Document Type : Original/Review Paper

Authors

Department of Applied Mathematics, Shahid Bahonar University of Kerman.

10.22044/jadm.2025.15878.2703

Abstract

Accurate and reliable stock price prediction is both a formidable and essential task in financial markets, requiring the use of advanced techniques. This paper presents an innovative approach that integrates Long Short-Term Memory (LSTM) networks with Modified Complex Variational Mode Decomposition (MCVMD) for preprocessing and the Secretary Bird Optimization Algorithm (SBOA) for hyperparameter optimization. In the preprocessing phase, MCVMD decomposes stock price time series into intrinsic mode functions, effectively capturing complex patterns and reducing noise. To enhance predictive performance, SBOA optimizes both the hyperparameters of the LSTM network and the decomposition parameters of MCVMD. The proposed methodology is evaluated on datasets from six companies: Ferrari NV (RACE) and Intesa Sanpaolo (ISP) from Italy, Amadeus IT (AMA) and Repsol (REP) from Spain, and Hitachi Ltd (6501) and Chugai Pharmaceutical Co., Ltd. (4519) from Japan. Results show that the LSTM-MCVMD-SBOA model achieves lower error values compared with conventional benchmarks including ARIMA-GARCH, vanilla LSTM, Long Short-Term Memory-Particle Swarm Optimization (LSTM-PSO), and Long Short-Term Memory-Sine Cosine Algorithm (LSTM-SCA). Compared with these alternatives, SBOA was selected because of its superior balance between exploration and exploitation, inspired by secretary bird hunting and evasion behavior, which enables efficient search in complex optimization landscapes. Overall, the proposed model demonstrates significantly improved predictive accuracy over conventional methods, highlighting the efficacy of combining advanced decomposition with nature-inspired optimization for stock market forecasting.

Keywords

Main Subjects

[1] S. Hochreiter, (1997). Long Short-term Memory. Neural Computation MIT-Press.‏
 
[2] S. Siami-Namini, N. Tavakoli, & A. S. Namin, (2018, December). A comparison of ARIMA and LSTM in forecasting time series. In 2018 17th IEEE international conference on machine learning and applications (ICMLA) (pp. 1394-1401). Ieee.‏
[3] Y. Fu, D. Liu, J. Chen, & L. He, (2024). Secretary bird optimization algorithm: a new metaheuristic for solving global optimization problems. Artificial Intelligence Review, vol. 57, no. 5, 1-102.‏
 
[4] Q. Miao, Q. Shu, B. Wu, X. Sun, & K. Song, (2022). A modified complex variational mode decomposition method for analyzing nonstationary signals with the low-frequency trend. Sensors, vol. 22, no. 5, 1801.‏
 
[5] H. Song, & H. Choi, (2023). Forecasting stock market indices using the recurrent neural network based hybrid models: CNN-LSTM, GRU-CNN, and ensemble models. Applied Sciences, vol. 13, no. 7, 4644.‏
 
[6] N. E. Huang, Z. Wu, S. R. Long, K. C. Arnold, Chen. X., & K. Blank, (2009). On instantaneous frequency. Advances in adaptive data analysis, vol. 1, no. 02, pp. 177-229.‏
 
[7] S. L. Goh, M. Chen, D. H. Popović, K. Aihara, D. Obradovic, & D. P. Mandic, (2006). Complex-valued forecasting of wind profile. Renewable Energy, vol. 31, no. 11, pp. 1733-1750.‏
 
[8] A. Clark, (2008). Streamlining digital signal processing: A tricks of the trade guidebook (R. Lyons, Ed.) [book review]. IEEE Signal Processing Magazine, vol. 25, no. 3, pp. 146-147.‏
 
[9] Mutinda, J. K. & Langat. A. K. (2024). Stock price prediction using combined GARCH-AI models. Scientific African, vol. 26, e02374.‏
 
[10] D. Yao, & K. Yan, (2024). Time series forecasting of stock market indices based on DLWR-LSTM model. Finance Research Letters, vol. 68, 105821.‏
 
[11] H., Song & H. Choi, (2023). Forecasting stock market indices using the recurrent neural network based hybrid models: CNN-LSTM, GRU-CNN, and ensemble models. Applied Sciences, vol. 13, no. 7, 4644.‏
 
[12] P. Lv, Q. Wu, J. Xu, & Y. Shu, (2022). Stock index prediction based on time series decomposition and hybrid model. Entropy, vol. 24, no. 2, 146.‏
 
[13] H. H. Htun, M. Biehl, & N. Petkov, (2024). Forecasting relative returns for S&P 500 stocks using machine learning. Financial Innovation, pp. 10, no. 1, 118.‏
 
[14] S. Mehtab, J. Sen, & A. Dutta, (2021). Stock price prediction using machine learning and LSTM-based deep learning models. In Machine Learning and Metaheuristics Algorithms, and Applications: Second Symposium, SoMMA 2020, Chennai, India, October 14–17, 2020, Revised Selected Papers 2 (pp. 88-106). Springer Singapore.‏
 
[15] S. K. Chandar, (2024). Deep learning framework for stock price prediction using long short-term memory. Soft Computing, pp. 1-11.‏
 
[16] D. H. De Swardt, (2011). Late-summer breeding record for Secretarybirds Sagittarius serpentarius in the Free State. Gabar, vol. 22, pp. 31-33.‏
 
[17] S. D. Hofmeyr, C. T. Symes, & L. G. Underhill. (2014). Secretarybird Sagittarius serpentarius population trends and ecology: insights from South African citizen science data. PLoS One, vol. 9, no. 5, e96772.‏
 
[18] A. FEDUCCIA, & M. R. VOORHIES, (1989). Miocene hawk converges on secretarybird. Ibis, vol. 131, no. 3, pp. 349-354.‏
 
[19] Y. Yujun, Y. Yimei, & X. Jianhua, (2020). A hybrid prediction method for stock price using LSTM and ensemble EMD. Complexity, vol. 2020, no. 1, 6431712.
 
[20] S. M. Ebrahimi, & M. J. Hemmati, (2023). Design optimization of the complementary voltage controlled oscillator using a multi-objective gravitational search algorithm. Evolving Systems, vol. 14, no. 1, pp. 59–67.
 
[21] Y. Guo, S. Han, C., Li, Y., Yin, X., & Bai, Y. (2018). An adaptive SVR for high-frequency stock price forecasting. IEEE Access, vol. 6, pp. 11397–11404.