provides robust results but requires large datasets,
slow training, and complex models [10, 11].
Clustering, widely used for image segmentation,
groups similar data points into distinct clusters.
This study emphasizes clustering-based methods to
address segmentation challenges in MRI images.
Li etal. [18] introduced the Multiplicative Intrinsic
Component Optimization (MICO) method, which
leverages an energy framework for simultaneous
tissue segmentation and MRI bias field estimation.
MICO employs orthogonal basis functions for bias
field estimation and a level-set approach dependent
on image gradients, but its computational
complexity is high due to frequent reinitialization
and sensitivity to noise from the lack of local
spatial information [19]. Although popular, the
fuzzy c-means (FCM) algorithm does not account
for pixel correlations, prompting the development
of Conditional Spatial FCM (CSFCM) [20].
However, its inability to handle uncertainties in
MRI images limits the robustness of CSFCM.
Elazab et al. [21] developed Adaptively
Regularized Kernel-based FCM (ARKFCM),
which improves handling of local variations but
struggles with edge over-smoothing and non-
spherical data distributions [22]. Qiao et al. [23]
utilized Gaussian Mixture Models (GMM) and K-
means for stroke lesion segmentation, but these
methods are affected by INU and sensitivity to
initialization. To address INU and noise, Parakash
and Kumari [24] proposed the Spatial FCM and
Expectation-Maximization with Bias Correction
(SFCMEMBC). However, SFCMEMBC performs
poorly under severe INU and noise conditions, and
GMM methods rely on Gaussian assumptions and
have slow convergence.

Meta-heuristic algorithms are widely used in
medical image analysis. Singh et al. [25] presented
Multi-Objective Particle Swarm Optimization
(MOPSO) for MRI denoising and segmentation.
Ghosh et al. [26] introduced the Chaotic Firefly
Algorithm (CFA) to address the initialization
sensitivity of FCM, but CFA’s effectiveness
depends on the choice of chaotic map. The FCM
algorithm often suffers from local optimization
issues, with convergence highly dependent on
initial conditions. It can be formulated as: (i) a
discrete optimization problem by initializing
membership degrees for each search agent, or (ii) a

continuous optimization problem by initializing
cluster centers [27]. Verma et al. [28] applied
Particle Swarm Optimization (FCMPSO), and
Tongbram et al. [29] used the Whale Optimization
Algorithrm  (FCMWOA)  for  continuous
optimization. Conversely, Fahmi and Shamsi [27]
employed Grey Wolf Optimization (FCMGWO)
for discrete optimization, which outperformed
continuous approaches in segmentation tasks.
Despite  their  advantages,  meta-heuristic
algorithms are time-consuming, and many, such as
PSO and Firefly Algorithm (FA), require precise
parameter tuning to balance exploration and
exploitation, affecting segmentation accuracy if
misconfigured. Classical thresholding methods,
such as Otsu and Kapur's, struggle with multiple
thresholds. To improve this, Bandyopadhyay et al.
[30] developed the Altruistic Harris Hawk
Optimization (AHHO) algorithm, though it is
computationally expensive and performs poorly on
images with broad valleys or flat regions in the
histogram, often neglecting spatial information.

A robust FCM algorithm was proposed by Kouhi
et al. [31] for brain MRI segmentation, integrating
spatial constraints and local membership matrix
information.  While effective, its double
membership calculation per iteration increases
computational complexity. Tavakoli et al. [32]
enhanced FCM with dual estimation using both
original and denoised images for improved
segmentation. Kumar et al. [33] introduced a
kernel-based FCM with spatial neighborhood
information to handle noise and vagueness, though
picture fuzzy systems often lack robustness against
noise and outliers. Accurate white matter
segmentation, crucial for estimating reduced white
matter volume—a marker for neurological
disorders—remains challenging. Vinurajkumar
and Anandhavelu [34] improved FCM with a
histogram-based membership matrix and Lagrange
multiplier approach but faced sensitivity to
initialization and difficulties with minor white
matter discontinuities. Kumar et al. [35] developed
BCIFCMSNI to address noise and bias field
artifacts, while Solanki and Kumar [36] proposed
PIFCMS. However, both rely on precise parameter
tuning, limiting their practicality. Kumar et al. [37]
introduced FBKPCS with two regularization terms,
though it struggles with random noise and requires
parameter tuning. Mohammadi et al. [38]
combined FCM and a modified watershed
algorithm for meningioma segmentation in
contrast-enhanced T1-weighted MRI. Singh et al.
[39] proposed the IFLICM algorithm to handle
INU and noise, and Jafrasteh et al. [40] introduced
ESFCM with weighted least squares and structural
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similarity index-based polynomial bias field
correction.

This study proposes a Conditional Spatial
Gustafson-Kessel Clustering Algorithm based on
Information Theory (CSGKIT) to address
challenges in brain tissue segmentation in MRI
images. The algorithm provides robust and
accurate segmentation across diverse image
conditions:

1. Elliptical Cluster Adaptability: Unlike FCM-
based methods (e.g, ARKFCM, CSFCM,
SFCMEM, and BCIFCMSNI) that assume hyper-
spherical clusters and use Euclidean distance,
CSGKIT adopts an elliptical geometry with the
Mahalanobis distance metric. This enhances
adaptability for compact and irregularly shaped
clusters, such as those in the CSF region.

2. Noise and INU Robustness: CSGKIT effectively
handles noise and INU through a novel objective
function, ensuring improved segmentation under
challenging conditions.

3. Integration of Spatial Context: Building on
CSFCM [20], CSGKIT employs a conditional
spatial strategy that incorporates local spatial
information via a fuzzy weighted membership
matriX, enhancing robustness to noise and
improving accuracy.

4. Application of Information Theory: By
leveraging information theory, CSGKIT further
enhances accuracy and edge preservation under
noise and INU conditions, with minimal parameter
tuning required.

Experimental evaluations demonstrate that
CSGKIT outperforms its counterparts discussed in
the literature, delivering superior segmentation
accuracy and robustness under diverse imaging
conditions.

The rest of this article is organized as follows:
Section 2 reviews related work on fuzzy clustering
algorithms. Section 3 details the proposed
methodology. Section 4 explores the experimental
results, and Section 5 tries to make a conclusion
along with potentials for future research.

2. Related Works

The FCM algorithm, introduced by Bezdek [41],
incorporated a membership matrix u;; into the K-
means algorithm to elevate its performance. For a
grayscale image 1 with N pixels indexed by i, let
pi=(xi.yi) denote the spatial coordinates of the i-the

pixel and gj=I(pj) denote its gray-level (intensity)
valuei=1,2,.,N. The set of cluster centers is
V={vv2....vc } thatv; denotes the coordinate of the

j-th cluster center in the feature space. A
membership matrix uj; is assigned to pixel i in the

j-th cluster (=1, 2,..., ¢). The cost function in FCM is
defined as follows:

N ¢ 2 (1)
Jeem =2 XU g-v;
FCM i1j-1 ij (gl Vj)
with the following constraint:
)

C -

> Ujj=1vi

j:
wherevjand q (q>1) are cluster center and fuzzy

exponent, respectively.
In the FCM, the membership function and cluster
centers will be updated iteratively as follows:

t+1 1
W e ®3)
_y 12 )g-1
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Algorithm 1 summarizes the algorithmic steps for
FCM.

Algorithm 1

Steps of FCM Clustering.

Input: MRI image, count of cluster centers, fuzzy

exponent g, and stop criterion n

Step 1: Initializing membership matrix U®

Step 2: Updating cluster centers V1) using (4).

Step 3: Updating membership matrix U3 using (3).

Step 4: if maxU(t+1)—U(t)£r7, then proceed, otherwise set

t=t+1 and return to Step 2
Output: cluster centers and membership matrix.

Szilagyi et al. [42] proposed the Enhanced FCM
(EnFCM) algorithm, which exploits gray-level
histograms to improve computational efficiency in
MRI brain image segmentation. By a linear-
weighted sum of local neighborhood information
and the original image, EnFCM reduces
computational time. To address its limitations, Cai
et al. [43] incorporated a local similarity index to
introduce the Fast Generalized FCM (FGFCM)
algorithm, which improves noise robustness and
detail preservation through a non-linear-weighted
sum, while also achieving lower computational
time. However, both EnFCM and FGFCM require
parameter tuning to balance robustness and detail
preservation. To overcome this, Krinidis and
Chatzis [44] substituted parameters with a fuzzy
local similarity index to develop the Fuzzy Local
Information C-Means (FLICM) algorithm. Despite
its improvements, FLICM’s fixed spatial distance
is less effective with varying local image
information. Gong et al. [45] addressed this by
introducing the Kernel-based Weighted Fuzzy
Local Information C-Means (KWFLICM)
algorithm, which handles intensity
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inhomogeneities and noise, although its high
computational complexity remains a limitation. Lei
et al. [46] integrated morphological reconstruction
and membership filtering to suggest the Fast and
Robust FCM (FRFCM), which reduces
computational time using gray-level histograms.
However, FRFCM may produce overly smooth
contours, compromising segmentation. Wang et al.
[47] further attempted handling segmentation
under unknown noise conditions by developing the
Weighted ¢ -norm  Regularization (WRFCM)

algorithm from the Residual-Driven FCM
(RFCM).
Traditional FCM assumes spherical clusters, which
work well for uniformly sized and shaped clusters.
However, the Gustafson-Kessel (GK) algorithm is
more effective in identifying ellipsoidal clusters of
varying sizes and orientations [48, 49]. It should be
noted that the terms “spherical” and “ellipsoidal”
clusters describe the geometry of clusters in the
feature (parameter) space rather than the physical
shape of regions in the image domain. By locally
adapting the distance metric through covariance
matrix estimation, the Mahalanobis distance—
rather than the Euclidean distance—is used in the
GK algorithm to identify clusters with distinct
geometrical shapes [50, 51]. The GK algorithm’s
cost function is defined as follows:
N ¢ T

VoK :izljzluijq'(gi_vj) Ai{oivi) ©
where 4; is a positive definite symmetric norm
matrix. By applying the Lagrange multiplier
technique, the Equation 5 will be reformulated as

an  unconstrained  optimization  problem
minimizing next cost function:
Nc g T
Yok = 5 2 (o) 4y ()
N (e (6)
-X4| TU;-t
i=1 (j=1

C
=g -(de‘(Aj )“’j]

where g; a set of Lagrange multipliers. Also, p;
represents the cluster volume, typically considered
to 1 for all clusters.

The membership function, cluster centers, and
covariance matrix are updated as follows:

T %—1
Sen | (o) A i) Y]

1 T
c t t t
Z5aaloiy!) A o)

a2 ©
J Zi'\il(uijq)t

ECRARCRA. ©)
zi'\il(uijq)t

A= .(det(Fi‘ ))% ( Fifl)t (10)
where F, models the weighted scatter of samples

around the cluster center and reflects the geometric
structure of the cluster.
The algorithmic steps for GK are summarized in
Algorithm 2.

Algorithm 2

Steps of GK Clustering.

Input: MRI image, number of cluster centers, fuzzy

exponent g, and stop criterion .

Step 1: Initializing membership matrix U®.

Step 2: Updating cluster centers V1) using (8).

Step 3: Updating covariance matrix F*% using (9).

Step 4: Updating norm matrix A% using (10).

Step 5: Updating membership matrix U using (7).

N (u.d
FiHl:ZI:l( 1

step 6: if maxu(t)_u(t)<; | then proceed, otherwise set

t=t+1 and return to Step 2.
Output: cluster centers, covariance matrix, and
membership matrix.

3. Proposed Algorithm

We propose the cost function of the CSGKIT
algorithm for MRI image segmentation, defined as
follows:

N ¢ T
JCSGKIT=_21_Zl§i-Uijq-(9i*Vj) Ajgivj) ()
i=1j=

where & is an extra weighting coefficient designed
to eliminate noisy samples. This coefficient
represents the probability of image pixels and is
determined by maximizing the mutual information
between pixels value and cluster centers.

By applying the Lagrange multiplier technique, the
Equation 11 will be transformed into an
unconstrained optimization problem, minimizing
the following cost function:

N ¢ q T
JosokiT = 5 =i Vi '(gi_vj) 'Aj'(gi_vjj

—gl{ %Uij—l] (12)
i=1 \j=1
C
g ooy} )
where 1 would be a Lagrange multiplier.
The derivative of s g, With respect touj;and
setting it equal to zero yields:

“%S%Z%i 0T aiov;) g {vg 40 )
Equation 13 is acquired by simplifying the relation
and having . Equation 14 is utilized to update the
membership matrix:



Conditional Spatial Gustafson-Kessel Clustering Algorithm Based on Information Theory for Segmenting Brain MRI Images

s (oAl a9
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To obtain the cluster centers, the partial differential
equation of Jeserir With respect tovjis computed
and then set equal to zero:

a 15
Ci/GjKIT ., 25. U aiv; 40 (15)
Equation 16 is utilized to update the cluster centers:

t
N gt q
|, te1_ it {v5°) s (16)

J t
Y '(Uijq)
In the next step, the partial differential equation of
Jeserrr With respect to 4; is computed and then set

equal to zero:

aJ N T
CSGKIT q
oA oY -[gi*vj] -[gi*vjj

i
igl[zi ,%(det(Aj )j} an

By solving Equation 17, the corresponding
solutions for 4; is obtained as follows:

sttt -
x (Uuq)

1

Aj”l=,1i .(det(Fit )Jﬁ ( |:i*1)t
In the final step, the mutual information between
the input data x = {g4, g,, ..., g»} and the membership
matrix distribution (U) is used to estimate ¢;. Here,
gy represents the intensity of the j-th pixel in the
MRI images. Mutual information based on
information theory can be defined as follows [52]:

F(X,U)=F(E(X)E(XV))
N ¢ Eiji 20
=y ZEiEj|i|°g % (20)
i=1j=1 ZiZEEjl
where ¢; is probability of i-th pixel and equal to ¢;.

Also, ¢;;; is equal to u;;. Therefore, Equation 20 can
be modified as follows:

. 21
F(XU)= Z §§U |09[U1J ( )

i
'—1‘f| ij

(19)

By applying the Lagrange multiplier technique and
considering ggi = condition, Equation 21 can be
i=1

reformulated as an unconstrained optimization
problem, minimizing the next cost function:

i=1j=1

N ¢
=X X §. UIJ .log
=1

+A 2 & —1} 22
Z| 1§| u] [ I ( )
To obtain the & , the partial differential equation of
Josarrr With respect to & is computed and then set

equal to zero:
C
~log(&j)-1+ X Ujj.log (Uij )+A:O (23)
j=1

Finally, according to Equation 23 and restricting
condition, &; can be updated as follows:

.t
t 1
exp| Zﬁ:luij Jlog N T t (24)
tl_ 251 ]

.t
Z-Nlexp ¢ 1Uijt.log L B
1= 1= N t
ZiZegi Vij

Utilizing Equation 24 makes the proposed
algorithm robust to noise. This process continues
until the condition below is satisfied [52]:

e+l fit

ot

ULt
f —exp ZUIJt ogl ut : (25)
= iz Yij

In{zg“’l ] In(max(f ))<a

where § is a small value that is equal to le-5.

In MRI image processing, neighboring pixels are
often highly correlated and depend on each other.
The FCM algorithm performs inadequately without
considering the correlation between neighboring
pixels. Therefore, motivated by the concept of
CSFCM [20], this study incorporates the local
spatial relationships among neighboring pixels to
employ a conditional spatial approach via a fuzzy
weighted membership matrix. 4 is the first spatial

g

conditional variable, which defines the degree of
belonging of pixel gxto the i-th cluster. This

variable is used as follows:
£ij="¥ij Ujj (26)
0<Wijj<1
where i represents the involvement level of pixel

gk in the i-th cluster and is computed by the

following expression:

1 27
‘Pij=* > Ujj @7

M ioN(x)
where N(x) is the square neighborhood with the

pixel g at its center and M refers to the overall count
of pixels in there. An expansive neighborhood may
cause over-smoothing of edges and increase the
misclassification rate of pixels [20]. In this study,
to achieve the desired neighborhood level, we
empirically set N(x)=3x3.
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The global membershipujjand local membership
wij are assumed to be independent of each other.

Two conditional variables, namely the weighted
membership z;; and cluster centerw  are defined as

follows by combining the global and local
memberships:

P L
, () {45) (28)

[ P L
D55 o) )
szzi'\‘:fi‘zijq;]gi
Zize5i Zjj

where L and P represent controller variables that
define the relative significance of the membership
functions. The mentioned variables establish a
balance between global and local memberships to
reconstruct the eventual membership values and
cluster centers. Here, these parameters are set
experimentally as P=L=2. For more detail about
conditional spatial approach, refer to [20].
However, relying solely on zj; andw; fails to attend

(29)

the uncertainty degree that might exist in actual
MRI images. This limitation may result in noisy
pixels not being properly clustered within their
neighborhood. To address this issue, the geometric
mean of the global and local information is utilized,
as follows:

U newij _ m (30)

VI'IEWJ_ =Y 'Wj (31)

The algorithmic steps for the presented CSGKIT
are summarized in Algorithm 3.
Algorithm 3
Steps of Proposed CSGKIT Algorithm.
Input: MRI image, number of cluster centers, fuzzy
exponent q, controller parameters (P, L), square
neighborhood N(x)=3, initialization of cluster centers and
input data distribution, and stop criterion .
Step 1: Initializing membership matrix U®.
Step 2: Updating covariance matrix F*% using (18).
Step 3: Updating norm matrix A% using (19).
Step 4: Updating membership matrix U using (14).
Step 5: Calculating & values using (25) until the
condition of Equation 25 is met.
Step 6: Updating the conditional spatial membership
using (26).
Step 7: Updating the weighted membership using (28).
Step 8: Updating joint cluster centers using (29).
Step 9: Updating cluster centers using (16).

Step 10: if maxu () _y (t)sn, then proceed, otherwise set

t=t+land return to Step 2.
Output: new membership matrix (Equation 30), new
cluster centers (Equation 31).

4. Experimental Results
We now present the experimental results and
numerical analysis performed on grayscale MRI

images. We also provide a comparative evaluation
of the proposed algorithm against existing
algorithms in the literature, including MICO [18],
GMM [23], CSFCM [20], ARKFCM [21],
FCMPSO [28], FCMWOA [29], FCMGWO [27],
AHHO [30], SFCMEMBC [24], BCIFCMSNI
[35], FRFCM [46], RFCM [47], and FBKPCS [37].
Both visual and quantitative comparisons are
included. The experiments were conducted on an
ACER desktop equipped with 16 GB of RAM and
an Intel Core i7 CPU (2.60 GHz). To quantitatively
evaluate the performance of the methods, we used
three main criteria: Jaccard Similarity (JS), Dice
Similarity (DS), and Correctly Matched Segments
(CMS) [53].

Jaccard Similarity Coefficient (JS): The similarity
between two images can be quantified by this
metric, which is defined as:

(e (32)
|AUB|

Dice Similarity Coefficient (DS): The overlap

between two images, specifically the ground truth

(GT) and the segmented image, can be quantified

by this metric, which is defined as:

_dang (33)

~ [A+]g]

DS(A,B)

Contour Matching Score (CS): The contour
alignment between the ground truth and the
segmented image can be evaluated by this metric.
The CS index ranges from 0 to 1, where a score of
1 indicates an impeccable match of object contours
in the ground truth and the predicted image. This
index is defined as:

_2PCR® (34)
~ pCLRC

where R®and P¢ represent recall and precision,
respectively. High DS, JS, and CS indicate a good
performance of a clustering method with accurate
segmentation and contour alignment.

4.1. Data Description

To evaluate the proposed CSGKIT algorithm
against other methods, we conducted experiments
on two brain MRI datasets: the BrainWeb
simulated dataset [54] and the Open Access Series
of Imaging Studies (OASIS) dataset [55]. The
BrainWeb dataset includes simulated brain MRI
images with varying INU levels (20%, 40%) and
noise levels (3%, 9%). The images have a
resolution of 1 mm and dimensions of 181 x 217 x
181, with ground truth available for different brain
tissues. Segmentation was performed on T1-
weighted images, focusing on slices 80 to 120. The
OASIS dataset comprises a cross-sectional
collection of 416 subjects aged 18 to 96 years,
including 100 individuals clinically diagnosed with
very mild to moderate Alzheimer’s disease. For

Cs
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this study, 200 T1-weighted MRI images were
randomly selected, with skull stripping applied via
morphological operations prior to segmentation.

4.2. Parameter Setting

In the numerical implementation of our proposed
algorithm and the compared algorithms, several
constant parameters need to be configured. For this
study, three key parameters were defined: the fuzzy
exponent (qg), the minimum error threshold (), and
the maximum iterations. These parameters were set
to g=2, n = 1075, and a maximum of 50 iterations
for both all algorithms. In this study, the number of
cluster centers C is set to 4, corresponding to the
main brain tissue types including white matter
(WM), gray matter (GM), cerebrospinal fluid
(CSF) and the background. This selection ensures
that each tissue class is captured by a distinct
cluster, facilitating accurate and interpretable
segmentation of MRI brain images. In the proposed
algorithm, the local neighborhood is empirically
defined as a 3x3 window centered at each pixel.
This neighborhood size is chosen to effectively
capture local spatial correlations among
neighboring pixels, which is essential for
preserving fine tissue boundaries while mitigating
the influence of isolated noisy pixels. Through
additional experiments with larger neighborhoods
(e.g., 5x5 and 7x7), the results illustrated that while
larger windows further smooth the membership
maps, they may inadvertently blur edges and
reduce sensitivity to subtle structural variations in
the MRI data. Conversely, smaller neighborhoods
may fail to capture sufficient local context, leading
to increased susceptibility to noise. Therefore, the
3x3 region provides an optimal compromise,
ensuring that local spatial information enhances the
clustering process without sacrificing boundary
definition or tissue differentiation. This choice is
aligned with prior studies demonstrating that
moderate neighborhood sizes in conditional spatial
clustering yield robust segmentation results for
brain MRI images. Also, the parameters P and L
control the relative weighting of global and local
memberships in the conditional spatial approach.
In our experiments, different combinations
(P,L)=(1,2),(21),(2,2) were tested. The
combination (2,2) was found to yield the most
effective segmentation results and was therefore
adopted. In the MICO algorithm, the degree of
Legendre polynomials was opted for P=3. For the
CSFCM algorithm, controller parameters were set
to p=g=2. For FCMPSO, as reported in [28], the
population size (n), cognitive coefficient, social
coefficient, and inertia weight are set as n=60,
q=¢=2, and w=1, respectively. For FCMWOA and

FCMGWO, the population size was n=12. For
ARKFCM, no additional parameters beyond the
fuzzy exponent, error threshold, and number of
clusters were required. In the AHHO algorithm,
parameters were configured as per the reported
values, except for the number of thresholds. In
BCIFCMSNI, Sugeno’s negation parameter was
set to s = 1.7, the spatial regularization parameter to
a = 1.5, and the neighborhood size to 3x3. For
FRFCM, the structure element (SE) used for
morphological reconstruction (MR) was defined as
a square of size 3x3. In RFCM, the decreasing rate
of the weighting matrix was controlled by the
parameter, which was set to & = 0.0008. The g
parameter in RFCM was configured based on the
standard deviation of the image data, reflecting its
association with noise levels. Lastly, for FBKPCS,
two key parameters were defined: the bound and
the spatial parameter, which were set to C = 0.5 and
a = 0.3, respectively.

4.3. Experimental Results on Brain Web
Dataset

The segmentation performance was evaluated on
simulated T1-weighted brain MRI images with
INU levels of 20% and 40%, and noise levels of 3%
and 9%, focusing on slices 80-120. Figure 1 shows
gualitative segmentation results on an axial slice
(slice 86) corrupted with 40% INU and 9% noise.
Quantitative performance was assessed using DS,
JS, and CS metrics, with average results for WM,
GM, and CSF presented in Tables 1-3. Figure 2
plots the average DS values for brain tissues across
slices 80-120 with 9% noise and 40% INU. Key
insights from these results are discussed below:
(1) According to Table 1, the proposed algorithm
produces better results than other methods in WM
segmentation. Based on the CS criterion, the MICO
algorithm struggles to accurately identify WM
boundaries under high noise (9%) and INU levels
(20% and 40%), although it performs well under
lower noise (3%) conditions. Figure 2 highlights
MICO’s difficulties, particularly for slices 104—
113. GMM, sensitive to noise and outliers due to
its normal distribution assumption, also fails to
segment WM effectively under these conditions, as
shown in Table 1. The CSFCM demonstrates the
best DS and JS values for WM segmentation at 9%
noise and 20% INU, maintaining consistency
across slices but underperforming with compact
clusters like CSF. While ARKFCM achieves good
WM segmentation, Figure 2 reveals limitations for
slices 99-104. FCMPSO is less effective under
high noise and INU, often mislabeling background
pixels as GM, and struggles with slices 90-109.
Conversely, FCMWOA performs better across
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these  slices, requiring fewer  parameter
adjustments, emphasizing PSO's limitations for
FCM optimization. Discrete optimization in
FCMGWO surpasses the continuous optimization
of FCMPSO and FCMWOA, yielding more stable
results (Figure 2). Additionally, as shown in Figure
1(g-i), FCMGWO resolves misclassification
issues seen in FCMPSO and FCMWOA. The
AHHO delivers comparable performance to
FCMGWO but is more time-consuming and noise-
sensitive due to its thresholding approach.
SFCMEMBC performs well for WM segmentation
but is less effective for GM and CSF, showing
consistent  results across slices (Fig. 2).
BCIFCMSNI struggles with bias field corrections,
particularly for slices 109-120, as evidenced by its
low JS values in Table 1. Under varying noise (3%,
9%) and INU (20%, 40%) conditions, FRFCM,
RFCM, and CSGKIT show robust WM
segmentation. CSGKIT’s reliance on information
theory rather than MR enhances its robustness over
FRFCM and RFCM. Table 1 indicates that
CSGKIT achieves excellent edge preservation and
contour matching, while Figure 2 confirms
consistent performance across slices. Although
FBKPCS is robust under varying conditions, its
primary drawback lies in the manual tuning
required for spatial and bounded parameters.

(2) As detailed in Table 2, the CSGKIT algorithm
excels over other methods in GM segmentation
under various noise and INU levels, particularly
based on the CS criterion. CSGKIT demonstrates
robust edge preservation and accuracy, achieving
an average CS value of 98% under 9% noise and
20% INU, the highest among all methods, and
performs best under 9% noise and 40% INU. The
MICO algorithm performs poorly for GM
segmentation based on DS and JS criteria due to its
sensitivity to noise and INU. However, it achieves
satisfactory results under low noise (3%) based on
the CS criterion, effectively identifying GM
boundaries. MICO struggles under high noise
(9%), failing to segment GM accurately, unlike the
consistently robust CSGKIT. FCMPSO exhibits
the poorest performance across all conditions,
frequently mislabeling background pixels as GM.
While FCMWOA improves under low noise, it
lacks robustness under higher noise and INU
levels. Figure 2 shows BCIFCMSNI performs well
for slices 8085 and 92-102 but fails elsewhere,
making it unreliable for GM segmentation. Three
algorithms—CSFCM, FBKPCS, and CSGKIT—
deliver reliable GM segmentation. However,
CSFCM’s spherical distance criterion limits its
effectiveness for compact clusters. In contrast,
CSGKIT achieves the highest DS values and excels

in segmenting GM with detailed precision, as
shown in Figure 2. Unlike GMM and
SFCMEMBC, which fail due to normal
distribution assumptions, CSGKIT preserves edges
and captures fine details, outperforming its peers.
(3) CSF regions, composed of compact and small
clusters, pose challenges for FCM-based
approaches due to their reliance on Euclidean
distance. Figure 1(m) shows that FRFCM
mislabels CSF regions as GM, and Table 3
confirms that FCM-based methods struggle with
CSF segmentation, especially when clusters vary in
size and shape. This underscores their inadequacy
for datasets with ellipsoidal clusters. The MICO
algorithm performs better with compact clusters, as
reflected in Table 3, but its performance is
surpassed by CSGKIT. Among FCM-based
methods, SFCMEMBC performs the poorest,
frequently mislabeling CSF pixels as GM (Figure
1(k)). CSGKIT consistently achieves the highest
scores across evaluation criteria, delivering stable
performance under varying noise and INU levels.
Its ability to detect ellipsoidal clusters of diverse
sizes and orientations ensures robust and accurate
CSF segmentation.

(4) The Table 4 highlights differences in
computational efficiency among the algorithms.
Iterative optimization methods like FCMPSO, are
computationally ~ expensive. Contour-based
algorithms, also have longer execution times due to
the dependency of their edge-stopping functions on
the image gradient, increasing overhead. In
contrast, FRFCM and CSGKIT demonstrate the
shortest execution times. However, both face
limitations when cluster sizes and shapes vary
significantly. Despite this, FBKPCS and CSGKIT
deliver robust segmentation performance on
images with noise and INU, achieving these results
with minimal elapsed time.

S0 K7 M BL RN 90 92 M D6 UR 100 107 104 106 108 110 112 154 136 11K 120

—=MICO —o—GMM SFcm ARKFCM =e—=FCMPSO
S FEMWOA = LCMGWD == AHHO e SECMEMIBC == BCIFCMS NI

—aFRFCTIA ——RFCM i FREPCS ——CSGKIT

Figure 2. Performance of all assessed algorithms, including our

proposed CSGKIT algorithm, in terms of the average DS
criterion for WM, GM, and CSF across slices 80-120 of the
Brain Web MRI dataset with 9% noise and 40% INU.
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Table 1. Numerical results of all assessed algorithms, including our proposed CSGKIT algorithm, for WM segmentation on the Brain Web
simulated dataset.

Criteria DS (%) 1 JS (%) 1 CS (%) 1
3% Noise 9% Noise 3% Noise 9% Noise 3% Noise 9% Noise

Methods 20% INU 40% INU 20% INU 40% INU 20% INU 40% INU 20% INU 40% INU 20% INU 40% INU 20% INU 40% INU

(u£S.D) | (u£S.D) | (uES.D) (n£S.D) (u£S.D) | (u£SD) | (u+S.D) (n£8.D) (u£8.D) | (uS.D) | (u+S.D) (n£S.D)

MICO 93.30+0.45 | 94.24+1.45 | 84.06+0.56 | 84.55+5.06 | 87.86+0.67 | 89.61+1.37 | 72.76+0.67 73.50+£6.24 | 95.20+0.76 | 97.15+0.93 | 77.34+0.39 78.26+3.99
GMM 95.68+0.36 | 91.94+0.16 | 85.43+2.70 | 84.59+2.66 | 91.75+0.36 | 85.13+0.26 | 74.70+3.74 73.39+£3.99 | 98.38+0.38 | 91.03+0.26 | 78.44+1.72 78.20+3.14
CSFCM 95.76+£0.26 | 93.91+0.15 | 94.25£1.24 | 91.16£1.36 | 91.91+0.48 | 88.55+0.25 | 89.16+2.19 85.49+2.41 98.57+0.29 | 95.96+0.15 | 97.89+1.07 93.59+2.06
ARKFCM 94.96+3.59 | 92.91+4.47 | 93.11+3.01 | 90.63+31.58 | 91.90+4.37 | 86.88+4.21 | 87.1942.99 | 82.97+30.73 | 98.57+2.52 | 93.55£1.76 | 94.27+0.64 89.80+7.50
FCMPSO 79.62+2.34 | 84.80+1.64 | 62.97+1.94 | 71.14£16.25 | 72.48+2.57 | 77.81+1.89 | S51.15+1.78 | 59.54£13.16 | 90.96+2.36 | 91.34+2.44 | 73.11+0.72 75.79+7.80
FCMWOA 91.76+3.67 | 88.65+3.79 | 80.35+£3.05 | 82.20+15.06 | 85.51+3.34 | 81.55+3.35 | 69.31+2.98 | 70.88+14.18 | 92.52+3.22 | 87.27+3.36 | 76.92+3.24 | 77.76+10.05
FCMGWO 95.63+£0.26 | 94.09+0.65 | 88.05+£1.66 | 87.34+£1.83 | 92.02+0.41 | 89.55+0.37 | 78.69+2.62 77.5742.85 | 98.60+0.25 | 97.21+0.64 | 82.85+3.95 82.84+3.67
AHHO 95.1240.26 | 93.70+0.49 | 88.21+1.78 | 87.60£1.96 | 92.28+0.38 | 89.98+0.46 | 78.94+2.82 77.9843.06 | 99.04+0.24 | 96.41+0.37 | 83.3443.49 83.5343.25
SFCMEMBC | 95.72+0.18 | 94.44£1.54 | 93.91+1.52 | 91.31+1.62 | 91.85+0.31 | 89.50+2.72 | 88.55+£2.67 85.76+2.68 | 98.63+0.17 | 96.80+1.59 | 98.08+1.39 93.87+1.86
BCIFCMSNI | 88.89+2.48 | 84.87+1.93 | 85.76+2.83 | 85.25+10.14 | 81.91+1.63 | 76.08+1.52 | 75.44+3.01 74.9742.24 | 80.09+1.76 | 69.95+2.17 | 82.13+2.47 78.66+8.5
FRFCM 94.1740.32 | 94.26+0.37 | 93.524#2.10 | 91.59+£2.48 | 91.75+0.39 | 89.18+0.44 | 87.88+3.03 85.19+3.06 | 97.93+0.34 | 95.48+0.37 | 96.66+2.91 93.2542.78
RFCM 94.36+0.22 | 93.19+0.41 | 93.79+£2.43 | 91.17#2.45 | 90.63+0.36 | 87.29+0.34 | 88.84+3.21 85.83+3.18 | 97.26+0.27 | 94.14+0.21 | 97.05+2.88 93.4142.98
FBKPCS 96.03+£0.26 | 94.47+1.45 | 90.64+1.82 | 89.53£1.82 | 91.60+0.39 | 89.91+2.36 | 82.92+2.87 81.09+2.93 [ 99.08+0.25 | 97.32+1.53 | 88.66+2.62 87.70+2.57
CSGKIT 96.37+0.68 | 94.64+1.03 | 92.82+1.43 | 91.87+1.42 | 92.83+0.64 | 90.50+1.04 | 86.65+2.33 86.00+2.46 | 99.20+0.62 | 97.37+0.78 | 94.17+1.42 93.89+1.84

Table 2. Numerical results of all assessed algorithms, including our proposed CSGKIT algorithm, for GM segmentation on the Brain Web

simulated dataset.

Criteria DS (%) 1 JS (%) 1 CS (%) 1
3% Noise 9% Noise 3% Noise 9% Noise 3% Noise 9% Noise

-, 20% INU 40% INU 20% INU 40% INU 20% INU 40% INU 20% INU 40% INU 20% INU 40% INU 20% INU 40% INU
(u£8.D) | (uS.D) | (uSD) | (S.D) | (uES.D) | (u£S.D) (n£5.D) (1+8.D) (u£8.D) | (u+S.D) | (uS.D) | (p£S.D)
MICO 87.52+0.43 | 89.10+£0.74 | 75.04+0.43 75.69+3.65 78.30+0.68 | 80.61+0.70 60.33+0.47 61.20+3.96 97.60+0.31 97.36+0.57 | 91.90+0.41 92.20+4.16
GMM 91.80+0.34 | 87.44+0.23 | 80.02+2.61 79.13+2.51 84.88+0.35 | 77.76+0.37 66.78+3.13 65.54+3.46 98.73+0.28 | 94.48+0.23 | 91.8442.09 | 91.33+2.60
CSFCM 90.19+0.24 | 88.48+0.18 | 89.32+1.08 | 86.56+1.17 | 82.20+0.38 | 79.39+0.29 80.72+1.75 76.60+1.78 96.76+0.15 | 95.85£0.16 | 97.60+1.15 | 95.45+1.41
ARKFCM 84.38+3.52 | 78.00£3.38 | 77.57£1.75 | 74.35+23.20 | 75.05+3.38 | 66.57+3.23 65.63£1.73 61.22£21.17 | 97.00+1.21 95.19+1.23 | 95.69+0.56 | 94.21+7.93
FCMPSO 67.34£3.01 | 67.86+3.23 | 59.15+2.09 | 58.82+12.87 [ 52.28+2.87 | 57.22+£2.98 45.45+1.73 44.66+12.43 | 92.63+1.22 | 91.64+1.29 | 88.40+0.82 | 88.2246.78
FCMWOA 78.84+2.60 | 76.73+2.55 | 67.94+3.69 | 68.44£9.70 | 68.44+2.46 | 65.35+£2.35 53.36+3.41 53.65+10.76 | 95.67<1.15 | 93.54+£1.08 | 91.58+3.52 | 91.77+7.62
FCMGWO 91.39+0.36 | 90.10+0.48 | 81.03+1.39 | 80.33+1.56 | 83.37+0.47 | 82.17+0.45 68.13£1.96 67.15+2.18 98.62+0.28 | 98.10+0.35 | 94.16+1.30 | 93.80+1.37
AHHO 91.77£0.31 | 90.44+0.47 | 81.37+1.26 | 80.81+1.41 85.02+0.45 | 82.49+0.49 68.60+1.78 67.82+1.98 98.58+0.19 | 98.21+£0.52 | 94.41+1.16 | 94.15+1.31
SFCMEMBC | 84.40+0.25 | 83.41+2.30 | 83.92+2.65 82.78+2.17 | 73.09+0.38 | 71.61+3.43 72.37+3.42 70.68+3.18 92.33+0.20 | 91.41+1.97 | 93.99+1.86 | 92.89+1.78
BCIFCMSNI | 68.95£2.71 | 66.7442.61 | 69.81+2.53 67.96+3.25 61.00+1.72 | 58.92+1.64 55.58+1.21 55.00+1.05 89.79+1.89 | 84.78+1.37 | 93.94+2.51 | 91.18+4.13
FRFCM 89.51+0.48 | 88.22+0.56 | 86.81+1.16 | 85.21+1.98 | 81.09+0.61 | 78.98+0.32 76.74+0.91 74.12+2.53 94.86+0.19 | 93.75+0.21 94.70+£0.46 | 93.11+2.25
RFCM 89.27+0.52 | 87.13£0.41 | 88.25+1.24 | 86.01+2.54 | 80.66+0.54 | 77.21+0.45 78.80+0.90 75.22+2.22 95.04+0.13 | 94.08+0.13 | 95.41+0.34 | 94.19+2.14
FBKPCS 91.58+0.32 | 90.27+1.72 | 84.66+1.16 | 83.48+1.26 | 84.72+0.47 | 82.20+2.49 73.41£1.78 71.66+1.87 98.52+0.21 98.24+1.02 | 96.20+0.95 | 95.44+1.16
CSGKIT 92.81+0.69 | 90.70+0.85 | 87.89+1.03 86.68+1.04 | 86.62+1.01 | 83.10+1.29 78.41£1.74 76.93+1.78 99.34+0.51 | 98.42+0.81 | 97.69+0.76 | 96.77+1.17
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frequent mislabeling of CSF as the background.
Although FCMGWO outperforms FCMPSO and
FCMWOA, it remains inadequate for CSF
segmentation due to the reliance of FCM-based
methods on Euclidean distance, which is unsuitable
for compact clusters like CSF. Similarly, the
AHHO algorithm, while effective for WM and GM
segmentation, struggles with CSF. Figures 3(i) and
3(j) illustrate that both FCMGWO and AHHO
frequently misclassify CSF as the background.

(3) The OASIS dataset's high INU levels make bias
correction-based methods, such as MICO and
BCIFCMSNI, highly effective for WM and GM
segmentation. However, BCIFCMSNI performs
poorly in CSF segmentation. Figure 3(l) shows that
while BCIFCMSNI efficiently identifies WM,
GM, and CSF pixels, MICO excels in CSF
segmentation but falls short in WM segmentation
compared to the proposed CSGKIT algorithm. As
shown in Table 5, CSFCM is unsuitable for real
MRI image segmentation under INU conditions
due to the increased computational complexity
from incorporating a bias term into the FCM cost
function. Despite not relying on bias estimation,
the CSGKIT algorithm  outperforms its
counterparts in brain tissue segmentation.

(4) The FRFCM, RFCM, and FBKPCS algorithms
perform well in WM and GM segmentation but
struggle with accurate CSF segmentation due to its
compact, small clusters. These methods are less

(a) (b) (c) (d)

(m) (n) (o) (p)

Figure 1. Visual results of different algorithms in the
segmentation of a simulated MRI image (Brain Web, slice 86)
with 40% INU and 9% noise. (a) Input, (b) Ground truth, (c)

MICO, (d) GMM, (e) CSFCM, (f) ARKFCM, (g) FCMPSO,

(h) FCMWOA, (i) FCMGWO, (j) AHHO, (k) SFCMEMBC,

(I BCIFCMSNI, (m) FRFCM, (n) RFCM, (0) FBKPCS, and
(p) proposed CSGKIT.

suitable for CSF, which plays a critical role in
clearing metabolic waste from the brain. As shown
in Table 5, the CSGKIT algorithm, by utilizing the
Mahalanobis distance instead of the Euclidean

distance, proves more effective for clustering

4.4. Experimental Results on OASIS Dataset compact data like CSF.

For further examination, the segmentation

performance was repeated for evaluation on T1- e EEARERREES
weighted MRI images from the OASIS dataset. -~ - 5

Figure 3 shows qualitative results for an OASIS 3:3_5'

image, while Table 5 summarizes the average 5% e

values of DS, JS, and CS for WM, GM, and CSF.
Additionally, Figure 4 presents a boxplot
comparing the average DS values for WM, GM, 55%
and CSF across the algorithms. Key insights from
these results are as follows:

(1) Table 5 demonstrates that the proposed 5%
CSGKIT algorithm secures the top DS values in

65%

45%

WM and GM segmentation, JS in WM 5

segmentation, and CS in WM and GM —

Segmentation: B mico 2 cmm CSFCM ARKFCM B Foweso

(2) Population-based approaches, such as N . _

FCMPSO and FCMWOA, along with ARKFCM, ok Wroeew; Wasn.  RoesecBeeee
B FRFECM B rRFOM B FBKPCS = CSGKIT

exhibit the poorest performance. Figure 3(g) shows
that FCMPSO often misclassifies the background
as WM, while Figure 3(h) highlights FCMWOA's

Figure 4. Boxplot comparing the proposed CSGKIT algorithm
and other methods in terms of average DS criterion for WM,
GM, and CSF on the OASIS dataset.
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Table 3. Numerical results of all assessed algorithms, including our proposed CSGKIT algorithm, for CSF segmentation on the Brain Web
simulated dataset.

Criteria DS (%) 1 JS (%) 1 CS (%) 1
3% Noise 9% Noise 3% Noise 9% Noise 3% Noise 9% Noise

Methods 20% INU 40% INU 20% INU 40% INU 20% INU 40% INU 20% INU 40% INU 20% INU 40% INU 20% INU 40% INU

(u£SD) | (uES.D) | (uS.D) (u£8.D) (u£SD) | (u£8D) | (utS.D) (u£8.D) (u£SD) | (uiSD) | (utSD) (u£S.D)

MICO 87.44+0.46 | 88.44+0.78 | 82.70+0.46 83.37+4.11 77.89+£0.41 | 79.44+0.49 | 70.70+0.68 71.67+6.09 | 97.63+0.19 | 98.35+0.45 | 95.13+0.42 95.07+3.61
GMM 89.80+0.54 | 85.44+0.50 | 84.5242.58 84.08+2.48 | 81.66+0.58 | 74.92+0.78 | 73.27+3.64 72.60+3.73 | 98.69+0.15 | 97.03+0.17 | 96.46+1.66 95.85+1.66
CSFCM 83.17+0.41 | 84.63£0.35 | 85.08+1.96 84.60+2.18 | 71.40+0.61 | 73.51+0.52 | 74.23+3.02 73.38+3.32 | 93.13+0.25 | 94.02+0.22 | 96.29+1.69 95.31£1.39
ARKFCM 67.08+1.21 64.95+1.26 63.10+0.61 65.98+10.69 | 56.76+1.50 53.84+1.57 52.12+0.93 53.59+13.16 | 93.07+1.33 91.24+1.42 90.41+0.59 90.50+11.40
FCMPSO 72.4143.15 | 80.39+2.78 | 65.03+3.06 | 65.66£12.09 | 62.27+3.04 | 71.56+2.75 | 51.2242.96 | 52.37+13.30 | 92.62+1.03 | 94.78+1.05 | 88.33+1.12 | 88.94+10.14
FCMWOA 75.57+1.47 74.22+1.79 67.34+1.75 68.01+11.98 | 62.76+1.78 61.36+2.00 52.62+2.96 52.80+£13.13 | 92.46+1.28 91.45+1.77 89.35+4.52 89.80+11.07
FCMGWO 88.65+0.35 | 89.50+£0.69 | 82.56+2.50 82.18+2.73 | 80.07+0.56 | 81.19+0.59 | 70.38+3.64 69.83+3.92 | 98.34+0.29 | 98.21+0.28 | 95.14+1.20 94.91+1.12
AHHO 89.34+0.42 | 89.69+0.49 | 83.17+2.14 82.9442.13 | 80.89+0.64 | 81.76+0.58 | 71.24+3.17 70.91+3.14 | 98.77+0.18 | 98.50+0.48 | 95.67+1.28 95.56+1.14
SFCMEMBC | 60.79+0.58 | 61.37+5.52 | 67.56+4.18 68.73+3.97 | 43.9240.62 | 44.50+5.94 | 51.34+3.27 52.59+4.21 83.07+0.42 | 82.72+4.07 | 87.75+4.25 88.27+3.20
BCIFCMSNI | 57.04+1.27 | 47.29+1.06 | 52.09+0.87 64.26+1.08 | 49.83+1.31 | 51.52+0.97 | 44.07+0.95 58.89+1.94 | 73.80+1.04 | 59.06+1.02 | 74.64+2.62 76.33£1.25
FRFCM 82.52+1.21 | 83.69£1.09 | 82.15+1.01 82.1342.73 | 70.43+0.95 | 72.11+0.84 | 70.10+0.79 70.06+3.27 | 87.97+0.65 | 88.54+0.72 | 88.51+0.93 89.19+2.32
RFCM 83.73£0.77 | 83.62+0.85 | 83.80+0.62 83.08+2.89 | 72.07+0.65 | 71.92+0.73 | 76.16+0.48 71.18+3.45 | 89.00+0.72 | 89.52+0.68 | 89.98+0.88 91.02+2.55
FBKPCS 88.84+0.44 | 89.41+2.89 | 85.14+1.98 85.15+2.21 80.09+0.55 | 81.14+3.04 | 74.95+3.08 74.20+3.38 | 98.21+0.22 | 98.03+0.91 | 96.7240.96 96.48+0.71
CSGKIT 91.87+1.13 | 91.19+1.26 | 89.29+1.57 88.68+1.75 | 85.06+1.26 | 83.96+t1.41 | 80.69+2.40 79.76+2.67 | 99.27+0.47 | 99.13+0.88 | 98.60+0.44 98.30+0.30

Table 4. Average execution times of various algorithms on the Brain Web dataset with 40% INU and 9% noise.
All values are presented in seconds.
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(5) Figure 4 helps discern that the proposed
CSGKIT algorithm attains higher segmentation
accuracy for brain tissues compared to other
methods. Notably, CSGKIT exhibits the lowest
standard  deviation, indicating  consistent
performance across WM, GM, and CSF
segmentation. As shown in Figure 3, all algorithms,
except CSGKIT, frequently mislabel CSF pixels,
leading to suboptimal segmentation. In contrast,
CSGKIT effectively and accurately segments CSF
tissue, demonstrating its robustness.

(6) The quantitative evaluation presented in Tables
5 and 6 clearly demonstrates the superior
performance of the proposed algorithm compared
to a wide range of benchmark segmentation
methods. In terms of the DS, JS, and CS criteria,
proposed algorithm consistently achieved the
highest mean values across all brain tissues (WM,
GM, and CSF), with relatively low standard
deviations (« + S.D.), reflecting its robustness and
stability in handling structural and intensity
variations in MRI data. Specifically, CSGKIT
obtained DS values of 95.87%, 87.43%, and
83.42% for WM, GM, and CSF, respectively, and

maintained superior performance in JS (91.31%,
76.83%, 73.70%) and CS (98.02%, 96.64%,
91.22%) criteria, outperforming all competing
methods by a statistically significant margin. To
verify the reliability of these improvements, a two-
sample t-test was performed between the results of
the proposed algorithm and each competing
method under all evaluation criteria. The resulting
p-values (p) are provided in Table 6. As shown,
most p-values are below the 0.05 threshold,
indicating that the observed improvements are
statistically significant at the 95% confidence level.
Only a few isolated cases (such as the WM region
under DS criterion versus FCMGWO and
FBKPCS) exhibited p-values above 0.05,
suggesting that the differences in those specific
cases were not statistically  significant.
Nonetheless, the overall statistical evidence
strongly supports the superior segmentation
accuracy and consistency of the proposed method.
These findings confirm that the CSGKIT algorithm
not only achieves higher segmentation precision
but also demonstrates statistically validated
improvements through rigorous t-test analysis. The
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combination of adaptive information-theoretic
measures and conditional spatial information
contributes to its ability to minimize boundary
ambiguity and enhance tissue differentiation,
leading to more accurate and stable MRI brain
segmentation results.

various algorithms. The results indicate that
FCMPSO, FCMWOA, FCMGWO, and AHHO
algorithms are  computationally — expensive.
Similarly, contour-based methods like MICO have
longer execution times. In contrast, the FRFCM
and CSGKIT algorithms demonstrate the lowest

(7) Table 7 presents the average running times for

execution times,

compared to other approaches.

highlighting their efficiency

Table 5. Numerical results of all assessed algorithms, including our proposed CSGKIT algorithm, for segmentation task on the
OASIS dataset.

Criteria DS (%) 1 JS (%) 1 CS (%) 1
WM GM CSF WM GM CSF WM GM CSF
Methods |  (u+S.D) (1+S.D) (14S.D) (1+S.D) (14S.D) (1+S.D) (1£S.D) (1£S.D) (1£S.D)

MICO 91.79+£0.25 | 86.03+£0.52 | 88.54+0.70 | 84.92+0.42 | 75.82+0.75 | 80.06+1.02 | 94.55+0.27 | 95.43+£0.19 | 94.83+0.55
GMM 90.14+£0.40 | 77.61£1.73 | 75.21£1.36 | 82.26+£0.62 | 65.74+1.69 | 62.03£1.63 | 93.09+0.33 | 90.42+1.08 | 82.67+1.56
CSFCM 94.09+0.12 | 80.62+1.13 | 69.56+1.94 | 88.85+0.21 | 68.91+1.48 | 56.66+2.27 | 97.01+£0.19 | 94.12+0.45 | 85.62+1.26
ARKFCM 93.15+0.72 | 70.50£1.85 | 57.21£2.67 | 87.66+0.77 | 57.44+2.19 | 44.87+£2.71 | 95.48+0.74 | 92.09+0.66 | 77.83+1.71
FCMPSO 80.17£2.29 | 67.26£2.35 | 53.9842.51 | 72.06+2.72 | 55.05+2.51 | 41.17+2.49 | 89.59+1.13 | 91.574£0.69 | 80.84+1.36
FCMWOA 86.84£1.18 | 71.56£2.21 | 60.7142.26 | 78.27+1.50 | 59.63+2.31 | 47.12+2.22 | 86.35£1.83 | 91.85+0.78 | 83.00£1.91
FCMGWO 95.12+0.12 | 82.19£1.03 | 68.56%1.87 | 90.61+0.21 | 70.98+1.39 | 55.20+2.16 | 97.01+0.12 | 95.14+£0.36 | 84.44+1.09
AHHO 95.08+0.13 | 83.44+1.00 | 71.36+1.85 | 90.32+0.24 | 72.70+1.32 | 58.53+2.16 | 97.26+0.12 | 95.62+0.34 | 85.94+1.09
SFCMEMBC | 93.94+0.25 | 82.82+0.92 | 68.73+1.18 | 88.66+£0.37 | 71.57£1.17 | 53.51£1.31 | 97.160.56 | 92.09+0.59 | 81.46+1.71
BCIFCMSNI | 93.35+£0.23 | 87.10+0.61 | 83.73+1.59 | 87.61+0.39 | 78.39+0.85 | 74.37+1.75 | 96.66+0.19 | 96.04+0.23 | 93.44+0.94
FRFCM 93.95+0.12 | 78.17£1.12 | 66.53+1.91 | 88.61+0.20 | 65.11+1.46 | 52.77+2.22 | 95.60+0.19 | 93.89+0.42 | 83.67+1.27
RFCM 94.42+0.14 | 82.26+0.94 | 71.83+1.85 | 89.46+0.24 | 71.24+1.23 | 59.31+2.13 | 96.60+0.20 | 94.57+0.40 | 86.47+1.21
FBKPCS 95.06+£0.12 | 81.18%1.11 | 67.78+1.93 | 90.47+0.22 | 69.72+1.50 | 54.47+2.23 | 97.11+0.13 | 95.08+0.39 | 83.91+1.15
CSGKIT 95.87+0.12 | 87.43£0.62 | 83.42+1.33 | 91.31+£0.19 | 76.83+£1.07 | 73.70£1.53 | 98.02+0.15 | 96.64+0.21 | 91.22+1.01

Table 6. Statistical significance (p-values) of segmentation performance differences between the proposed CSGKIT algorithm and
competing methods across DS, JS, and CS criteria for WM, GM, and CSF tissues on OASIS dataset.

Criteria

DS Criterion JS Criterion CS Criterion
Methods | WM GM CSF WM GM CSF WM GM CSF
MICO 1.10e-43 | 0.9965 1.44¢-12 | 4.17¢-46 | 0.6142 3.30e-11 7.71e-30 | 0.1584 1.25¢-12
GMM 6.30e-45 | 3.76e-10 | 6.92¢-09 | 9.54e-50 | 7.04e-13 6.97¢-11 2.08¢-45 | 5.28¢-12 | 3.37¢-09
CSFCM 5.63e-53 | 1.03e-29 1.12e-54 | 5.68e-54 | 4.20e-33 | 2.16e-58 1.86e-07 | 4.08¢-35 | 8.65¢-33
ARKFCM 3.27e-05 | 1.48¢-49 1.84e-56 | 8.48e-10 | 1.02e-42 1.73e-65 | 4.73¢-05 | 2.46e-30 | 3.88¢-44
FCMPSO 2.90e-17 | 5.93e-24 | 5.07e-37 | 9.47e-19 | 4.87e-25 | 2.21e-38 | 7.38e-20 | 2.82e-20 1.56e-22
FCMWOA 2.28e-19 | 1.88e-15 5.75e-26 1.31e-24 | 1.39%-16 2.15e-28 3.58e-15 | 5.73e-13 1.91e-06
FCMGWO 0.0655 | 1.17¢-21 1.38¢-60 0.0681 | 7.30e-23 | 5.33¢-63 | 4.88¢-05 | 3.01e-17 1.07e-45
AHHO 0.1812 | 1.05e-26 | 3.35¢-57 02153 | 1.62¢-27 | 2.46¢-60 0.0051 | 2.38¢-19 | 4.82¢-43
SFCMEMBC | 2.88¢-10 | 0.0016 1.28e-15 1.11e-12 | 8.86e-04 | 3.81e-18 0.5018 | 7.72e-12 1.19¢-06
BCIFCMSNI | 3.23e-18 | 0.0400 0.3250 4.71e-19 | 0.0571 0.2939 7.77e-06 | 0.0583 1.81¢-04
FRFCM 4.99¢20 | 3.60c-14 1.74¢-40 1.22e-20 | 4.30¢e-16 | 2.10e-44 | 2.56e-16 | 3.36e-22 | 3.56e-18
RFCM 5.28¢-32 | 2.01e-53 1.18e-59 | 5.57e-33 | 7.42e-59 139¢-62 | 8.85¢-43 | 535¢-44 | 6.24¢-47
FBKPCS 0.1188 | 1.23¢24 | 4.70e-60 0.1170 | 1.02¢-25 | 3.50e-63 0.0038 | 1.90e-17 | 6.46¢-50
Table 7. Average execution times of various algorithms on the OASIS dataset.
All values are presented in seconds.
2 2 9 = R s E
= & 8 < e 2< 2o < Ba &% & = = &
3.72 133 0.56 1.82 7.95 3. 6.57 20.38 1.05 3.18 0.11 1.16 0.59 0.39
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Figure 3. Visual results of different algorithms in the
segmentation of a sample from the OASIS dataset. (a)
Input, (b) Ground truth, (c) MICO, (d) GMM, (e)
CSFCM, (f) ARKFCM, (g) FCMPSO, (h) FCMWOA, (i)
FCMGWO, (j) AHHO, (k) SFCMEMBC, (I)
BCIFCMSNI, (m) FRFCM, (n) RFCM, (0) FBKPCS, and
(p) proposed CSGKIT.

5. Conclusion and Future Work

Traditional FCM-based approaches rely on
Euclidean distance for clustering, which fails to
account for variations in distances within compact
and similarly shaped clusters. This limitation is
particularly problematic for CSF, a compact cluster
critical for clearing metabolic waste from the brain.
The reliance on Euclidean distance often leads to
misclassification of CSF into other classes.
Additionally, noise and INU negatively impact
clustering performance. To address these
challenges, this study proposed the CSGKIT
algorithm for tissue segmentation in T1-weighted
MRI images. Unlike conventional approaches,
CSGKIT does not require computing distances
among pixels within local spatial neighborhoods.
Our algorithm introduces three key innovations: (i)
information theory enhances robustness to noise
and improves segmentation accuracy; (ii)
Mahalanobis distance replaces Euclidean distance,
providing better handling of compact and irregular
clusters like CSF; and (iii) a conditional spatial
approach incorporates local spatial relationships

through a fuzzy weighted membership matrix. The
proposed algorithm is computationally efficient,
does not require complex parameter tuning, and
achieves high segmentation accuracy.
Experimental evaluations on the BrainWeb
simulated and OASIS datasets demonstrated that
the CSGKIT algorithm outperforms peer methods
in robustness to noise and INU. Additionally, it
maintains consistent performance across all image
slices and effectively preserves edges under
varying conditions. While the CSGKIT algorithm
shows promising results, it does not fully leverage
the neighboring information of each pixel, which
could further enhance segmentation accuracy.
Future work may explore integrating neighboring
information more effectively to improve
segmentation outcomes. Furthermore, developing
an adaptive mechanism within the Gustafson-
Kessel framework to automatically select the
number of clusters could be a potential direction for
improvement. Lastly, incorporating bias field
correction into the CSGKIT cost function may
further enhance its robustness. Additionally,
although this study focuses on T1-weighted MRI
images as the standard protocol for structural brain
imaging, future research should investigate
extending CSGKIT to other MRI modalities such
as T2-weighted and FLAIR images, which may
require modality-specific parameter optimization
to account for different tissue contrast
characteristics.
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