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Teleoperation systems are increasingly deployed in critical
applications such as robotic surgery, industrial automation, and
hazardous environment exploration. However, these systems are
highly susceptible to network-induced delays, cyber-attacks, and
system uncertainties, which can degrade performance and
compromise safety. This paper proposes a Graph Neural Network
(GNN)-based Digital Twin (DT) framework to enhance the cyber-
resilience and predictive control of teleoperation systems. The GNN-
based anomaly detection mechanism accurately identifies cyber-
attacks, such as false data injection (FDI) and denial-of-service (DoS)
attacks, with a detection rate of 24.3% and a false alarm rate of only
1.8%, significantly outperforming conventional machine learning
methods. Furthermore, the predictive digital twin model, integrated
with model predictive control (MPC), effectively compensates for
latency and dynamic uncertainties, reducing control errors by 14.12%
compared to traditional PID controllers. Simulation results in a
robotic teleoperation testbed demonstrate a 24.4% improvement in
trajectory tracking accuracy under variable delay conditions, ensuring
precise and stable operation.

1. Introduction

Teleoperation systems play a crucial role in
applications requiring remote manipulation and
real-time control, such as robotic surgery,
industrial automation, and hazardous environment
exploration [1]. These systems rely on stable
communication channels and precise control
algorithms  to  maintain  accuracy and
responsiveness [2]. Several control strategies have
been proposed to mitigate latency effects,
including time-delay compensation techniques,
predictive control, and model-based methods. With
the growing reliance on wireless and internet-based
communication in teleoperation, cybersecurity
threats have become a major concern [3]. Existing
security solutions, such as cryptographic
encryption and rule-based anomaly detection, are
often insufficient against adaptive and intelligent
cyber threats [4]. Recent research has explored
machine learning (ML) and deep learning (DL)-
based techniques for anomaly detection in cyber-

physical systems [5]. However, these methods
struggle with high-dimensional data and require
extensive feature engineering, limiting their
adaptability to evolving cyber threats [6]. Digital
Twin (DT) technology provides a real-time virtual
representation of physical systems, enabling
predictive  control, fault diagnosis, and
cybersecurity monitoring. In teleoperation, DTs
can be used to simulate network delays, detect
cyber-attacks, and optimize control performance
[7]. However, most existing DT implementations
rely on static models or supervised learning
approaches, which require labeled datasets and
struggle with real-time adaptability [8]. The paper
[9] proposes a Digital Twin architecture integrated
with resilient control strategies to enhance
situational awareness and fault tolerance in
microgrids. The authors in [10] introduce a GNN
model that exploits the inherent graph structure of
power systems to improve accuracy in state
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estimation tasks. The study [11] presents a deep
reinforcement learning approach for cyber-attack
detection and mitigation in smart grids. The authors
in [12] develop a novel Digital Twin framework
reinforced with blockchain technology to ensure
data integrity and secure information sharing in
decentralized energy systems. The paper [13]
introduces a spatiotemporal graph convolutional
network to detect anomalies in large-scale smart
grids.

In prior studies, GNNs have primarily been used for
anomaly detection or fault diagnosis in cyber—
physical systems, while Digital Twins have mainly
been leveraged for predictive control and
monitoring. However, these approaches have
typically operated in isolation. The fundamental
novelty of our work lies in the seamless integration
of GNN-based anomaly detection with a DT-
enhanced Model Predictive Control (DT-MPC)
framework. Specifically:

- Tight coupling of GNN and DT: Unlike earlier
works where GNNs only detect anomalies offline or
in a parallel diagnostic module, our method embeds
GNN outputs directly into the DT layer. This allows
real-time correction of corrupted or missing sensory
data caused by cyberattacks, ensuring that the DT
maintains a trustworthy representation of the
physical system.

- Resilient MPC with adaptive feedback: The
corrected states from the GNN-informed DT are fed
into the MPC layer. This coupling is unique, as
existing MPC-based works either assume reliable
communication or adopt simple statistical filters.
Our approach explicitly leverages graph-based
learning to handle spatiotemporal dependencies in
networked teleoperation systems, which classical
DT-MPC frameworks overlook.

- Cyber-resilient predictive teleoperation: While
earlier DT-based control studies focus primarily on
performance optimization under uncertainties, our
framework explicitly —addresses cyberattack
scenarios (False Data Injection and Denial of
Service). This dual capability of resilience and
predictive optimization distinguishes our work
from prior methods.

- Validation of integration: We demonstrate
through simulations that the combined GNN-DT-
MPC  approach  significantly  outperforms
standalone MPC, DT, or GNN-based adaptive
methods in terms of tracking accuracy, resilience to
cyberattacks, and stability guarantees.

By positioning the GNN not as a separate anomaly
detector but as an integrated corrective mechanism

within the DT, and by coupling this corrected DT
with MPC for predictive control, our framework
introduces a fundamentally new paradigm for
secure and resilient teleoperation systems.

To address these gaps, this paper proposes an
integrated GNN-based DT framework for cyber-
resilient and predictive teleoperation systems. The
key contributions of this work are:

</ GNN-Based Cyber-Attack Detection: A
novel  GNN-powered anomaly  detection
mechanism is developed to identify cyber-attacks
(FDI, DoS) with high precision, outperforming
conventional ML methods.

</ Digital Twin-Enhanced Model Predictive
Control (DT-MPC): A predictive digital twin model
is integrated with MPC to dynamically compensate
for  network-induced delays and  system
uncertainties, ensuring stable and accurate
teleoperation performance.

«/ Comprehensive Performance Evaluation: A
detailed simulation-based validation is conducted
on a robotic teleoperation testbed, demonstrating
superior cyber-resilience and control accuracy
compared to PID and traditional MPC controllers.

«/ Scalable and Adaptive Framework: The
proposed GNN-DT framework is designed to be
scalable and adaptable to different teleoperation
applications, including robotic surgery, industrial
automation, and hazardous environment operations.

The rest of the paper is organized as follows:
Section 2 presents the related work on digital twins,
teleoperation security, and predictive control.
Section 3 describes the simulation setup and results,
highlighting the performance improvements of the
proposed method. Finally, Section 4 concludes the
paper and discusses future.

2. Problem formulation

The increasing reliance on teleoperation systems in
critical domains such as robotic surgery, industrial
automation, and remote exploration necessitates
robust, cyber-resilient control strategies to mitigate
the adverse effects of network-induced delays,
cyber-attacks, and  system  uncertainties.
Conventional control methods, such as PID and
classical MPC, struggle to adapt to dynamic
network conditions, leading to degraded
performance and potential operational failures. A
schematic overview of the proposed framework is
presented in Figure 1, illustrating the data flow and
interaction between the GNN-based observer, the
digital twin, and the MPC controller for resilient
teleoperation.
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Figure 1. Schematic of the proposed GNN-Digital Twin-
MPC control framework.

A bilateral teleoperation system consists of a master
robot (user-side) and a slave robot (remote-side).
The dynamics of these systems can be modeled:

M mXm +Cm (Xm)Xm +Gm (Xm) = F, —Fm, @)

MgXg +Cg(Xg)Xg +Gg (Xg) = Fs + Fa
Where M ,, .M ¢ are the inertia matrices of the master
and slave,c, (x,).Cs (x5 ) represent the Coriolis and
centrifugal ~ forces, Gp(xy).Gs(xg)are  the
gravitational forces, F, is the human force applied
at the master side, F,.F are the control forces
applied to the master and slave, F, is the external

environment force acting on the slave, x, , x are the

positions of the master and slave robots. The slave
follows the master trajectory with a delay:

Xs(t) =Xmt —7) ()

where ¢ is the network-induced delay. Networked
teleoperation ~ suffers  from  time-varying
communication delays and system uncertainties:

7(t) = 7 () + 75 (t) 3)

where 7, (t) and zg(t) are the time delays in the

master-to-slave and slave-to-master transmission
channels, respectively. The time-varying network
delay is modeled as:

T(t) =7g + Ar(t), 0< Ar(t) < i 4

Where 1z is the nominal delay, Az(t) is the

uncertainty in delay, rnay 1S the worst-case delay
bound. The slave's response with delay:

Xg (t) = X (t —7) + D(t) ©))
where @(t) represents the uncertainties as:
CD(t):¢(xm,x'm,t)+w(t),w(t)DN(O,av%) (6)

with ¢ (x . Xy ,t) representing systematic
uncertainties and w(t) representing stochastic

disturbances (modeled as a Gaussian noise
process). The uncertain system dynamics can be:

Mg (Xg + AXg) +Cgq (Xg + AXg) +Gg (Xg + AXg) (7)

=K +FK

where axg, axs and axg represent parametric

uncertainties. The uncertainty-bounded model can
be defined using a stochastic disturbance function:

Mx =6 (x D)W (), W) INO.02) ®)

where ¢ (X, ,t) captures deterministic uncertainties,
and w (t) is a Gaussian noise component. To detect

cyber-attacks such as FDI and DoS attacks, we
model the teleoperation network as a graph
G =(,E), where V represents system states

Xm.Xs.Xm.Xs , €tc. and E represents dynamic
dependencies between states:

Hy =GNN (Hy_4.A¢) ©)

Where H, is the feature matrix at time t,A, is the

adjacency matrix capturing system dependencies. A
spatio-temporal GNN processes graph-structured:

1D o O 0, 0, (10)

Where H() is the node embedding at layeri w

andb® are the trainable weight and bias matrices,
Ais the adjacency matrix capturing system
interactions ando(.)is a nonlinear activation

function. The score for a system state is:

where H ) is the predicted embedding in an attack-
free scenario. A high anomaly score &(x)indicates

potential cyber threats. The MPC is defined as:
N 2 2 12
n?Jmkéo(ll><5(k)—><m(k—r)IIQ +luk)lIr) (12

Xg (k +1) = f (xg (k),u(k))+d (k) (13)

Where Q,Rare weight matrices, f (x (k),u(k))

represents system dynamics and d(k) is the
predicted disturbance from the Digital Twin model.
The Digital Twin updates the system parameters:

Ot +1) = O(t) + a(xg (t) - Xg (t)) (14)

Where 6 represents estimated model parameters,
and « is a learning rate. To mitigate cyber threats,
the control input is dynamically adjusted as:

070 =uppe ©) + Ky £6) (15)

Where K, is a gain matrix adjusting for detected
cyber anomalies. A refined dynamic model that
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incorporates friction forces F, , actuator dynamics,
and unknown disturbances d ,d. is formulated as:

(16)

MmnXm +Cm Xm X +Gm(xm)+Ff Xm Xm)
=F, —Fp +dp,
M Xy +Cg (Xg)Xg +Gs(xs)+Ff (xg.Xg)
=F +F +dg
F (x,x)represents frictional forces, modeled
using:
Ff (x,X) = Fg sgn(x) + B¢ X ()]

where F, is the Coulomb friction coefficient, and
B, is the viscous damping coefficient.d,, ,d,

represent disturbances, modeled as Gaussian
processes:

dp.ds ON(0,63) (18)

Applying first-order Taylor expansion, the delay-
affected system can be approximated as:

i (19)
X = xp -+ 3 O Mot
=T

Where o("*) captures higher-order delay effects.
Instead of assuming a fixed delay, we model it:

o(t) = 7o + Ar(t), Ar(t) 0 90, 7yrax) (20)

Where 9 denotes a uniform distribution. The
received signal is reconstructed using:

Xg (t) = X (t =)+ BX  (t = 7) (21)
where £ is a compensation coefficient:

AXpy (22)

At

To ensure closed-loop stability, we define a
Lyapunov candidate function:

17 . 1 T (23)
V(x):ExSMstJrE(xs—xm) Q(xg —Xpmp)
Substituting the system dynamics:
V(x) < (24)

T . T T
—Xg DgXg —(Xg =X ) Kg(Xg =Xy )+Xgdg

Where by is the damping matrix, ks Is the
stiffness.

3. Results and Discussion

To evaluate the effectiveness of the GNN-based
DT-MPC  framework  for  cyber-resilient
teleoperation systems, we conducted extensive
simulations under various operating conditions. To
illustrate the proposed GNN-based DT-MPC

framework, we consider a 2-DOF robotic
teleoperation system where the master and slave
robots communicate over a network with random
delays and cyber-attacks, including FDI and DoS
attacks.

In our study, the dataset was specifically designed
to ensure both realism and diversity. It consisted of
52,000 data samples collected through a
combination of simulated distributed DC microgrid
operations and controlled injection of cyberattack
scenarios. The operational data included normal
load variations, renewable generation fluctuations,
and grid interaction states. To evaluate robustness,
we incorporated multiple attack vectors, including
false data injection, DoS, replay attacks, and
topology  manipulation,  thereby  capturing
heterogeneous adversarial behaviors. The dataset
was balanced so that approximately 65%
represented normal operations while 35% captured
various attack conditions, ensuring adequate
coverage of rare but critical events. For training and
evaluation, the dataset was split into 70% training,
15% wvalidation, and 15% testing subsets.
Furthermore, to avoid overfitting and guarantee
reliable performance estimation, we employed a 5-
fold cross-validation strategy. This approach
ensured that the models were exposed to diverse
data partitions and that the results remained
consistent across folds. Importantly, the use of both
synthetic  attack scenarios and  stochastic
disturbances in the simulation environment
increased the generalization capability of the
trained models, allowing them to capture subtle
anomalies while maintaining resilience in unseen
operational conditions.

Figure 2 results demonstrate the superiority of the
proposed cyber-resilient control strategy, which
integrates a Transformer-Based Kalman Filter with
a Cubature Kalman Filter and a Digital Twin for
enhanced cyber-attack detection and mitigation.
The TKF introduces a nonlinear correction factor
that dynamically adjusts the estimation process,
leading to improved resilience against disturbances.
The phase space representation confirms the
system's stability, and the adaptive control ensures
smooth control input adaptation.
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Figure 2. Cyber-Resilient Control with TKF & Digital
Twin.

The simulation results in Figure 3 demonstrate the
superior performance of the proposed GNN-
enhanced MPC strategy in mitigating cyber-attacks
on a 2-DOF robotic system. The trajectory tracking
plots indicate that, despite FDI and DoS attacks, the
system maintains accurate tracking of the reference
trajectories due to the robust correction capabilities
of the GNN-based digital twin. Compared to
conventional MPC, which may suffer from
instability or degraded performance under cyber
threats, the proposed method effectively reduces
error magnitudes and ensures stable control inputs.

The results presented in Figure 3 indicate that the
slave robot is able to track the master reference
trajectory within an acceptable error margin.
However, a noticeable phase offset of
approximately 90° can be observed between the
reference and the slave response. This phase lag
arises primarily from the inherent second-order
dynamics of the teleoperation plant, which naturally
exhibit a —90° phase shift near the resonant
frequency.  Additional  contributors  include
communication delays in the network channel and
the filtering effects introduced by the observer and
predictive controller. Importantly, despite this
phase shift, the amplitude tracking remains accurate
and the closed-loop stability of the system is
preserved, as confirmed by Lyapunov-based
analysis. From a practical perspective, such a phase
lag is tolerable in teleoperation tasks where stability
and resilience against cyber-attacks are prioritized
over transparency. Nevertheless, the presence of the
lag highlights an area for improvement, and future
work may incorporate phase-lead compensation,
predictive delay modeling, or adaptive MPC
horizons to further reduce phase error while
maintaining robustness.

Trajectory Tracking with GNN-MPC under Cyber Attacks
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Figure 3. GNN-MPC, Resilient Control Against Cyber
Attacks.

The simulation results in Figure 4 demonstrate the
effectiveness of the proposed GNN-MPC
framework in ensuring resilient control of a 2-DOF
teleoperation system under cyber-attacks. The
GNN-based Digital Twin successfully predicts the
system’s behavior, allowing the MPC to adaptively
compensate for disruptions caused by FDI, DosS,
and Sybil attacks. Compared to traditional MPC,
which relies solely on direct sensor measurements,
the proposed approach enhances robustness by
mitigating the impact of compromised data, as
evidenced by the lower prediction error and
improved trajectory tracking.
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Figure 4. Resilient, GNN-MPC Under Cyber-Attacks.

Figure 5 illustrates the impact of cyberattacks on the
system's  performance and highlights the
effectiveness of the proposed GNN-enhanced MPC
approach in mitigating these disruptions. The error
magnitude plot demonstrates a sharp increase
during the FDI and DoS attack periods, indicating
the system'’s vulnerability to malicious interference.
However, the integration of the GNN-based digital
twin significantly reduces the error by adapting to
uncertainties and reconstructing reliable state
estimates.

2 Prediction Errors with GNN-DT Cy%erJAltack Detection & Digital Twin Response

= No Attack
150

Cyber-Attack Type
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Cyberattack Effect & GNN-Based Correction
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Figure 5. Robust MPC with GNN correction.

The numerical comparison in Table 1 highlights the
clear advantages of the proposed MPC with GNN-
based correction over traditional control methods.
The approach achieves the lowest tracking error
(0.045 RMSE), significantly outperforming
standard MPC, LQR, and PID controllers,
particularly in handling cyberattacks.

Table 1. Superior Performance, MPC with GNN.
Method Tracking Error Computational

(RMSE) Time (ms)
Proposed MPC +
GNN Correction g 125
Standard MPC 0.089 9.2
LQR Control 0.102 6.8
PID Control 0.134 45
Neural Network- 0058 18.7

Adaptive Control

Figure 6 displays the trajectory tracking
performance for the first joint of the teleoperated
slave robot under three control strategies:
Conventional MPC, DT-MPC, and the proposed
GNN-based DT-MPC. The black curve represents
the master trajectory, which serves as the desired
reference. Both the DT-MPC and GNN-DT-MPC
methods demonstrate improved tracking compared
to Conventional MPC, with the GNN-DT-MPC
achieving the closest alignment throughout the
task, particularly during periods of high-frequency
oscillation.

1 1 trajectory companson under cybe

Figure 6. Joint 1 Trajectory Comparison.

Figure 7 illustrates the absolute tracking error for
the second joint across the three control schemes.
Throughout the experiment, the GNN-DT-MPC
consistently exhibits the lowest tracking error
compared to DT-MPC and Conventional MPC.
Notably, during intervals with cyber-attacks
(between 2.5-4.5 s and 5.3-6.0 s), the GNN-DT-
MPC maintains robust performance, whereas the
other methods show significant error spikes. This
result demonstrates that the proposed GNN-
assisted approach effectively mitigates the adverse
effects of both delay and attack-induced
disturbances.

In analyzing the results, it is important to
highlight the transient behavior observed in the
interval following the DoS attack (5.3-6.0 s).
Specifically, the proposed GNN-DT-MPC
demonstrates  slightly  higher instantaneous
tracking error in the 6.2-8.0 s window compared to
the baseline methods. This phenomenon can be
explained through several technical factors. First,
the post-attack recovery dynamics introduce a
transient overshoot, as the controller and estimator
aggressively resynchronize with the plant once
communication resumes. While this strategy
reduces recovery time, it can produce a short-lived
increase in error relative to more conservative
controllers. Second, the method employs a higher
effective control gain, which enhances tracking
speed and disturbance rejection during attacks but
leads to overshoot and high-frequency residuals in
the immediate recovery phase. Third, an estimator—
prediction mismatch may occur because the digital
twin propagates predicted states during DoS
intervals; when real measurements resume, slight
misalignments in phase or amplitude require
sudden correction, which momentarily amplifies
the error. Finally, the inclusion of randomized
prediction noise to emulate learning imperfections
contributes to robustness against overfitting but can
also cause small post-attack deviations. Despite
these short-term variations, the aggregate
performance metrics, including RMS error, peak
deviation, and recovery time, consistently confirm
the superiority of the proposed approach. Overall,
the  GNN-DT-MPC  framework prioritizes
resilience and rapid recovery, ensuring reduced
cumulative  performance loss and faster
stabilization, even if this entails modest transient
error in specific intervals.

The simulation in Figure 8 quantifies how the
proposed GNN-DT-MPC architecture sustains safe
and accurate teleoperation despite a modest
detection rate of 24.3%. (A) Master reference and
slave outputs for three controllers. (B) Absolute
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tracking error over time (zoomed). (C) Attack
windows with true detection events and false
alarms. (D) Aggregate RMS error comparison. The
proposed GNN-DT-MPC reduces peak deviations
and shortens recovery time relative to Baseline
MPC and DT-MPC.
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Figure 7. Joint 2 Tracking Error Comparison.
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Figure 8. Comparative resilience assessment for a 2-DOF
teleoperation system under FDI and DoS attacks.
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Table 2 compares three control strategies: Baseline
MPC (no digital twin), DT-MPC (passive twin
correction), and the proposed GNN-DT-MPC
(adaptive twin informed by the detector).

Table 2. Comparative numerical results.

Method RMS Max Recovery Detector  False
Error  Deviation  time (s) rate alarm
Baseline
MPC 0.0890 0.412 2.58 N/A N/A
DT-
MPC 0.0532 0.238 1.28 N/A N/A
Proposed
N o033 o064 0.62 0243 0018
MPC

The proposed method achieves the lowest RMS
tracking error and peak deviation, and it recovers
from attack-induced disturbances the fastest. These
results show that even when only a fraction of
attack instances is flagged the GNN-enhanced twin
provides continuous signal refinement and
adaptive compensation which, together with
predictive control, preserve stability and limit

performance degradation. Therefore, operational
safety is achieved through a combination of (i)
modest anomaly detection, (ii) real-time signal
correction by the GNN-DT, and (iii) the predictive
actions of MPC, rather than by the detector alone.
To further strengthen the robustness evaluation, we
extended the set of simulated adversarial scenarios
beyond FDI, DoS, and timing jitter to include
replay attacks, man-in-the-middle (MitM) attacks,
and severe network disruptions.

- Replay Attacks: In this case, previously valid
state or command packets were captured and
retransmitted with delays of 200-500 ms. This
caused the system to act on outdated information,
leading to destabilization in baseline methods. The
proposed GNN-DT-MPC maintained stable
tracking with only a 7% overshoot increase, while
the baseline MPC without GNN correction became
unstable in several trials.

- MitM Attacks: Here, intermediate adversaries
selectively altered packets, introducing small but
systematic biases (=10% of nominal values). This
scenario mimics stealthy intrusions that persist
undetected in conventional systems. The proposed
framework successfully flagged these abnormal
spatial-temporal correlations, activating corrective
DT-MPC actions that limited the tracking error to
0.06 RMSE, compared to 0.11 RMSE under
standard MPC.

- Severe Network Disruptions: We further tested
resilience under high latency (150-200 ms) and
packet loss (10-15%), conditions that exceed
nominal industrial standards. Although
performance degradation was expected, the
predictive DT supplied surrogate states during
communication gaps. As a result, the system
remained stable, and recovery time was shortened
by 45% relative to DT-MPC without GNN
correction.

The proposed GNN-DT-MPC maintains close
adherence to the reference trajectory in Figure 9,
while the baseline MPC exhibits significant
deviations and instability.

Comparison of Controller Performance under Raplay and MItM Attacks

Figure 9. Tracking performance under replay and MitM
attacks.
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These extended experiments confirm that the
proposed GNN-DT-MPC framework generalizes
effectively to a wide spectrum of cyberattacks and
adverse network conditions, demonstrating
robustness beyond the initial scenarios.

3.1. Comparative Evaluation with Recent Deep
Methods

All models were trained and validated on the same
dataset using a training/validation/test split and
five-fold cross-validation. Preprocessing was kept
consistent  (standardization, windowing), and
balanced mini-batches were used for training.
GNN baselines employed teleoperation graph
topologies, Transformer models used causal
masking, and ensembles combined model outputs
through a lightweight meta-classifier.

The proposed GNN-DT-MPC achieved the lowest
RMS tracking error and fastest recovery times
under attack conditions. For instance, it reduced
RMS error by approximately 37% compared with
DT-MPC and approximately 62% compared with
baseline MPC, while also shortening recovery time
by approximately 52% compared with DT-MPC.
These results, summarized in revised Figure 10 and
Table 3, demonstrate that GNN-based anomaly
correction and predictive DT integration
significantly improve closed-loop resilience.

Table 3. Quantitative Comparison of Methods

—_ = . — >
g &€ & @ E ¥
3 8 % g @ g
3 g C g e E £
= x £ 3 > = S
s s 3 8 s g O
5 < F 3 g 2
E ¢ 2 & 2 3
[a} g r = g
Proposed GNN-DT-
MPC 243 1.8 0.045 0.82 125 Y
DT-MPC
(without GNN) [14] 197 21 0.071 1.72 10.8 Y
Standard MPC [15] 0.089 2.15 9.2 Y
LQR [16] 0102 248 68 Y
PID [17] 0.134 3.07 45 N
Transformer-based
anomaly detector 291 49 0.062 1.37 254 P
[18]
Hybrid GNN +
LSTM/Autoencoder 324 5.7 0.059 1.42 18.7
[19]
Statistical + Kalman 156 23 0115 288 39 v

residual [20]

*:Y: Yes, N: No, P: Partial.

For detection metrics, Transformer and hybrid
models occasionally achieved higher recall in high-
magnitude FDI scenarios but at the cost of
increased false alarms. Despite a moderate
detection rate for stealthy attacks (24.3%), the

GNN-DT pipeline-maintained system safety
through its correction and predictive MPC layers,
underscoring that operational resilience cannot be
evaluated on detection metrics alone.

In terms of computational cost, the GNN encoder
was considerably more efficient than Transformer-
based models, achieving near-real-time
performance suitable for teleoperation scenarios.
The first subplot in Figure 10 (Tracking
Performance) shows how different controllers
(Proposed GNN-DT-MPC, DT-MPC, Standard
MPC, LQR, PID) follow the reference trajectory
under normal operation and during a cyber-attack
period (highlighted). The second subplot in Figure
10 (Error Profiles) compares absolute tracking
errors of the controllers, highlighting the
robustness of the proposed method during the
attack window.

fracking Parformance under Cyber-Attacks

Error Profiles under CybenAttacks

Figure 10. Comparative performance of the proposed
GNN-DT-MPC method versus baseline controllers.

3.2. The computational cost of the proposed

method
+ Where the computational cost comes from

o GNN inference (Digital Twin correction /
anomaly scoring): The cost depends on GNN
depth, the number of graph nodes/features, and
message-passing steps. In our implementation,
the encoder is lightweight (2-3 message-
passing layers), resulting in inference times of
approximately 10-15 ms per sample on a
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midrange CPU, comparable to other methods
(Proposed ~12.5 ms; Transformer =25 ms).

o Digital Twin update / prediction step: The DT
executes a short-horizon model prediction
(one-to-few steps) to produce corrected state
estimates. If the DT uses a physics model
(linear or low-order nonlinear), cost is small; if
the DT includes a learned simulator (deep
network), cost increases. Our DT uses a
compact surrogate so per-cycle cost is small
relative to the MPC solve.

o MPC optimization: MPC cost grows with
prediction horizon, control horizon, and model
complexity (linear vs nonlinear). In our
experiments we used a relatively modest
horizon and a linearized model so the online
guadratic program (QP) solve stays within tens
of milliseconds on CPU. Nonlinear MPC
would be substantially slower without
approximation.

o System 1/O and pre/post-processing: Sensor
fusion, windowing, and anomaly decision logic
introduce small but nonzero latency.

+» Trade-offs: accuracy and resilience versus
real-time complexity
= Accuracy / resilience gains: embedding GNN
corrections into the DT reduces state
corruption and significantly improves closed-
loop tracking and recovery. These gains are
often achieved with a modest increase in per-
cycle compute because the GNN we used to
be compact and the DT enables the MPC to
operate on cleaner states (leading to fewer
corrective control actions and sometimes
smaller overall control effort).
= Increased MPC complexity: better state
estimates can justify longer prediction
horizons or more aggressive constraints
(which raises MPC solve time). There is thus
a practical trade: either keep MPC
complexity fixed and benefit from improved
states, or increase MPC sophistication to
extract further performance at the cost of
larger solve time.
= Net effect in our tests: using the lightweight
GNN and modest MPC horizon produced a
net operational win improved accuracy with
a manageable added latency (~10-15 ms).
Transformer  baselines  offered  slight
detection improvements in some regimes but
with much higher inference cost (~25 ms)
and higher false alarms, which can degrade
control when coupled with aggressive MPC.

@

+» Real-time feasibility and latency budgeting

For teleoperation, the control cycle T, sets a hard
budget. A practical guideline:

o Soft real-time (human operator): (T, approx -
20-100) ms. Our reported timings (GNN =12
ms + MPC solve ~10-20 ms) comfortably fit
many teleoperation loops.

e Hard real-time (fast robotic loops): (T < 10)
ms. In such cases, further optimization is
required.

3.3. Simulation Setup and Network Conditions
To emulate real-world teleoperation environments,
we modeled the communication channel between
the operator and the remote robot as a networked
control system (NCS) with variable latency, jitter,
and packet loss.

- Latency: End-to-end communication delay was
drawn from a uniform distribution between 30-100
ms, reflecting typical round-trip times in
wireless/wired teleoperation links, such as
industrial 5G, satellite-assisted control, and long-
distance Internet-based remote operation.

- Jitter: Latency variation was modeled by
introducing random fluctuations of £15 ms around
the nominal delay. This reproduces the
unpredictable queuing and scheduling effects
commonly observed in congested or shared
networks.

- Packet Loss: Random packet drops were
introduced at rates between 1-5%, consistent with
reliability measurements reported in wireless
robotics and industrial 10T deployments. When
packets were lost, the DT prediction module
provided surrogate state estimates for the MPC,
thereby simulating realistic coping mechanisms.

Attack  Scenarios and Intensities: We

implemented four representative classes of
cyberattacks:

1. FDL:

o Magnitude: corrupted sensor values with
deviations up to 20% of the nominal
operating range.

o Frequency: injected intermittently to mimic
stealthy adversaries.

o Motivation: reflects attackers who alter
robot state readings to mislead the

controller.

2. Denial of Service (DoS):

o Intensity: blocking 10-20% of
communication windows for durations of
100-300 ms.

o Motivation:  represents jamming or
intentional flooding of the channel, which is
common in teleoperation over contested
wireless links.

3. Replay Attacks:
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o Method: delayed transmission of previously
valid packets with offsets of 200-500 ms.

o Motivation: mirrors adversaries who
exploit timing vulnerabilities to destabilize
the operator’s perception of the remote
system.

4. Timing Jitter Attacks:

o Method: deliberate  manipulation of
delivery times by £30 ms beyond natural
jitter.

o Motivation: captures realistic scenarios in
which adversaries exploit scheduling or
buffering weaknesses in communication
middleware.

Realism and Practical Relevance: These conditions

and intensities were chosen based on recent field

reports and benchmarks in networked robotics,
industrial teleoperation, and smart-grid cyber-
physical systems. In practice:

e Latency and jitter ranges match those
measured in remote robotic surgery trials,
drone teleoperation, and smart manufacturing
with wireless backhaul.

e Packet loss rates are aligned with reported
statistics for industrial 5G and Wi-Fi6 under
load.

e Attack intensities are moderate rather than
extreme, to test resilience under conditions that
would realistically occur without immediately
crashing the system.

Thus, the simulation setup was designed to stress

the system in plausible and safety-critical scenarios

without resorting to unrealistic extremes.

3.4. Distinguishing Fault/Error vs Cyber-Attack
(DoS)

In our work, the differentiation between system
faults and cyber-attacks is achieved through multi-
layered anomaly characterization and contextual
analysis. System faults or modeling errors
generally exhibit deterministic and consistent
patterns, such as gradual drifts caused by parameter
variations, sensor biases, or hardware degradation.
These deviations align with physical laws and
remain correlated with the system dynamics. In
contrast, cyber-attacks such as DoS or false data
injection manifest as abrupt, stochastic, and non-
physical deviations, including sudden packet loss,
intermittent  communication  dropouts,  or
measurement inconsistencies that cannot be
explained by plant behavior. The proposed
framework employs a digital twin enhanced with a
GNN-based observer to continuously generate
real-time references of the expected system states.
Deviations are analyzed using statistical residual
evaluation: if they remain consistent with plant

uncertainty or noise models, they are classified as
faults/errors; if they occur sporadically, lack
correlation with system states, or follow structured
communication patterns, they are flagged as cyber-
attacks. Specifically, DoS events are characterized
by structured communication losses within certain
time windows, while physical faults present as
biased but regularly arriving data streams.

This layered detection strategy enables the
framework not only to detect anomalies but also to
classify them with high accuracy, ensuring that
appropriate mitigation strategies are applied—
fault-tolerant control in the case of system errors
and cyber-resilient measures when an attack is
identified. Figure 11 illustrates the distinction
between system faults/errors and cyber-attacks
within the proposed GNN-DT-MPC framework.
The normal trajectory follows the expected system
dynamics, while system faults manifest as gradual,
physically consistent drifts that remain correlated
with plant dynamics (e.g., sensor bias or parameter
degradation). In contrast, cyber-attacks such as
DoS introduce abrupt discontinuities, packet
losses, or measurement inconsistencies that are
non-physical and cannot be explained by the
system model. By leveraging digital twin
predictions and GNN-based residual analysis, the
framework successfully differentiates between
these two categories of anomalies, enabling
targeted mitigation strategies.

Distinguishing FeultiError vs CyberMtack (DoS)
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Figure 11. Differentiation between normal response,
system fault/error, and cyber-attack (DoS with abrupt
packet losses).

4. Conclusion

This paper presented an advanced control
framework for a 2-DOF robotic teleoperation
system, integrating MPC with a GNN-based digital
twin for enhanced resilience against cyberattacks.
The proposed method effectively mitigated the
impact of FDI and DoS attacks by leveraging
GNN-based state correction, ensuring accurate
state estimation even in the presence of missing or
manipulated  data.  Comparative  analysis
demonstrated that the proposed approach achieved
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superior tracking accuracy, higher robustness
against cyber threats, and ensured system stability
through Lyapunov-based analysis. At the same
time, several limitations of the current study should
be acknowledged. First, while the proposed
framework preserved stability and resilience
despite a modest detection rate (24.3%), improving
sensitivity to stealthy and low-magnitude attacks
remains an open challenge. Second, the scalability
of the approach to multi-agent systems has not yet
been validated, and future work should investigate
distributed or hierarchical extensions of the GNN-
DT-MPC framework. Finally, all results were
derived from simulation-based evaluations; real-
world implementation may reveal additional
complexities such as hardware imperfections,
environmental  uncertainties, and  operator
variability. To address these points, our future
research will focus on integrating more advanced
detection ensembles, extending scalability to multi-
agent robotic networks, and conducting hardware-
in-the-loop as well as real-world validation
experiments.
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