[1] S. Hochreiter, (1997). Long Short-term Memory. Neural Computation MIT-Press.
[2] S. Siami-Namini, N. Tavakoli, & A. S. Namin, (2018, December). A comparison of ARIMA and LSTM in forecasting time series. In 2018 17th IEEE international conference on machine learning and applications (ICMLA) (pp. 1394-1401). Ieee.
[3] Y. Fu, D. Liu, J. Chen, & L. He, (2024). Secretary bird optimization algorithm: a new metaheuristic for solving global optimization problems. Artificial Intelligence Review, vol. 57, no. 5, 1-102.
[4] Q. Miao, Q. Shu, B. Wu, X. Sun, & K. Song, (2022). A modified complex variational mode decomposition method for analyzing nonstationary signals with the low-frequency trend. Sensors, vol. 22, no. 5, 1801.
[5] H. Song, & H. Choi, (2023). Forecasting stock market indices using the recurrent neural network based hybrid models: CNN-LSTM, GRU-CNN, and ensemble models. Applied Sciences, vol. 13, no. 7, 4644.
[6] N. E. Huang, Z. Wu, S. R. Long, K. C. Arnold, Chen. X., & K. Blank, (2009). On instantaneous frequency. Advances in adaptive data analysis, vol. 1, no. 02, pp. 177-229.
[7] S. L. Goh, M. Chen, D. H. Popović, K. Aihara, D. Obradovic, & D. P. Mandic, (2006). Complex-valued forecasting of wind profile. Renewable Energy, vol. 31, no. 11, pp. 1733-1750.
[8] A. Clark, (2008). Streamlining digital signal processing: A tricks of the trade guidebook (R. Lyons, Ed.) [book review]. IEEE Signal Processing Magazine, vol. 25, no. 3, pp. 146-147.
[9] Mutinda, J. K. & Langat. A. K. (2024). Stock price prediction using combined GARCH-AI models. Scientific African, vol. 26, e02374.
[10] D. Yao, & K. Yan, (2024). Time series forecasting of stock market indices based on DLWR-LSTM model. Finance Research Letters, vol. 68, 105821.
[11] H., Song & H. Choi, (2023). Forecasting stock market indices using the recurrent neural network based hybrid models: CNN-LSTM, GRU-CNN, and ensemble models. Applied Sciences, vol. 13, no. 7, 4644.
[12] P. Lv, Q. Wu, J. Xu, & Y. Shu, (2022). Stock index prediction based on time series decomposition and hybrid model. Entropy, vol. 24, no. 2, 146.
[13] H. H. Htun, M. Biehl, & N. Petkov, (2024). Forecasting relative returns for S&P 500 stocks using machine learning. Financial Innovation, pp. 10, no. 1, 118.
[14] S. Mehtab, J. Sen, & A. Dutta, (2021). Stock price prediction using machine learning and LSTM-based deep learning models. In Machine Learning and Metaheuristics Algorithms, and Applications: Second Symposium, SoMMA 2020, Chennai, India, October 14–17, 2020, Revised Selected Papers 2 (pp. 88-106). Springer Singapore.
[15] S. K. Chandar, (2024). Deep learning framework for stock price prediction using long short-term memory. Soft Computing, pp. 1-11.
[16] D. H. De Swardt, (2011). Late-summer breeding record for Secretarybirds Sagittarius serpentarius in the Free State. Gabar, vol. 22, pp. 31-33.
[17] S. D. Hofmeyr, C. T. Symes, & L. G. Underhill. (2014). Secretarybird Sagittarius serpentarius population trends and ecology: insights from South African citizen science data. PLoS One, vol. 9, no. 5, e96772.
[18] A. FEDUCCIA, & M. R. VOORHIES, (1989). Miocene hawk converges on secretarybird. Ibis, vol. 131, no. 3, pp. 349-354.
[19] Y. Yujun, Y. Yimei, & X. Jianhua, (2020). A hybrid prediction method for stock price using LSTM and ensemble EMD. Complexity, vol. 2020, no. 1, 6431712.
[20] S. M. Ebrahimi, & M. J. Hemmati, (2023). Design optimization of the complementary voltage controlled oscillator using a multi-objective gravitational search algorithm. Evolving Systems, vol. 14, no. 1, pp. 59–67.
[21] Y. Guo, S. Han, C., Li, Y., Yin, X., & Bai, Y. (2018). An adaptive SVR for high-frequency stock price forecasting. IEEE Access, vol. 6, pp. 11397–11404.