[1] R. Kaifi, “A Review of Recent Advances in Brain Tumor Diagnosis Based on AI-Based Classification,” Diagnostics (Basel), vol. 13, no. 18, Sep. 2023, doi: 10.3390/diagnostics13183007.
[2] M. Toğaçar, B. Ergen, and Z. Cömert, “BrainMRNet: Brain tumor detection using magnetic resonance images with a novel convolutional neural network model,” Medical Hypotheses, vol. 134, 2020, doi: 10.1016/j.mehy.2019.109531.
[3] K. V. Chaithanyadas and G. R. G. King, “Brain tumor classification: a comprehensive systematic review on various constraints,” Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, vol. 11, no. 3, pp. 517–529, 2023, doi: 10.1080/21681163.2022.2083019.
[4] U. Aeman, M. Kaleem, M. Sarwar, M. Azhar, et al., “A systematic literature review on classification of brain tumor detection,” Journal of Computing & Biomedical Informatics, vol. 5, no. 2, pp. 327–337, 2023.
[5] D. Jafarkhah Seighalani, M. Yazdi, and M. Faghihi, “Brain Tumor Detection using Fusion of MRI and CT Scan Images based on Deep Learning Feature Extraction Methods,” Iranian Journal of Biomedical Engineering, vol. 14, no. 4, pp. 267–276, 2021, doi: 10.22041/ijbme.2020.123852.1583.
[6] Z. Khazaei, M. Langarizadeh, and M. E. Shiri Ahmad Abadi, “Glioma Brain Tumor Identification Using Magnetic Resonance Imaging with Deep Learning Methods: A Systematic Review,” JHBMI, vol. 8, no. 2, pp. 218–233, 2021.
[7] A. Najaf-Zadeh and H. R. Ghaffari, “A Two-Dimensional Convolutional Neural Network for Brain Tumor Detection From MRI,” Intern Med Today, vol. 26, no. 4, pp. 398–413, 2020.
[8] H. El Hamdaoui, A. Benfares, S. Boujraf, et al., “High precision brain tumor classification model based on deep transfer learning and stacking concepts,” Indones. J. Electr. Eng. Comput. Sci., vol. 24, pp. 167–177, 2021.
[9] M. A. Khan, I. Ashraf, M. Alhaisoni, et al., “Multimodal brain tumor classification using deep learning and robust feature selection: A machine learning application for radiologists,” Diagnostics, vol. 10, pp. 1–19, 2020.
[10] D. Filatov and H. Yar, “Brain tumor diagnosis and classification via pre-trained convolutional neural networks,” in Proc. Int. Conf. Recent Trends Comput., 2022.
[11] A. A. Akinyelu, F. Zaccagna, J. T. Grist, M. Castelli, and L. Rundo, “Brain tumor diagnosis using machine learning, convolutional neural networks, capsule neural networks and vision transformers applied to MRI: A survey,” J. Imaging, vol. 8, pp. 1–40, 2022.
[12] H. Kibriya, R. Amin, A. H. Alshehri, M. Masood, S. S. Alshamrani, and A. A. Alshehri, “Novel and effective brain tumor classification model using deep feature fusion and famous machine learning classifiers,” Comput. Intell. Neurosci., 2022.
[13] Z. Al-Azzwi and A. Nazarov, “Brain Tumor Classification based on Improved Stacked Ensemble Deep Learning Methods,” Asian Pacific J. Cancer Prev., vol. 24, pp. 2141–2148, 2023, doi: 10.31557/APJCP.2023.24.6.2141.
[14] S. Deepak and P. Ameer, “Brain tumor classification using deep CNN features via transfer learning,” Comput. Biol. Med., vol. 111, p. 103345, 2019, doi: 10.1016/j.compbiomed.2019.103345.
[15] R. Jain, N. Jain, A. Aggarwal, and D. J. Hemanth, “Convolutional neural network based Alzheimer’s disease classification from magnetic resonance brain images,” Cogn. Syst. Res., 2019, doi: 10.1016/j.cogsys.2018.12.015.
[16] Z. N. K. Swati, Q. Zhao, M. Kabir, F. Ali, A. Zakir, S. Ahmad, and J. Lu, “Content-based brain tumor retrieval for MR images using transfer learning,” IEEE Access, vol. 7, pp. 17809–17822, 2019.
[17] A. Veeramuthu et al., “MRI Brain Tumor Image Classification Using a Combined Feature and Image-Based Classifier,” Front. Psychol., vol. 13, p. 848784, 2022.
[18] P. Gao et al., “Development and validation of a deep learning model for brain tumor diagnosis and classification using magnetic resonance imaging,” JAMA Netw. Open, vol. 5, p. e2225608, 2022.
[19] A. M. Alqudah et al., “Brain tumor classification using deep learning technique—A comparison between cropped, uncropped, and segmented lesion images with different sizes,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 8, no. 6, pp. 3684–3691, 2020.
[20] R. Sankaranarayanan et al., “Brain tumor detection and classification using VGG16,” in Proc. Int. Conf. Artif. Intell. Knowl. Discov. Concurrent Eng. (ICECONF), Chennai, India, 2023, pp. 1–5, doi: 10.1109/ICECONF57129.2023.10083866.
[21] T. S. Kumar et al., “Brain Tumor Classification with Inception V3 Network Model Using Transfer Learning,” in Proc. 9th Int. Conf. Adv. Comput. Commun. Syst. (ICACCS), Coimbatore, India, 2023, pp. 1392–1395, doi: 10.1109/ICACCS57279.2023.10112951.
[22] S. K. Mathivanan et al., “Employing deep learning and transfer learning for accurate brain tumor detection,” Sci. Rep., vol. 14, p. 7232, 2024, doi: 10.1038/s41598-024-57970-7.
[23] S. Saeedi et al., “MRI-based brain tumor detection using convolutional deep learning methods and chosen machine learning techniques,” BMC Med. Inform. Decis. Mak., vol. 23, no. 16, 2023, doi: 10.1186/s12911-023-02114-6.
[24] M. I. Mahmud, M. Mamun, and A. Abdelgawad, “A deep analysis of brain tumor detection from MR images using deep learning networks,” Algorithms, vol. 16, no. 4, p. 176, 2023, doi: 10.3390/a16040176.
[25] M. S. Ullah et al., “Multimodal brain tumor segmentation and classification from MRI scans based on optimized DeepLabV3+ and interpreted networks information fusion empowered with explainable AI,” Comput. Biol. Med., vol. 182, p. 109183, 2024, doi: 10.1016/j.compbiomed.2024.109183.
[26] Y. Zeng et al., “Enhanced multimodal brain tumor classification in MR images using 2D ResNet as backbone with explicit tumor size information,” J. Cancer, vol. 15, no. 13, pp. 4275–4286, Jun. 2024, doi: 10.7150/jca.95987.
[27] J. Wang et al., “RanMerFormer: Randomized vision transformer with token merging for brain tumor classification,” Neurocomputing, vol. 573, p. 127216, 2024, doi: 10.1016/j.neucom.2023.127216.
[28] A. Al-Hamza and Khawla, “ViT-BT: Improving MRI brain tumor classification using vision transformer with transfer learning,”
SSRN, Aug. 2024, doi: 10.2139/ssrn.4959261. Available:
https://ssrn.com/abstract=4959261.
[30] Y. Zhou et al., “Forecasting emerging technologies using data augmentation and deep learning,” Scientometrics, vol. 123, pp. 1–29, 2020.
[31] Z. Liu et al., “Automatic diagnosis of fungal keratitis using data augmentation and image fusion with deep convolutional neural network,” Comput. Methods Programs Biomed., vol. 187, 2020.
[32] Z. Mushtaq, S. F. Su, and Q. V. Tran, “Spectral images based environmental sound classification using CNN with meaningful data augmentation,” Appl. Acoust., vol. 172, 2021.
[33] M. Sajjad et al., “Multi-grade brain tumor classification using deep CNN with extensive data augmentation,” J. Comput. Sci., vol. 30, pp. 174–182, 2019.
[34] Q. Xiao et al., “Deep learning-based ECG arrhythmia classification: a systematic review,” Appl. Sci., vol. 13, no. 8, 2023.
[35] X. Li et al., “Automatic heartbeat classification using S-shaped reconstruction and a squeeze-and-excitation residual network,” Comput. Biol. Med., vol. 140, 2021.
[36] Z. Zhong, L. Zheng, G. KangYang, and S. Li, “Random erasing data augmentation,” in Proc. AAAI Conf. Artif. Intell., 2020, pp. 13001–13008.
[37] D. Zhang, S. Yang, X. Yuan, and P. Zhang, “Interpretable deep learning for automatic diagnosis of 12-lead electrocardiogram,” iScience, vol. 24, 2021.
[38] R. Aniruddh et al., “Data augmentation for electrocardiograms,” in Conf. Health, Inference, Learn., 2022, pp. 282–310.
[39] M. Gao, D. Qi, H. Mu, and J. Chen, “A transfer residual neural network based on ResNet-34 for detection of wood knot defects,” Forests, vol. 12, no. 2, 2021.
[40] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2016.
[41] S. Mavaddati, “Classification of brain tumor using model learning based on statistical and texture features,” J. Iranian Assoc. Electr. Electron. Eng., vol. 19, no. 2, pp. 177–188, 2022.
[42] M. Wu, Y. Lu, W. Yang, and S. Y. Wong, “A study on arrhythmia via ECG signal classification using the convolutional neural network,” Front. Comput. Neurosci., vol. 14, 2021.
[43] M. F. Moller, “A scaled conjugate gradient algorithm for fast supervised learning,” Neural Networks, vol. 6, pp. 525–533, 1993.
[45] J. Demsar, “Statistical comparisons of classifiers over multiple data sets,” J. Mach. Learn. Res., vol. 7, pp. 1–30, 2006.
[46] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures, 4th ed. Boca Raton, FL: Chapman & Hall/CRC, 2000.