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 The Coati Optimization Algorithm (COA) is a newly developed 

metaheuristic algorithm, dr÷awing inspiration from the clever tactics 

Coatis use when attacking Iguanas as well as their strategies for 

dealing with and evading predators. This algorithm has shown a 

commendable level of effectiveness when compared to various other 

metaheuristic algorithms. Its performance metrics indicate that it 

outperforms many alternatives in terms of efficiency and results. To 

overcome challenges such as the imbalance between exploration and 

exploitation phases and become trapped in local optima for solving 

complex optimization problems, an innovative technique known as 

"Enhanced Opposition-Based Learning" (EOBL) has been integrated 

with the COA algorithm. This technique draws inspiration from 

Random Opposition-Based Learning methods and can effectively 

influence the balance between exploration and exploitation phases. 

The Enhanced of Coati Optimization Algorithm (EOBCOA) is a 

novel metaheuristic algorithm proposed to enhance the performance 

of the COA. This method has been applied on standard benchmark 

functions to improve the proposed optimization algorithm. To assess 

the effectiveness of the proposed EOBCOA method, it was tested on 

standard benchmark functions, including IEEE CEC2005, IEEE 

CEC2019, and seven engineering problems. The results show that the 

EOBCOA method outperforms other advanced algorithms in 

achieving global optimization. 
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1. Introduction 

Before the era of exploratory optimization, 

analytical methods were a superior approach for 

solving mathematical problems that, in addition to 

initial information about the numerical value or 

objective function value, required information 

related to the derivatives of the objective functions.  

These methods, armed with supplementary 

information, were capable of efficiently 

uncovering the precise optimum for linear 

problems or convex nonlinear problems. However, 

they encountered challenges in more complex 

scenarios with multiple local optima, often 

becoming stuck in these local optima. The 

stochastic nature and unpredictable search space 

characteristic of real-world problems highlighted 

the need for the development of metaheuristic 

algorithms [1]. Optimization techniques are 

generally divided into two primary categories: 

deterministic methods and stochastic methods. 

Among the most prevalent deterministic 

approaches are linear and nonlinear programming. 

These methods are characterized by their 

dependence on gradient information, which aids in 

navigating the solution space to find optimal 

solutions. An alternative to these traditional 

methods is stochastic approaches, which are 

similar to metaheuristic algorithms in that they 

create and utilize random variables [36]. 

http://jad.shahroodut.ac.ir/
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Metaheuristic techniques, owing to their inherently 

stochastic nature, operate independently of the 

specific characteristics of the problem at hand and 

do not necessitate the availability of derivative 

information related to the problem. This 

characteristic renders them particularly versatile, 

allowing for their application across a wide array 

of optimization challenges without being 

constrained by the underlying mathematical 

structure of the problem. This feature contrasts 

with mathematical programming, which usually 

requires extensive knowledge about mathematical 

issues. This lack of dependence on the specific 

problem has made metaheuristic methods a 

valuable and suitable tool for identifying the 

optimal solution for various optimization 

problems, regardless of the nonlinearity of the 

search space and its constraints. 

Another advantage of this method is its flexibility, 

enabling it to address any type of optimization 

problem without requiring significant 

modifications to the algorithm's structure. This 

approach treats the problem as a black box with 

defined input and output states, making it a 

potential candidate for a user-friendly optimizer. In 

contrast to the algebraic methodologies commonly 

employed in mathematical approaches, this 

particular technique predominantly relies on 

random operators. This characteristic significantly 

reduces the likelihood of becoming ensnared in 

local optima, a common challenge faced by 

traditional algebraic methods. The ability of this 

technique to conduct a global exploration of the 

search space within a reasonable timeframe is a 

notable advantage [2]. 

A fundamental trait shared by metaheuristic 

algorithms is their structured approach to the 

optimization process, which is typically divided 

into two contrasting phases: exploration and 

exploitation. Exploration involves the search for 

new and diverse solutions across the solution 

space, enabling the algorithm to discover various 

potential areas for improvement. In contrast, the 

exploitation phase focuses on refining and 

enhancing the solutions that have already been 

identified, aiming to achieve optimal outcomes in 

specific regions of the search space. The interplay 

between these two phases is crucial, as effective 

optimization requires a balanced approach that 

maximizes both the breadth of the search and the 

depth of solution refinement. This duality not only 

enhances the algorithm's efficiency but also 

increases its ability to navigate complex 

optimization landscapes, ultimately leading to 

more robust and effective solutions [3]. 

 

Generally, metaheuristic algorithms represent an 

enhanced version of heuristic algorithms that 

merge random algorithms with local search 

techniques. These algorithms mainly tackle 

optimization problems by mimicking natural 

processes and human intelligence. A collection of 

modern metaheuristic algorithms, categorized into 

four groups—swarm intelligence, evolutionary, 

human behavior-based, and physics-based—can be 

found in Table 1. 

In 2005, Tizhoosh introduced an innovative 

approach known as opposition-based learning 

(OBL), aimed at enhancing the convergence 

quality of meta-heuristic algorithms. This method 

leverages the concept of opposition to optimize the 

search process, thereby facilitating a more efficient 

exploration of the solution space. By incorporating 

strategies that consider not only the current 

solutions but also their oppositional counterparts, 

OBL seeks to accelerate the convergence towards 

optimal solutions. The significance of this method 

lies in its ability to improve the performance of 

various optimization algorithms, making them 

more robust and effective in solving complex 

problems across different domains [22]. This 

method is based on replacing the value of 

optimized solutions with its opposite values to 

improve the performance of optimization 

algorithms. In other words, if an optimization 

solution is denoted by 𝑥, its opposite value is 

denoted by −𝑥. This idea is inspired by creating 

diversity in the optimization process and can result 

in significant improvements in the performance of 

optimization algorithms. A group of researchers 

led by Xiaobing Yu implemented opposition-based 

learning on the GWO algorithm in 2021 to increase 

the convergence accuracy of the GWO algorithm 

for solving multiple and complex functions [23]. In 

this research, the OBL algorithm has been 

integrated with GWO, resulting in the algorithm's 

superiority by preventing it from getting stuck in 

local optima without increasing computational 

complexity. However, this technique has faced the 

problem of early convergence and has not been 

able to converge in high-dimensional problems. In 

addition, this technique has a limitation that it can 

only search an opposite point in the search space. 

Additionally, In scenarios where the upper and 

lower bounds of specific functions indicate a 

negative relationship, the fixed distance between 

opposing points and the current position can 

significantly affect the diversit within the 

population.
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This constraint arises because when the limits are 

negatively correlated, it restricts the potential for 

variation and exploration among the solutions. As 

a result, the algorithm may struggle to explore a 

wider solution space, potentially leading to a 

stagnation in finding optimal or diverse outcomes. 

Consequently, the ability to generate a rich and 

varied population is compromised, which is crucial 

for enhancing algorithmic performance and 

ensuring robust solutions. Thus, understanding the 

implications of these constraints is essential for 

improving the efficacy of the algorithm in diverse 

problem-solving contexts. [24]. 

In 2023, Jai and colleagues introduced an enhanced 

optimization algorithm known as ICOA, which 

builds on the principles of the Coati algorithm. This 

new algorithm leverages the coati's natural ability 

to communicate using auditory signals, improving 

its efficiency in locating prey through a method that 

combines searching and surrounding strategies. 

This innovative approach enables coatis to hunt 

and capture their prey with greater success. 

Moreover, when confronted with potential threats, 

these animals exhibit an instinctive behavior of 

fleeing to ensure their safety. This dual capability 

of effective hunting and instinctual evasion 

underscores the algorithm's inspiration from coati 

behavior, making ICOA a noteworthy 

advancement in optimization techniques. To 

simulate this behavior, ICOA adds a physical effort 

strategy to the algorithm and causes the ability of 

global exploration to be strengthened in the Coati 

algorithm [25]. Additionally, a theory known as the 

No Free Lunch (NFL) states that no metaheuristic 

algorithms can effectively solve all optimization 

problems [26]. A population-based optimization 

approach might yield favorable outcomes for one 

category of problems while underperforming in 

another category. The persistent challenges 

associated with complex optimization problems 

highlight the ongoing necessity for the 

advancement of novel metaheuristic algorithms. 
 

Table 1. A collection of newly meta-heuristic algorithms. 

The source of inspiration Reference 
Year of 

 publication 
Abbreviation Algorithm Name Category 

Search behaviors, caching, and 

recovery of the nutcracker 
[4] 2023 NO Nutcracker Optimizer 

 

 

 

SI 

Static and dynamic swarm behaviors 

of bedbugs 
[5] 2023 BMHA Bedbug Meta-Heuristic Algorithm 

Seed dispersal process of willow 

trees 
[6] 2023 WCO Willow Catkin Optimization 

Hunting strategy of ospreys [7] 2023 OOA Osprey Optimization Algorithm OOA 

Behavior of porpoise for migration, 
feeding, reproduction and escape 

[8] 2024 WA Walrus optimizer 

Life and intelligent behavior of puma [9] 2024 PO Puma Optimizer 

Breeding and reproduction of deer 
herds 

[10] 2024 EHO Elk Herd Optimizer 

The concept of herd immunity to 

deal with the corona virus pandemic 
[11] 2021 CHIO 

Coronavirus Herd Immunity CHIO 

Optimization 
 

EA 
How the Ebola virus spreads [12] 2022 EOSA 

Ebola Optimization Search EOSA 

Algorithm 

Individuals with Substance Use 
Disorder 

[35] 2025 ISUD 
Individuals with Substance Use 
Disorder Algorithm 

Nuclear explosion of the Chernobyl 
nuclear reactor 

[13] 2023 CDO Chernobyl Disaster Optimizer 

 

 
 

PHA 

Principles of physics about stability 

and different states of particle 
decomposition 

[14] 2023 EVO Energy Valley Optimizer 

Newton-Raphson method [15] 2024 NRBO Newton-Raphson-based optimizer 

Triangular topology method in 
mathematics 

[16] 2024 TTAO 
Triangulation Topology Aggregation 
Optimizer 

Musical chairs game [18] 2023 MCA Musical Chairs Algorithm 

 
 

Human 

based 

The method that people in a group 
use to influence each other. 

[19] 2023 GLA Group Learning Algorithm 

The way humans cooperate [20] 2023 MTBO 
Mountaineering Team-Based 

Optimization 
Botox optimization algorithm [21] 2024 BOA Botox Optimization Algorithm 

This paper introduces an enhanced variant of the 

COA algorithm, referred to as EOBCOA, which 

incorporates principles from Opposition-Based 

Learning (EOBL). The proposed algorithm 

modifies the existing update mechanisms to 

circumvent the pitfalls of local optima and to 

facilitate a more rapid convergence towards 

optimal solutions. By integrating the EOBL 

approach into optimization processes, this method 

aims to improve the efficacy and robustness of 

https://jad.shahroodut.ac.ir/article_3416.html
https://jad.shahroodut.ac.ir/article_3416.html
https://jad.shahroodut.ac.ir/article_3416.html
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problem-solving strategies, ultimately contributing 

to more effective solutions in diverse application 

domains. 

The structure of this paper is organized into several 

sections to facilitate a comprehensive 

understanding of the topics presented. In Section 2, 

we delve into the source of inspiration and the 

mathematical framework surrounding the 

opposition-based learning technique. This will lay 

the groundwork for understanding the theoretical 

underpinnings of the approach. Moving to Section 

3, we introduce the proposed technique known as 

EOBCOA, providing detailed insights into its 

mechanisms and advantages. Section 4 is dedicated 

to the experimental setup, where we analyze the 

results obtained from various tests and engage in a 

discussion regarding their implications. Finally, 

Section 5 concludes the paper by summarizing the 

findings and offering recommendations for future 

research avenues, highlighting the potential for 

further exploration in this intriguing field. 

 

2. Coati optimization algorithm (COA)      
In 2023, Dehghani and his research team 

introduced the Coati Optimization Algorithm, 

which draws inspiration from the adaptive and 

intelligent behaviors exhibited by coatis in various 

survival scenarios, such as evading predators, 

launching attacks, and hunting for food. This 

innovative algorithm seeks to mimic the strategic 

decision-making processes of coatis, highlighting 

their ability to navigate complex environments and 

respond effectively to threats. By analyzing these 

natural behaviors, the Coati Optimization 

Algorithm aims to enhance problem-solving 

techniques in computational settings, providing a 

new approach to optimization challenges [27]. 

Coatis are a type of mammal characterized by their 

slender heads, flexible snouts, and distinct black 

claws. They possess small ears and long tails that 

are not only used for balance but also for 

communication with other members of their group. 

Adult coatis are comparable in size to a large 

domestic cat, with weights varying between 2 to 8 

kilograms. Typically, they reach a height of 

approximately 30 centimeters. Notably, male 

coatis exhibit a significant size difference 

compared to females, often weighing nearly double 

and possessing large, sharp teeth that aid in their 

foraging and feeding behaviors. The green iguana 

is their favorite prey. Often found in trees, iguanas 

become targets when coatis climb to the treetops to 

hunt them. Some coatis will leap into the trees, 

startling the iguanas and causing them to fall to the 

ground, where other coatis are ready to attack. 

Despite their hunting prowess, coatis must be 

vigilant against predators such as dogs, foxes, pit 

vipers, maned wolves, and anacondas. They are 

also hunted by large birds of prey including harpy 

eagles, black eagles, and wedge-tailed eagles. In 

the following sections, we will explore the clever 

tactics coatis use when hunting iguanas and how 

they manage to confront and evade predators. We 

will then present an optimization algorithm rooted 

in a mathematical model. 

 

2.1. Initialization of the COA Algorithm 

The COA algorithm is a population-based meta-

heuristic method that conceptualizes coatis as 

individual entities within its population framework. 

Each variable's location within the search space is 

representative of the corresponding values of the 

decision variables. The locations of the coatis are 

initialized randomly at the beginning of the COA 

algorithm by a specific equation: 

 , ( ), 1,2, ,i j j j jx lb r ub lb i m       
(1) 

 

So that 
ix is the position of the i-th Coati in the 

search space and ,i jx is the value of the jth decision 

variable, r is random number between [0,1]. Also  

N is the number of Coatis, m represents the 

number of decision variables and jlb  and jub  are 

the lower limit and the upper limit of the jth 

decision variable. Mathematically, the population 

of the Coatis is defined by the matrix X according 

to the following equations.  

1

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

m

m

i

N N N m

N N m

X
x x x

x x x
X X

x x x
X



 
  
  
   
  
  
   

 (2) 

 

To evaluate the merit of each Coati, the calculated 

value of the objective functions of each of them is 

displayed as an F matrix according to equation 3. 

                                   

 

1 1

1 1

( )

( )

( )

i i

N NN N

F F X

F F F X

F F X
 

   
   
   
    
   
   
      

 
(3) 

 

So that 
iF indicates the degree of merit of each 

Coatis in this algorithm. In COA algorithm, the 

highest value of the objective function is regarded 

as the best candidate. As the algorithm undergoes 
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its iterative cycles, the candidate solutions are 

refined and update of the best individual during 

each iteration. Ultimately, the algorithm's 

efficiency heavily relies on this mechanism of 

iteratively identifying and promoting the best-

performing candidates. 

 

2.2. Mathematical modeling of the COA 

Algorithm 

The process of adjusting the positions of coatis 

draws inspiration from two primary phases. These 

phases encompass the strategic methodologies 

employed by coatis during their pursuit of iguanas, 

as well as the adaptive tactics they implement when 

evading potential predators. This duality reflects 

the coatis' innate survival strategies, which inform 

the optimization process, enabling the algorithm to 

effectively navigate complex solution spaces. By 

mimicking these behaviors, the algorithm enhances 

its capability to identify optimal solutions while 

simultaneously adapting to dynamic challenges, 

thereby improving overall efficiency and 

effectiveness in problem-solving scenarios. 
 

Phase 1: The strategy for attacking and hunting 

iguanas (exploration phase). 

The initial stage of updating the coati population in 

our search space is inspired by how they hunt 

iguanas. In this strategy, part of the coati group 

climbs a tree to scare the iguana, while others 

patiently wait below for it to fall. When the iguana 

lands, the coatis quickly move in to catch it. This 

approach encourages significant movement among 

the coatis across various positions within the search 

area, showcasing how effective the COA is for 

performing a comprehensive search in problem-

solving situations. Also in this algorithm assume 

that half of the coatis go up the tree, while the 

others stay on the ground, ready to spring into 

action when the iguana drops. This method not 

only reflects a clever hunting tactic but also 

emphasizes the dynamic nature of the search 

process, highlighting the importance of teamwork 

in achieving success. The mathematical 

representation of the positions for those climbing 

coatis is provided in equation (4). 

 

 

1

, , ,(Iguana ),

1,2, , , 1,2, ,
2

p

i j i j j i jx x r I x

N
i j m

    

 
    

 

 (4) 

 Once the iguana hits the ground, it gets moved to 

a new, random spot within the area being explored. 

This process is quite interesting because it allows 

the iguana to experience different environments 

and situations. This new position serves as its 

starting point for further exploration, the coatis 

move along the   ground within the search space, 

and their positions are updated according to 

equations 5 and 6. 

Iguana : Iguana ( ),

1,2, ,

G G

j j j jlb r ub lb

j m

   

 

 

, ,1

,

, ,

(Iguana ), if (Iguana )

( Iguana ), else

G

i j j i j ip

i j G

i j i j j

x r I x F F
x

x r x

     
 

  

 

 
(5) 

 

 

                                            Figure 1. Model of the phase 1 (a) and phase 2 (b) in COA algorithm [27]. 
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If the new location does not yield an improvement, 

the Coati will maintain its current position. This 

indicates that the Coatis are persistently seeking 

more favorable locations that can assist them in 

achieving their objectives with greater efficiency. 

If the new position doesn’t offer any advantage, 

there’s no reason for them to change their current 

place. This approach helps ensure that every move 

is a step towards better outcomes, making the 

overall process more efficient and productive. This 

update condition is modeled using an equation (7). 
 

 

1 1, if 

, else

p p

i i i

i

i

X F F
X

X

 
 


 (7) 

 

Here, 
1p

iX represents the newly calculated position 

for each coati, 
1

,

p

i jX denotes its j-th dimension, and  

1p

iF  indicates its fitness value. Additionally, r is a 

random value between 0 and 1 in each iteration of 

the algorithm. The parameter Iguana represents the 

position of the iguana in the search space, which 

actually refers to the best position of the member.  

iIguana , represent the next j-th iguana, and I is 

an integer that is randomly select from the set {1, 

2}. GIguana is the location of the iguana on the 

ground, which is randomly generated, 
G

jIguana

represents the next j-th, 
G

IguanaF its evaluation value 

is the objective function and ⌊·⌋ is the floor 

function. 
 

Phase 2: The process of escaping from predators 

(exploitation phase) 

In the subsequent phase of our study, we delve 

deeper into the positional dynamics of coatis within 

their habitats. This exploration is significantly 

influenced by their innate instincts, particularly 

when faced with potential threats from predators. 

In their natural environment, coatis remain 

perpetually vigilant, and their movement patterns 

are intricately linked to their survival needs. By 

employing mathematical modeling, we aim to 

quantitatively analyze these behaviors, thereby 

gaining insights into their reactive movements and 

adaptive strategies when confronted with danger.  

Phase 1 and phase 2 in COA algorithm are shown 

in Figure 3. 
When a predator approaches, a coati instinctively 

retreats swiftly from its current location, 

illustrating its ability to identify and navigate 

towards a safer area nearby. This adaptive 

movement strategy highlights the coati's 

proficiency in local search tactics, which is crucial 

for its survival. The response  mechanisms of coatis 

to predatory threats are visually represented in 

Figure 2. 

 
Figure 2. The pattern of the second phase. Coati's escape 

from the hunter in Algorithm COA [27]. 

 

To mimic this behavior, we create a random 

position close to where each coati is located. This 

is done using specific formulas that help us 

determine these nearby points. In essence, we're 

simulating how coatis might move around their 

environment by generating new potential spots for 

them to explore. This approach allows us to better 

understand their behavior and interactions within 

their habitat, giving us a clearer picture of their 

movement patterns and the factors influencing 

them. 

local local, ,

1,2, ,

j j

j j

lb ub
lb ub

t t

t T

 

 

 (8) 

 

 2 local local local

, , (1 2 ) ( ) ,

1,2, , , 1,2, ,

p

i j i j j j jx x r lb r ub lb

i N j m

      

   

 

 

(9) 

 

The updated position is acceptable if it improves 

the objective function value while satisfying the 

condition of equation 10. 
2 2, if 

, else

p p

i i i

i

i

X F F
X

X

 
 


 (10) 

 
2p

iX is new position calculated for the i-th Coati 

and 
2

,

p

i jX  is the position of the j-th Coati following 

that, and 
2p

iF represents its fitness value in the 

evaluation of the objective function.

Iguana : Iguana ( ),

1,2, ,

G G

j j j jlb r ub lb

j m

   

 
 (6) 
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                                                                      Figure 3. COA algorithm pseudo code. 

 

Also, r is a random value between 0 and 1 in each 

iteration of the algorithm and t represents the 

number of iterations of the algorithm.
local

jlb   and

local

jub are local lower limit and upper limit 

respectively, and jlb and jub show the lower limit 

and the upper limit of the j-th decision variable 

respectively. The various stages of COA execution 

are illustrated in the flowchart presented in Figure 

3. 

 

2.3. Enhanced Opposition-Based Learning 

Method (EOBL) 

In this section, we will first explain the Enhanced 

Opposition-Based Learning (EOBL), which is 

inspired by the opposition strategies of OBL and 

ROBL. The EOBL strategy proposes solutions that 

are generated in opposition to previous solutions, 

thereby increasing diversity in the positions of 

search agents and helping the population escape 

from local optima with fast convergence. This 

technique is demonstrated using the following 

equation. 
2

,

,

, 2

,

,

rand
, if 

2ˆ

rand
, if 

2

i j

i j

i j

i j

i j

S
M S M

S
S

M S M

 
 


 


 

‖ ‖ ‖ ‖

‖ ‖ ‖ ‖

 (11) 

 

 

 

Here, x  and y  represent the lower and upper 

bounds of the search space, respectively, 

while 2rand  is a small random number within the 

range [0, 1] that aids in exploring promising areas 

of the search space. The formulation expressed in 

equation 12 plays a crucial role in preventing the 

algorithm from becoming trapped in local optima, 

thereby facilitating convergence and mitigating 

undesirable fluctuations in the solution space. 

Furthermore, Figure 4 illustrates the positioning of 

point S and its corresponding antipodal point as 

determined by the EOBL mechanism within a 

three-dimensional framework. 
 

Figure 4. Implementation of EOBL mechanism in 3D 

space on COA algorithm. 
 

 

1. Input the information related to the optimization problem. 

2. Set the number of iterations (T) and the number of coats (N). 

3. Initialize the positions of all coats using the initial population generation rule and evaluate the objective 

function. 

4. For each iteration t=1 to T, perform the following steps: 

5. Update the iguana’s position based on the best individual in the population. 

6. Phase 1: Hunting and Attacking (Exploration Phase): 

o For each coat i=1 to ⌊N/2⌋: 

 Calculate a new position for the iii-th coat using the corresponding exploration formula. 

 Update its position based on fitness comparison. 

o For each coat i=⌊N/2⌋+1 to N: 

 Generate a random position for the iguana. 

 Calculate a new position for the i-th coat using a second exploration formula. 

 Update the coat’s position based on fitness evaluation. 

7. Phase 2: Escaping from Predators (Exploitation Phase): 

 Determine local bounds for each variable. 

 For each coat i=1 to N: 

 Generate a new position using the local exploitation strategy. 

 Update the position based on objective value comparison. 

8. Save the best solution found in the current iteration. 

5. End loop. 

6. Output the best solution found by COA for the given problem. 
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3. Description of the proposed model 

The present section delineates the framework of the 

proposed EOBCOA technique, designed to 

enhance the efficiency of the COA algorithm. By 

integrating the COA mechanism with the EOBL 

technique, this approach effectively utilizes time, 

thereby improving the capacity to explore the 

search space. This integration also mitigates 

several drawbacks, including slow convergence 

and the tendency to become trapped in local 

optima. The combination of EOBL with COA 

occurs through a two-step process. Initially, the 

population is generated using the EOBL method, 

followed by the development of new individuals 

based on existing data. A detailed explanation of 

these two procedural steps will be elaborated upon 

below. This structured approach not only 

streamlines the optimization process but also 

fosters a more robust exploration of potential 

solutions, contributing to a more effective 

algorithm overall. 

 

3.1. Initialization phase 

In this step, the initial population is randomly 

initialized according to the following equation. 

 
1 2{ , , , , , },

1,2, , ; 1,2, ,

i i i ij iDS S S S S

i NP j D

  

   
 (12) 

 
So that 𝑁P represents the population size in the 𝐷 

dimension. Through the application of the EOBL 

technique, In a population of solutions, we take a 

close look at the value each one holds. This process 

helps us figure out which solutions are performing 

the best and identify the optimal values among 

them. By evaluating their effectiveness, we can 

understand how each solution stacks up against the 

others, guiding us toward the best options 

available. This assessment is crucial for making 

informed decisions in any problem-solving 

scenario, allowing us to choose the most effective 

paths forward. Then the main population 
iS  and 

the opposite population iS merge into one group. 

Finally, the best ones from the merging group of 

size NP form the main population. 

 

3.2. Updating phase 

At this phase, every revised COA solution 

undergoes an evaluation process through the fitness 

function prior to being altered by equations 6 to 12. 

During this evaluation, the optimal solution along 

with its corresponding fitness value is recorded for 

further analysis. To bolster the exploration 

capabilities of the algorithm, the EOBL mechanism 

is utilized to produce new coatis at a specific 

probability rate, denoted as 
rJ . Some advantages 

of this method include comprehensive searching in 

the search space, prevention of premature 

convergence, and increased diversity of solutions. 

In this step, a random value between 0 and 1 is 

generated. If this random value is less than 
rJ , the 

EOBL mechanism is activated to create new coatis 

based on the existing population. Subsequently, the 

NP number of coatis with the highest fitness is 

selected from the combined pool of current coatis 

and the newly generated ones. Essentially, EOBL 

acts as a mutation factor, enabling the algorithm to 

balance its exploitation and exploration abilities 

with a probability of 
rJ =0.1. The pseudo-code for 

implementing the EOBL mechanism in the COA 

algorithm is presented in Figure 5. 

 

Figure 5. Pseudo code of EOBCOA algorithm. 

3.3 Complexity Analysis 

The time complexity and memory space for this 

proposed algorithm are computed. The time 

complexity is related to the number of coati (𝑁𝑐), 

the problem dimension (D) and the calculation of 

the cost function (F) features, consequently, the 

Set the number of coatis N and the number of iterations T  

Initialize the position of all coatis by Eq. (1) and compute 

the fitness of them. 

Evaluate M by using  𝑀 =
𝑥+𝑦

2
 

For I =1 : NP for all population 

   For j =1 : D  

     If norm(𝑆𝑖,𝑗) ≤ norm(M) 

         𝑆̂𝑖,𝑗 = 𝑀 + (𝑟𝑎𝑛𝑑2 ×
𝑆𝑖,𝑗

2
) 

     Else 

        𝑆̂𝑖,𝑗 = 𝑀 − (𝑟𝑎𝑛𝑑2 ×
𝑆𝑖,𝑗

2
) 

  End. 

End. 

Calculate {𝑆0, 𝑆̂𝑖,𝑗} based on the fitness function. 

Select NP fittest solution from {𝑆0, 𝑆̂𝑖,𝑗} to form a coati’s 

population. 

For t =1 : T 

   Update location of iguana based on the location of the 

best member of the population. 

   Run Phase 1 and phase 2 of COA () 

   Save the best candidate solution found so far. 

  If rand < 𝐽𝑟 (jumping parameter). 

For I =1 : NP for all population 

   For j =1 : D  

     If norm(𝑆𝑖,𝑗) ≤ norm(M) 

         𝑆̂𝑖,𝑗 = 𝑀 + (𝑟𝑎𝑛𝑑2 ×
𝑆𝑖,𝑗

2
) 

     Else 

        𝑆̂𝑖,𝑗 = 𝑀 − (𝑟𝑎𝑛𝑑2 ×
𝑆𝑖,𝑗

2
) 

  End. 

End. 

  End. 

 Calculate {𝑆0, 𝑆̂𝑖,𝑗} based on the fitness function. 

 Select NP fittest solution from {𝑆0, 𝑆̂𝑖,𝑗} as the current 

coatis 𝑆0 
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time complexity of EOBCOA is computed as 

follows: 
 ( *( * * ))Iteration cO Maximum N D N F  

 

3.4. Advantages of the EOBCOA algorithm 

The advantages of the EOBCOA algorithm for 

solving complex optimization problems are 

outlined below: 

 Utilizing EOBL in the proposed algorithm, 

demonstrates a high capability to escape local 

optima. This feature enables the algorithm to 

perform better in complex and multi-modal 

problems, allowing it to find the global 

optimum with greater accuracy. 

 By integrating EOBL, EOBCOA achieves an 

optimal balance between exploration and 

exploitation phases. This balance ensures that 

the algorithm can broadly explore the search 

space while also conducting detailed searches in 

promising regions. 

 With enhanced update rules and the use of 

EOBL, the EOBCOA algorithm exhibits a 

higher convergence speed compared to the 

original COA. This allows the algorithm to 

reach optimal solutions in less time. 

 EOBCOA, through the use of EOBL and 

improved mechanisms, achieves higher 

accuracy in solving complex and non-linear 

optimization problems. It demonstrates a strong 

ability to find precise solutions, even in the 

presence of multiple local optima. 

 EOBCOA ensures continuous progress toward 

better solutions by preventing premature 

stagnation. This feature provides stable and 

reliable performance, even when tackling 

challenging problems. 

 

4. Performance evaluation of the proposed 

algorithm 

In this section, we evaluate the performance of the 

newly proposed EOBCOA method by comparing it 

with the original COA algorithm as well as several 

contemporary algorithms, including SWO [28], 

KOA [29], RSA [30], SHO [31], and NOA [32]. 

The configurations of the parameters utilized for 

these algorithms are comprehensively presented in 

Table 2. The experimental results indicate that the 

EOBCOA method demonstrates superior 

performance compared to most existing meta-

heuristic algorithms across a variety of benchmark 

functions. A detailed analysis of the outcomes 

generated by the EOBCOA method will be 

conducted in the following sections, providing 

deeper insights into its effectiveness and 

applicability in solving optimization problems. 

4.1. Benchmark functions and adjustable 

parameters 

Initially, the effectiveness of the EOBCOA 

algorithm is evaluated in comparison to the original 

COA algorithm. Following this, its performance is 

further assessed against the classical benchmark 

functions established in CEC2005 [33] and 

CEC2019 [34]. The CEC2005 functions consist of  
 

 

Table 2. Parameter settings of comparative meta-heuristic 

algorithms. 

Algorithm Parameter Value 

SHO - - 

RSA Alpha, Beta 0.1, 0.005 

KOA TC, M0, Lambda 3, 0.1, 15 

SWO TR, Cr, N_min 0.3, 0.2, 20 

NOA Alpha, Pa2, Prb 0.05, 0.2, 0.2 

COA - - 

EOBCOA J_f  0.1 

 

There exists a total of seven unimodal functions 

and six multimodal functions, in addition to ten 

multimodal functions characterized by fixed 

dimensions. The unimodal test functions, 

designated as F1 through F7, each possess a unique 

global optimum and they evaluate the performance 

of algorithms during the exploitation phase, where 

the focus is on refining solutions. Conversely, the 

multimodal test functions, labeled F8 to F13, 

feature several local optima. Their primary purpose 

is to assess the capabilities of algorithms in the 

exploration phase, where discovering diverse and 

potentially optimal solutions is critical. This 

distinction between unimodal and multimodal 

functions highlights the different challenges that 

algorithms face depending on the nature of the 

optimization landscape they are navigating. 

Compared to other multimodal functions, the 

remaining fixed-dimension multimodal functions 

(F14 to F23) exhibit a reduced number of local 

optima and operate within lower dimensional 

spaces. These functions are suitable for evaluating 

both the exploration and exploitation phases, which 

are essential for conducting global and local 

searches effectively in metaheuristic algorithms. 

Furthermore, to rigorously assess the performance 

and efficacy of the proposed method, ten 

challenging benchmark functions from the 

CEC2019 reference suite are employed.  These 

functions vary in dimensions and can be adjusted. 

The ranges for functions CF01 to CF03 differ, 

while the range for the other functions is set 

between [-100, 100]. The CEC2019 reference 

functions used in this study have significantly 

greater complexity compared to the CEC2005 
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benchmark functions. The optimization results of 

the EOBCOA method are compared with those of 

other contemporary metaheuristic algorithms, such 

as SWO, KOA, RSA, SHO, and NOA. 

 

This comparative analysis highlights the 

advancements and challenges in optimization 

techniques, particularly in light of the evolving 

complexity of benchmark functions, which 

necessitates more sophisticated approaches for 

effective problem-solving in various applications. 

To assess each algorithm, 30 search agents were 

utilized to explore the search space. Additionally, 

each function was executed 30 times, with a 

maximum limit of 500 iterations and 15,000 

function evaluations (FEs). The average outcomes 

from these runs were subsequently used for 

comparison. All tests were conducted on a 

Windows 10 system with a 1.00 GHz processor, 

8.00 GB of RAM, and MATLAB R2022a. The 

comparisons were based on two metrics: mean and 

standard deviation. The average refers to the mean 

value of the top results achieved by an algorithm 

over several runs. This can be calculated in the 

following way: 

 
1

1
avg Best

R

i

iR 

   

  

(13) 

Where 𝐵𝑒𝑠𝑡𝑖 denotes the best solution obtained in 

the i-th execution, and 𝑅 represents the number of 

times the algorithm is executed. The standard 

deviation serves as a crucial metric in assessing the 

reliability of an algorithm's performance across 

multiple executions. It provides insights into the 

algorithm's ability to yield consistent and optimal 

outcomes, thereby allowing researchers and 

practitioners to gauge the stability and repeatability 

of its results. The calculation of standard deviation 

involves a specific mathematical formula, which 

quantifies the degree of variation or dispersion in a 

set of data points. By analyzing this statistical 

measure, one can better understand the algorithm's 

efficiency and predict its behavior under varying 

conditions. This understanding is essential for both 

theoretical explorations and practical applications 

in algorithm development and evaluation. 

 
2

1

1
std Best avg

1

R

i

iR 

 

  (14) 

 

4.2. Comparison of EOBCOA algorithm with new 

meta-heuristic algorithms 

In this section, the EOBCOA algorithm is initially 

compared with the original COA algorithm. 

According to the results presented in Tables 3 and  

4, the enhanced EOBCOA algorithm has 

demonstrated its superiority over the original COA 

algorithm in 28 out of 33 functions. 
 

Table 3. The results of COA algorithm and the improved 

version of EOBCOA on 23 classical test functions 

(CEC2005). 
Function EOBCOA COA 

F1 Avg Avg 
F2 0 0 

F3 0 1.809E-180 

F4 0 0 
F5 0 8.212E-184 

F6 0 0 

F7 9.433E-05 1.735E-04 
F8 -1.256E+04 -1.256E+04 

F9 0 0 

F10 8.881E-16 8.881E-16 
F11 0 0 

F12 1.570E-32 1.570E-32 

F13 1.349E-32 1.349E-32 
F14 9.980E-01 9.980E-01 

F15 4.405E-04 4.120E-04 

F16 -1.031E+00 -1.031E+00 
F17 3.986E-01 3.988E-01 

F18 3.267E+00 3.219E+00 

F19 -3.821E+00 -3.801E+00 

F20 -2.807E+00 -2.541E+00 

F21 -1.015E+00 -1.015E+00 
F22 -1.040E+00 -1.040E+00 

F23 -1.053E+00 -1.053E+00 

 
Table 4. The results of the implementation of the COA 

algorithm and the improved version of EOBCOA on 10 

CEC2019 test functions. 
Function EOBCOA COA 

F1 1.000E+00 1.000E+00 

F2 5.000E+00 5.000E+00 
F3 6.417E+00 6.757E+00 

F4 8.622E+01 9.064E+01 

F5 6.665E+01 8.711E+01 
F6 1.030E+01 1.044E+01 

F7 1.780E+03 1.872E+03 

F8 4.834E+00 4.898E+00 
F9 3.613E+00 3.681E+00 

F10 2.140E+01 2.145E+01 
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Table 5. Comparison of optimization results for the CEC benchmark functions 2005. 

Functions   EOBCOA COA KOA NOA RSA SWO SHO 

Unimodal 

Functions 

F1 
Mean 0.00E+00 0.00E+00 1.49E+04 2.74E-08 0.00E+00 1.18E+02 0.00E+00 

Std 0.00E+00 0.00E+00 3.65E+03 1.50E-07 0.00E+00 3.20E+02 0.00E+00 

CPU 9.192 3.840 0.095 0.158 1.133 0.082 1.845 

F2 
Mean 0.00E+00 4.51E-183 1.00E+03 4.99E-02 0.00E+00 4.44E+00 0.00E+00 

Std 0.00E+00 0.00E+00 2.70E+03 2.73E-01 0.00E+00 8.41E+00 0.00E+00 

CPU 8.654 3.487 0.027 0.024 0.842 0.016 1.817 

F3 
Mean 0.00E+00 0.00E+00 4.56E+04 1.99E+03 0.00E+00 8.90E+02 0.00E+00 

Std 0.00E+00 0.00E+00 1.19E+04 1.09E+04 0.00E+00 1.67E+03 0.00E+00 

CPU 22.097 13.095 0.031 0.049 1.066 0.031 1.659 

F4 
Mean 0.00E+00 5.34E-184 5.57E+01 1.26E-05 0.00E+00 3.60E+00 0.00E+00 

Std 0.00E+00 0.00E+00 7.79E+00 6.59E-05 0.00E+00 4.71E+00 0.00E+00 

CPU 8.215 3.274 0.005 0.027 0.756 0.014 1.621 

F5 
Mean 0.00E+00 0.00E+00 1.61E+07 2.91E+01 1.54E+01 5.20E+04 2.88E+01 
Std 0.00E+00 0.00E+00 6.25E+06 5.40E-01 1.47E+01 1.97E+05 8.99E-02 

CPU 9.912 4.416 0.014 0.024 0.887 0.011 1.501 

F6 
Mean 0.00E+00 0.00E+00 1.43E+04 6.70E+00 6.72E+00 2.03E+02 2.68E+00 
Std 0.00E+00 0.00E+00 3.42E+03 7.42E-01 9.81E-01 5.25E+02 2.35E+00 

CPU 8.154 3.193 0.007 0.024 0.758 0.010 1.196 

F7 
Mean 3.35E-05 5.22E-05 8.43E+00 2.80E-02 1.39E-04 9.35E-02 9.03E-05 
Std 2.68E-05 5.03E-05 4.15E+00 2.93E-02 1.30E-04 1.27E-01 9.87E-05 

CPU 15.999 8.753 0.009 0.017 0.779 0.007 1.542 

Multimodal 

Functions 

F8 
Mean -1.26E+04 -1.26E+04 -3.90E+03 -4.62E+03 -5.44E+03 -4.13E+03 -2.53E+03 
Std 1.15E-01 3.43E-02 4.03E+02 7.78E+02 2.33E+02 4.66E+02 4.97E+02 

CPU 10.038 4.544 0.006 0.034 0.845 0.010 0.497 

F9 
Mean 0.00E+00 0.00E+00 2.91E+02 7.79E-08 0.00E+00 6.38E+01 0.00E+00 

Std 0.00E+00 0.00E+00 2.26E+01 4.27E-07 0.00E+00 6.69E+01 0.00E+00 

CPU 8.805 3.772 0.006 0.019 0.729 0.011 1.463 

F10 
Mean 4.44E-16 4.44E-16 1.90E+01 5.96E-01 4.44E-16 3.01E+00 4.44E-16 

Std 0.00E+00 0.00E+00 9.55E-01 3.26E+00 0.00E+00 3.40E+00 0.00E+00 

CPU 9.129 3.942 0.002 0.018 0.886 0.006 1.477 

F11 
Mean 0.00E+00 0.00E+00 1.23E+02 1.45E-01 0.00E+00 7.88E+00 0.00E+00 

Std 0.00E+00 0.00E+00 2.88E+01 6.20E-01 0.00E+00 1.84E+01 0.00E+00 

CPU 10.503 5.003 0.003 0.018 0.790 0.017 1.528 

F12 
Mean 1.57E-32 1.57E-32 9.86E+06 5.24E+04 1.33E+00 1.76E+00 2.11E-04 
Std 5.57E-48 5.57E-48 6.92E+06 2.87E+05 2.93E-01 1.46E+00 2.23E-05 

CPU 29.665 18.420 0.016 0.026 0.955 0.019 1.673 

F13 
Mean 1.35E-32 1.35E-32 5.63E+07 2.82E+00 1.99E-01 1.96E+05 2.96E+00 
Std 5.57E-48 5.57E-48 2.99E+07 2.62E-01 6.94E-01 1.04E+06 2.45E-02 

CPU 29.386 18.605 0.020 0.032 0.935 0.026 1.706 

F14 
Mean 9.98E-01 9.98E-01 5.77E+00 5.31E+00 3.75E+00 5.08E+00 1.11E+01 
Std 1.09E-10 8.56E-11 4.25E+00 3.25E+00 2.84E+00 2.82E+00 2.30E+00 

CPU 42.922 30.518 0.029 0.033 0.502 0.030 0.835 

F15 
Mean 4.19E-04 4.67E-04 8.05E-03 5.99E-03 1.54E-03 6.80E-03 3.17E-04 

Std 1.39E-04 2.18E-04 5.08E-03 5.94E-03 7.09E-04 6.73E-03 4.45E-06 

CPU 4.828 3.256 0.005 0.017 0.195 0.007 0.489 

F16 
Mean -1.03E+00 -1.03E+00 -9.96E-01 -1.01E+00 -1.03E+00 -1.02E+00 -9.76E-01 
Std 9.04E-05 5.54E-05 3.24E-02 4.25E-02 5.75E-03 1.61E-02 1.14E-01 

CPU 4.655 3.278 0.007 0.011 0.111 0.010 0.552 

Fixed-Dim 

Multimodal 

Functions 

F17 
Mean 3.98E-01 3.98E-01 4.19E-01 4.33E-01 4.11E-01 4.06E-01 5.71E-01 
Std 1.17E-03 7.27E-04 2.46E-02 4.52E-02 1.72E-02 1.81E-02 7.32E-01 

CPU 3.904 2.754 0.007 0.007 0.145 0.006 0.378 

F18 

Mean 3.78E+00 3.17E+00 4.54E+00 5.75E+00 6.91E+00 4.57E+00 1.62E+01 

Std 3.17E+00 4.20E-01 2.22E+00 6.60E+00 1.69E+01 4.07E+00 1.42E+01 

CPU 4.151 2.976 0.003 0.012 0.123 0.005 0.390 

F19 

Mean -3.84E+00 -3.81E+00 -3.84E+00 -3.84E+00 -3.81E+00 -3.85E+00 -3.76E+00 

Std 4.15E-02 6.68E-02 1.83E-02 2.72E-02 4.59E-02 1.65E-02 1.50E-01 

CPU 5.297 3.537 0.002 0.005 0.157 0.016 0.406 

F20 

Mean -2.74E+00 -2.60E+00 -2.96E+00 -2.92E+00 -2.66E+00 -3.10E+00 -2.76E+00 

Std 2.17E-01 3.04E-01 1.19E-01 1.71E-01 4.85E-01 1.15E-01 2.59E-01 

CPU 5.656 3.632 0.019 0.012 0.241 0.007 0.430 

F21 

Mean -1.02E+01 -1.02E+01 -2.00E+00 -3.63E+00 -5.06E+00 -3.76E+00 -3.51E+00 

Std 1.56E-03 2.41E-03 1.07E+00 1.11E+00 3.20E-07 2.19E+00 1.25E+00 

CPU 6.171 4.115 0.003 0.008 0.198 0.010 0.359 

F22 

Mean -1.04E+01 -1.04E+01 -2.14E+00 -3.73E+00 -5.09E+00 -3.61E+00 -4.22E+00 

Std 1.36E-04 9.07E-04 8.29E-01 1.24E+00 8.30E-07 1.84E+00 1.15E+00 

CPU 6.692 4.531 0.002 0.009 0.178 0.003 0.357 

F23 

Mean -1.05E+01 -1.05E+01 -2.61E+00 -3.77E+00 -5.13E+00 -3.68E+00 -4.45E+00 

Std 1.56E-04 5.06E-05 1.62E+00 1.51E+00 1.99E-06 2.41E+00 1.28E+00 

CPU 7.682 5.107 0.004 0.008 0.199 0.008 0.366 

In this section, the performance of the EOBCOA 

algorithm, in addition to being compared with the 

original COA algorithm, has been tested against 

five other well-known metaheuristic algorithms, 

including SHO [28], RSA [29], KOA [30], SWO 

[31], and NOA [32]. The evaluation results of the 
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mean and standard deviation are shown in Tables 5 

and 6, respectively. In terms of mean values, Table 

5 shows that the EOBCOA algorithm performs 

better than all other algorithms on the IEEE 

CEC2005 benchmark functions. For example, in 

terms of mean values for unimodal functions, the 

proposed EOBCOA has achieved the exact optimal 

solution for six functions except for F7. For 

multimodal functions (F8-F13), the exact optimal 

solution has been achieved for most functions and 

it has provided superior results compared to other 

algorithms. In terms of standard deviation, the 

proposed algorithm has shown better performance 

for most functions. Table 6 demonstrates that the 

proposed EOBCOA algorithm performs better than 

other algorithms in solving the IEEE CEC2019 

benchmark functions. For instance, in terms of 

mean values, Table 6 shows that the proposed 

technique has superior performance for functions 

F1 to F3 and F10. Moreover, in terms of standard 

deviation, it has achieved better results for most 

functions except F10 compared to other 

algorithms. 

 

4.3. Analysis of the state of convergence of the 

EOBCOA algorithm 

The relationship between the value of the objective 

function and the number of iterations performed by 

an optimization algorithm is represented by the 

convergence curve. These curves offer valuable 

insights into the pathways taken by search agents 

as they navigate the optimization landscape. 

Notably, in the initial phases of the optimization 

process, these agents often exhibit a tendency to 

rapidly approach the optimal solution.  

Table 6. Comparison of optimization results for the CEC benchmark functions 2019. 
Functions   EOBCOA COA KOA NOA RSA SWO SHO 

Multimodal 
Functions 

F1 
Mean 1.00E+00 1.00E+00 1.68E+08 1.03E+00 1.00E+00 8.83E+06 1.00E+00 

Std 0.00E+00 0.00E+00 7.21E+07 1.50E-01 0.00E+00 2.30E+07 0.00E+00 

CPU 15.736 10.630 0.083 0.119 0.644 0.061 1.005 

F2 
Mean 5.00E+00 5.00E+00 1.24E+04 5.02E+00 5.00E+00 1.74E+03 5.00E+00 
Std 1.52E-03 5.86E-03 2.55E+03 9.73E-02 2.11E-02 2.18E+03 7.54E-04 

CPU 10.032 5.894 0.017 0.028 0.595 0.022 1.257 

F3 
Mean 6.38E+00 6.84E+00 1.14E+01 1.08E+01 8.23E+00 1.01E+01 8.74E+00 
Std 1.05E+00 1.30E+00 5.75E-01 7.11E-01 1.06E+00 8.64E-01 1.02E+00 

CPU 9.810 5.631 0.029 0.031 0.654 0.020 0.570 

F4 
Mean 8.93E+01 9.50E+01 8.41E+01 8.66E+01 8.27E+01 7.30E+01 1.27E+02 
Std 1.78E+01 1.44E+01 1.43E+01 1.51E+01 1.40E+01 1.31E+01 1.52E+01 

CPU 9.696 6.264 0.007 0.015 0.356 0.014 0.654 

F5 

Mean 9.80E+01 8.84E+01 3.01E+01 4.24E+01 7.72E+01 3.67E+01 1.41E+02 

Std 3.73E+01 3.44E+01 1.26E+01 2.06E+01 2.40E+01 1.34E+01 3.86E+01 

CPU 9.838 6.318 0.017 0.012 0.438 0.010 0.379 

F6 

Mean 1.09E+01 1.05E+01 1.15E+01 1.13E+01 1.04E+01 9.74E+00 1.24E+01 

Std 1.06E+00 1.03E+00 1.06E+00 8.19E-01 1.05E+00 1.31E+00 1.37E+00 

CPU 81.456 56.982 0.040 0.062 1.023 0.040 1.046 

F7 

Mean 1.81E+03 1.81E+03 2.19E+03 2.18E+03 1.79E+03 2.03E+03 2.64E+03 

Std 1.53E+02 2.01E+02 2.13E+02 1.71E+02 1.94E+02 2.09E+02 2.86E+02 

CPU 10.399 6.734 0.004 0.022 0.378 0.005 0.376 

F8 

Mean 4.85E+00 4.80E+00 5.16E+00 5.15E+00 5.05E+00 5.06E+00 4.96E+00 

Std 2.10E-01 2.16E-01 1.87E-01 2.12E-01 1.45E-01 2.02E-01 2.14E-01 

CPU 9.910 6.437 0.011 0.005 0.380 0.013 0.731 

F9 

Mean 3.79E+00 3.65E+00 2.46E+00 3.03E+00 2.92E+00 2.40E+00 3.85E+00 

Std 6.59E-01 5.87E-01 4.33E-01 5.93E-01 6.53E-01 5.37E-01 8.37E-01 

CPU 9.217 5.818 0.020 0.013 0.341 0.017 0.446 

F10 

Mean 2.14E+01 2.14E+01 2.18E+01 2.18E+01 2.14E+01 2.17E+01 2.15E+01 

Std 1.08E-01 1.18E-01 1.59E-01 1.27E-01 9.82E-02 1.33E-01 8.48E-02 

CPU 9.803 6.345 0.009 0.014 0.491 0.019 0.721 

 

The central goal of conducting a convergence 

analysis is to assess the efficacy of the optimization 

process while visually depicting the algorithm's 

performance through these graphical 

representations. Through the examination of these 

curves, researchers can obtain a more profound 

understanding of the underlying dynamics 

involved in the optimization process. This 

understanding can ultimately facilitate the design 

and enhancement of algorithms. Additionally, such 

analyses can uncover significant details regarding 

the speed and stability of convergence, which are 

crucial for evaluating the effectiveness of various 

algorithms across different situations. In this 

context, Figures 6 to 10 illustrate the convergence 

curves related to the CEC2005 and CEC2019 

benchmark functions, further enriching the analysis 

of optimization performance. The graphical 

representations in Figures 6 and 7 clearly illustrate 

that the EOBCOA algorithm demonstrates a 

significantly quicker convergence rate when 

compared to the traditional COA algorithm. This 

finding implies that the EOBCOA algorithm is 

more adept at efficiently arriving at optimal 

solutions, highlighting its potential benefits across 

various practical applications. The analysis of the 
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convergence patterns indicates that the EOBCOA 

not only expedites the optimization process but 

also improves overall performance metrics. The 

observed advancements suggest that integrating an 

adversarial learning strategy within the COA 

framework could lead to substantial improvements 

in performance and effectiveness.  

 

 

Figure 6. Comparison of convergence speed of COA and EOB COA algorithm for function F1 to F6 from CEC2005 classic 

benchmark functions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Comparison of convergence speed of COA and EOBCOA algorithm for function F1 and F2 from CEC2019 

benchmark functions. 

 
Figures 8 to 10 present a comparative analysis of 

the proposed algorithm against various other 

metaheuristic algorithms, with a particular 

emphasis on their rates of convergence. This 

comparison highlights the efficiency and 

effectiveness of the proposed method, showcasing 

its ability to reach optimal solutions more swiftly 

than its counterparts. The graphical representations 

provide clear insights into the performance 

differences, allowing for a thorough understanding 

of how the proposed algorithm enhances 

convergence speed. As seen in Figure 8, the 

EOBCOA algorithm quickly converges across all 

unimodal functions in the CEC2005 benchmark 

set. In the case of multimodal functions, the 

proposed algorithm demonstrates the best 

performance with functions F9, F10, and F11. 

Additionally, Figure 9 shows that for functions 

F14, F17, F19, and F23, the proposed technique 

exhibits significant convergence in multimodal 

functions with fixed dimensions. Furthermore, 

Figure 10 illustrates that the EOBCOA technique 

achieves better convergence accuracy than other 

algorithms for functions F1 to F3, as well as F7, F8, 
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and F10 in the CEC2019 benchmark set.The 

analysis of the results indicates that the proposed 

enhancements in this research have successfully 

optimized the equilibrium between exploration and 

exploitation within the EOBCOA algorithm. These 

improvements in both convergence and search 

efficiency empower the EOBCOA method to 

outperform the competing algorithms in the 

comparative analysis. The findings underscore the 

significance of refining algorithmic strategies to 

achieve superior performance metrics, highlighting 

the potential of the EOBCOA framework in 

various applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Comparison of convergence speed of algorithms for single-peak functions from CEC2005 benchmark functions 

 

 
 
 
 
 
 
 
 

 

 

 

 

 

Figure9. Comparison of convergence speed of algorithms for multi-peak benchmark functions from CEC2005   

benchmark functions. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Comparison of convergence speed of algorithms on functions F1 to F3 and F8, F7 and F10 from CEC2019 

benchmark functions.
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4.4. Analysis of the EOBCOA algorithm 

In this section, the convergence behavior of SFO 

and the performance of the proposed algorithm in 

terms of exploration and exploitation is discussed. 

To confirm these items, five parameters are 

employed as follows: 

• The appearance of the function. 

• Search history. 

• Route of the first coati in its first dimension. 

• Fitness history. 

• Convergence curve. 

The experiments are re-done with 2 variables and 4 

coati over 500 iterations. The results are shown in 

Figure 11. As it can be seen in this figure, the 

second column shows the history of search agent’s 

positions over the course of iterations. These spots 

show that the coati explore promising areas of the 

search space and they also exploit around the 

global optima very accurately. The approximating 

of global optima can effectively confirm with these 

observations. The third column indicates the 

changes of the position of the first coati in the first 

dimension. This parameter tracks the position of 

coati and it assists to observe the moving of 

candidate solutions. These observations 

demonstrate the abrupt changes for the 

implementation of exploration and gradual changes 

for the implementation of exploitation. 

The fourth column shows the average fitness of all 

coatis. The average fitness of coati shows the 

decrement of the fluctuations over the course of 

iteration on all of the test functions. The fifth 

column of this figure displays the convergence 

plot. The convergence plot is used to evaluate the 

speed and quality of convergence in optimization 

algorithms. It helps us determine whether the 

algorithm is approaching the optimal solution and 

whether parameter adjustments or method changes 

are needed.  

 

4.5. Optimization of large-scale problems using 

EOBCOA 

To assess the scalability of EOBCOA, we tested 

the algorithm for solving the 100-dimensional and 

500-dimensional versions of the unimodal and 

multimodal test functions. The results are 

presented in Tables 7 and 8 which clearly 

demonstrate the algorithm's ability to maintain 

performance as the problem size increases.  

As demonstrated in Tables 7 and 8, the proposed 

algorithm not only maintains its superiority in 

achieving the global optimum compared to other 

state-of-the-art optimization algorithms but also 

delivers a reasonable and acceptable computational 

time. The algorithm’s efficient design, 

incorporating advanced mechanisms such as 

enhanced opposition-based learning and adaptive 

parameter tuning, ensures robust performance even 

in large-scale and high-dimensional problems. 

While scalability challenges are inherent in 

optimization tasks with increasing complexity, the 

proposed algorithm effectively balances solution 

quality and computational efficiency, making it a 

practical and competitive choice for a wide range 

of optimization problems. 

 

4.6. Statistical analysis 

In optimization, the objective is to address a 

specific problem by employing various methods 

and identifying the most effective approach for its 

resolution. It is essential to establish whether the 

variations in average performance among these 

methods are statistically significant. The t-test [30] 

can be employed for this analysis. This statistical 

test compares the averages of two groups to assess 

the significance of their differences. When the p-

value obtained from a statistical test is less than the 

significance level (usually 0.05), it indicates that 

the difference in means between the two evaluated 

groups is statistically significant. Such a finding 

provides a strong foundation for selecting the most 

effective method for optimization. In the following 

sections, we present the results of the evaluation of 

the effectiveness of the EOBCOA technique across 

23 benchmark functions from the CEC2005 

dataset, as well as 10 benchmark functions from 

CEC2019. These results are systematically 

summarized in Tables 5 and 6. The p-values 

included in these tables clearly illustrate the 

statistical advantages of the EOBCOA algorithm 

when compared to the other algorithms evaluated 

in this study. This statistical evidence underscores 

the superiority of the EOBCOA method, 

reinforcing its potential as a preferred choice for 

optimization tasks in various applications. 

 

4.7. Solving engineering problems using the 

EOBCOA algorithm 

Researchers have demonstrated that no single 

optimization algorithm consistently outperforms 

others across all problems with varying structures. 

While some algorithms may effectively and 

efficiently address certain problems, they may not 

yield satisfactory results for others. In this section, 

we will tackle seven well-known engineering 

challenges that have been assessed by a variety of 

optimization algorithms. 
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Table 7. Comparison of optimization results for the CEC benchmark functions 2005 (100 Dim). 
Functions      EOBCOA COA KOA NOA RSA SWO SHO 

Unimodal 

Functions 

F1  Mean 0.00E+00 0.00E+00 7.59E+04 2.50E-03 0.00E+00 2.49E+02 0.00E+00 

 Std 0.00E+00 0.00E+00 1.15E+04 1.37E-02 0.00E+00 5.85E+02 0.00E+00 

 CPU 22.425 5.197 0.149 0.286 3.306 0.112 4.742 

F2  Mean 0.00E+00 5.76E-181 2.05E+22 7.73E+00 0.00E+00 1.41E+01 0.00E+00 

 Std 0.00E+00 0.00E+00 1.12E+23 4.23E+01 0.00E+00 1.98E+01 0.00E+00 

 CPU 19.824 4.400 0.042 0.065 2.772 0.036 4.810 

F3  Mean 0.00E+00 0.00E+00 5.29E+05 1.79E+04 0.00E+00 1.83E+04 0.00E+00 

 Std 0.00E+00 0.00E+00 1.33E+05 9.80E+04 0.00E+00 3.42E+04 0.00E+00 

 CPU 76.430 44.395 0.086 0.120 3.204 0.054 5.099 

F4  Mean 0.00E+00 1.43E-183 7.32E+01 3.17E+00 0.00E+00 5.19E+00 0.00E+00 

 Std 0.00E+00 0.00E+00 6.87E+00 1.44E+01 0.00E+00 6.21E+00 0.00E+00 

 CPU 19.391 4.259 0.014 0.057 2.714 0.027 4.020 

F5  Mean 0.00E+00 0.00E+00 1.33E+08 9.89E+01 9.90E+01 3.16E+06 9.89E+01 

 Std 0.00E+00 0.00E+00 4.35E+07 1.10E-01 5.74E-03 1.03E+07 1.44E-01 

 CPU 23.126 5.921 0.019 0.063 2.951 0.023 4.699 

F6  Mean 0.00E+00 0.00E+00 7.09E+04 2.88E+01 2.45E+01 8.48E+02 2.17E+01 

 Std 0.00E+00 0.00E+00 8.60E+03 2.94E+01 1.16E+00 1.60E+03 3.53E+00 

 CPU 19.735 4.124 0.013 0.049 3.029 0.015 2.612 

F7  Mean 3.98E-05 6.39E-05 1.84E+02 7.78E+00 1.98E-04 7.95E-01 7.61E-05 

 Std 3.52E-05 6.81E-05 6.66E+01 4.24E+01 1.61E-04 2.46E+00 8.20E-05 

 CPU 44.245 21.935 0.031 0.066 2.824 0.036 4.618 

Multimodal 

Functions 

F8  Mean -4.19E+04 -4.19E+04 -8.22E+03 -1.33E+04 -1.71E+04 -7.68E+03 -4.50E+03 

 Std 4.45E-01 1.00E-01 1.81E+03 1.78E+03 1.14E+03 7.71E+02 1.08E+03 

 CPU 23.257 6.856 0.006 0.055 2.755 0.009 0.587 

F9  Mean 0.00E+00 0.00E+00 1.13E+03 1.71E-12 0.00E+00 2.48E+02 0.00E+00 

 Std 0.00E+00 0.00E+00 4.74E+01 9.34E-12 0.00E+00 2.73E+02 0.00E+00 

 CPU 21.432 5.348 0.018 0.040 2.577 0.013 4.276 

F10  Mean 4.44E-16 4.44E-16 1.96E+01 5.00E-04 4.44E-16 2.45E+00 1.85E+00 

 Std 0.00E+00 0.00E+00 5.29E-01 2.28E-03 0.00E+00 2.53E+00 4.34E+00 

 CPU 21.094 5.768 0.017 0.042 2.623 0.016 3.801 

F11  Mean 0.00E+00 0.00E+00 6.89E+02 1.22E-02 0.00E+00 1.32E+01 0.00E+00 

 Std 0.00E+00 0.00E+00 8.75E+01 6.66E-02 0.00E+00 3.13E+01 0.00E+00 

 CPU 22.804 7.046 0.016 0.037 2.579 0.016 4.240 

F12  Mean 4.71E-33 4.71E-33 1.43E+08 9.72E-01 1.24E+00 3.73E+03 2.95E-04 

 Std 1.39E-48 1.39E-48 8.05E+07 2.28E-01 1.53E-01 1.41E+04 2.04E-05 

 CPU 75.092 45.136 0.043 0.077 3.140 0.041 4.765 

F13  Mean 1.35E-32 1.35E-32 3.77E+08 9.52E+00 9.85E+00 5.23E+06 9.96E+00 

 Std 5.57E-48 5.57E-48 1.64E+08 1.08E+00 5.62E-02 2.37E+07 2.80E-02 

 CPU 76.055 44.871 0.041 0.064 3.093 0.046 4.837 
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Figure 11. Qualitative results for the studied problems. 
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Table 8. Comparison of optimization results for the CEC benchmark functions 2005 (500 Dim). 
Functions     EOBCOA COA KOA NOA RSA SWO SHO 

Unimodal 

Functions 

F1 Mean 0.00E+00 0.00E+00 4.41E+05 2.92E-32 0.00E+00 2.76E+04 0.00E+00 

Std 0.00E+00 0.00E+00 9.62E+04 6.53E-32 0.00E+00 5.10E+04 0.00E+00 

CPU 71.403 6.281 0.019 0.122 16.188 0.031 19.003 

F2 Mean 0.00E+00 1.46E-181 5.40E+107 2.65E-05 0.00E+00 9.27E+00 0.00E+00 

Std 0.00E+00 0.00E+00 1.21E+108 5.93E-05 0.00E+00 6.15E+00 0.00E+00 

CPU 73.141 7.150 0.016 0.103 16.319 0.038 19.394 

F3 Mean 0.00E+00 0.00E+00 1.40E+07 3.52E-14 0.00E+00 6.35E+05 0.00E+00 

Std 0.00E+00 0.00E+00 2.23E+06 7.87E-14 0.00E+00 8.47E+05 0.00E+00 

CPU 447.931 272.916 0.216 0.300 19.791 0.166 22.941 

F4 Mean 0.00E+00 9.23E-188 9.00E+01 3.34E-14 0.00E+00 6.84E+00 0.00E+00 

Std 0.00E+00 0.00E+00 4.12E+00 7.04E-14 0.00E+00 5.35E+00 0.00E+00 

CPU 71.900 6.538 0.028 0.122 16.381 0.050 19.225 

F5 Mean 0.00E+00 0.00E+00 8.92E+08 4.99E+02 4.99E+02 2.46E+06 4.99E+02 

Std 0.00E+00 0.00E+00 3.30E+08 3.35E-01 5.34E-03 4.37E+06 1.87E-02 

CPU 74.678 8.416 0.038 0.113 16.263 0.069 19.350 

F6 Mean 0.00E+00 0.00E+00 4.03E+05 2.81E+03 1.25E+02 1.54E+04 1.24E+02 

Std 0.00E+00 0.00E+00 3.30E+04 6.03E+03 1.86E-04 1.90E+04 7.57E-01 

CPU 73.319 6.306 0.028 0.097 16.678 0.022 12.316 

F7 Mean 1.71E-05 7.09E-05 5.48E+03 4.90E-02 1.24E-04 3.57E+01 4.42E-05 

Std 1.44E-05 3.99E-05 1.56E+03 5.86E-02 1.15E-04 6.29E+01 7.13E-05 

CPU 188.147 90.666 0.113 0.138 17.056 0.081 20.416 

Multimodal 

Functions 

F8 Mean -2.09E+05 -2.09E+05 -4.38E+04 -5.78E+04 -6.22E+04 -1.93E+04 -1.26E+04 

Std 6.53E-01 6.46E+00 1.45E+04 8.32E+03 3.71E+03 3.53E+03 6.45E+03 

CPU 89.259 18.178 0.091 0.213 16.456 0.088 0.944 

F9 Mean 0.00E+00 0.00E+00 6.14E+03 0.00E+00 0.00E+00 9.88E+02 0.00E+00 

Std 0.00E+00 0.00E+00 2.57E+02 0.00E+00 0.00E+00 9.23E+02 0.00E+00 

CPU 79.763 14.125 0.094 0.063 16.294 0.044 19.234 

F10 Mean 4.44E-16 4.44E-16 1.96E+01 1.76E-09 4.44E-16 2.28E+00 2.16E+00 

Std 0.00E+00 0.00E+00 3.60E-01 3.93E-09 0.00E+00 1.95E+00 4.23E+00 

CPU 80.841 15.047 0.034 0.113 16.650 0.050 19.666 

F11 Mean 0.00E+00 0.00E+00 3.60E+03 5.12E-05 0.00E+00 1.59E+01 0.00E+00 

Std 0.00E+00 0.00E+00 4.75E+02 1.14E-04 0.00E+00 1.42E+01 0.00E+00 

CPU 88.263 18.397 0.044 0.119 17.138 0.041 19.338 

F12 Mean 9.42E-34 9.42E-34 1.19E+09 9.51E-01 1.20E+00 1.97E+00 1.07E+00 

Std 0.00E+00 0.00E+00 7.78E+08 1.46E-01 1.96E-03 9.27E-01 2.62E-01 

CPU 332.247 190.994 0.113 0.253 18.675 0.113 21.719 

F13 Mean 1.35E-32 1.35E-32 3.83E+09 4.90E+01 4.99E+01 2.78E+04 5.00E+01 

Std 0.00E+00 0.00E+00 1.69E+09 2.10E+00 4.31E-02 6.21E+04 3.76E-02 

CPU 333.253 189.975 0.138 0.291 18.469 0.116 21.372 

 

 

 

 

 

 

 

 

 

 

 



Enhanced Opposition-Based Coati Optimization Algorithm for Solving Global Optimization 

533 

 

Table 9. p-value for 23 CEC 2005 benchmark functions. 
EOBCOA versus 

NOA 

EOBCOA versus 

SWO 

EOBCOA versus 

KOA 

EOBCOA 

versus RSA 

EOBCOA versus 

SHO 

EOBCOA versus 

COA 
Function 

3.23E-01 2.28E-02 2.68E-19 0 0 0 F1 

3.25E-01 1.04E-03 5.27E-02 0 0 0 F2 
3.25E-01 2.25E-02 1.76E-17 0 0 0 F3 

2.81E-01 2.50E-04 1.39E-27 0 0 0 F4 

2.27E-03 1.24E-01 1.48E-10 8.72E-08 6.68E-72 0 F5 
4.18E-25 3.85E-02 1.73E-19 7.54E-42 1.13E-10 0 F6 

1.11E-03 2.73E-02 4.33E-11 7.00E-01 2.68E-01 3.77E-02 F7 

2.17E-30 1.92E-37 5.21E-42 7.11E-36 1.16E-41 5.25E-01 F8 
3.25E-01 7.45E-04 2.61E-31 0 0 0 F9 

1.31E-01 9.73E-05 2.40E-69 0 0 0 F10 

3.25E-01 4.27E-04 3.90E-18 0 0 0 F11 
1.08E-19 2.43E-05 4.69E-09 6.69E-21 1.22E-28 1 F12 

9.19E-34 1.73E-01 1.24E-12 6.25E-03 2.80E-58 1 F13 

1.99E-07 3.55E-07 2.18E-08 1.28E-06 2.44E-16 2.29E-01 F14 
1.47E-05 1.17E-04 2.56E-08 1.83E-07 4.53E-05 3.99E-01 F15 

1.98E-04 3.48E-05 1.42E-07 9.16E-03 2.45E-02 4.76E-01 F16 

5.70E-05 1.67E-02 2.60E-05 4.29E-07 5.96E-02 7.13E-01 F17 

1.32E-01 8.19E-01 9.67E-05 5.58E-02 2.44E-04 7.46E-01 F18 

3.74E-05 5.80E-01 5.72E-07 2.24E-02 4.32E-05 1.83E-01 F19 

8.38E-02 3.79E-06 8.71E-01 2.13E-02 3.77E-01 3.13E-03 F20 
1.97E-17 5.13E-17 8.34E-35 2.53E-134 3.11E-25 6.94E-01 F21 

2.28E-22 1.28E-17 1.95E-22 9.57E-128 8.39E-24 5.59E-01 F22 

1.58E-17 8.88E-16 7.71E-32 2.64E-135 2.24E-22 3.76E-01 F23 

 

 Table 10. p-value for 10 CEC 2019 benchmark functions. 
EOBCOA versus 

NOA 

EOBCOA versus 

SWO 

EOBCOA versus 

KOA 

EOBCOA 

versus RSA 

EOBCOA versus 

SHO 

EOBCOA versus 

COA 
Function 

3.25E-01 9.60E-02 5.55E-13 0 0 0 F1 
3.26E-01 2.17E-04 1.79E-21 3.13E-01 1.62E-01 3.13E-01 F2 

1.66E-23 2.51E-19 1.23E-24 9.53E-08 4.89E-11 3.75E-01 F3 

4.90E-04 2.97E-03 7.25E-01 7.62E-01 1.74E-14 2.70E-01 F4 
1.94E-01 3.94E-12 5.67E-03 9.42E-04 5.37E-15 1.55E-03 F5 

4.53E-07 1.95E-01 2.52E-12 1.21E-07 3.37E-11 5.93E-01 F6 

6.08E-15 8.46E-05 6.55E-13 2.31E-03 7.87E-20 6.78E-02 F7 
9.13E-12 3.53E-05 7.24E-12 1.29E-03 2.64E-01 2.00E-01 F8 

9.60E-01 2.25E-14 8.68E-03 9.58E-01 8.26E-03 6.88E-01 F9 

5.77E-20 4.04E-10 7.01E-12 7.53E-03 6.74E-03 8.37E-02 F10 

 

4.7.1 Speed Reducer 

This problem involves designing a speed reducer 

gearbox that connects the propeller to the airplane 

engine, allowing both components to rotate at 

optimal speeds. The main objective of any 

optimization method applied to the speed reducer 

problem is to minimize the weight of the gear 

design. To achieve this, it is necessary to determine 

the optimal values for seven design variables, 

which are illustrated in Figure 11. Additionally, the 

mathematical formulation of this problem is 

provided in Equation 15. 

The comparative results of the performance metrics 

for the competitive algorithms are presented in 

Table 11. These results indicate that the EOBCOA 

algorithm has achieved superior outcomes 

compared to the other seven algorithms. Figure 12 

depicts the convergence behavior and speed of 

these algorithms in addressing the speed reducer 

problem, which is a significant optimization 

challenge in civil engineering, often used to assess 

various optimization algorithms due to its stringent 

search space for strength estimation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11. The Speed Reducer Problem. 
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Table11. Comparative Results for the Speed Reducer 

Problem. 
Algorithm Best Mean Worst Std. 

EOBCOA 3.03E+03 3.099E+03 3.192E+03 5.103E+01 
COA 3.00E+03 3.173E+03 3.587E+03 1.520E+02 

SFO 3.02E+03 3.128E+03 3.340E+03 9.824E+01 

RSA 3.12E+03 3.248E+03 3.348E+03 5.286E+01 
KOA 3.04E+03 3.117E+03 3.212E+03 4.142E+01 

SWO 3.04E+03 3.145E+03 3.280E+03 6.731E+01 

SHO 3.18E+03 3.388E+03 3.853E+03 1.759E+02 
NOA 3.02E+03 3.102E+03 3.301E+03 6.355E+01 

 

 
Figure 12. Comparison of Convergence Rate of the 

EOBCOA Algorithm with Other Competing Algorithms 

for the Speed Reducer Problem. 

 

4.7.2 Three-bar truss design problem  

Figure 13 illustrates a schematic diagram related to 

a design problem involving a three-member truss. 

The primary aim of this design challenge is to 

ascertain the optimal cross-sectional areas of the 

three truss components. This optimization process 

is geared towards reducing the total weight of the 

structure while simultaneously enhancing the stress 

capacity of each member. The interplay between 

minimizing weight and maximizing stress is 

crucial, as it directly influences the structural 

efficiency and performance under various loading 

conditions. By addressing these objectives, 

engineers can create a more effective and resilient 

truss design that meets the necessary safety and 

functional requirements. This problem is 

formulated as shown in relation 16. The results 

comparing the performance of the competitive 

algorithms are detailed in Table 12, which 

demonstrates that the EOBCOA algorithm has 

yielded more optimal results than the seven other 

algorithms. Figure 14 illustrates the convergence 

behavior and speed of the competitive algorithms 

in solving the design problem of a three-bar truss. 

 
1 2 1 2

1 2

1 2

1
2

1 1 2

2
2

2

1 1 2

3

2 1

1 2

2

2

Consider: [ ] [ ]

Minimize: ( ) 2 2

2
Subject to: ( ) 0

2 2

( ) 0
2 2

1
( ) 0

2

Variable bounds: 0 , 1

Where: 100 cm, 2 kN/cm ,

2 kN/cm

x x x A A

f x x x l

x x
g x P

x x x

x
g x P

x x x

g x P
x x

x x

l P









 

  


   



   


   


 

 



 

  

(16) 



Enhanced Opposition-Based Coati Optimization Algorithm for Solving Global Optimization 

535 

 

 

Figure 13. Triangular truss design problem. 

 
 

Table 12. Comparative results for the three-bar truss 

problem. 
Function Best Mean Worst Std 

EOBCOA 263.8965 263.9086 263.9434 1.2046E-02 
COA 263.8969 263.9160 263.9728 1.8029E-02 

AO 263.9007 263.9409 263.9945 2.7100E-02 

RSA 263.8985 263.9834 264.3777 1.0260E-01 
KOA 263.9096 264.1005 264.4647 1.4249E-01 

SWO 263.8982 263.9511 264.1495 5.8391E-02 

SHO 263.9036 265.0137 269.0898 1.5019E+00 
NOA 263.9067 264.0527 264.3465 1.3399E-01 

 

 

 
Figure 14. Comparison of the convergence rate of the 

EOBCOA algorithm with other competitive algorithms 

for the three-bar truss problem. 
 

4.7.3 Cantilever beam 

This study addresses a design challenge that 

involves five key variables, which must be 

identified and optimized throughout the design 

process. As depicted in Figure 15, the optimization 

task focuses specifically on cantilever beams. To 

tackle this design issue effectively, the proposed 

EOBCOA is utilized, which has been formally 

structured as outlined in Relation 17. This 

algorithm aims to enhance the efficiency and 

accuracy of the optimization, ensuring that the 

design variables are finely tuned to achieve the best 

performance of the cantilever beams. By applying 

this method, the research contributes to a deeper 

understanding of the optimization dynamics in 

structural engineering contexts. 
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(17) 

 

      Figure 15. Cantilever beam problem. 
 

Table 13 presents the comparative results between 

the EOBCOA algorithm and other competitive 

algorithms for solving the cantilever beam 

problem. The results indicate that the proposed 

algorithm has performed satisfactorily in 

comparison to six other algorithms. Figure 16 

depicts the convergence behavior and speed of the 

competitive algorithms in tackling the cantilever 

beam problem. 
 

 

Table 13. Comparative results for the cantilever beam 

problem. 
Function Best Mean Worst Std 

EOBCOA 1.3842 1.4294 1.5600 3.9774E-02 
COA 1.3544 1.4564 1.5600 5.8900E-02 

SFO 1.3588 1.4329 1.5421 4.6100E-02 

KOA 3.1343 4.5861 5.8699 8.3130E-01 
SWO 1.6563 2.6986 4.5220 6.6540E-01 

SHO 1.3973 3.7584 7.3919 2.1366E+00 

NOA 1.5146 3.2556 5.8440 9.9070E-01 

 
Figure 16. Comparison of the convergence rate of the 

EOBCOA algorithm with other competing algorithms for 

the cantilever beam problem. 
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4.7.4 I-beam design  

This problem represents an optimization challenge 

focused on minimizing the vertical rise of a 

structure. I-shaped sections, commonly 

constructed from structural steel, are widely 

utilized in construction and civil engineering. In 

this context, several structural parameters come 

into play, including length, height, and the two 

thicknesses of the I-shaped sections (flange and 

web thicknesses), as shown in Figure 17. The 

mathematical formulation for this problem is 

provided in Equation 18. 
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Figure 17. I-beam Design Problem. 

 

The comparative analysis of performance metrics 

for various competitive algorithms is presented in 

Table 14. The findings indicate that the EOBCOA 

algorithm has achieved superior solutions when 

contrasted with seven other algorithms. 

Additionally, Figure 18 illustrates the dynamics 

and convergence rates of these algorithms as they 

tackle the I-beam design challenge. This evidence 

highlights the effectiveness of the EOBCOA 

algorithm in optimizing design outcomes, 

suggesting its potential as a leading approach in 

this domain. The convergence behavior depicted in 

the figure further emphasizes the algorithms' 

varying efficiencies and adaptability in solving 

complex engineering problems, particularly in 

structural design applications. 

 

 

 

 

 
 

 

 

 

Table 14. Comparative Results for the I-beam Design 

Problem. 

Algorithm Best Mean Worst Std  
EOBCOA 0.0131 0.0131 0.0135 1.1783E-04 

COA 0.0131 0.0300 0.2510 5.4831E-02 
AO 0.0131 0.0132 0.0134 1.1193E-04 

SFO 0.0131 0.0133 0.0159 8.1189E-04 

KOA 0.0131 0.0152 0.0384 4.5251E-03 
SWO 0.0140 0.0222 0.1373 2.5158E-02 

SHO 0.0135 0.0634 0.4320 8.0108E-01 

NOA 0.0131 0.0175 0.0471 6.7536E-03 

 

 

Figure 18. Convergence Curve Comparing the EOBCOA 

Algorithm with Other Algorithms for the I-beam Design 

Problem. 

 
 

4.7.5 Tubular column design  

This problem is centered on designing a uniform 

column with a tubular section to support a 

compressive load while minimizing costs. The 

design involves two variables: the average 

diameter of the column (d = x_1) and the thickness 

of the tube (t = x_2), as depicted in Figure 19. The 

mathematical formulation of this problem is 

presented in Equation 19.  

Table 15 presents the comparative results of the 

proposed algorithm in relation to other competing 

algorithms, focusing on performance metrics. The 

results indicate that the EOBCOA algorithm 

achieved more favorable outcomes compared to 

seven other algorithms. Figure 20 illustrates the 

convergence behavior and speed of the competing 

algorithms in solving the tubular column design 

problem. 
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Figure 19. Tubular column design problem. 
 

 
Table 15. Comparative Results for the Tubular Column 

Design Problem. 
Algorithm Best Mean Worst Std  
EOBCOA 26.4937 26.5307 26.6257 2.8264E-02 

COA 26.4892 26.5504 26.7021 4.9400E-02 

AO 26.5360 26.7008 26.9041 1.0400E-01 
RSA 26.6708 28.0454 30.3859 7.7480E-01 

KOA 26.5757 27.6660 29.2436 7.5380E-01 

SWO 26.4906 26.8581 29.1481 5.3180E-01 
SHO 26.9878 29.2000 32.9677 1.7961E+00 

NOA 26.5186 27.1730 28.3251 4.0810E-01 

 

 

 
Figure 20. Convergence Comparison Chart of EOBCOA 

with Other Algorithms for the Tubular Column Design 

Problem. 

 

4.7.6 Corrugated bulkhead design  

The aim of this problem is to reduce the weight of 

a corrugated wall within a chemical tank. The 

design variables include width (𝑥1), depth (𝑥2), 

length (𝑥3), and plate thickness (𝑥4). This problem 

is represented in Figure 21 and is mathematically 

formulated in Equation 20.  
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Figure 21. Corrugated wall design problem. 
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Table 16 provides a comparative analysis of the 

performance metrics for various competitive 

algorithms, demonstrating that the EOBCOA 

algorithm has surpassed six other algorithms in 

terms of effectiveness. Additionally, Figure 22 

depicts the dynamics and convergence rates of 

these algorithms while tackling the design 

challenges associated with corrugated walls. The 

results underscore the superiority of the EOBCOA 

algorithm, suggesting its potential for more 

efficient solutions in complex design scenarios. 

The visual representation in Figure 22 further 

enhances our understanding of how these 

algorithms operate and their relative speeds in 

reaching optimal solutions. 

 

 

Table 16. Comparative results for the corrugated wall 

design problem. 

Algorithm Best Mean Worst Std  

EOBCOA 6.9744 7.5488 9.0102 4.6736E-01 

COA 6.9476 7.9645 9.8387 8.1390E-01 

RSA 7.2502 8.0769 9.4206 5.5340E-01 
KOA 7.2687 8.0829 9.7388 5.7961E-01 

SWO 7.0293 7.6714 8.4802 4.0590E-01 

SHO 0.8208 8.5644 14.4607 3.5771E+00 
NOA 7.1009 7.8272 8.7478 3.7989E+00 

 

 
Figure 22. Convergence diagram comparing the 

EOBCOA algorithm with other algorithms for the 

corrugated wall design problem. 

 

4.7.7 Reinforced concrete beam design  

The problem outlined in Figure 23 presents a 

simplified optimization challenge in the design of 

a reinforced concrete beam. This beam is 

considered to be simply supported, spans 30 feet, 

and is subjected to an applied load of 2000 pounds. 

To minimize the overall cost of the structure, it is 

necessary to determine the reinforcement area (As 

= x1), beam width (b = x2), and beam depth (h = 

x3). This problem is formulated as expressed in 

Relation 21. 

1 2 3

2
1

3

2

1
2 1 2

3

1

2

0.9 (0.8 ) 1.0 0.59
0.8

1.4 1.7

Minimize: ( ) 2.9 0.6

Subject to: ( ) 4 0

( ) 180 7.375 0

Variable bounds:

{6, 6.16, 6.32, 6.6, 7, 7.2, 7.8, 7.9, 8, 8.4}

{28, 29, 3

s y

u s y

c

d p

A
M A h

bh

M M

f x x x x

x
g x

x

x
g x x x

x

x

x






 
   

 



 

  

   



 30, , 40}, 5 10x  

 

(21) 

 

 

Figure 23. Reinforced concrete beam design problem. 

 

 
Table 17 presents a comparative analysis of 

multiple algorithms evaluated against specific 

performance metrics. The findings indicate that the 

EOBCOA algorithm exhibits significant efficacy 

when compared to nine other algorithms in the 

study. Additionally, Figure 24 provides a visual 

representation of the dynamics and convergence 

rates of the various algorithms as they tackle the 

design challenges associated with reinforced 

concrete beams. This analysis highlights the 

strengths and potential advantages of the EOBCOA 

algorithm, suggesting its effectiveness in 

optimizing design solutions within this specific 

engineering context. 

 
Table 17. Comparative results for the reinforced concrete 

beam design plan. 
Algorithm Best Mean Worst Std  

EOBCOA 263.8965 263.9086 263.9434 1.2046×10⁻² 
COA 263.8969 263.916 263.9728 1.8029×10⁻² 

AO 263.9007 263.9409 263.9945 2.7100×10⁻² 

RSA 263.8985 263.9834 264.3777 1.0260×10⁻¹ 
KOA 263.9096 264.1005 264.4647 1.4249×10⁻¹ 

SWO 263.8982 263.9511 264.1495 5.8391×10⁻² 

SHO 263.9036 265.0137 269.0898 1.5019×10⁰ 
NOA 263.9067 264.0527 264.3465 1.3399×10⁻¹ 
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Figure 24. Convergence diagram comparing the 

EOBCOA algorithm with other algorithms for the 

reinforced concrete beam problem. 

 

5. Conclusion 

In this research, we introduce an enhanced variant 

of the Coati algorithm, termed EOBCOA, which 

aims to address global optimization problems. This 

algorithm draws inspiration from the intriguing 

strategies employed by coatis during their iguana 

hunts, as well as their adaptive behaviors when 

faced with predatory threats. The primary objective 

of this novel approach is to improve convergence 

accuracy and to bolster the global search 

capabilities inherent in the original Coati 

algorithm. 

To evaluate the effectiveness of the EOBCOA 

method, we conducted tests against 23 benchmark 

functions derived from IEEE CEC2005 and 10 

reference functions from IEEE CEC2019. We 

compared its performance not only with the 

original Coati algorithm but also with several 

established algorithms such as SHO, RSA, KOA, 

SWO, and NOA. Additionally, we examined the 

algorithm's performance on seven real-world 

engineering optimization problems, thereby 

illustrating its practical applications and benefits. 

Through these assessments, we aim to illustrate 

that EOBCOA not only produces superior results 

but also signifies a noteworthy advancement in the 

domain of optimization algorithms. The findings 

from these comparisons suggest that the proposed 

EOBCOA method achieves better performance on 

the IEEE CEC2005 standard reference functions 

and the complex reference functions from IEEE 

CEC2019. Nevertheless, further investigations into 

EOBCOA are warranted using additional functions 

and engineering challenges, which we intend to 

pursue in our future research endeavors. 
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 چکیده:

ها هنگام حمله به ایگوانا های فراابتکاری نوین است که اخیرا ابداع شده و از روش هوشمندانه کواتییکی از الگوریتم( COA) سازی کوآتیالگوریتم بهینه

با این . نشان داده استهای فرا ابتکاری نسبت به الگوریتم مطلوبی راها در مواجهه و فرار از شکارچیان الهام گرفته است. این الگوریتم عملکرد و رفتار آن

محدودیتهایی در برقراری توازن بین فازهای کاوش و بهره برداری دارد و امکان دارد در هنگام حل مسائل  یسازهای بهینهگوریتمحال، مانند سایر ال

( EOBL) "یادگیری مبتنی بر مخالفت بهبود یافته"ها، یک تکنیک نوآورانه به نام . برای رفع این محدودیتآیددر بهینه محلی گرفتار  پیچیدهسازی بهینه

و یادگیری  (OBL)های یادگیری مبتنی بر مخالفت الهام گرفته شده از تکنیک EOBLادغام گردیده است. تکنیک  COAپیشنهاد شده و با الگوریتم 

سازی بهینه الگوریتم برداری تاثیرگذار باشد.کاوش و بهرهبین فازهای به طور کارآمد بر میزان توازن  تواندو میاست  (ROBL) تصادفی مبتنی بر مخالفت

پیشنهاد شده است. برای ارزیابی کارآیی  COA(، یک الگوریتم فرا ابتکاری نوین است که برای افزایش کارایی الگوریتم EOBCOAکوآتی بهبود یافته )

ده و آزمایش ش و هفت مسئله مهندسی IEEE CEC2005 ، IEEE CEC2019پیشنهادی، این روش بر روی توابع محک استاندارد  EOBCOAروش 

سازی سراسری عملکرد بهتری از خود نشان های پیشرفته در یافتن بهینهپیشنهادی نسبت به سایر الگوریتم EOBCOAنتایج بیانگر آن است که روش 

 داده است.

 بهبود یافته.های فرا ابتکاری، یادگیری مبتنی بر مخالفت، یادگیری مبتنی بر مخالفت ، الگوریتم(COA)ساز کواتی بهینه :کلمات کلیدی

 


