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Wildfires are among the most serious environmental and socio-
economic threats worldwide, significantly impacting ecosystems and
climate patterns. In recent years, deep learning-based methods,
particularly convolutional neural networks (CNNs), have played a
crucial role in improving wildfire detection accuracy. This study
presents an enhanced approach for identifying wildfire-affected areas
using deep learning models. Specifically, three models—ResNet50,
ResNet101, and EfficientNetBO—were examined. To improve
accuracy and reduce model complexity, the Flatten layer in all three
architectures was replaced with a Global Average Pooling (GAP)
layer. This modification reduces the number of features and enhances
the extraction of meaningful patterns from images. Additionally, a
Dense layer with 128 neurons was added after the GAP layer to
enhance the learning and integration of extracted features. To prevent
overfitting, a Dropout layer with a rate of 0.5 was incorporated.
Finally, a Dense layer with 2 neurons serves as the output layer,
responsible for the final classification. These optimizations led to
improved model accuracy and enhanced performance in wildfire
detection. The dataset consisted of 42,850 satellite images,
categorized into wildfire and nowildfire areas. Experimental results
indicate that the Modified ResNet101 model achieved the highest
accuracy of 99.60%, while Modified ResNet50 and Modified
EfficientNetBO achieved accuracies of 99.35% and 99.10%,
respectively. These results highlight the high potential of deep
learning-based methods in improving wildfire detection accuracy and
their role in environmental crisis management.

1. Introduction

Wildfires, as a major environmental challenge,
occur year-round and worldwide [1]. This
phenomenon causes significant damage to human
communities and plays a decisive role in ecosystem
changes [2]. Approximately 2.3% of the Earth's
surface burns annually, significantly impacting
human life and ecosystems [3]. Wildfires destroy
vast areas, as reported in the European
Commission's 20th annual wildfire report [4-6].
This report, pertaining to 2019, recorded a total
burned area of 789,730 hectares across 40 countries
in Europe, the Middle East, and North Africa. This

figure is nearly four times larger than that of 2018.
Wildfires significantly impact climate change,
estimated to contribute to 10% of global CO2
emissions annually [7]. Furthermore, wildfires
cause severe societal damage, leading to fatalities,
accidents, injuries, health issues, and destruction of
human infrastructure. These damages have a
substantial economic impact, due to both fire-
related losses and the massive investments required
for prevention, preparedness, firefighting, and
recovery efforts [8]. Additionally, predictions
indicate that future climate change will exacerbate
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wildfires [9]. Figure 1 displays samples of images
from the dataset related to wildfires and areas
without wildfires [10].

=

a) wildfire b) nowildfire

Figure 1. Images sample from dataset.

In recent years, deep learning methods have proven
efficient for detecting and predicting wildfires.
CNNs are powerful and well-known deep learning
models that have revolutionized image
interpretation by machines. CNNs enable
computers to learn patterns from large datasets of
two-dimensional images using processing filters,
backpropagation  algorithms, and  various
techniques aimed at accurate predictions, similar to
human pattern recognition [11].

Due to CNNs' high capability in recognizing and
extracting complex patterns from images, these
models have become one of the most effective
methods for analyzing image data. This study
utilized ResNet50, ResNet101, and EfficientNetB0
to extract features from satellite images for wildfire
detection. A Global Average Pooling layer was
added to reduce feature dimensionality while
preserving essential spatial information. A Dense
layer with 128 neurons and ReLU activation
enhanced feature representation, followed by a
Dropout layer (rate = 0.5) to mitigate overfitting.
Finally, a Dense output layer with two neurons and
SoftMax activation classified fire-affected and
unaffected areas. This method effectively improves
wildfire detection accuracy and contributes to
optimizing satellite image processing for fire
prediction.

The following sections review related works on
wildfire detection, introduce the proposed method,
including deep learning models for fire
identification, discuss the dataset, experimental
results, and model evaluation.

2. Related Work

In recent years, numerous studies have investigated
forest fire detection, employing various models and
techniques. This section reviews related work,
highlighting significant advancements in the use of
deep learning models and neural networks for fire
detection.

Spiros Maggioros and Nikos Tsalkitzis [12]
utilized various pre-trained models, including
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VGG16, VGG19, ResNet50, ResNetV2, Xception,
EfficientNetB7, and EfficientNetV2L, to identify
fire-affected areas. Their results indicated that
VGG19 achieved the highest accuracy (95%).
However, a key limitation of this study is the
minimal structural optimization of the pre-trained
models. VGG19, for example, was primarily used
in its original form, with only the addition of a
Flatten layer and a final Dense layer. This lack of
adaptation to the specific characteristics of fire-
related data may hinder the model's accuracy and
generalizability.

Yunfei Liu and colleagues [13] developed a hybrid
image classifier  comprising  EfficientNet,
YOLOvV5, and EfficientDet. They employed an
integrated dataset of 10,581 images, including
2,976 fire images and 7,605 non-fire images.
However, the study did not address the potential
issue of class imbalance. After training, the
proposed classifier achieved an accuracy of 99.6%
on 476 fire images and 99.7% on 676 non-fire
images.

Z. Jiao and colleagues [14] extensively utilized the
YOLOv3 algorithm for real-time processing of
images captured by unmanned aerial vehicles
(UAVs). Leveraging a high-performance computer
at the ground station, the method achieved 91%
accuracy in fire detection. However, the paper
solely evaluated YOLOV3's performance without
comparing it to other methods or newer models,
such as YOLOv4 or EfficientDet, thus limiting a
comprehensive assessment of its effectiveness.
Notably, the authors used YOLOv3 despite its
publication date in 2016, without justifying the
omission of more recent versions.

M. Rahul and colleagues [15] fine-tuned the
ResNet50 network by adding convolutional layers
with ReLU activation functions and designed the
output layer for binary classification. The model
achieved 92.27% accuracy on the training set and
89.57% on the testing set. However, the study
primarily relied on a public dataset with
unspecified characteristics. Furthermore, the
evaluation solely focused on accuracy metrics,
neglecting standard performance measures such as
Precision, Recall, and F1-Score.

Anupama Namburu and colleagues [16] proposed
a method for early forest fire detection using UAVs
and the X-MobileNet model, achieving an
accuracy of 97.26%. However, the approach
exhibits several limitations, including a lack of
evaluation on diverse datasets, limited comparison
with  advanced  architectures, insufficient
explanation of hyperparameter selection, and an
overlooking of computational efficiency and real-
world deployment feasibility.
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Shoukat Alam Sifat and colleagues [17] introduced
the PyroVision model, which combines a
Convolutional Neural Network with attention
mechanisms, achieving a notable accuracy of
95.51%. They utilized the dataset from our study.
However, this work lacks sufficient details
regarding execution time, hardware requirements,
and energy consumption.

Despite significant advancements, previous studies
on wildfire detection exhibit certain limitations.
These include minimal structural optimization of
pre-trained models, a lack of comprehensive
evaluation using metrics such as Precision, Recall,
and F1-Score, insufficient attention to data
imbalance, and neglect of computational
considerations. Moreover, some studies lack
comparisons with more advanced architectures.
This study addresses these shortcomings by
proposing an enhanced method based on deep
networks such as ResNet50, ResNet101, and
EfficientNetB0. By modifying their internal
structures and applying precise configurations, our
approach achieves improved performance in
detecting wildfires from satellite imagery. The
details of this method are presented in the
following section.

3. Proposed Method

This study employed advanced deep learning
models, including ResNet50, ResNet101, and
EfficientNetB0, to extract features from satellite

ResNet50, ResNet101, EfficientNetB0

images of forested areas. These models were
chosen for their deep architectures and ability to
identify complex patterns. To enhance their
performance in wildfire detection, we modified
their structures by introducing a Global Average
Pooling  layer, which  reduces  feature
dimensionality while retaining essential spatial
information. This transformation ensures a more
compact representation, making the extracted
features more suitable for subsequent processing.
Following the GAP layer, a Dense layer with 128
neurons and ReLU activation was added to
improve feature interactions. To mitigate
overfitting and enhance generalization, a Dropout
layer with a rate of 0.5 was incorporated, randomly
deactivating neurons during training. The final
classification stage consisted of a Dense output
layer with two units and SoftMax activation,
enabling the model to distinguish between wildfire
and nowildfire regions. Prior to training, we
preprocessed the images by normalizing pixel
values between zero and one and resizing them to
224%224%3 to ensure compatibility with the deep
learning models. Through fine-tuning and
structural modifications, our proposed method
significantly improved classification performance.
Figure 2 presents the final architecture of the fine-
tuned models. The following sections provide a
detailed explanation of each  network's
configuration and its role in wildfire detection.
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Figure 2. Proposed architecture of the final layers for model fine-tuning.

3.1. ResNet50

ResNet is an advanced CNN architecture that
addresses performance degradation in deep
networks by introducing shortcut connections and
using Bottleneck blocks to accelerate training [18].
The shortcut connection bypasses one or more
layers, effectively ignoring them; in other words, it
connects one layer to a more distant layer. [19]
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ResNet50 is a 50-layer model trained on ImageNet-
1k with 224x224 resolution; it uses 3x3 filters,
doubling filter numbers when output size is
reduced, and ends with an Average Pooling and
SoftMax layer for 1000 classes [20-21]. Figure 3
illustrates the ResNet50 block diagram, showing
block repetitions and output sizes [22].
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Figure 3. Block diagram of ResNet50 architecture.

3.2. EfficientNetB0

The EfficientNetBO architecture, part of the
EfficientNet family [23], is built on MBConv and
Squeeze-and-Excitation blocks. By utilizing
depthwise separable convolution layers, it
significantly reduces computational complexity.
Additionally, the inclusion of inverted residual

blocks help decrease the number of trainable
parameters and enhances model efficiency [2¢].
Figure 4 illustrates the overall structure of this
architecture.
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Figure 4. EfficientNetB0 baseline model architecture.

3.3. ResNet101

The ResNetl101 architecture is a deep CNN that
facilitates the training of deep networks through the
use of residual blocks. This network includes
convolutional layers to extract low-level features
from images, residual blocks that use shortcut
connections to skip layers, and stacked blocks to
create a deep hierarchy. Subsequently, a GAP layer

is used to extract global information from the
feature map. Finally, a fully connected layer maps
the extracted features to the output classes, and a
softmax activation function is applied for accurate
prediction [25]. In Figure 5, the original
architecture of the ResNet101 deep learning model
is shown.
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Figure 5. Original architecture of ResNet101 deep learning model [26].
4. Dataset

The dataset used in this study is the wildfire
Prediction Dataset (Satellite Images), which
consists of satellite images captured from regions
in Canada that have previously experienced
wildfires. This dataset contains a total of 42,850
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images, each with a resolution of 350x350 pixels.
The images are categorized into two classes:
wildfire and nowildfire, representing areas affected
by fire and those unaffected, respectively. The
dataset is divided into three subsets: training,
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testing, and validation, which were created based
on the distribution shown in Table 1. The
distribution ensures a balanced approach to
training, evaluating, and validating the deep
learning models. The training set consists of 30,250
images (70% of the total), with 14,500 images
labeled as nowildfire and 15,750 images as
wildfire. The testing and validation sets each
contain 6,300 images (15% each), with an equal

number of wildfire and nowildfire images in both
sets. This division allows for an effective
assessment of model performance.

To provide a visual representation of the dataset,
samples of images from both the wildfire and
nowildfire categories are shown in Figure 6. These
images offer a glimpse into the types of satellite
imagery that will be processed and analyzed to
predict wildfire occurrence.

Table 1. Distribution of images across dataset subsets and classes.

Folder Wildfire Nowildfire Percentage Total Images
Train 15,750 14,500 70% 30,250
Test 3,480 2,820 15% 6,300
Validation 3,480 2,820 15% 6,300
Total 22,710 20,140 100% 42,850

Figure 6. Sample images from the dataset: the top row shows wildfire-affected forests, and the bottom row shows unaffected

5. Result and Discussion

In this section, we first introduce the performance
metrics, then examine the simulation results, and
finally present the results of the optimized models
on the datasets, comparing them with other
references.

5.1. Performance Metrics
The evaluation metrics used to assess model’s
performance include Accuracy, Precision, Recall,
and F1-Score. These metrics help determine how
effectively the model detects wildfires.

Accuracy measures the proportion of correct
predictions made by the model, calculated as
the number of correct predictions divided by
the total number of predictions.

TP+TN

TP+FP+TN +FN

1)

Accuracy =

Precision evaluates the model's accuracy in
positive  predictions. It measures the
percentage of instances correctly identified as

forests.

483

positive (e.g., fire) out of all instances the
model labeled as positive.

Precision =

TP )
+FP

Recall indicates the proportion of actual
positive instances (e.g., fire images) correctly
identified by the model.

TP
TP+FN

Recall =

®)

F1-Score is a combined metric that considers
both precision and recall. It is useful when
balancing precision and recall is crucial,
providing an overall evaluation of the model's
predictive performance.

Precision x Recall @)
Precision + Recall
In these equations, TP, FP, TN, and FN denote the

number of True Positives, False Positives, True
Negatives, and False Negatives, respectively.

Fl1=2x
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5.2. Simulation Results

The proposed method was implemented in Python
and executed on the Kaggle platform using an
NVIDIA Tesla P100 GPU with 16 GB of RAM to
accelerate training and enhance computational
efficiency. Training durations for 10 epochs were
as follows: modified EfficientNetBO — 22 minutes
and 6 seconds, modified ResNet50 — 25 minutes
and 18 seconds, and modified ResNet101 — 41
minutes and 29 seconds.

The hyperparameters used for training the models
are summarized in Table 2. All models were
trained for 10 epochs with a batch size of 32.
However, different learning rates and optimizers
were selected based on the architecture to achieve
optimal performance. For modified
EfficientNetB0O, the Adam optimizer with a
learning rate of 0.001 was used.

In contrast, modified ResNet50 and modified
ResNet101 were trained using the SGD optimizer
with a momentum of 0.9 but with different learning
rates of 0.001 and 0.01, respectively. Additionally,
the Categorical Cross-Entropy (CCE) loss function
was applied to all models to optimize classification
performance.

5.3. Model Evaluation

To assess the effectiveness of the proposed
approach, the performance of different models was
analyzed in terms of Precision, Recall, and F1-
score. The results highlight how well each model
distinguishes between wildfire and nowildfire
areas, ensuring reliable detection for real-world
applications. Table 3 presents the performance of
Modified ResNet101, Modified ResNet50, and
Modified EfficientNetBO0 in detecting wildfire and
nowildfire areas. Based on these results, Modified
ResNet101 achieved the highest Precision, Recall,
and Fl-score among the models. This model
successfully identified the wildfire class with
99.16%  precision and  99.96% recall,
demonstrating excellent performance in detecting
wildfire-related images. Additionally, for the
nowildfire class, it achieved 99.97% precision and
99.31% recall. Modified ResNet50 also performed
well, identifying the wildfire class with 98.87%
precision and 99.68% recall, while for the
nowildfire class, it obtained 99.74% precision and
99.08% recall. Modified EfficientNetBO,
compared to the other two models, showed slightly
lower performance but still maintained high
precision and recall.

This model classified the wildfire class with
98.56% precision and 99.43% recall, while for the
nowildfire class, it achieved 99.54% precision and
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98.82% recall. Overall, these results indicate that
Modified ResNet101 outperforms the other models
and can be considered the optimal choice for
wildfire detection.

Figure 7 presents the confusion matrices of the
models, illustrating their performance in
classifying wildfire and nowildfire images.
Modified ResNet101 achieves the highest accuracy
with minimal error, while Modified EfficientNetBO
has the highest error rate. These results confirm
Modified ResNetl01 as the optimal choice for
wildfire detection.

Figure 8 illustrates the accuracy and loss curves of
the three modified models—EfficientNetBO,
ResNet50, and ResNet101—during training and
evaluation. The modified EfficientNetBO model
shows a gradual improvement in both training and
test accuracy.

Although the evaluation loss curve demonstrates
noticeable fluctuations, this behavior is common in
lightweight models with limited capacity when
exposed to complex data. Nevertheless, the model
continues to learn progressively, indicating a
general upward trend in accuracy despite minor
instability.

The modified ResNet50 model achieves high
accuracy in the early epochs and maintains stable
performance throughout training. The sharp
decline in both training and test loss, followed by a
consistent plateau, suggests fast and stable
convergence, making this model a strong candidate
in terms of reliability and learning efficiency.

The modified ResNet101 model also reaches high
levels of accuracy, with relatively stable accuracy
curves. However, its loss curve exhibits some
fluctuations, which can be attributed to the model's
greater depth and capacity. Such models often
require more careful tuning and longer training
periods to stabilize, yet the overall trend confirms
effective learning.

In summary, all three models successfully reach
high  accuracy, but the  ResNet-based
architectures—particularly modified ResNet50—

demonstrate smoother and more stable
convergence behavior.
The  fluctuations observed in  modified

EfficientNetBO and modified ResNet101 are
consistent with expectations given their respective
architecture sizes and complexities.

These observations affirm that the training
processes were effective overall, and the minor
instabilities are not indicative of convergence
failure but rather model-specific learning
characteristics.
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Table 2. The hyper-parameters used for training different models in our experiments.

Model Epoch Batch Size Learning Rate Loss Function Momentum Optimizer
EfficientNetBO 10 32 0.001 CCE - Adam
ResNet50 10 32 0.001 CCE 0.9 SGD
ResNet101 10 32 0.01 CCE 0.9 SGD
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41

Predicted

nowildfire
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Figure 7. Confusion matrices of the models.
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Figure 8. Accuracy and Loss curves of the models during training and evaluation phases.

Table 4 presents the experimental results of various
models using four main metrics: Accuracy,
Precision, Recall, and F1-score, providing a
comprehensive comparison of their performance.
According to the results, the modified ResNet101
achieved the best performance among all models,
with 99.60% accuracy, 99.56% precision, 99.64%
recall, and an F1-score of 99.60%. The modified
ResNet50 ranked second with an accuracy of
99.35%, followed by the modified EfficientNetBO,
which also showed strong performance with
99.10% accuracy.

In contrast, baseline models such as VGG19,
VGG16, ResNet50, and Xception, previously used
in earlier studies, achieved accuracies in the range
of 94% to 95%, which is noticeably lower than the
modified architectures. This significant gap in
performance highlights the critical role of
architectural optimization and depth enhancement
in improving model effectiveness.

Additionally, the three models referenced in [17]—
PyroVision, 2D CNN, and MobileNetV2—also
demonstrated weaker performance compared to
our proposed models. Specifically, PyroVision
achieved 95.51% accuracy, 2D CNN 88.40%, and
MobileNetV2 only 83.57%.

These results clearly demonstrate that our modified
models not only outperform traditional baseline
models such as VGG, ResNet50, and Xception, but
also show superior accuracy compared to more
recent approaches like PyroVision and 2D CNN.
This superiority underscores the importance of
optimizing deep learning architectures to enhance
accuracy and reliability in wildfire detection.
Overall, Table 4 emphasizes the effectiveness of
structural ~ modifications and  architectural
optimizations applied to deep networks such as
ResNet and EfficientNet, showing that such
enhancements can lead to highly accurate, robust,
and reliable performance in automatic wildfire
detection system.

Table 3. Performance comparison of Modified ResNet101, ResNet50, and EfficientNetBO0 in wildfire detection.

Model Class Precision (%) Recall (%) F1-score (%)
wildfire 99.16 99.96 99.56
Modified ResNet101
e 99.97 99.31 99.64
nowildfire
e 98.87 99.68 99.28
wildfire
Modified ResNet50
nowildfire 99.74 99.08 99.14
e 98.56 99.43 98.99
wildfire
Modified EfficientNetBO o 99.54 98.82 99.18
nowildfire

6. Conclusion

This study investigated the potential of deep
learning models for identifying wildfire-affected
areas using satellite imagery. We modified and
optimized ResNet50, ResNet101, and
EfficientNetB0, all of which achieved strong
classification performance, with ResNet101
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outperforming the others. The integration of
feature  extraction with  advanced CNN
architectures, as well as the use of GAP and
Dropout layers, significantly contributed to
improved model accuracy.

Our findings confirm that deep learning techniques
are highly effective for wildfire detection and can
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support early warning systems and risk
management efforts. However, we recognize that
real-world deployment introduces additional
challenges not fully captured in our experimental
setup. As such, future research should explore the
operational implementation of these models using

real-time satellite data or imagery captured by
Unmanned Aerial Vehicles (UAVSs). Moreover,
efforts should be made to integrate multiple remote
sensing data sources and to enhance model
robustness  under dynamic and  diverse
environmental conditions.

Table 4. Comparison of the proposed method with previous methods on the same dataset.

Models/Metrics Accuracy (%) Precision (%) Recall (%) F1-score (%)
Modified EfficientNetBO 99.10 99.5 99.13 99.09
Modified ResNet50 99.35 99.31 99.38 99.34
Modified ResNet101 99.60 99.56 99.64 99.60
VGG19[12] =95 -
VGG16[12] ~94 -
ResNet50[12] =95 -
Xception[12] =94 -
PyroVision [17] 95.51 95.53 94.80 95.16
2D CNNJ[17] 88.40 99.35 76.07 86.16
MobileNetV2[17] 83.57 81.75 83.34 82.54
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