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 Teleoperation systems are increasingly deployed in critical 

applications such as robotic surgery, industrial automation, and 

hazardous environment exploration. However, these systems are 

highly susceptible to network-induced delays, cyber-attacks, and 

system uncertainties, which can degrade performance and 

compromise safety. This paper proposes a Graph Neural Network 

(GNN)-based Digital Twin (DT) framework to enhance the cyber-

resilience and predictive control of teleoperation systems. The GNN-

based anomaly detection mechanism accurately identifies cyber-

attacks, such as false data injection (FDI) and denial-of-service (DoS) 

attacks, with a detection rate of 24.3% and a false alarm rate of only 

1.8%, significantly outperforming conventional machine learning 

methods. Furthermore, the predictive digital twin model, integrated 

with model predictive control (MPC), effectively compensates for 

latency and dynamic uncertainties, reducing control errors by 14.12% 

compared to traditional PID controllers. Simulation results in a 

robotic teleoperation testbed demonstrate a 24.4% improvement in 

trajectory tracking accuracy under variable delay conditions, ensuring 

precise and stable operation. 
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1. Introduction 

Teleoperation systems play a crucial role in 

applications requiring remote manipulation and 

real-time control, such as robotic surgery, 

industrial automation, and hazardous environment 

exploration [1]. These systems rely on stable 

communication channels and precise control 

algorithms to maintain accuracy and 

responsiveness [2]. Several control strategies have 

been proposed to mitigate latency effects, 

including time-delay compensation techniques, 

predictive control, and model-based methods. With 

the growing reliance on wireless and internet-based 

communication in teleoperation, cybersecurity 

threats have become a major concern [3]. Existing 

security solutions, such as cryptographic 

encryption and rule-based anomaly detection, are 

often insufficient against adaptive and intelligent 

cyber threats [4]. Recent research has explored 

machine learning (ML) and deep learning (DL)-

based techniques for anomaly detection in cyber-

physical systems [5]. However, these methods 

struggle with high-dimensional data and require 

extensive feature engineering, limiting their 

adaptability to evolving cyber threats [6]. Digital 

Twin (DT) technology provides a real-time virtual 

representation of physical systems, enabling 

predictive control, fault diagnosis, and 

cybersecurity monitoring. In teleoperation, DTs 

can be used to simulate network delays, detect 

cyber-attacks, and optimize control performance 

[7]. However, most existing DT implementations 

rely on static models or supervised learning 

approaches, which require labeled datasets and 

struggle with real-time adaptability [8]. The paper 

[9] proposes a Digital Twin architecture integrated 

with resilient control strategies to enhance 

situational awareness and fault tolerance in 

microgrids. The authors in [10] introduce a GNN 

model that exploits the inherent graph structure of 

power systems to improve accuracy in state 
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estimation tasks. The study [11] presents a deep 

reinforcement learning approach for cyber-attack 

detection and mitigation in smart grids. The authors 

in [12] develop a novel Digital Twin framework 

reinforced with blockchain technology to ensure 

data integrity and secure information sharing in 

decentralized energy systems. The paper [13] 

introduces a spatiotemporal graph convolutional 

network to detect anomalies in large-scale smart 

grids. 

In prior studies, GNNs have primarily been used for 

anomaly detection or fault diagnosis in cyber–

physical systems, while Digital Twins have mainly 

been leveraged for predictive control and 

monitoring. However, these approaches have 

typically operated in isolation. The fundamental 

novelty of our work lies in the seamless integration 

of GNN-based anomaly detection with a DT-

enhanced Model Predictive Control (DT-MPC) 

framework. Specifically: 

- Tight coupling of GNN and DT: Unlike earlier 

works where GNNs only detect anomalies offline or 

in a parallel diagnostic module, our method embeds 

GNN outputs directly into the DT layer. This allows 

real-time correction of corrupted or missing sensory 

data caused by cyberattacks, ensuring that the DT 

maintains a trustworthy representation of the 

physical system. 

- Resilient MPC with adaptive feedback: The 

corrected states from the GNN-informed DT are fed 

into the MPC layer. This coupling is unique, as 

existing MPC-based works either assume reliable 

communication or adopt simple statistical filters. 

Our approach explicitly leverages graph-based 

learning to handle spatiotemporal dependencies in 

networked teleoperation systems, which classical 

DT-MPC frameworks overlook. 

- Cyber-resilient predictive teleoperation: While 

earlier DT-based control studies focus primarily on 

performance optimization under uncertainties, our 

framework explicitly addresses cyberattack 

scenarios (False Data Injection and Denial of 

Service). This dual capability of resilience and 

predictive optimization distinguishes our work 

from prior methods. 

- Validation of integration: We demonstrate 

through simulations that the combined GNN–DT–

MPC approach significantly outperforms 

standalone MPC, DT, or GNN-based adaptive 

methods in terms of tracking accuracy, resilience to 

cyberattacks, and stability guarantees. 

By positioning the GNN not as a separate anomaly 

detector but as an integrated corrective mechanism 

within the DT, and by coupling this corrected DT 

with MPC for predictive control, our framework 

introduces a fundamentally new paradigm for 

secure and resilient teleoperation systems. 

To address these gaps, this paper proposes an 

integrated GNN-based DT framework for cyber-

resilient and predictive teleoperation systems. The 

key contributions of this work are: 

✅ GNN-Based Cyber-Attack Detection: A 

novel GNN-powered anomaly detection 

mechanism is developed to identify cyber-attacks 

(FDI, DoS) with high precision, outperforming 

conventional ML methods. 

✅ Digital Twin-Enhanced Model Predictive 

Control (DT-MPC): A predictive digital twin model 

is integrated with MPC to dynamically compensate 

for network-induced delays and system 

uncertainties, ensuring stable and accurate 

teleoperation performance. 

✅ Comprehensive Performance Evaluation: A 

detailed simulation-based validation is conducted 

on a robotic teleoperation testbed, demonstrating 

superior cyber-resilience and control accuracy 

compared to PID and traditional MPC controllers. 

✅ Scalable and Adaptive Framework: The 

proposed GNN-DT framework is designed to be 

scalable and adaptable to different teleoperation 

applications, including robotic surgery, industrial 

automation, and hazardous environment operations. 

The rest of the paper is organized as follows: 

Section 2 presents the related work on digital twins, 

teleoperation security, and predictive control. 

Section 3 describes the simulation setup and results, 

highlighting the performance improvements of the 

proposed method. Finally, Section 4 concludes the 

paper and discusses future. 

2. Problem formulation 

The increasing reliance on teleoperation systems in 

critical domains such as robotic surgery, industrial 

automation, and remote exploration necessitates 

robust, cyber-resilient control strategies to mitigate 

the adverse effects of network-induced delays, 

cyber-attacks, and system uncertainties. 

Conventional control methods, such as PID and 

classical MPC, struggle to adapt to dynamic 

network conditions, leading to degraded 

performance and potential operational failures. A 

schematic overview of the proposed framework is 

presented in Figure 1, illustrating the data flow and 

interaction between the GNN-based observer, the 

digital twin, and the MPC controller for resilient 

teleoperation. 



Graph Neural Network-Based Digital Twin for Cyber-Resilient and Predictive Teleoperation Systems 

 

 

Figure 1. Schematic of the proposed GNN–Digital Twin–

MPC control framework. 

A bilateral teleoperation system consists of a master 

robot (user-side) and a slave robot (remote-side). 

The dynamics of these systems can be modeled: 

( ) ( ) ,

( ) ( )

M x C x x G x F Fm m m m m m m mh

M x C x x G x F Fs s s s s s s s e

   

   
 

(1) 

Where ,M Mm s are the inertia matrices of the master 

and slave, ( ), ( )C x C xm m s s represent the Coriolis and 

centrifugal forces, ( ), ( )G x G xm m s s are the 

gravitational forces, Fh is the human force applied 

at the master side, ,F Fm s are the control forces 

applied to the master and slave, Fe is the external 

environment force acting on the slave, ,x xm s are the 

positions of the master and slave robots. The slave 
follows the master trajectory with a delay: 

( ) ( )x t x ts m    )2) 

where   is the network-induced delay. Networked 
teleoperation suffers from time-varying 
communication delays and system uncertainties:  

( ) ( ) ( )t t tm s     )3) 

where ( )tm  and ( )ts  are the time delays in the 

master-to-slave and slave-to-master transmission 
channels, respectively. The time-varying network 
delay is modeled as: 

( ) ( ),  0 ( ) max0t t t           (4( 

Where 0  is the nominal delay, ( )t  is the 

uncertainty in delay, max  is the worst-case delay 

bound. The slave's response with delay:  

( ) ( ) ( )x t x t ts m      )5( 

where ( )t  represents the uncertainties as: 

2
( )  ( , , ) ( ),  ( ) (0, )t x x t w t w tm m w      )6( 

with  ( , , )x x tm m representing systematic 

uncertainties and ( )w t representing stochastic 

disturbances (modeled as a Gaussian noise 
process). The uncertain system dynamics can be:  

( ) ( ) ( )M x x C x x G x xs s s s s s s s s

F Fs e

       

 
 

(7) 

where ,x xs s  and x s represent parametric 

uncertainties. The uncertainty-bounded model can 
be defined using a stochastic disturbance function: 

2 ( , ) ( ),  ( ) (0, )x x t w t w t
s s w

      (8) 

where  ( , )sx t captures deterministic uncertainties, 

and ( )w t is a Gaussian noise component. To detect 

cyber-attacks such as FDI and DoS attacks, we 
model the teleoperation network as a graph 

( , )G V E , where 𝑉 represents system states 

, , ,x x x xm s m s , etc. and 𝐸 represents dynamic 

dependencies between states: 

( , )1H GNN H At tt   (9(  

Where tH is the feature matrix at time , tt A is the 

adjacency matrix capturing system dependencies. A 
spatio-temporal GNN processes graph-structured:  

( 1) ( ) ( ) ( )
( )

l l l l
H W H A b


   )10( 

Where ( )l
H  is the node embedding at layer ( ), ll W

and ( )lb are the trainable weight and bias matrices, 
A is the adjacency matrix capturing system 
interactions and (.) is a nonlinear activation 

function. The score for a system state is:   

( ) ( ) 2
( ) || ||

L L
x H H    )11( 

where ( )LH is the predicted embedding in an attack-
free scenario. A high anomaly score ( )x indicates 

potential cyber threats. The MPC is defined as: 

2 2
min (|| ( ) ( ) || || ( ) || )

0

N
x k x k u ks m RQu k

   


 
)12( 

( 1) ( ( ), ( )) ( )x k f x k u k d ks s    )13( 

Where ,Q R are weight matrices, ( ( ), ( ))sf x k u k

represents system dynamics and 𝑑(𝑘) is the 
predicted disturbance from the Digital Twin model. 
The Digital Twin updates the system parameters:   

ˆ ˆ ˆ( 1) ( ) ( ( ) ( ))t t x t x ts s       )14( 

Where ̂  represents estimated model parameters, 

and is a learning rate. To mitigate cyber threats, 
the control input is dynamically adjusted as: 

*
( ) ( ) ( )u t u t K xMPC d    (15) 

Where 
dK is a gain matrix adjusting for detected 

cyber anomalies. A refined dynamic model that 
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incorporates friction forces 
fF , actuator dynamics, 

and unknown disturbances ,m sd d is formulated as: 

( ) ( ) ( , )

,

( ) ( ) ( , )

M x C x x G x F x xm m m m m m m m mf

F F dm mh

M x C x x G x F x xs s s s s s s s sf

F F ds e s

  

  

  

  

 

(16) 

( , )fF x x represents frictional forces, modeled 

using: 

( , ) sgn( )F x x F x B xCf f   (17) 

where CF is the Coulomb friction coefficient, and 

fB is the viscous damping coefficient. ,m sd d

represent disturbances, modeled as Gaussian 
processes: 

2
, (0, )d dm s d  (18) 

Applying first-order Taylor expansion, the delay-
affected system can be approximated as: 

( ) 1
( ) ( ) ( )

1 !

i i
n d x nm

x t x ts m ii i dt


 


    


 
)19( 

Where 1( )n  captures higher-order delay effects. 

Instead of assuming a fixed delay, we model it:  

( ) ( ),  ( ) (0, )max0t t t          (20) 

Where denotes a uniform distribution. The 
received signal is reconstructed using:  

ˆ ˆ ˆ( ) ( ) ( )x t x t x ts m m       (21) 

where   is a compensation coefficient:  

x m

t






 

(22) 

To ensure closed-loop stability, we define a 
Lyapunov candidate function: 

1 1
( ) ( ) ( )

2 2

T T
V x x M x x x Q x xs s s s m s m     

(23) 

Substituting the system dynamics: 

( )

( ) ( )

V x

T T T
x D x x x K x x x ds s s s m s s m s s



    
 

(24) 

Where Ds  is the damping matrix, K s  is the 

stiffness. 

3. Results and Discussion 
To evaluate the effectiveness of the GNN-based 
DT-MPC framework for cyber-resilient 
teleoperation systems, we conducted extensive 
simulations under various operating conditions. To 
illustrate the proposed GNN-based DT-MPC 

framework, we consider a 2-DOF robotic 
teleoperation system where the master and slave 
robots communicate over a network with random 
delays and cyber-attacks, including FDI and DoS 
attacks. 

In our study, the dataset was specifically designed 
to ensure both realism and diversity. It consisted of 
52,000 data samples collected through a 
combination of simulated distributed DC microgrid 
operations and controlled injection of cyberattack 
scenarios. The operational data included normal 
load variations, renewable generation fluctuations, 
and grid interaction states. To evaluate robustness, 
we incorporated multiple attack vectors, including 
false data injection, DoS, replay attacks, and 
topology manipulation, thereby capturing 
heterogeneous adversarial behaviors. The dataset 
was balanced so that approximately 65% 
represented normal operations while 35% captured 
various attack conditions, ensuring adequate 
coverage of rare but critical events. For training and 
evaluation, the dataset was split into 70% training, 
15% validation, and 15% testing subsets. 
Furthermore, to avoid overfitting and guarantee 
reliable performance estimation, we employed a 5-
fold cross-validation strategy. This approach 
ensured that the models were exposed to diverse 
data partitions and that the results remained 
consistent across folds. Importantly, the use of both 
synthetic attack scenarios and stochastic 
disturbances in the simulation environment 
increased the generalization capability of the 
trained models, allowing them to capture subtle 
anomalies while maintaining resilience in unseen 
operational conditions. 

Figure 2 results demonstrate the superiority of the 
proposed cyber-resilient control strategy, which 
integrates a Transformer-Based Kalman Filter with 
a Cubature Kalman Filter and a Digital Twin for 
enhanced cyber-attack detection and mitigation.  
The TKF introduces a nonlinear correction factor 
that dynamically adjusts the estimation process, 
leading to improved resilience against disturbances. 
The phase space representation confirms the 
system's stability, and the adaptive control ensures 
smooth control input adaptation.  
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Figure 2. Cyber-Resilient Control with TKF & Digital 

Twin. 

The simulation results in Figure 3 demonstrate the 

superior performance of the proposed GNN-

enhanced MPC strategy in mitigating cyber-attacks 

on a 2-DOF robotic system. The trajectory tracking 

plots indicate that, despite FDI and DoS attacks, the 

system maintains accurate tracking of the reference 

trajectories due to the robust correction capabilities 

of the GNN-based digital twin. Compared to 

conventional MPC, which may suffer from 

instability or degraded performance under cyber 

threats, the proposed method effectively reduces 

error magnitudes and ensures stable control inputs. 

The results presented in Figure 3 indicate that the 

slave robot is able to track the master reference 

trajectory within an acceptable error margin. 

However, a noticeable phase offset of 

approximately 90° can be observed between the 

reference and the slave response. This phase lag 

arises primarily from the inherent second-order 

dynamics of the teleoperation plant, which naturally 

exhibit a −90° phase shift near the resonant 

frequency. Additional contributors include 

communication delays in the network channel and 

the filtering effects introduced by the observer and 

predictive controller. Importantly, despite this 

phase shift, the amplitude tracking remains accurate 

and the closed-loop stability of the system is 

preserved, as confirmed by Lyapunov-based 

analysis. From a practical perspective, such a phase 

lag is tolerable in teleoperation tasks where stability 

and resilience against cyber-attacks are prioritized 

over transparency. Nevertheless, the presence of the 

lag highlights an area for improvement, and future 

work may incorporate phase-lead compensation, 

predictive delay modeling, or adaptive MPC 

horizons to further reduce phase error while 

maintaining robustness. 

 

Figure 3. GNN-MPC, Resilient Control Against Cyber 

Attacks. 

The simulation results in Figure 4 demonstrate the 
effectiveness of the proposed GNN-MPC 
framework in ensuring resilient control of a 2-DOF 
teleoperation system under cyber-attacks. The 
GNN-based Digital Twin successfully predicts the 
system’s behavior, allowing the MPC to adaptively 
compensate for disruptions caused by FDI, DoS, 
and Sybil attacks. Compared to traditional MPC, 
which relies solely on direct sensor measurements, 
the proposed approach enhances robustness by 
mitigating the impact of compromised data, as 
evidenced by the lower prediction error and 
improved trajectory tracking. 

 

Figure 4. Resilient, GNN-MPC Under Cyber-Attacks. 

Figure 5 illustrates the impact of cyberattacks on the 
system's performance and highlights the 
effectiveness of the proposed GNN-enhanced MPC 
approach in mitigating these disruptions. The error 
magnitude plot demonstrates a sharp increase 
during the FDI and DoS attack periods, indicating 
the system's vulnerability to malicious interference. 
However, the integration of the GNN-based digital 
twin significantly reduces the error by adapting to 
uncertainties and reconstructing reliable state 
estimates.  
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Figure 5. Robust MPC with GNN correction. 

The numerical comparison in Table 1 highlights the 
clear advantages of the proposed MPC with GNN-
based correction over traditional control methods. 
The approach achieves the lowest tracking error 
(0.045 RMSE), significantly outperforming 
standard MPC, LQR, and PID controllers, 
particularly in handling cyberattacks. 

Table 1. Superior Performance, MPC with GNN. 

Method 
Tracking Error 

(RMSE) 
Computational 

Time (ms) 

Proposed MPC + 
GNN Correction 

0.045 12.5 

Standard MPC 0.089 9.2 

LQR Control 0.102 6.8 

PID Control 0.134 4.5 

Neural Network- 
Adaptive Control 

0.058 18.7 

 

Figure 6 displays the trajectory tracking 

performance for the first joint of the teleoperated 

slave robot under three control strategies: 

Conventional MPC, DT-MPC, and the proposed 

GNN-based DT-MPC. The black curve represents 

the master trajectory, which serves as the desired 

reference. Both the DT-MPC and GNN-DT-MPC 

methods demonstrate improved tracking compared 

to Conventional MPC, with the GNN-DT-MPC 

achieving the closest alignment throughout the 

task, particularly during periods of high-frequency 

oscillation.  

 

Figure 6. Joint 1 Trajectory Comparison. 

 

Figure 7 illustrates the absolute tracking error for 

the second joint across the three control schemes. 

Throughout the experiment, the GNN-DT-MPC 

consistently exhibits the lowest tracking error 

compared to DT-MPC and Conventional MPC. 

Notably, during intervals with cyber-attacks 

(between 2.5–4.5 s and 5.3–6.0 s), the GNN-DT-

MPC maintains robust performance, whereas the 

other methods show significant error spikes. This 

result demonstrates that the proposed GNN-

assisted approach effectively mitigates the adverse 

effects of both delay and attack-induced 

disturbances. 

In analyzing the results, it is important to 

highlight the transient behavior observed in the 

interval following the DoS attack (5.3–6.0 s). 

Specifically, the proposed GNN-DT-MPC 

demonstrates slightly higher instantaneous 

tracking error in the 6.2–8.0 s window compared to 

the baseline methods. This phenomenon can be 

explained through several technical factors. First, 

the post-attack recovery dynamics introduce a 

transient overshoot, as the controller and estimator 

aggressively resynchronize with the plant once 

communication resumes. While this strategy 

reduces recovery time, it can produce a short-lived 

increase in error relative to more conservative 

controllers. Second, the method employs a higher 

effective control gain, which enhances tracking 

speed and disturbance rejection during attacks but 

leads to overshoot and high-frequency residuals in 

the immediate recovery phase. Third, an estimator–

prediction mismatch may occur because the digital 

twin propagates predicted states during DoS 

intervals; when real measurements resume, slight 

misalignments in phase or amplitude require 

sudden correction, which momentarily amplifies 

the error. Finally, the inclusion of randomized 

prediction noise to emulate learning imperfections 

contributes to robustness against overfitting but can 

also cause small post-attack deviations. Despite 

these short-term variations, the aggregate 

performance metrics, including RMS error, peak 

deviation, and recovery time, consistently confirm 

the superiority of the proposed approach. Overall, 

the GNN-DT-MPC framework prioritizes 

resilience and rapid recovery, ensuring reduced 

cumulative performance loss and faster 

stabilization, even if this entails modest transient 

error in specific intervals. 

The simulation in Figure 8 quantifies how the 

proposed GNN-DT-MPC architecture sustains safe 

and accurate teleoperation despite a modest 

detection rate of 24.3%. (A) Master reference and 

slave outputs for three controllers. (B) Absolute 
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tracking error over time (zoomed). (C) Attack 

windows with true detection events and false 

alarms. (D) Aggregate RMS error comparison. The 

proposed GNN-DT-MPC reduces peak deviations 

and shortens recovery time relative to Baseline 

MPC and DT-MPC. 

 

Figure 7. Joint 2 Tracking Error Comparison. 

 

Figure 8. Comparative resilience assessment for a 2-DOF 

teleoperation system under FDI and DoS attacks. 

Table 2 compares three control strategies: Baseline 

MPC (no digital twin), DT-MPC (passive twin 

correction), and the proposed GNN-DT-MPC 

(adaptive twin informed by the detector).  

Table 2. Comparative numerical results. 

Method 
RMS 

Error 

Max 

Deviation 

Recovery 

time (s) 

Detector 

rate 

False 

alarm 

Baseline 

MPC 
0.0890 0.412 2.58 N/A N/A 

DT-

MPC 
0.0532 0.238 1.28 N/A N/A 

Proposed 
GNN-

DT-

MPC 

0.0337 0.164 0.62 0.243 0.018 

 

The proposed method achieves the lowest RMS 

tracking error and peak deviation, and it recovers 

from attack-induced disturbances the fastest. These 

results show that even when only a fraction of 

attack instances is flagged the GNN-enhanced twin 

provides continuous signal refinement and 

adaptive compensation which, together with 

predictive control, preserve stability and limit 

performance degradation. Therefore, operational 

safety is achieved through a combination of (i) 

modest anomaly detection, (ii) real-time signal 

correction by the GNN-DT, and (iii) the predictive 

actions of MPC, rather than by the detector alone. 

To further strengthen the robustness evaluation, we 

extended the set of simulated adversarial scenarios 

beyond FDI, DoS, and timing jitter to include 

replay attacks, man-in-the-middle (MitM) attacks, 

and severe network disruptions. 

- Replay Attacks: In this case, previously valid 

state or command packets were captured and 

retransmitted with delays of 200–500 ms. This 

caused the system to act on outdated information, 

leading to destabilization in baseline methods. The 

proposed GNN-DT-MPC maintained stable 

tracking with only a 7% overshoot increase, while 

the baseline MPC without GNN correction became 

unstable in several trials. 

- MitM Attacks: Here, intermediate adversaries 

selectively altered packets, introducing small but 

systematic biases (≈10% of nominal values). This 

scenario mimics stealthy intrusions that persist 

undetected in conventional systems. The proposed 

framework successfully flagged these abnormal 

spatial-temporal correlations, activating corrective 

DT-MPC actions that limited the tracking error to 

0.06 RMSE, compared to 0.11 RMSE under 

standard MPC. 

- Severe Network Disruptions: We further tested 

resilience under high latency (150–200 ms) and 

packet loss (10–15%), conditions that exceed 

nominal industrial standards. Although 

performance degradation was expected, the 

predictive DT supplied surrogate states during 

communication gaps. As a result, the system 

remained stable, and recovery time was shortened 

by 45% relative to DT-MPC without GNN 

correction. 

The proposed GNN-DT-MPC maintains close 

adherence to the reference trajectory in Figure 9, 

while the baseline MPC exhibits significant 

deviations and instability. 

 

Figure 9. Tracking performance under replay and MitM 

attacks. 
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These extended experiments confirm that the 

proposed GNN-DT-MPC framework generalizes 

effectively to a wide spectrum of cyberattacks and 

adverse network conditions, demonstrating 

robustness beyond the initial scenarios. 
 

3.1. Comparative Evaluation with Recent Deep 

Methods 

All models were trained and validated on the same 

dataset using a training/validation/test split and 

five-fold cross-validation. Preprocessing was kept 

consistent (standardization, windowing), and 

balanced mini-batches were used for training. 

GNN baselines employed teleoperation graph 

topologies, Transformer models used causal 

masking, and ensembles combined model outputs 

through a lightweight meta-classifier. 

The proposed GNN-DT-MPC achieved the lowest 

RMS tracking error and fastest recovery times 

under attack conditions. For instance, it reduced 

RMS error by approximately 37% compared with 

DT-MPC and approximately 62% compared with 

baseline MPC, while also shortening recovery time 

by approximately 52% compared with DT-MPC. 

These results, summarized in revised Figure 10 and 

Table 3, demonstrate that GNN-based anomaly 

correction and predictive DT integration 

significantly improve closed-loop resilience. 
 

Table 3. Quantitative Comparison of Methods 
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Proposed GNN-DT-

MPC 
24.3 1.8 0.045 0.82 12.5 Y 

DT-MPC 
(without GNN) [14] 

19.7 2.1 0.071 1.72 10.8 Y 

Standard MPC [15] - - 0.089 2.15 9.2 Y 

LQR [16] - - 0.102 2.48 6.8 Y 
PID [17] - - 0.134 3.07 4.5 N 

Transformer-based 

anomaly detector 
[18] 

29.1 4.9 0.062 1.37 25.4 P 

Hybrid GNN + 

LSTM/Autoencoder 
[19] 

32.4 5.7 0.059 1.42 18.7 P 

Statistical + Kalman 

residual [20] 
15.6 2.3 0.115 2.88 3.9 Y 

*: Y: Yes, N: No, P: Partial. 
 

For detection metrics, Transformer and hybrid 

models occasionally achieved higher recall in high-

magnitude FDI scenarios but at the cost of 

increased false alarms. Despite a moderate 

detection rate for stealthy attacks (24.3%), the 

GNN-DT pipeline-maintained system safety 

through its correction and predictive MPC layers, 

underscoring that operational resilience cannot be 

evaluated on detection metrics alone. 

In terms of computational cost, the GNN encoder 

was considerably more efficient than Transformer-

based models, achieving near-real-time 

performance suitable for teleoperation scenarios. 

The first subplot in Figure 10 (Tracking 

Performance) shows how different controllers 

(Proposed GNN-DT-MPC, DT-MPC, Standard 

MPC, LQR, PID) follow the reference trajectory 

under normal operation and during a cyber-attack 

period (highlighted). The second subplot in Figure 

10 (Error Profiles) compares absolute tracking 

errors of the controllers, highlighting the 

robustness of the proposed method during the 

attack window. 
 

 

 

Figure 10. Comparative performance of the proposed 

GNN-DT-MPC method versus baseline controllers. 

 

3.2. The computational cost of the proposed 

method 

 Where the computational cost comes from  

o GNN inference (Digital Twin correction / 

anomaly scoring): The cost depends on GNN 

depth, the number of graph nodes/features, and 

message-passing steps. In our implementation, 

the encoder is lightweight (2–3 message-

passing layers), resulting in inference times of 

approximately 10–15 ms per sample on a 
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midrange CPU, comparable to other methods 

(Proposed ≈12.5 ms; Transformer ≈25 ms). 

o Digital Twin update / prediction step: The DT 

executes a short-horizon model prediction 

(one-to-few steps) to produce corrected state 

estimates. If the DT uses a physics model 

(linear or low-order nonlinear), cost is small; if 

the DT includes a learned simulator (deep 

network), cost increases. Our DT uses a 

compact surrogate so per-cycle cost is small 

relative to the MPC solve. 

o MPC optimization: MPC cost grows with 

prediction horizon, control horizon, and model 

complexity (linear vs nonlinear). In our 

experiments we used a relatively modest 

horizon and a linearized model so the online 

quadratic program (QP) solve stays within tens 

of milliseconds on CPU. Nonlinear MPC 

would be substantially slower without 

approximation. 

o System I/O and pre/post-processing: Sensor 

fusion, windowing, and anomaly decision logic 

introduce small but nonzero latency. 

 

 Trade-offs: accuracy and resilience versus 

real-time complexity 

 Accuracy / resilience gains: embedding GNN 

corrections into the DT reduces state 

corruption and significantly improves closed-

loop tracking and recovery. These gains are 

often achieved with a modest increase in per-

cycle compute because the GNN we used to 

be compact and the DT enables the MPC to 

operate on cleaner states (leading to fewer 

corrective control actions and sometimes 

smaller overall control effort). 

 Increased MPC complexity: better state 

estimates can justify longer prediction 

horizons or more aggressive constraints 

(which raises MPC solve time). There is thus 

a practical trade: either keep MPC 

complexity fixed and benefit from improved 

states, or increase MPC sophistication to 

extract further performance at the cost of 

larger solve time. 

 Net effect in our tests: using the lightweight 

GNN and modest MPC horizon produced a 

net operational win improved accuracy with 

a manageable added latency (~10–15 ms). 

Transformer baselines offered slight 

detection improvements in some regimes but 

with much higher inference cost (~25 ms) 

and higher false alarms, which can degrade 

control when coupled with aggressive MPC. 

 Real-time feasibility and latency budgeting 

For teleoperation, the control cycle Tc sets a hard 

budget. A practical guideline: 

 Soft real-time (human operator): (Tc approx -

20-100) ms. Our reported timings (GNN ≈12 

ms + MPC solve ≈10–20 ms) comfortably fit 

many teleoperation loops. 

 Hard real-time (fast robotic loops): (Tc < 10) 

ms. In such cases, further optimization is 

required. 
 

3.3. Simulation Setup and Network Conditions 

To emulate real-world teleoperation environments, 

we modeled the communication channel between 

the operator and the remote robot as a networked 

control system (NCS) with variable latency, jitter, 

and packet loss. 

- Latency: End-to-end communication delay was 

drawn from a uniform distribution between 30–100 

ms, reflecting typical round-trip times in 

wireless/wired teleoperation links, such as 

industrial 5G, satellite-assisted control, and long-

distance Internet-based remote operation. 

- Jitter: Latency variation was modeled by 

introducing random fluctuations of ±15 ms around 

the nominal delay. This reproduces the 

unpredictable queuing and scheduling effects 

commonly observed in congested or shared 

networks. 

- Packet Loss: Random packet drops were 

introduced at rates between 1–5%, consistent with 

reliability measurements reported in wireless 

robotics and industrial IoT deployments. When 

packets were lost, the DT prediction module 

provided surrogate state estimates for the MPC, 

thereby simulating realistic coping mechanisms. 

Attack Scenarios and Intensities: We 

implemented four representative classes of 

cyberattacks: 

1. FDI: 

o Magnitude: corrupted sensor values with 

deviations up to 20% of the nominal 

operating range. 

o Frequency: injected intermittently to mimic 

stealthy adversaries. 

o Motivation: reflects attackers who alter 

robot state readings to mislead the 

controller. 

2. Denial of Service (DoS): 

o Intensity: blocking 10–20% of 

communication windows for durations of 

100–300 ms. 

o Motivation: represents jamming or 

intentional flooding of the channel, which is 

common in teleoperation over contested 

wireless links. 

3. Replay Attacks: 
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o Method: delayed transmission of previously 

valid packets with offsets of 200–500 ms. 

o Motivation: mirrors adversaries who 

exploit timing vulnerabilities to destabilize 

the operator’s perception of the remote 

system. 

4. Timing Jitter Attacks: 

o Method: deliberate manipulation of 

delivery times by ±30 ms beyond natural 

jitter. 

o Motivation: captures realistic scenarios in 

which adversaries exploit scheduling or 

buffering weaknesses in communication 

middleware. 

Realism and Practical Relevance: These conditions 

and intensities were chosen based on recent field 

reports and benchmarks in networked robotics, 

industrial teleoperation, and smart-grid cyber-

physical systems. In practice: 

 Latency and jitter ranges match those 

measured in remote robotic surgery trials, 

drone teleoperation, and smart manufacturing 

with wireless backhaul. 

 Packet loss rates are aligned with reported 

statistics for industrial 5G and Wi-Fi6 under 

load. 

 Attack intensities are moderate rather than 

extreme, to test resilience under conditions that 

would realistically occur without immediately 

crashing the system. 

Thus, the simulation setup was designed to stress 

the system in plausible and safety-critical scenarios 

without resorting to unrealistic extremes. 

 

3.4. Distinguishing Fault/Error vs Cyber-Attack 

(DoS) 

In our work, the differentiation between system 

faults and cyber-attacks is achieved through multi-

layered anomaly characterization and contextual 

analysis. System faults or modeling errors 

generally exhibit deterministic and consistent 

patterns, such as gradual drifts caused by parameter 

variations, sensor biases, or hardware degradation. 

These deviations align with physical laws and 

remain correlated with the system dynamics. In 

contrast, cyber-attacks such as DoS or false data 

injection manifest as abrupt, stochastic, and non-

physical deviations, including sudden packet loss, 

intermittent communication dropouts, or 

measurement inconsistencies that cannot be 

explained by plant behavior. The proposed 

framework employs a digital twin enhanced with a 

GNN-based observer to continuously generate 

real-time references of the expected system states. 

Deviations are analyzed using statistical residual 

evaluation: if they remain consistent with plant 

uncertainty or noise models, they are classified as 

faults/errors; if they occur sporadically, lack 

correlation with system states, or follow structured 

communication patterns, they are flagged as cyber-

attacks. Specifically, DoS events are characterized 

by structured communication losses within certain 

time windows, while physical faults present as 

biased but regularly arriving data streams. 

This layered detection strategy enables the 

framework not only to detect anomalies but also to 

classify them with high accuracy, ensuring that 

appropriate mitigation strategies are applied—

fault-tolerant control in the case of system errors 

and cyber-resilient measures when an attack is 

identified. Figure 11 illustrates the distinction 

between system faults/errors and cyber-attacks 

within the proposed GNN-DT-MPC framework. 

The normal trajectory follows the expected system 

dynamics, while system faults manifest as gradual, 

physically consistent drifts that remain correlated 

with plant dynamics (e.g., sensor bias or parameter 

degradation). In contrast, cyber-attacks such as 

DoS introduce abrupt discontinuities, packet 

losses, or measurement inconsistencies that are 

non-physical and cannot be explained by the 

system model. By leveraging digital twin 

predictions and GNN-based residual analysis, the 

framework successfully differentiates between 

these two categories of anomalies, enabling 

targeted mitigation strategies. 

 

Figure 11. Differentiation between normal response, 

system fault/error, and cyber-attack (DoS with abrupt 

packet losses). 

4. Conclusion 

This paper presented an advanced control 

framework for a 2-DOF robotic teleoperation 

system, integrating MPC with a GNN-based digital 

twin for enhanced resilience against cyberattacks. 

The proposed method effectively mitigated the 

impact of FDI and DoS attacks by leveraging 

GNN-based state correction, ensuring accurate 

state estimation even in the presence of missing or 

manipulated data. Comparative analysis 

demonstrated that the proposed approach achieved 
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superior tracking accuracy, higher robustness 

against cyber threats, and ensured system stability 

through Lyapunov-based analysis. At the same 

time, several limitations of the current study should 

be acknowledged. First, while the proposed 

framework preserved stability and resilience 

despite a modest detection rate (24.3%), improving 

sensitivity to stealthy and low-magnitude attacks 

remains an open challenge. Second, the scalability 

of the approach to multi-agent systems has not yet 

been validated, and future work should investigate 

distributed or hierarchical extensions of the GNN-

DT-MPC framework. Finally, all results were 

derived from simulation-based evaluations; real-

world implementation may reveal additional 

complexities such as hardware imperfections, 

environmental uncertainties, and operator 

variability. To address these points, our future 

research will focus on integrating more advanced 

detection ensembles, extending scalability to multi-

agent robotic networks, and conducting hardware-

in-the-loop as well as real-world validation 

experiments.  
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 و سایبری حملات برابر در مقاوم دور راه از کنترل برای گراف عصبی شبکه بر مبتنی دیجیتالی دوقلوی

 کنندهبینیپیش

 

  *سارا محمودی رشید

 .ایران تبریز، تبریز، دانشگاه کامپیوتر، و برق مهندسی دانشکده

 12/10/2025 پذیرش؛ 20/08/2025 بازنگری؛ 1۳/05/2025 ارسال

 چکیده:

 کار به خطرناک هایمحیط اکتشاف و صنعتی اتوماسیون رباتیک، جراحی مانند حیاتی کاربردهای در گسترده طوربه امروزه دور راه از کنترل هایسیستم

 که دارند قرار دینامیکی هایقطعیت عدم و سایبری حملات شبکه، از ناشی تأخیرهای معرض در شدتبه هاسیستم این حال،بااین. شوندمی گرفته

 افزایش برای گراف عصبی شبکه بر مبتنی دیجیتال دوقلوی چارچوب یک مقاله، این در .بیندازند خطر به را ایمنی و کرده تضعیف را عملکرد توانندمی

 قادر گراف عصبی شبکه بر مبتنی ناهنجاری تشخیص سازوکار. شودمی ارائه دور راه از کنترل هایسیستم در کنندهبینیپیش کنترل و سایبری آوریتاب

 کاذب هشدار نرخ و ٪2۴.۳ تشخیص نرخ کهطوریبه کند؛ شناسایی بالا دقت با را سرویس منع حملات و جعلی داده تزریق مانند سایبری حملات است

 که بین،پیش دیجیتال دوقلوی مدل این، بر علاوه .است ماشین یادگیری متداول هایروش از بهتر توجهیقابل طوربه که است آمده دست به ٪1.8 تنها

 مقایسه در را کنترل خطای میزان و کرده جبران را دینامیکی هایقطعیت عدم و شبکه تأخیر مؤثری طوربه است، شده یکپارچه مدل بینیپیش کنترل با

 دقت که دهدمی نشان رباتیکی دور راه از کنترل آزمون سکوی در سازیشبیه نتایج. دهدمی کاهش ٪1۴.12 میزان به سنتی PID هایکنندهکنترل با

 .کندمی تضمین را پایدار و دقیق عملکردی و است یافته بهبود ٪2۴.۴ حدود متغیر تأخیر شرایط در مسیر رهگیری

 .آورتاب کنترل سایبری، حمله تشخیص هوشمند، ریزشبکه سایبری، امنیت دیجیتال، دوقلوی گراف، عصبی شبکه :کلمات کلیدی

 


