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 Fault prediction in power transformers is pivotal for safeguarding 

operational reliability and reducing system disruptions. Leveraging 

dissolved gas analysis (DGA) data, AI-driven techniques have 

recently been employed to enhance predictive performance. This 

paper introduces a novel machine-learning framework that integrates 

Histogram Gradient Boosting (HGB) with a metaheuristic Particle 

Swarm Optimization (PSO) algorithm for hyperparameter tuning, 

thereby ensuring classifier robustness. The proposed method 

underwent a two-stage evaluation: first, Gradient Boosting (GB), 

Extreme Gradient Boosting (XGBoost), and HGB were 

benchmarked, revealing HGB as the most effective method; second, 

PSO was applied to optimize HGB's hyperparameters, yielding 

further performance improvements. Experimental results demonstrate 

that the hybrid HGB-PSO model achieves an accuracy of 97.85%, 

precision of 98.90%, recall of 97.33%, and an F1-score of 98.99%. 

All simulations and comparative analyses against state-of-the-art 

methods were implemented in Python, and confusion-matrix analysis 

was employed to assess predictive performance comprehensively. 

These findings demonstrate that the hybrid HGB-PSO method 

achieves superior accuracy and robustness in transformer fault 

prediction. 
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1. Introduction 

Power transformers are indispensable assets in 

power generation plants and high-voltage 

substations. Failures or performance degradations 

can precipitate interruptions in energy production 

and compromise transmission reliability, imposing 

substantial costs for system reinstatement, 

unserved‑ energy penalties, and transformer repair 

or replacement. Accordingly, the adoption of 

comprehensive protection schemes and condition-

based maintenance strategies is essential for 

optimizing asset lifecycle management and 

ensuring resilient grid operation [1–3]. 

One of the most effective and widely used 

techniques for diagnosing and predicting faults 

caused by electrical, thermal, and mechanical 

stresses in transformers is the analysis of dissolved 

gases in oil through gas chromatography. These 

stresses can degrade the oil and paper insulation, 

leading to the release of various gases. When the 

concentration of these gases exceeds certain 

thresholds, they may even result in catastrophic 

transformer failures, including explosions. The 

formation of these gases is typically associated 

with abnormal energy losses inside the 

transformer, such as overheating, partial 

discharges, and arcing. Among various diagnostic 

tools, gas chromatography is recognized as the 

most accurate and reliable method for detecting 

internal faults in high-voltage equipment, 

particularly oil-filled transformers [4–6]. 

Despite significant advancements in the 

measurement of dissolved gases in transformer oil 

in recent years, the interpretation of the resulting 

data remains a challenging task. Traditional 

diagnostic techniques, such as the Doernenburg 

ratio method [7, 8], IEC ratio method [9, 10], Duval 
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triangle method [11, 12], and Roger’s ratio method 

[13, 14], exhibit limitations in terms of both 

accuracy and reliability. Unlike these ratio-based 

approaches, the Duval Pentagon method [15, 16] 

employs the central positioning of fault points 

within a pentagon diagram, offering enhanced 

diagnostic precision, particularly for thermal faults. 

Although conventional methods are 

computationally simple and require no complex 

programming, their application becomes 

increasingly inefficient when dealing with large-

scale DGA datasets. To overcome these challenges, 

recent studies have increasingly adopted artificial 

intelligence (AI) algorithms, particularly machine 

learning (ML) and deep learning (DL), to enable 

automated fault detection and prediction in oil-

immersed power transformers [17]. 

The authors of [18] devised a fault classification 

model for transformers by integrating the C-set 

method with the fuzzy C-means clustering 

algorithm. Their method specifically addressed 

challenges such as data imbalance, outliers, and 

boundary class overlap. By generating labeled 

expert training data through unsupervised 

clustering and training a one-vs-one multiclass 

SVM, they achieved an accuracy of 88.9%. The 

authors of [19] proposed a transformer fault 

diagnosis based on DGA, employing an enhanced 

LightGBM ensemble model with a dual-branch 

structure. Furthermore, an improved grey wolf 

optimizer was utilized to fine-tune 

hyperparameters, while Jacobian regularization 

was applied to mitigate noise sensitivity and 

improve model robustness. The authors of [20] 

developed an intelligent diagnostic system to 

increase the accuracy of fault detection in 

transformers with DGA. Recognizing the 

limitations of traditional DGA methods such as the 

IEC Code, Rogers Ratio, and Duval Triangle, the 

study incorporated optimization procedures to 

advance the decision-making capabilities of these 

models. By comparing the outputs of multiple 

DGA techniques, the proposed system achieved an 

accuracy of 89.12%, outperforming conventional 

approaches. The authors of [21] utilized the 

Common Vector Approach to classify incipient 

transformer faults based on DGA data. By 

incorporating both raw and extracted features, their 

method demonstrated superior accuracy and faster 

computation compared to conventional and 

intelligent classifiers, particularly under limited 

data conditions. 

The authors of [22] examined a deep belief 

network-based DGA approach for transformer 

fault diagnosis, aiming to overcome the rigidity of 

traditional methods by enabling flexible input 

combinations. Their model improved diagnostic 

accuracy by customizing input features beyond 

fixed gas ratios. The authors of [23] developed a 

CNN-based model utilizing DGA data to classify 

transformer fault types under varying noise 

conditions. By leveraging conventional, novel, and 

hybrid gas ratio inputs, the model was trained on 

589 samples, demonstrating robust performance 

even with noise levels reaching ±20%. The authors 

of [24] proposed an intelligent fault classification 

technique using key DGA attributes and an ANFIS 

model, optimized via the Black Widow 

Optimization Algorithm. By integrating feature 

selection through association rule learning, the 

model achieved increased accuracy and robustness 

in transformer fault detection. The study in [25] 

introduced a dynamic fault prediction framework 

employing a long short-term memory (LSTM) 

model to forecast future DGA trends and assess 

transformer conditions. Among several AI 

classifiers tested, the LSTM-KNN model yielded 

the highest predictive accuracy for identifying 

potential transformer faults. 

The study of [26] addressed a DGA-based fault 

diagnosis scheme combining the dual pentagon 

method with several tree-based classifiers and data 

scaling techniques. Among the evaluated models, 

the Light-GBM classifier demonstrated superior 

performance, achieving 96.08% accuracy and 

outperforming conventional methods. The authors 

of [27] explored the impact of data-level balancing 

methods on transformer fault classification using 

DGA data. They compared three ML algorithms, 

including Support Vector Machine (SVM), 

Decision Tree, and Random Forest, with ENN 

combined with SVM achieving the highest 

classification performance, with 88% accuracy.  

The study of [28] utilized a fusion of machine 

learning and sensor-level integration to improve 

transformer fault diagnosis via DGA. Applying the 

Sequential Kalman Filter alongside Majority 

Voting and Dempster–Shafer methods, the 

approach achieved over 90% estimation accuracy. 

The authors of [29] introduced a Seasonal 

Autoregressive Integrated Moving Average 

(SARIMA)-based model for forecasting dissolved 

gas concentrations in transformer oil. By analyzing 

periodicity and temperature correlation, SARIMA 

showed superior accuracy and stability over the 

autoregressive and LSTM models, especially when 

external factors were included in the prediction. 

The research of [30] assessed fuzzy logic and 

neural networks to detect and predict transformer 

failures, aiding timely maintenance decisions. The 

proposed model achieved up to 95% accuracy, 

emphasizing the role of predictive maintenance and 



A Novel Fault Prediction Technique for Oil-Immersed Transformers Based on Advanced Gradient Boosting and Particle Swarm 

Optimization (PSO) 

 

offering a practical tool to support maintenance 

teams in preventing unexpected faults. The authors 

of [31] proposed a hybrid Genetic algorithm (GA)–

SVM method for improving transformer fault 

diagnosis using DGA data. It employs adaptive 

sampling, arctangent transformation, and five filter 

methods for feature ranking. Optimal features are 

selected via GA with SVM, achieving improved 

accuracy through five-fold cross-validation on the 

IEC TC10 dataset. The authors of [32] employed a 

DNN-based diagnostic model for transformer 

faults, enhanced by SMOTE to handle class 

imbalance. Hyperparameters are optimized using 

grid search, random search, and Bayesian 

optimization methods. Experiments on real 

datasets show superior performance, with 94.6% 

testing accuracy, outperforming traditional 

classifiers on imbalanced data. The study of [33] 

provided a transformer fault diagnosis method with 

DGA combined with data transformation 

techniques and six optimized machine learning 

(OML) algorithms, including decision tree, SVM, 

discriminant analysis, Naïve Bayes, KNN, and 

ensemble classifiers. 

To the best of our knowledge, no prior study has 

employed the hybrid integration of Histogram-

based Gradient Boosting (HGB) with Particle 

Swarm Optimization (PSO) for transformer fault 

prediction on this dataset. While advanced 

ensemble learning methods have rarely been 

explored in this field, most recent research has 

concentrated on conventional machine learning 

and deep learning approaches, typically relying on 

hyperparameter tuning via grid search, random 

search, or Bayesian optimization. In contrast, the 

present work introduces a novel framework that 

combines an advanced ensemble learning 

technique with a powerful metaheuristic 

optimization algorithm. The key contributions of 

this study can be summarized as follows: (i) 

applying HGB to enhance the accuracy of 

transformer fault prediction, (ii) utilizing PSO for 

efficient hyperparameter optimization, and (iii) 

achieving superior predictive accuracy and 

robustness compared with state-of-the-art methods. 

The remainder of this paper is organized as 

follows. Section 2 describes the DGA dataset and 

preprocessing steps, including outlier removal via 

the IQR method, z-score normalization, and train-

validation-test splitting. Section 3 details the 

proposed methodology, introducing and comparing 

Gradient Boosting (GB), XGBoost, and 

Histogram-based Gradient Boosting (HGB) 

classifiers, and then presenting the PSO-based 

hyperparameter optimization for HGB. Section 4 

reports experimental results and provides an in-

depth discussion of model performance across 

standard metrics. Finally, Section 5 concludes the 

study. 

 

2. DGA Dataset  

2.1. Dissolved Gas Concentrations  

Electrical and thermal stresses cause an oil-

immersed transformer's insulation system to 

decompose, and the dissolved gases in the 

transformer insulating oil usually contain the 

following: the product of paper decomposition-

carbon monoxide (CO), carbon dioxide (CO2), 

acetylene (C2H2), ethylene (C2H4), ethane (C2H6), 

methane (CH4), and hydrogen (H2) [25, 34]. By 

analyzing the composition or ratio of these gasses, 

the type of transformer failure may be recognized. 

DGA identifies transformer faults by analyzing the 

concentration or ratios of various gases, employing 

distinct calculation methods that utilize different 

gas ratios, such as Rogers' method (CH4/, 

C2H2/C2H4, C2H4/C2H6, C2H6/CH4), Dornenburg's 

method (CH4/H2, C2H2/C2H4, C2H2/CH4, 

C2H6/C2H2), and the IEC 60599 method (CH4/H2, 

C2H2/C2H4, C2H4/C2H6) [22, 26]. 

 

2.2. Duval Pentagon Method 

In this study, the Duval Pentagon method is 

employed for the preliminary identification of 

faults in oil-immersed transformers. This 

diagnostic technique utilizes five key dissolved 

gases: hydrogen (H2), acetylene (C2H2), methane 

(CH4), ethane (C2H6), and ethylene (C2H4). The 

Duval Pentagon method is capable of identifying 

seven distinct fault types, including partial 

discharge (PD), low-energy and high-energy 

electrical discharges, normal aging, as well as 

thermal faults occurring at various temperature 

ranges [26]. The seven aforementioned fault types 

are presented and described in Table 1. 

 

2.3. Dataset 

The dataset utilized in this research was derived 

from the datasets presented in [15] and [26]. This 

dataset, based on DGA, includes five features as 

inputs: hydrogen (H₂), methane (CH₄), acetylene 

(C₂H₂), ethylene (C₂H₄), and ethane (C₂H₆). It is 

labeled with seven fault types: T1, T2, T3, PD, D1, 

high-energy discharge D2, and S, as detailed in 

Table 1. The number of samples associated with 

each fault type is as follows: PD – 241, S – 227, D1 

– 233, D2 – 237, T1 – 239, T2 – 241, and T3 – 240. 
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Table 1. Categorization of faults based on the Duval 

Pentagon method. 

Type of 

fault 
Acronyms Description of faults 

Type 1 PD Corona Partial Discharges 

Type 2 D1 Discharge of low-energy 

Type 3 D2 Discharge of high-energy 

Type 4 T1 
Low Thermal fault (Temperature 

range < 300 ◦C) 

Type 5 T2 
Medium Thermal fault (300 ◦C 

<Temperature range < 700 ◦C) 

Type 6 T3 
High thermal fault 

(Temperature range > 700 ◦C) 

Type 7 S Stray gassing at low temperatures 

 

2.4. Data Pre-Processing  

Data pre-processing is a significant stage in the 

field of AI, involving the cleaning and structuring 

of raw data to facilitate the development and 

training of AI models. Real-world data are often 

incomplete, inconsistent, and/or lack identifiable 

patterns or trends, and they may contain various 

errors. In simple terms, data pre-processing is a 

data mining method that transforms raw data into a 

readable and interpretable format suitable for 

intelligent systems [26, 35]. 

Initially, missing value handling and outlier 

detection were performed on the DGA dataset. This 

dataset contains no missing values. To detect 

outliers, the Interquartile Rang  IQR method was 

applied [36], and its mathematical formulations are 

presented in Equations (1) to (3). 

(1) 3 1
QIQR Q   

(2) 1 1.5LB Q IQR    

(3) 3 1.5UB Q IQR    

here, the third quartile  3Q  and the first quartile 

 1Q , along with the lower bound ( )LB  and upper 

bound ( )UB , are used to identify extreme values. 

Subsequently, data encoding for categorical labels 

was carried out using the Label Encoder method, 

which converted the seven identified fault types 

into numerical values. After that, feature scaling 

was performed using the z-score normalization 

technique [37], as described in Equation (4). 

(4) 
mean

zs

std

x x
x

x


  

In this equation, x , and zsx  represent the values of 

samples the before and after scaling, respectively. 

Additionally, meanx denotes the mean and stdx  the 

standard deviation of across all samples [38].  

To facilitate a more rigorous evaluation of the 

dataset, it was partitioned into three distinct 

subsets: a training set (70%), a validation set 

(15%), and a testing set (15%). The splitting 

process was conducted using the “train_test_split” 

function from the Scikit-learn library in Python. All 

preprocessing procedures and simulations in this 

study were implemented using Python, with the 

support of several well-established libraries, 

including NumPy, Pandas, Matplotlib, Seaborn, 

scikit-learn, PySwarms, and XGBoost. 

 

3. Proposed Method  

This section provides a comprehensive description 

of the methodology proposed for fault diagnosis in 

oil-immersed transformers. The approach 

integrates systematic data preprocessing 

techniques with advanced ensemble classifiers to 

accurately predict and classify various fault types 

based on the DGA dataset. 

3.1. Classifiers 

 Gradient Boosting (GB)  

Gradient Boosting (GB) is a powerful ensemble 

learning technique that iteratively constructs a 

strong classifier by combining multiple weak 

learners, typically shallow decision trees, into a 

single predictive model. At each iteration, GB fits 

a new tree to the negative gradient (pseudo-

residuals) of the loss function with respect to the 

current ensemble's predictions, effectively 

performing gradient descent in function space to 

minimize training error [39]. This methodology 

was first formalized by Friedman [40] and has 

since become a cornerstone of advanced machine 

learning applications in classification tasks. 

 Extreme Gradient Boosting (XGB) 

Extreme Gradient Boosting (XGB) is a highly 

efficient and scalable machine learning algorithm 

widely recognized for its superior performance in 

classification and regression tasks. XGBoost 

enhances the traditional gradient boosting 

framework by implementing an additive model 

where decision trees are sequentially constructed to 

minimize a composite objective function, 

comprising a loss term and a regularization 

component to prevent overfitting [41, 42]. For 

transformer fault prediction, XGBoost's capability 

to process complex dissolved gas analysis (DGA) 

data, coupled with its computational efficiency and 

adaptability to high-dimensional datasets, positions 

it as a powerful tool for enhancing diagnostic 

accuracy and reliability in power systems. 
 Histogram-based Gradient Boosting (HGB) 

Histogram-based Gradient Boosting (HGB) is an 

advanced ensemble learning technique that 

improves the efficiency of traditional gradient 
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boosting. It achieves this by using histogram-based 

discretization of continuous input features, which 

significantly reduces computational complexity 

while preserving high predictive accuracy. HGB 

groups feature values into discrete intervals, 

allowing for faster training through optimized 

memory usage and parallel processing. This makes 

it especially well-suited for large-scale datasets, 

such as dissolved gas analysis (DGA) data used in 

transformer fault prediction. Modern machine 

learning libraries, such as Scikit-learn, implement 

HGB with these optimizations, leading to robust 

performance in classification tasks. Recent studies 

have shown its effectiveness in high-dimensional 

settings [43, 44]. Consequently, HGB's capability 

to handle complex DGA features with lower 

computational demands makes it a powerful tool 

for improving the reliability and precision of 

transformer fault diagnosis. 
3.2. Criteria for the Proposed Classifiers Evaluation  

For the evaluation of the proposed classifiers in this 

study, standard performance metrics, including 

accuracy, precision, recall, F₁-score, and the area 

under the receiver operating characteristic curve 

(AUC), were employed. 

Accuracy is defined as the proportion of correctly 

classified instances, both positive and negative, 

relative to the total number of samples, as given by 

Eq. (5). 

(5) 
TP TN

Accuracy
FN TN FP TP




  
 

where , , ,TP TN FP and FN  denote true positives, 

true negatives, false positives, and false negatives, 

respectively. True negatives ( )TN occur when 

negative instances are correctly classified, whereas 

true positives ( )TP refer to accurately identified 

positive cases. A false negative ( )FN arises when 

a positive instance is mistakenly labeled as 

negative, while a false positive ( )FP  occurs when 

a negative instance is erroneously classified as 

positive. 

Precision represents the proportion of correctly 

predicted positive instances to the total number of 

instances predicted as positive, as expressed in Eq. 

(6). 

(6) Pr
TP

FP TP
ecision


  

Recall, also known as the true positive rate, 

quantifies the proportion of actual positive cases 

that are correctly identified by the classifier. It is 

formally defined in Eq. (7). 

(7) Re
TP

call
FN TP




 

The F-Score is a harmonic mean that balances both 

recall and precision, providing a single measure of 

performance, as formulated in Eq. (8). 

(8) 
 2 Pr Re

1
Pr Re

ecision call
F score

ecision call

 
 


 

The AUC is a widely used assessment metric 

derived from the Receiver Operating Characteristic 

(ROC) curve. It measures the classifier’s ability to 

distinguish between classes, with higher values 

indicating better classification performance 

Furthermore, confusion matrix analysis was 

incorporated to support a more detailed 

interpretation of the classifiers' predictive 

capabilities [26, 45, 46]. 
3.3. Optimized HGB Classifier Using PSO Algorithm  

HGB is a powerful tree-based ensemble learning 

technique capable of handling large-scale data with 

high predictive efficiency. However, its 

performance is highly influenced by the selection 

of hyperparameters, including "learning_rate", 

"max_iter", and "max_depth". To enhance the 

accuracy and robustness of the HGB classifier, this 

study employs the Particle Swarm Optimization 

(PSO) algorithm for hyperparameter tuning. PSO, 

initially proposed by Kennedy and Eberhart in 

1995 [47], is a population-based stochastic 

optimization technique inspired by the social 

behavior of birds flocking or fish schooling. It has 

been extensively used in various engineering 

optimization problems and is particularly effective 

for tuning complex models. The velocity and 

position of each particle in the swarm are updated 

using the following equations [48-51]: 

 

 

1 1

2 2

( 1) ( ) ( )

( )

i i i i

i

v t v t c r pbest x t

c r gbest x t

    

 
 

(9) 

(10) ( 1) ( ) ( 1)t x t v t
i i i

x      

where: 

 ( )iv t  and ( )ix t  represent the velocity and 

position of particle i  at iteration t , 

respectively. 

  is the initial weight. 

 1c and 2c   are the cognitive and social 

coefficients. 

 ipbest is the personal best position of particle

i . 

 gbest is the global best position discovered so 

far. 

 1r and 2r  are uniformly distributed random 

variables in [0, 1]. 

The implementation of the PSO-HGB framework 

was based on optimizing the accuracy of the HGB 

classifier. The search space and parameter bound 
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used in this optimization are shown in Table 2. 

Table 2. Hyperparameter search space for HGB 

optimized by PSO. 
Hyperparameter Description LB UB 

learning_rate 
Learning rate for 

boosting 
0.01 0.3 

max_iter 
Number of 

boosting iterations 
50 500 

max_depth 
Maximum depth 

of trees 
3 10 

The algorithmic parameters employed in the PSO 

algorithm for hyperparameter tuning are listed in 

Table 3. The proposed PSO-HGB optimization 

procedure is outlined in Algorithm 1. 

Table 3. PSO parameter settings. 
Parameter Description Value 

  Inertia weight 0.5 

1c  
Cognitive coefficient (individual 

learning) 
2.0 

2c  Social coefficient (swarm learning) 2.0 

N  Number of particles in the swarm 20 

T  
Maximum number of PSO 

iterations 
30 

 

The PSO parameters employed in this study, as 

summarized in Table 3, were determined 

empirically through a trial-and-error procedure. 

The inertia weight   is inherently a positive 

parameter, and prior studies [50,52] commonly 

recommend values within the range of 0.4–0.9. In 

this work, 0.5  was identified as the most 

appropriate setting, offering a balanced trade-off 

between exploration and exploitation.  

 

4. Results and Discussion  

In this study, the Dissolved Gas Analysis (DGA) 

dataset, comprising five input features (H₂, C₂H₂, 

CH₄, C₂H₆, and C₂H₄) and seven fault labels 

defined by the Duval Pentagon method, was 

employed. Data preprocessing included outlier 

removal via the Interquartile Range  IQR  

method and feature standardization using z-score 

normalization. The dataset was then split into 

training (70%), validation (15%), and testing 

(15%) subsets. Advanced classifiers, including 

Gradient Boosting (GB), Extreme Gradient 

Boosting (XGBoost), and Histogram-based 

Gradient Boosting (HGB), were applied to the 

DGA data. Table 4 presents their performance 

according to standard metrics: accuracy, precision, 

F1-score, recall, and AUC. 

 

 

 
Table 4. A comparative performance analysis of the 

advanced classifiers 

Classifier 
Criteria (%) 

Accuray Precision F1-Score Recall AUC 

GB 91.13 91.55 91.17 91.13 99.48 

XGB 93.95 94.50 94.00 93.95 99.75 

HGB 96.37 96.43 96.37 96.37 99.83 

For visual comparison, bar plots of each classifier's 

performance are shown in Figures 1, 2, and 3. 

Among these, HGB achieved the highest results: 

accuracy of 96.37%, precision of 96.43%, F1-score 

of 96.37%, recall of 96.37%, and AUC of 99.83%. 

 
Figure 1. Performance evaluation of the Gradient 

Boosting (GB) classifier. 

 
Figure 2. Performance evaluation of the Extreme 

Gradient Boosting (XGB) classifier. 

 
Figure 3. Performance evaluation of the Hist Gradient 

Boosting (HGB) classifier. 

For a comprehensive comparison of the three 

advanced classifiers GB, XGBoost, and HGB, their 

performance line plots based on the standard 

metrics of accuracy, precision, recall, F1-score, and 

AUC are demonstrated in Figure 4. 
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Figure 4. Comparative performance of GB, XGB and 

HGB classifiers. 

Also, Table 5 compares the HGB classifier with a 

state-of-the-art LightGBM ensemble model 

proposed in [26]. The results indicate that HGB 

outperforms the reference classifier across all 

evaluated metrics. To further enhance the 

predictive accuracy of transformer fault 

classification, the Particle Swarm Optimization 

(PSO) algorithm was employed to fine-tune the 

hyperparameters of the HGB model. This 

metaheuristic strategy was used to optimize the 

learning rate, number of boosting iterations, and 

maximum tree depth by maximizing the validation 

accuracy within a predefined hyperparameter 

search space. The optimization process followed 

the steps outlined in Algorithm 1. 

The optimal configuration obtained through PSO 

included a learning rate of 0.2679, 292 boosting 

iterations, and a maximum depth of 9, as 

summarized in Table 6. This configuration yielded 

an accuracy of 97.98%, demonstrating a significant 

enhancement in the predictive capability of the 

HGB classifier for fault classification in oil-

immersed transformers. These improvements are 

notably superior to both the unoptimized HGB 

classifier and the LightGBM-based method 

referenced in [26]. For a more comprehensive 

comparison, we additionally employed the Genetic 

Algorithm (GA) to optimize the HGB model, and 

the corresponding results are presented in Table 5 

and Figure 6.  
 

Table 5. Comparative evaluation of HGB, HGB-GA, 

HGB-PSO, and the LightGBM model in [26] 
Criteria 

 

Classifier 

HGB [26] HGB-GA HGB-PSO 

Accuracy (%) 96.37 96.08 97.58 97.98 

Precision (%) 96.43 96.09 97.75 98.07 

F1-Score (%) 96.37 96.06 97.58 97.99 

Recall (%) 96.37 96.08 97.60 97.98 

AUC (%) 99.83 99.64 99.89 99.96 
 

As evidenced by these results, the HGB-PSO 

consistently outperforms all other methods, 

including the HGB-GA, thereby underscoring its 

superior optimization effectiveness. Furthermore, 

the runtime analysis indicates that the HGB-PSO 

required 3806 seconds, whereas the HGB-GA 

required 4846 seconds, highlighting the greater 

computational efficiency of the HGB-PSO. 
 

Table 6. Optimized hyperparameters of the HGB 

classifier via PSO  
Hyperparameter Description Optimized Value 

Learning rate 
Learning rate used in 

boosting 
0.2679 

Max iterations 
Number of boosting 

iterations 
292 

Max depth 
Maximum depth of 

individual trees 
9 

 

The two-sample paired t-test was conducted to 

statistically compare the performance of the HGB 

model before and after PSO-based optimization. 

The analysis yielded a p-value of 0.00863, which is 

below the 0.05 significance threshold. 

Consequently, the null hypothesis of equal means 

is rejected, indicating that the improvement in 

classification accuracy achieved by the HGB-PSO 

model is statistically significant. 

Figure 5 presents a bar plot of HGB-PSO 

performance, and Figure 6 illustrates a comparative 

line chart among HGB, the model from [26], HGB-

GA, and HGB-PSO.  

 
Figure 5. Performance evaluation of the HGB classifier 

with PSO algorithm. 

 
Figure 6. Comparative performance of HGB, HGB-GA, 

HGB-PSO, and the classifier of [26]. 
Furthermore, confusion matrices for all four 

classifiers (GB, XGB, HGB, and HGB-PSO) are 

provided in Figures 7–10. 
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Figure 7. Confusion matrix of the GB classifier. 

 
Figure 8. Confusion matrix of the XGB classifier.  

 
Figure 9. Confusion matrix of the HGB classifier. 

 
Figure 10. Confusion matrix of the HGB-PSO classifier. 

The confusion matrices confirm that HGB-PSO 

yields the lowest misclassification rate and the 

highest diagnostic accuracy for the seven fault 

types in oil-immersed power transformers. 

 

5. Conclusion  

This work has presented a novel hybrid framework 

for transformer fault prediction that couples 

Histogram-based Gradient Boosting (HGB) with 

Particle Swarm Optimization (PSO). By leveraging 

five key dissolved gas features and seven Duval-

Pentagon fault categories, we demonstrated that 

HGB significantly outperforms conventional GB 

and XGB models, achieving up to 96.37% 

accuracy and 99.83% AUC. PSO-tuned HGB 

further improves performance by approximately 

2% over standard HGB and a state-of-the-art 

LightGBM ensemble benchmark. Confusion-

matrix analysis confirmed that the optimized model 

yields the lowest misclassification rates across all 

seven fault types. These findings underscore the 

efficacy of metaheuristic tuning in enhancing 

ensemble learners for DGA-based diagnosis. 

Future work may explore the use of k-fold cross-

validation in combination with advanced deep 

learning techniques to further enhance the 

robustness of transformer fault diagnosis. 

 
Algorithm 1. PSO-Based Hyperparameter Optimization for HGB. 
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 .x x x xسال  ،xشماره  ،کاویمجله هوش مصنوعی و داده                                                                                                                مرادی               

 

و  شرفتهیپ نگیبوست انیبر گراد یمبتن یروغن یخطا در ترانسفورماتورها ینیبشیپ نینو تکنیک کی

 (PSO)ازدحام ذرات  یسازنهیبه
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 چکیده:

با  ر،یاخ یهادر سال مهم است. اریبس ستمیو کاهش اختلالات س یاتیعمل نانیاطم تیحفظ قابل یقدرت برا یخطا در ترانسفورماتورها ینیبشیپ

. در اندمورد استفاده قرار گرفته ینیبشیپ عملکرد یارتقا یبرا یبر هوش مصنوع یمبتن یها، روش(DGA)محلول  یگازها زیآنال یهااز داده یریگبهره

 یسازنهیبه یفراابتکار تمیبا الگور (HGB) یستوگرامیه انیگراد تیتقوکه در آن روش  شودیم یمعرف نیماش یریادگی نیچارچوب نو کیمقاله،  نیا

مرحله انجام  در دو یشنهادیپ شرو یابی. ارزرا تضمین نماید کنندهیبندطبقه استحکامشده است تا  ادغامابرپارامترها  میتنظ یبرا (PSO)ازدحام ذرات 

 HGBکه  اندمورد ارزیابی قرار گرفته HGBو  (XGBoost) تقویت گرادیان شدید، (GB) انیگرادتقویت  یهاشده است: در مرحله نخست، عملکرد روش

 شتریبهبود ب منجر بهکار گرفته شد که به HGB یابرپارامترها یسازنهیبه یبرا PSO تمی؛ در مرحله دوم، الگورعنوان موثرترین روش نشان داد را به

 ازیدرصد و امت 97.33  فراخوانیدرصد، 98.9 صحتدرصد،  97.85به دقت  HGB-PSO یبیکه مدل ترک دهدینشان م تجربی جی. نتادیعملکرد گرد

F1  شده و  یسازادهیپ پایتون طیموجود در مح شرفتهیپ یهابا روش یاسهیمقا یهالیو تحل هایسازهیشب یاست. تمام افتهیدرصد دست  98.99معادل

-HGB یبیآن است که روش ترک حاکی از هاافتهیاین مورد استفاده قرار گرفته است.  ینیبشیجامع عملکرد پ یابیارز یاغتشاش برا سیماتر لیتحل

PSO یابددست می فورماتورترانس یخطا ینیبشیدر پ یبالاتر استحکامدقت و  به.  

محلول  یگازها زیخطا، آنال ینیبشی، پ(PSO)ازدحام ذرات  یسفففازنهیبه ،انیگراد تیتقو ن،یماشففف یریادگیترانسففففورماتور قدرت،  :کلمات کلیدی

(DGA). 

 


