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Fault prediction in power transformers is pivotal for safeguarding
operational reliability and reducing system disruptions. Leveraging
dissolved gas analysis (DGA) data, Al-driven techniques have
recently been employed to enhance predictive performance. This
paper introduces a novel machine-learning framework that integrates
Histogram Gradient Boosting (HGB) with a metaheuristic Particle
Swarm Optimization (PSO) algorithm for hyperparameter tuning,
thereby ensuring classifier robustness. The proposed method
underwent a two-stage evaluation: first, Gradient Boosting (GB),
Extreme Gradient Boosting (XGBoost), and HGB were
benchmarked, revealing HGB as the most effective method; second,
PSO was applied to optimize HGB's hyperparameters, yielding
further performance improvements. Experimental results demonstrate
that the hybrid HGB-PSO model achieves an accuracy of 97.85%,
precision of 98.90%, recall of 97.33%, and an F1-score of 98.99%.
All simulations and comparative analyses against state-of-the-art
methods were implemented in Python, and confusion-matrix analysis
was employed to assess predictive performance comprehensively.
These findings demonstrate that the hybrid HGB-PSO method
achieves superior accuracy and robustness in transformer fault
prediction.

1. Introduction

Power transformers are indispensable assets in
power generation plants and high-voltage
substations. Failures or performance degradations
can precipitate interruptions in energy production
and compromise transmission reliability, imposing
substantial costs for system reinstatement,
unserved- energy penalties, and transformer repair
or replacement. Accordingly, the adoption of
comprehensive protection schemes and condition-
based maintenance strategies is essential for
optimizing asset lifecycle management and
ensuring resilient grid operation [1-3].

One of the most effective and widely used
techniques for diagnosing and predicting faults
caused by electrical, thermal, and mechanical
stresses in transformers is the analysis of dissolved
gases in oil through gas chromatography. These
stresses can degrade the oil and paper insulation,

leading to the release of various gases. When the
concentration of these gases exceeds certain
thresholds, they may even result in catastrophic
transformer failures, including explosions. The
formation of these gases is typically associated
with abnormal energy losses inside the
transformer, such as overheating, partial
discharges, and arcing. Among various diagnostic
tools, gas chromatography is recognized as the
most accurate and reliable method for detecting
internal faults in high-voltage equipment,
particularly oil-filled transformers [4-6].

Despite  significant advancements in the
measurement of dissolved gases in transformer oil
in recent years, the interpretation of the resulting
data remains a challenging task. Traditional
diagnostic techniques, such as the Doernenburg
ratio method [7, 8], IEC ratio method [9, 10], Duval
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triangle method [11, 12], and Roger’s ratio method
[13, 14], exhibit limitations in terms of both
accuracy and reliability. Unlike these ratio-based
approaches, the Duval Pentagon method [15, 16]
employs the central positioning of fault points
within a pentagon diagram, offering enhanced
diagnostic precision, particularly for thermal faults.
Although conventional methods are
computationally simple and require no complex
programming,  their  application  becomes
increasingly inefficient when dealing with large-
scale DGA datasets. To overcome these challenges,
recent studies have increasingly adopted artificial
intelligence (Al) algorithms, particularly machine
learning (ML) and deep learning (DL), to enable
automated fault detection and prediction in oil-
immersed power transformers [17].

The authors of [18] devised a fault classification
model for transformers by integrating the C-set
method with the fuzzy C-means clustering
algorithm. Their method specifically addressed
challenges such as data imbalance, outliers, and
boundary class overlap. By generating labeled
expert training data through unsupervised
clustering and training a one-vs-one multiclass
SVM, they achieved an accuracy of 88.9%. The
authors of [19] proposed a transformer fault
diagnosis based on DGA, employing an enhanced
LightGBM ensemble model with a dual-branch
structure. Furthermore, an improved grey wolf
optimizer was utilized to fine-tune
hyperparameters, while Jacobian regularization
was applied to mitigate noise sensitivity and
improve model robustness. The authors of [20]
developed an intelligent diagnostic system to
increase the accuracy of fault detection in
transformers with DGA. Recognizing the
limitations of traditional DGA methods such as the
IEC Code, Rogers Ratio, and Duval Triangle, the
study incorporated optimization procedures to
advance the decision-making capabilities of these
models. By comparing the outputs of multiple
DGA techniques, the proposed system achieved an
accuracy of 89.12%, outperforming conventional
approaches. The authors of [21] utilized the
Common Vector Approach to classify incipient
transformer faults based on DGA data. By
incorporating both raw and extracted features, their
method demonstrated superior accuracy and faster
computation compared to conventional and
intelligent classifiers, particularly under limited
data conditions.

The authors of [22] examined a deep belief
network-based DGA approach for transformer
fault diagnosis, aiming to overcome the rigidity of
traditional methods by enabling flexible input

combinations. Their model improved diagnostic
accuracy by customizing input features beyond
fixed gas ratios. The authors of [23] developed a
CNN-based model utilizing DGA data to classify
transformer fault types under varying noise
conditions. By leveraging conventional, novel, and
hybrid gas ratio inputs, the model was trained on
589 samples, demonstrating robust performance
even with noise levels reaching £20%. The authors
of [24] proposed an intelligent fault classification
technique using key DGA attributes and an ANFIS
model, optimized via the Black Widow
Optimization Algorithm. By integrating feature
selection through association rule learning, the
model achieved increased accuracy and robustness
in transformer fault detection. The study in [25]
introduced a dynamic fault prediction framework
employing a long short-term memory (LSTM)
model to forecast future DGA trends and assess
transformer conditions. Among several Al
classifiers tested, the LSTM-KNN model yielded
the highest predictive accuracy for identifying
potential transformer faults.

The study of [26] addressed a DGA-based fault
diagnosis scheme combining the dual pentagon
method with several tree-based classifiers and data
scaling techniques. Among the evaluated models,
the Light-GBM classifier demonstrated superior
performance, achieving 96.08% accuracy and
outperforming conventional methods. The authors
of [27] explored the impact of data-level balancing
methods on transformer fault classification using
DGA data. They compared three ML algorithms,
including Support Vector Machine (SVM),
Decision Tree, and Random Forest, with ENN
combined with SVM achieving the highest
classification performance, with 88% accuracy.
The study of [28] utilized a fusion of machine
learning and sensor-level integration to improve
transformer fault diagnosis via DGA. Applying the
Sequential Kalman Filter alongside Majority
Voting and Dempster—Shafer methods, the
approach achieved over 90% estimation accuracy.
The authors of [29] introduced a Seasonal
Autoregressive  Integrated Moving  Average
(SARIMA)-based model for forecasting dissolved
gas concentrations in transformer oil. By analyzing
periodicity and temperature correlation, SARIMA
showed superior accuracy and stability over the
autoregressive and LSTM models, especially when
external factors were included in the prediction.
The research of [30] assessed fuzzy logic and
neural networks to detect and predict transformer
failures, aiding timely maintenance decisions. The
proposed model achieved up to 95% accuracy,
emphasizing the role of predictive maintenance and
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offering a practical tool to support maintenance
teams in preventing unexpected faults. The authors
of [31] proposed a hybrid Genetic algorithm (GA)—
SVM method for improving transformer fault
diagnosis using DGA data. It employs adaptive
sampling, arctangent transformation, and five filter
methods for feature ranking. Optimal features are
selected via GA with SVM, achieving improved
accuracy through five-fold cross-validation on the
IEC TC10 dataset. The authors of [32] employed a
DNN-based diagnostic model for transformer
faults, enhanced by SMOTE to handle class
imbalance. Hyperparameters are optimized using
grid search, random search, and Bayesian
optimization methods. Experiments on real
datasets show superior performance, with 94.6%
testing accuracy, outperforming traditional
classifiers on imbalanced data. The study of [33]
provided a transformer fault diagnosis method with
DGA combined with data transformation
techniques and six optimized machine learning
(OML) algorithms, including decision tree, SVM,
discriminant analysis, Naive Bayes, KNN, and
ensemble classifiers.

To the best of our knowledge, no prior study has
employed the hybrid integration of Histogram-
based Gradient Boosting (HGB) with Particle
Swarm Optimization (PSO) for transformer fault
prediction on this dataset. While advanced
ensemble learning methods have rarely been
explored in this field, most recent research has
concentrated on conventional machine learning
and deep learning approaches, typically relying on
hyperparameter tuning via grid search, random
search, or Bayesian optimization. In contrast, the
present work introduces a novel framework that
combines an advanced ensemble learning
technique with a powerful metaheuristic
optimization algorithm. The key contributions of
this study can be summarized as follows: (i)
applying HGB to enhance the accuracy of
transformer fault prediction, (ii) utilizing PSO for
efficient hyperparameter optimization, and (iii)
achieving superior predictive accuracy and
robustness compared with state-of-the-art methods.
The remainder of this paper is organized as
follows. Section 2 describes the DGA dataset and
preprocessing steps, including outlier removal via
the IQR method, z-score normalization, and train-
validation-test splitting. Section 3 details the
proposed methodology, introducing and comparing
Gradient Boosting (GB), XGBoost, and
Histogram-based Gradient Boosting (HGB)
classifiers, and then presenting the PSO-based
hyperparameter optimization for HGB. Section 4
reports experimental results and provides an in-

depth discussion of model performance across
standard metrics. Finally, Section 5 concludes the
study.

2. DGA Dataset

2.1. Dissolved Gas Concentrations

Electrical and thermal stresses cause an oil-
immersed transformer's insulation system to
decompose, and the dissolved gases in the
transformer insulating oil usually contain the
following: the product of paper decomposition-
carbon monoxide (CO), carbon dioxide (CO,),
acetylene (C2Hy), ethylene (CzH.), ethane (C2Hs),
methane (CH4), and hydrogen (H.) [25, 34]. By
analyzing the composition or ratio of these gasses,
the type of transformer failure may be recognized.
DGA identifies transformer faults by analyzing the
concentration or ratios of various gases, employing
distinct calculation methods that utilize different
gas ratios, such as Rogers' method (CHo./,
C2H2/C3H4, CoH4/CoHs, C2He/CH.), Dornenburg's
method (CH4/H2, Csz/C2H4, Csz/CH4,
C2He/C2Hy), and the IEC 60599 method (CH4/Ha,
C2H2/CoHa, C2H4/CoHe) [22, 26].

2.2. Duval Pentagon Method

In this study, the Duval Pentagon method is
employed for the preliminary identification of
faults in oil-immersed transformers. This
diagnostic technique utilizes five key dissolved
gases: hydrogen (H2), acetylene (C2H2), methane
(CH4), ethane (C2H6), and ethylene (C2H4). The
Duval Pentagon method is capable of identifying
seven distinct fault types, including partial
discharge (PD), low-energy and high-energy
electrical discharges, normal aging, as well as
thermal faults occurring at various temperature
ranges [26]. The seven aforementioned fault types
are presented and described in Table 1.

2.3. Dataset

The dataset utilized in this research was derived
from the datasets presented in [15] and [26]. This
dataset, based on DGA, includes five features as
inputs: hydrogen (H:), methane (CH.), acetylene
(C2Hz), ethylene (C:H4), and ethane (C:He). It is
labeled with seven fault types: T1, T2, T3, PD, D1,
high-energy discharge D2, and S, as detailed in
Table 1. The number of samples associated with
each fault type is as follows: PD —241, S—227, D1
—233,D2-237,T1-239,T2-241, and T3 - 240.
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Table 1. Categorization of faults based on the Duval
Pentagon method.

Type of o
Acronyms Description of faults
fault
Type 1 PD Corona Partial Discharges
Type 2 D1 Discharge of low-energy
Type 3 D2 Discharge of high-energy
Low Thermal fault (Temperature
Type 4 T1
range < 300 °C)
Medium Thermal fault (300 °C
Type 5 T2
<Temperature range < 700 °C)
High thermal fault
Type 6 T3
(Temperature range > 700 °C)
Type 7 S Stray gassing at low temperatures

2.4. Data Pre-Processing

Data pre-processing is a significant stage in the
field of Al, involving the cleaning and structuring
of raw data to facilitate the development and
training of Al models. Real-world data are often
incomplete, inconsistent, and/or lack identifiable
patterns or trends, and they may contain various
errors. In simple terms, data pre-processing is a
data mining method that transforms raw data into a
readable and interpretable format suitable for
intelligent systems [26, 35].

Initially, missing value handling and outlier
detection were performed on the DGA dataset. This
dataset contains no missing values. To detect

outliers, the Interquartile Rang ( IQR ) method was

applied [36], and its mathematical formulations are
presented in Equations (1) to (3).

IQR:Qg_Ql (1)
LB=Q —1.5x IQR @)
UB =Q, +1.5x IQR 3)

here, the third quartile (Q,) and the first quartile

(Q,), along with the lower bound (LB) and upper

bound (UB), are used to identify extreme values.

Subsequently, data encoding for categorical labels
was carried out using the Label Encoder method,
which converted the seven identified fault types
into numerical values. After that, feature scaling
was performed using the z-score normalization
technique [37], as described in Equation (4).
X~ Xinean

= 4

2 X, (4)

In this equation, X, and X, represent the values of
samples the before and after scaling, respectively.
Additionally, x___denotes the mean and X_, the

mean std

standard deviation of across all samples [38].

X

To facilitate a more rigorous evaluation of the
dataset, it was partitioned into three distinct
subsets: a training set (70%), a validation set
(15%), and a testing set (15%). The splitting
process was conducted using the “train_test_split”
function from the Scikit-learn library in Python. All
preprocessing procedures and simulations in this
study were implemented using Python, with the
support of several well-established libraries,
including NumPy, Pandas, Matplotlib, Seaborn,
scikit-learn, PySwarms, and XGBoost.

3. Proposed Method

This section provides a comprehensive description
of the methodology proposed for fault diagnosis in
oil-immersed  transformers.  The  approach
integrates  systematic  data  preprocessing
techniques with advanced ensemble classifiers to
accurately predict and classify various fault types
based on the DGA dataset.

3.1. Classifiers

— Gradient Boosting (GB)

Gradient Boosting (GB) is a powerful ensemble
learning technique that iteratively constructs a
strong classifier by combining multiple weak
learners, typically shallow decision trees, into a
single predictive model. At each iteration, GB fits
a new tree to the negative gradient (pseudo-
residuals) of the loss function with respect to the
current  ensemble's  predictions, effectively
performing gradient descent in function space to
minimize training error [39]. This methodology
was first formalized by Friedman [40] and has
since become a cornerstone of advanced machine
learning applications in classification tasks.

— Extreme Gradient Boosting (XGB)
Extreme Gradient Boosting (XGB) is a highly
efficient and scalable machine learning algorithm
widely recognized for its superior performance in
classification and regression tasks. XGBoost
enhances the traditional gradient boosting
framework by implementing an additive model
where decision trees are sequentially constructed to
minimize a composite objective function,
comprising a loss term and a regularization
component to prevent overfitting [41, 42]. For
transformer fault prediction, XGBoost's capability
to process complex dissolved gas analysis (DGA)
data, coupled with its computational efficiency and
adaptability to high-dimensional datasets, positions
it as a powerful tool for enhancing diagnostic
accuracy and reliability in power systems.

— Histogram-based Gradient Boosting (HGB)
Histogram-based Gradient Boosting (HGB) is an
advanced ensemble learning technique that
improves the efficiency of traditional gradient
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boosting. It achieves this by using histogram-based
discretization of continuous input features, which
significantly reduces computational complexity
while preserving high predictive accuracy. HGB
groups feature values into discrete intervals,
allowing for faster training through optimized
memory usage and parallel processing. This makes
it especially well-suited for large-scale datasets,
such as dissolved gas analysis (DGA) data used in
transformer fault prediction. Modern machine
learning libraries, such as Scikit-learn, implement
HGB with these optimizations, leading to robust
performance in classification tasks. Recent studies
have shown its effectiveness in high-dimensional
settings [43, 44]. Consequently, HGB's capability
to handle complex DGA features with lower
computational demands makes it a powerful tool
for improving the reliability and precision of
transformer fault diagnosis.

3.2. Criteria for the Proposed Classifiers Evaluation
For the evaluation of the proposed classifiers in this
study, standard performance metrics, including
accuracy, precision, recall, Fi-score, and the area
under the receiver operating characteristic curve
(AUC), were employed.

Accuracy is defined as the proportion of correctly
classified instances, both positive and negative,
relative to the total number of samples, as given by

Eq. (5).
TP+TN
Accuracy = (%)
FN+TN +FP+TP

where TP, TN, FP,and FN denote true positives,
true negatives, false positives, and false negatives,
respectively. True negatives (TN)occur when
negative instances are correctly classified, whereas
true positives (TP) refer to accurately identified
positive cases. A false negative (FN ) arises when
a positive instance is mistakenly labeled as
negative, while a false positive (FP) occurs when
a negative instance is erroneously classified as
positive.

Precision represents the proportion of correctly
predicted positive instances to the total number of
instances predicted as positive, as expressed in Eq.

(6).

Precision =

TP
FP+TP Q)
Recall, also known as the true positive rate,
guantifies the proportion of actual positive cases
that are correctly identified by the classifier. It is
formally defined in Eq. (7).

Recall = _TP )
FN +TP

The F-Score is a harmonic mean that balances both

recall and precision, providing a single measure of
performance, as formulated in Eq. (8).

2x(Precisionx Recall)

Precision + Recall ®

The AUC is a widely used assessment metric
derived from the Receiver Operating Characteristic
(ROC) curve. It measures the classifier’s ability to
distinguish between classes, with higher values
indicating  better classification performance
Furthermore, confusion matrix analysis was
incorporated to support a more detailed
interpretation of the classifiers' predictive
capabilities [26, 45, 46].
3.3. Optimized HGB Classifier Using PSO Algorithm
HGB is a powerful tree-based ensemble learning
technique capable of handling large-scale data with
high  predictive efficiency. However, its
performance is highly influenced by the selection
of hyperparameters, including "learning_rate",
"max_iter", and "max_depth". To enhance the
accuracy and robustness of the HGB classifier, this
study employs the Particle Swarm Optimization
(PSO) algorithm for hyperparameter tuning. PSO,
initially proposed by Kennedy and Eberhart in
1995 [47], is a population-based stochastic
optimization technique inspired by the social
behavior of birds flocking or fish schooling. It has
been extensively used in various engineering
optimization problems and is particularly effective
for tuning complex models. The velocity and
position of each particle in the swarm are updated
using the following equations [48-51]:

Vi (t+1) = ox v (t) +.r; ( pbest, —x,(t)) 9)

+C,r, (gbest —x,(t))

F1l-score=

X (t+1) = x; (0 +V, (t+1) (10)
where:

e V(t) and X (t) represent the velocity and
position of particle i at iteration t,
respectively.

e wis the initial weight.

e cand c, are the cognitive and social
coefficients.

o  pbest, is the personal best position of particle
I

e gbest is the global best position discovered so

far.

rrand r, are uniformly distributed random

variables in [0, 1].

The implementation of the PSO-HGB framework
was based on optimizing the accuracy of the HGB
classifier. The search space and parameter bound
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used in this optimization are shown in Table 2.

Table 2. Hyperparameter search space for HGB
optimized by PSO.

Hyperparameter Description LB uUB
. Learning rate for
learning_rate . 0.01 0.3
boosting
. Number of
max_iter 50 500

boosting iterations

Maximum depth
max_depth 3 10
of trees

The algorithmic parameters employed in the PSO
algorithm for hyperparameter tuning are listed in
Table 3. The proposed PSO-HGB optimization
procedure is outlined in Algorithm 1.

Table 3. PSO parameter settings.

Parameter Description Value
w Inertia weight 0.5
Cognitive coefficient (individual

€ learning)

C, Social coefficient (swarm learning) 2.0
N Number of particles in the swarm 20

Maximum number of PSO
T 30

iterations

The PSO parameters employed in this study, as
summarized in Table 3, were determined
empirically through a trial-and-error procedure.
The inertia weight @ is inherently a positive
parameter, and prior studies [50,52] commonly
recommend values within the range of 0.4-0.9. In
this work, @=0.5was identified as the most
appropriate setting, offering a balanced trade-off
between exploration and exploitation.

4. Results and Discussion

In this study, the Dissolved Gas Analysis (DGA)
dataset, comprising five input features (Hz, C2Ha,
CHa, C:Hs, and C:Hs) and seven fault labels
defined by the Duval Pentagon method, was
employed. Data preprocessing included outlier

removal via the Interquartile Range (IQR)

method and feature standardization using z-score
normalization. The dataset was then split into
training (70%), validation (15%), and testing
(15%) subsets. Advanced classifiers, including
Gradient Boosting (GB), Extreme Gradient
Boosting (XGBoost), and Histogram-based
Gradient Boosting (HGB), were applied to the
DGA data. Table 4 presents their performance
according to standard metrics: accuracy, precision,
F1-score, recall, and AUC.

Table 4. A comparative performance analysis of the
advanced classifiers

Classifier Criteria (%)
Accuray  Precision F1-Score Recall AUC
GB 91.13 91.55 91.17 91.13 99.48
XGB 93.95 94.50 94.00 93.95 99.75
HGB 96.37 96.43 96.37 96.37 99.83

For visual comparison, bar plots of each classifier's
performance are shown in Figures 1, 2, and 3.
Among these, HGB achieved the highest results:
accuracy of 96.37%, precision of 96.43%, F1-score
of 96.37%, recall of 96.37%, and AUC of 99.83%.

Peaformaaca |%]

Bidusiniy Frovmam Fl-hiais Bevll [T

Figure 1. Performance evaluation of the Gradient
Boosting (GB) classifier.

Ferioranis 1%

Freasy= [ [T Brcall Al

Figure 2. Performance evaluation of the Extreme
Gradient Boosting (XGB) classifier.

Performance (%)

ALC ey Fredisien Fl-Rcans Hevall AL

Figure 3. Performance evaluation of the Hist Gradient
Boosting (HGB) classifier.

For a comprehensive comparison of the three
advanced classifiers GB, XGBoost, and HGB, their
performance line plots based on the standard
metrics of accuracy, precision, recall, F1-score, and
AUC are demonstrated in Figure 4.
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Figure 4. Comparative performance of GB, XGB and
HGB classifiers.

Also, Table 5 compares the HGB classifier with a
state-of-the-art LightGBM ensemble model
proposed in [26]. The results indicate that HGB
outperforms the reference classifier across all
evaluated metrics. To further enhance the
predictive  accuracy of transformer fault
classification, the Particle Swarm Optimization
(PSO) algorithm was employed to fine-tune the
hyperparameters of the HGB model. This
metaheuristic strategy was used to optimize the
learning rate, number of boosting iterations, and
maximum tree depth by maximizing the validation
accuracy within a predefined hyperparameter
search space. The optimization process followed
the steps outlined in Algorithm 1.

The optimal configuration obtained through PSO
included a learning rate of 0.2679, 292 boosting
iterations, and a maximum depth of 9, as
summarized in Table 6. This configuration yielded
an accuracy of 97.98%, demonstrating a significant
enhancement in the predictive capability of the
HGB classifier for fault classification in oil-
immersed transformers. These improvements are
notably superior to both the unoptimized HGB
classifier and the LightGBM-based method
referenced in [26]. For a more comprehensive
comparison, we additionally employed the Genetic
Algorithm (GA) to optimize the HGB model, and
the corresponding results are presented in Table 5
and Figure 6.

Table 5. Comparative evaluation of HGB, HGB-GA,
HGB-PSO, and the LightGBM model in [26]

Criteria Classifier
HGB [26] HGB-GA  HGB-PSO
Accuracy (%) 96.37 96.08 97.58 97.98
Precision (%) 96.43 96.09 97.75 98.07
F1-Score (%) 96.37 96.06 97.58 97.99
Recall (%) 96.37 96.08 97.60 97.98
AUC (%) 99.83 99.64 99.89 99.96

As evidenced by these results, the HGB-PSO
consistently outperforms all other methods,
including the HGB-GA, thereby underscoring its
superior optimization effectiveness. Furthermore,
the runtime analysis indicates that the HGB-PSO

required 3806 seconds, whereas the HGB-GA
required 4846 seconds, highlighting the greater
computational efficiency of the HGB-PSO.

Table 6. Optimized hyperparameters of the HGB
classifier via PSO

Hyperparameter Description Optimized Value
Learning rate Learning rat_e used in 0.2679
boosting
Max iterations Numt_Jer Of. boosting 292
iterations
Max depth Maximum depth of 9

individual trees

The two-sample paired t-test was conducted to
statistically compare the performance of the HGB
model before and after PSO-based optimization.
The analysis yielded a p-value of 0.00863, which is
below the 0.05 significance threshold.
Consequently, the null hypothesis of equal means
is rejected, indicating that the improvement in
classification accuracy achieved by the HGB-PSO
model is statistically significant.

Figure 5 presents a bar plot of HGB-PSO
performance, and Figure 6 illustrates a comparative
line chart among HGB, the model from [26], HGB-
GA, and HGB-PSO.

Performance (%)

BEC Ry B i b Pl-Roaie Riall Al

Figure 5. Performance evaluation of the HGB classifier
with PSO algorithm.

w2

-
aac Recat P1 S Peecaien fecwrany

Figure 6. Comparative performance of HGB, HGB-GA,
HGB-PSO, and the classifier of [26].
Furthermore, confusion matrices for all four
classifiers (GB, XGB, HGB, and HGB-PSO) are

provided in Figures 7-10.
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Figure 10. Confusion matrix of the HGB-PSO classifier.
The confusion matrices confirm that HGB-PSO

Predictod

Figure 7. Confusion matrix of the GB classifier.

o ) O T yields the lowest misclassification rate and the
highest diagnostic accuracy for the seven fault
2 ] | WS Lol types in oil-immersed power transformers.
. L} ] L * L
B E Sl B [ - 5. Conclusion
=l W W P This work has presented a novel hybrid framework
for transformer fault prediction that couples
] Bla¥ B S5 A Histogram-based Gradient Boosting (HGB) with
S0 D A Particle Swarm Optimization (PSO). By leveraging
SR Prcied : five key dissolved gas features and seven Duval-
Figure 8. Confusion matrix of the XGB classifier. Pentagon fault categories, we demonstrated that
| T I S IR O ' HGB significantly outperforms conventional GB
s Sl N O ) ' and XGB models, achieving up to 96.37%
= T silsilreihimd B accuracy and 99.83% AUC. PSO-tuned HGB
s NEicenks o 7% T > further improves performance by approximately
R 2% over standard HGB and a state-of-the-art
st il [l IR il M LightGBM ensemble benchmark. Confusion-
ol P Pl N : matrix analysis confirmed that the optimized model
Ll BN L0 A I K yields the lowest misclassification rates across all
- seven fault types. These findings underscore the
Figure 9. Confusion matrix of the HGB classifier. efficacy of metaheuristic tuning in enhancing

ensemble learners for DGA-based diagnosis.
Future work may explore the use of k-fold cross-
validation in combination with advanced deep
learning techniques to further enhance the
robustness of transformer fault diagnosis.

Algorithm 1. PSO-Based Hyperparameter Optimization for HGB.

Input: Preprocessed training and validation datasets Dyygin, Ppar:
Search bounds for learning_rate, max_iter, max_depth, and PSO parameters: @, ¢y, ¢,
Output: Optimized hyperparameters: 8° = (learning_rate’, max_iter', max_depth')
1. Initialize a swarm of N with random positions within defined bounds and zero initial velocities.
2. For each particle i
o Evaluate f; = Accuracy (HGB (8, Dyrain). Dyat)
o Sctpbest; =8, fopest, = fi
3. Determine gbest from {pbest;} with the highest fp05
4. Foreachiterationt =1toT:
o  For each particle {:
- Update velocity v; using Eq. (9)
- Update position #; using Eq. (12), clip values to predefined bounds
- Re-evaluate new fitness f;: update pbest; and gbest if improved
5. Return 8" = ghest as the final optimized hyperparameter set.
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