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 Accurate and efficient diagnosis of Alzheimer's Disease (AD) 

remains a significant challenge in medical research. To address the 

limitations of static models in capturing dynamic brain changes, this 

paper proposes a novel GNN-xLSTM model that integrates Graph 

Neural Networks (GNN) with an extended Long Short-Term Memory 

(xLSTM) architecture. The key innovation lies in combining GNN's 

ability to model spatial relationships in brain imaging data with 

xLSTM's enhanced sequential learning via matrix-based memory 

representation and exponential gate stabilization. In the proposed 

approach, brain images are divided into regions, each represented as 

a graph node connected in a grid structure, and feature vectors are 

extracted for each node. The proposed architecture incorporates 

Graph Convolutional Network (GCN) layers, xLSTM cells, residual 

connections, batch normalization, and dropout to jointly capture 

global, local, and temporal dependencies. Evaluated on the 

Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, the 

GNN-xLSTM model outperforms baseline models in terms of 

accuracy, precision, recall, and F1-score. For example, GNN-xLSTM 

achieves an average improvement of 10.4% in accuracy, 11.5% in 

precision, 12.4% in recall, and 20.5% in F1-score over baselines. 

These results demonstrate the model's effectiveness in identifying 

critical brain regions and improving AD classification performance. 
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1. Introduction 

AD affects the brain cells, leading to memory loss 

and cognitive decline. There are millions of people 

around the world who suffer from AD [1, 2]. 

Genetic mutations can cause Alzheimer's 

syndrome to manifest in individuals as young as 

30–50 years old. Memory loss and cognitive 

impairment are among the symptoms of AD, 

followed by communication difficulties, spatial 

difficulties, and motor difficulties. The disease is 

one of the leading causes of death among the 

elderly [3, 4]. It is not possible to cure AD with any 

intervention at all. There have been a number of 

treatments developed, however, that provide 

temporary relief from symptoms or alter the 

progression of the disease [5]. Clinical symptoms 

tend to appear 15 years after the onset of the 

pathology, making early diagnosis difficult [6, 7]. 

After a clinical diagnosis of the disease, it may be 

too late to return individuals to their pre-morbid 

state. When transitioning from Normal Cognitive 

(NC) to AD, Mild Cognitive Impairment (MCI) is 

an important factor to consider (Figure 1).  

The identification of patients with MCI who may 

progress to AD is essential for clinical practice and 

clinical trials. In order to prevent the development 

of AD and ease the progression of dementia, MCI 
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must be detected early. It facilitates the observation 

of delicate brain tissue details and minor changes 

in Alzheimer's research and clinical diagnosis 

using high-contrast, high-resolution MRI images. 

It has been proposed to use MRI scanning for the 

diagnosis of AD and MCI. 

 
Figure 1. Sample brain Magnetic Resonance Imagings 

(MRIs) of NC, MCI and AD [8]. 

Traditional methods, such as Convolutional Neural 

Networks (CNNs) and Vanilla GNNs, have shown 

promise in image analysis but exhibit notable 

limitations when applied to brain MRI 

interpretation. CNNs, while effective in capturing 

local spatial features, struggle with representing 

non-Euclidean relationships inherent in brain 

connectivity [9]. On the other hand, Vanilla GNNs, 

which excel in handling graph-structured data, 

often fail to capture long-range dependencies and 

intricate spatial-temporal patterns crucial for 

comprehensive brain analysis [10]. 

In order to overcome these limitations, there is a 

pressing need for models that can simultaneously 

capture spatial relationships and complex 

dependencies within brain MRI data. Incorporating 

advanced architectures such as xLSTM networks 

can significantly enhance the capacity to model 

temporal sequences and long-range dependencies 

[11]. While GNNs efficiently capture spatial 

relationships, integrating xLSTM allows for 

modeling complex, sequential dependencies across 

brain regions, which is particularly important for 

understanding dynamic neural interactions. 

Furthermore, matrix memory in xLSTM enhances 

feature representation by replacing scalar memory 

cells with matrices, increasing storage capacity and 

enabling richer feature learning [11]. This 

enhanced feature representation is critical for 

preserving the intricate patterns in brain MRI data, 

ensuring more accurate and nuanced analysis. By 

combining GNNs for spatial relationship modeling, 

xLSTM for capturing long-range dependencies, 

and matrix memory for enriched feature storage, a 

more holistic and effective approach to brain MRI 

analysis can be achieved.  

In this paper, we propose a brain GCN based on 

MRI image data for AD classification and 

demonstrate significant improvements over 

traditional methods. The approach consists of three 

main modules. 

Essentially, this paper contributes the following: 

 The first step is to divide images into 

regions, define nodes for each region, and 

calculate feature vectors for each region. A 

grid structure is then used to create graph 

connectivity (edge). 

 In the proposed model, multiple 

computational units are integrated: GCN 

layers, xLSTM cells, residual connections, 

batch normalization, and dropout. These 

units work together to capture global, 

local, and topological features of the 

nodes, while the xLSTM cells focus on 

modeling sequential dependencies. This 

integration enhances the model’s ability to 

identify important regions in the graph for 

more accurate predictions. 

The following parts of the paper are structured as 

follows: Section 2 discusses some basic concepts. 

Section 3 provides an overview of related 

researches. Section 4 explains in more detail how 

to use a GNN integrated with xLSTM cells. In 

section 5, the evaluation results are presented and 

discussed. Future research directions are described 

in section 6. 

 

2. Background 

2.1. CNN 

In CNNs, also called ConvNets, convolutional 

kernels extract image features. The CNN can learn 

highly abstract features and identify objects 

efficiently. It consists of five layers: input layer, 

convolutional layer, pooling layer, fully connected 

layer, and output layer. Figure 2 illustrates the basic 

process. As a result of CNN's convolution 

algorithm, a kernel is overlaid onto an image grid 

and slid across it to extract local pixels. In this 

process, a dot product between the filter and image 

grid elements is applied, creating a matrix called a 

feature map or convolved feature. Increasing 

network depth transforms local pixel details into 

broader abstract concepts. The result of 

convolution and pooling layers is a vector that is 

then used for tasks such as classification, 

segmentation, and feature localization [12]. 

 
Figure 2. CNN structure [13]. 

2.2. GNN 

GNNs apply convolutional operations to graph-

based, non-Euclidean data in a manner similar to 
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traditional CNNs [12]. GNNs are ideal for non-

Euclidean data, such as brain networks, because 

they are efficient models for graph-structured data 

[14]. Unlike traditional neural networks, GNNs are 

better at capturing relationships and dependencies 

within graphs. Consequently, they generate 

expressive node representations by propagating 

messages and aggregating edges and nodes [15]. 

 

2.3. GCNs 

GCNs were developed after CNNs achieved 

significant success, redefining convolution on 

graphs [16]. By generalizing convolution 

operations to graph-structured data, GCNs 

aggregate and transform information from a node's 

neighbors to capture local and global graph 

properties. This allows for the processing of non-

Euclidean data, as seen in social network analysis, 

neuroscience, and computer vision applications 

involving meshes. The GCN module [2] captures 

contextual relationships between pixels. By 

representing image block features as a graph, the 

GCN module extracts image block features [17]. 

Figure 3 shows the architecture of a GCN. Stacking 

layers and updating node representations multiple 

times enables the gradual capture of higher-order 

structural information. 

 

 
Figure 3. GCN structure diagram. 

 

2.4. xLSTM 

The xLSTM network [11] is an advanced variant of 

the traditional LSTM architecture designed to 

enhance the modeling of complex temporal and 

sequential data. While traditional LSTMs 

effectively capture long-range dependencies by 

mitigating the vanishing gradient problem, the 

xLSTM introduces additional mechanisms to 

improve feature representation, training stability, 

and computational efficiency. A key feature is its 

matrix-based memory representation, which allows 

the model to store and process multi-dimensional 

dependencies, leading to a better capture of 

complex patterns in sequential data. This richer 

representation is particularly useful in applications 

like brain MRI analysis, where both spatial and 

temporal relationships must be encoded 

effectively. Another important innovation is the 

use of exponential gate stabilization, which helps 

regulate information flow through memory cells. 

This mechanism improves training stability, 

prevents overfitting, and ensures robust 

performance even when handling noisy or high-

dimensional data. Additionally, xLSTM provides 

enhanced feature extraction by combining matrix-

based memory with advanced gating mechanisms, 

allowing the model to capture more informative 

features. This capability is advantageous for tasks 

requiring the modeling of both spatial and temporal 

dynamics. Furthermore, improved training 

efficiency is achieved through architectural 

modifications that lead to faster convergence and 

more stable gradients. This makes xLSTM more 

computationally efficient than traditional recurrent 

architectures, especially when working with large-

scale datasets. 

 

3. Related Works 

3.1. Deep learning in the diagnosis of brain 

disorder 

Human brain connectome abnormalities have been 

explored using deep learning algorithms [18,19]. 

CNNs and deep neural networks (DNNs) are the 

most commonly used deep learning architectures 

for AD classification. Although DNNs perform 

well in many applications, they often suffer from 

high computational complexity and overfitting on 

limited data. To accurately diagnose AD, DNNs 

must be used with reduced input data dimensions 

and decreased computation times. Benyoussef et al. 

[20] analyzed principal components to extract 

features and combined DNNs and K-nearest 

neighbors (KNN) to classify AD stages. The 

proposed model utilized KNN to distinguish 

between easy-to-diagnose and hard-to-diagnose 

subjects. The DNN contained two hidden layers 

with 100 nodes each. Experimentally, the proposed 

model classified AD into different stages. 

However, their approach is limited by its static 

feature selection and lacks spatial-temporal 

modeling. The proposed method addresses this by 

learning dynamic node features and their temporal 

dependencies through the integration GNNs and 

xLSTM. 

Park et al. [21] proposed a prospective 

classification framework to predict AD conversion 

from MCI using baseline MRI scans. The method 

generated future MRI representations by 

simulating brain atrophy progression, aiming to 

amplify structural differences between converters 

and non-converters. MRI data from the ADNI 

dataset were used for training and evaluation, 

achieving an accuracy of 88.1% for AD conversion 

prediction. Compared to conventional classifiers 
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trained on only baseline images, the proposed 

model achieved higher accuracy and better 

separation of MCI subgroups. The framework also 

identified discriminative brain regions associated 

with AD progression, enhancing both predictive 

performance and interpretability. Although 

effective, it depends heavily on accurate simulation 

models and cannot generalize well across datasets. 

Here, a graph-based approach is used instead, 

which captures topological changes in real MRI 

segmentations, improving generalizability. 

Ho et al. [22] proposed BiPro, a bidirectional 

recurrent neural network model with an integrative 

imputation module for predicting AD progression. 

The model processes longitudinal data in both 

forward and backward directions to capture 

comprehensive temporal dynamics. BiPro 

introduces a progression module to compute 

biomarker progression scores and employs a multi-

task learning approach to jointly handle missing 

value imputation, future biomarker forecasting, 

and clinical status prediction. Using data from the 

TADPOLE challenge cohort, BiPro achieved a 

mean area under the curve (AUC) of 78% for 

clinical status classification and mean absolute 

errors of 3.5 ml and 6.9 ml for MRI biomarker 

forecasting and imputation, respectively. The 

proposed model captures both spatial structure (via 

GNN) and temporal dynamics (via xLSTM) in an 

integrated fashion. 

Table 1. A comparison of related works. 

References Year Model Results Advantage Disadvantage 

Benyoussef 

et al. [20] 
2019 

KNN and a DNN 

combined model 
An accuracy of 86.6% 

Balancing simplicity and 

complexity. 

Suboptimal performance due 

to KNN’s reliance on distance 

metrics. 

Park et al. 

[21] 
2023 

Prospective Classification 

Framework 

Accuracy of 88.1% for 

AD conversion prediction 

Simulates future progression to 
enhance discriminative power; 

highlights disease-relevant 

regions 

Relies on accurate simulation 
of brain atrophy 

Ho et al. 

[22] 
2022 

BiPro (Forward-to-

Backward Bi-Directional 

Network with Integrative 
Imputation) 

mAUC of 78% for clinical 

status, MAE of 3.5 ml 

(forecasting), and 6.9 ml 
(imputation) 

Captures bidirectional temporal 

dynamics; jointly performs 

imputation, forecasting, and 
classification 

Requires extensive 

longitudinal data; complex 

architecture may limit 
interpretability 

Liu et al. 

[23] 
2023  MCENN 

an accuracy of 88.7% for 

AD/MCI/NC 

classification 

Combines 2D-slice efficiency 

with 3D structural awareness; 

robust and requires minimal 

preprocessing 

May increase computational 

load due to ensemble sampling 

Kam et al. 
[24] 

2019 sdMB-CNN 

The accuracy of 76.07%, 

sensitivity of 76.27% and 

specificity of 75.87% 

Integrates static and dynamic 

functional networks for early 

MCI detection. 

Requires pre-processed 

functional data. 

Chang et 
al. [25] 

2023 

Using CNN for T1-

weighted voxel-based 

quantification 

An accuracy of 90.45%, 

precision of 86%, recall of 

86%, and F1-score of 85% 

Discriminates between multiple 

conditions (e.g., TLE, AD, and 

controls). 

May not capture subtle 

differences within each 

condition. 

Yu et al. 
[26] 

2024 
LSTM-Fuzzy Logic 
hybrid model 

Forecast accuracy >90%, 

improved robustness 

under noise 

Combines temporal modeling 

with uncertainty handling via 

fuzzy logic 

Needs careful fuzzy rule 

design and may not generalize 

across all domains 

Ebrahimi 
Mood et al. 

[27] 

2025 
Evolutionary RNN using 

EO 

An accuracy of 87.20%, 

precision of 86.20%, 

recall of 86%, and F1-
score of 86.10% 

Evolutionary optimization 

improves convergence and 

temporal learning in constrained 
systems 

Focused on resource 

management; not directly 

tailored for clinical 
applications 

Dong [28] 2025 GNN-PSO hybrid model An accuracy of 92.5% 

PSO fine-tunes GNN parameters, 

boosting generalization and 
convergence 

Application-specific design; 

extension to neuroimaging 
requires customization 

Guo et al. 

[31] 
2019 

graph-based CNN 

architecture (PETNet) 

An accuracy of 77% for 

3-classes images 

Uses hierarchical GCNs, 

enhancing classification accuracy. 

Dependence on PET imaging, 

which is expensive and less 
accessible. 

Song et al. 

[32] 
2019 

a multi-class GCN 

classifier 
Average accuracy of 89% 

This method demonstrated the 

capability of GCN over SVM for 
AD classification. 

Simplistic graph 

representations may overlook 
complex interactions. 

Yao et al. 

[33] 
2021 

a mutual multi-scale 

triplet GCN (MMTGCN) 

The accuracy of NC vs. 

MCI was 86.6% and the 
AUC was 90.3% 

Introduces a multi-scale triplet 

GCN, enhancing feature 
granularity. 

Computationally intensive due 

to multi-scale processing. 
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Liu et al. [23] proposed a Monte Carlo Ensemble 

Neural Network (MCENN) for the diagnosis of AD 

using 2D-slice MRI data. The model integrates 

Monte Carlo sampling with ResNet50 to generate 

a large number of classification decisions, 

effectively capturing 3D anatomical information 

across multiple slices. MRI scans from the ADNI, 

Open Access Series of Imaging Studies (OASIS)-

3, and a clinical dataset were utilized for training 

and evaluation. MCENN achieved an accuracy of 

88.7% for AD/MCI/NC classification with random 

feature sampling set to 32. In contrast, here the 

entire image is displayed as a graph, and regional 

relationships are preserved across the entire brain. 

According to Kam et al. [24], CNN frameworks 

based on whole-brain connectivity can help 

diagnose MCI. Resting-state functional MRI (RS-

fMRI) can be used to provide better personalized 

diagnoses for neurological diseases using this 

framework. Dynamic connectivity provides a 

comprehensive picture of brain activity in addition 

to static networks. The proposed graph 

representation naturally handles non-Euclidean 

structures and encodes both dynamic and structural 

connectivity. 

According to Chang et al. [25], the distinction 

between AD and Temporal Lobe Epilepsy (TLE) 

was made using MRI T1-weighted scans and a 

CNN model. The CNN areas differentiated by 

illness type were identified using feature 

visualization. The CNN correctly identified TLE 

with a high degree of accuracy. Furthermore, the 

model outperformed random permutation 

classifications in terms of age effects. However, 

CNNs are limited by their inability to model 

relational brain topology. In the proposed method, 

this problem is overcome by constructing brain 

graphs that better reflect connectivity and function. 

To address complexity and generalization 

challenges, soft computing techniques have been 

increasingly incorporated into deep learning 

frameworks in neuroscience and adjacent domains. 

For instance, Yu et al. [26] proposed an LSTM-

Fuzzy Logic system for fault forecasting in 

propulsion systems. In this approach, LSTM 

captures temporal trends while fuzzy logic handles 

uncertainty, resulting in robust predictions under 

noisy conditions. Such hybrid logic-driven models 

can enhance diagnosis robustness in clinical 

applications as well. 

In a related development, Ebrahimi Mood et al. 

[27] introduced an evolutionary Recurrent Neural 

Network (RNN) optimized using the Equilibrium 

Optimization (EO) algorithm for cloud-edge 

resource allocation in IoT environments. The 

evolutionary optimizer enhances convergence and 

adaptability in dynamic resource-constrained 

systems. This suggests potential applications in 

adaptive and efficient training of temporal models 

for biomedical scenarios. 

Additionally, Dong [28] proposed a GNN-Particle 

Swarm Optimization (PSO) hybrid framework for 

classifying and integrating complex educational 

data. In their method, PSO is employed to tune the 

parameters of a GNN, achieving better 

classification and clustering accuracy. This 

integration shows the promise of metaheuristic 

techniques in enhancing graph-based learning and 

can be extended to brain connectivity classification 

tasks as in the proposed approach. 

Inspired by these recent advances, our proposed 

GNN-xLSTM method combines spatio-temporal 

modeling with neural architecture simplification to 

achieve better generalizability, accuracy, and 

computational efficiency. 

 

3.2. GCN for brain connectivity analysis 

GCN embedding [29] is a system for combining 

structural data with node features proposed by 

several researchers. The connections within the 

brain represent information interactions and can be 

seen as graph architectures in the brain. Graph 

learning is better described by network topology. 

Recent studies have shown that GCN is more 

efficient than other methods in learning 

representations [30]. 

Guo et al. [31] used GCN to classify AD into two 

and three classes using positron emission 

tomography images. To validate and evaluate PET 

images from the ADNI 2, PETNet was used. The 

model was trained with pretrained weights using 

ResNet-50. Compared to other machine learning 

models, PETNet was more effective and 

computationally efficient at analyzing medical 

images and detecting Alzheimer's early on. Support 

vector machines (SVM) and ResNet architectures 

performed similarly for two classification classes 

(MCI/NC). Compared to ResNet and SVM, the 

proposed GCN achieved 65% and 57% in 

classifying three classes (EMCI/LMCI/NC). 

Song et al. [32] classified AD into four categories 

based on a GCN model. The proposed network 

consisted of eleven layers: nine convolutional 

layers and two fully connected (FC) layers. Each 

layer exploits the Rectified Linear Unit (ReLU) 

activation. Class probabilities are computed using 

Softmax as the final layer. The proposed scheme 

was tested using the ADNI dataset. The original 

dataset contained 12 images per class. As a result 

of the small data volume, various data 

augmentations were applied. The previous dataset 

had 12 images per class, now there are 132. GCN 
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is capable of classifying AD better than SVM 

(which relies on predefined input features). The 

average accuracy of GCN is 89%, while SVM is 

about 65%. 

According to Yao et al. [33], MMTGCN is a 

mutual multiscale triplet GCN suitable for 

detecting brain disorders using fMRI and diffusion 

tensor imaging (DTI). The first step was to 

generate three sets of functional and structural 

connectivity networks using three different brain 

segmentation templates. Also, Triplet GCN 

modules (TGCN) are proposed as a method for 

learning relationships between GCNs. 

Comparatively, NC is 86.6% accurate and its AUC 

is 90.3%. However, KNN is used to ignore global 

connectivity. Although effective, the model is 

complex and computationally intensive. In the 

proposed method, the model is simplified using 

xLSTM-enhanced GNN blocks that balance 

complexity and accuracy. Table 1 compares the 

methods described above. 

 

4. Proposed Method 

4.1. Overview 

This section presents a method for predicting AD 

using a combination of a GNN and xLSTM cells. 

This method consists of three main components: 

graph construction, GNN-xLSTM processing, and 

classification. Firstly, brain MRI images are 

transformed into graph representations by 

extracting feature vectors from individual brain 

regions and constructing graph connectivity. 

Secondly, each brain graph is processed through 

multiple GNN-xLSTM blocks, which capture both 

spatial relationships using GCN layers and 

complex dependencies using xLSTM cells. Finally, 

the model applies global pooling and classification 

layers to generate predictions. Figure 4 illustrates 

the architecture of the GNN-xLSTM framework. 

 

4.2. Graph Construction 

To effectively process brain MRI images using the 

GNN-xLSTM model, each MRI scan is 

transformed into a graph structure. This 

transformation captures both the spatial 

relationships between different brain regions and 

the feature information of each region. The graph 

representation involves three main steps: 

superpixel segmentation, node feature extraction, 

and edge construction. 

 

4.2.1. Superpixel Segmentation 

The first step in constructing the graph is to divide 

the brain MRI image into smaller, meaningful 

regions using superpixel segmentation. This 

method partitions the image into coherent regions 

that preserve local features and anatomical 

structures. Each superpixel is treated as a node in 

the graph. The Simple Linear Iterative Clustering 

(SLIC) algorithm is commonly used for superpixel 

segmentation, which adaptively groups pixels 

based on spatial and intensity proximity. It 

minimizes a combined distance measure to cluster 

pixels: 

D d m dc s    (1) 

where D  is the combined distance measure, cd

represents the color (intensity) distance between pixels i

and j , sd  represents the spatial distance between pixels, 

m  is a compactness factor controlling the trade-off 

between spatial and intensity proximity. Each superpixel 

represents a localized region of the brain, preserving 

spatial structure while reducing the dimensionality of the 

input image. 

 

4.2.2. Node Feature Extraction 

Each node in the graph corresponds to a superpixel 

region and is characterized by a feature vector that 

encapsulates both intensity-based and shape-based 

information. The intensity-based features of each 

superpixel include the mean and standard deviation 

of voxel intensities within the region, which 

provide a general understanding of the intensity 

distribution. Additionally, histogram-based texture 

features such as skewness are computed to capture 

fine-grained variations in intensity. For shape-

based features, the superpixel's area and perimeter 

are calculated to describe the size and boundary 

complexity of the region. Compactness and 

eccentricity are used to capture the geometric form 

of the superpixel, providing insights into its shape 

and elongation. These node features provide a 

comprehensive representation of both the 

appearance and structural properties of each brain 

region. 

 

4.2.3. Edge Construction Process 

The edge construction process is designed to 

capture spatial relationships between adjacent 

superpixels in the brain MRI image. For each pixel 

at position ( , )r c  within the image dimensions, the 

algorithm iterates through all its neighboring pixels 

( , )r c  . If the neighboring pixel belongs to a 

different superpixel (i.e., the segment labels of ( , )r c  

and ( , )r c   are not equal), an edge is created 

between the corresponding superpixels. This 

ensures that only adjacent superpixels are 

connected, preserving the local spatial structure of 

the MRI image. Formally, for any two adjacent 

pixels ( , )r c  and ( , )r c  , an edge is added if: 
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( , ) ( , ),

( , )i j

if segments r c segments r c

then v v E

 


 

(2) 

where iv  and jv  represent the superpixels 

corresponding to ( , )r c  and ( , )r c   respectively, and 

E  is the set of graph edges. This approach 

accurately models the spatial adjacency between 

superpixels, ensuring that the resulting graph 

reflects the anatomical layout of the brain MRI. By 

connecting neighboring regions, the graph captures 

local dependencies and facilitates effective 

message passing during the GNN-xLSTM model's 

learning process.

Figure 4. The architecture of GNN-xLSTM.

4.3. The Proposed GNN-xLSTM Architecture 

The GNN-xLSTM model integrates GCN and an 

xLSTM cell to effectively capture spatial and 

sequential dependencies in brain MRI data. This 

hybrid architecture allows for comprehensive 

modeling of both local anatomical relationships 

and long-term contextual information. 

 

4.3.1. GCN Component 

The GCN in the GNN-xLSTM architecture is 

responsible for extracting spatial relationships 

between brain regions. Each brain MRI image is 

represented as a graph ( , )G V E , where V  

represents the set of superpixels (nodes), and E  

represents the edges connecting adjacent regions. 

The GCN processes the node features N FX  , 

where N  is the number of nodes and F  is the 

feature dimension. 

Each GCN layer aggregates information from 

neighboring nodes using the following rule: 
( 1) ( ) ( )ˆ( )l l lH AH W   

(3) 

where ( )lH is the node feature matrix at layer l , 
( )lW is the weight matrix for layer l ,   is the 

activation function and Â  is the normalized 

adjacency matrix [34]. By stacking multiple GCN 

layers, the model captures multi-hop spatial 

dependencies, allowing the extraction of local 

anatomical relationships from the brain's structural 

information. 

 

4.3.2. xLSTM 

The xLSTM cell enhances the traditional LSTM by 

incorporating exponential gating mechanisms and 

a matrix-based memory cell, which improves the 

model's ability to capture complex spatial and 

temporal relationships while ensuring numerical 

stability during training. Unlike the traditional 

LSTM that uses sigmoid activation for the input 

and forget gates, the xLSTM applies an exponential 

function to these gates. Specifically, given the 

input tx  and the previous hidden state 1th  , the 

input gate 
ti  and forget gate 

tf  are computed 

using the following equations [11]: 

1exp( )T

t i t i t ii W x r h b    (4) 

1exp( )T

t f t f t ff W x r h b    (5) 

Here, 
iW  and 

fW  represent learnable weight 

matrices, and   is a small constant ensuring 

numerical stability. This exponential gating 

mechanism allows the model to dynamically 

reweight information and increases its sensitivity to 

small variations in the input, enhancing fine-

grained temporal modeling. 

A distinctive feature of the xLSTM is the use of a 

matrix memory cell d d

tC   instead of a scalar 

memory. This matrix structure allows the model to 

capture higher-order interactions and maintain 

richer contextual information across multiple 

dimensions. The memory cell is updated by 

combining the input and forget gates [11]: 

1 1tanh( )T

t t t t z t z t zC f C i W x r h b      (6) 

This formulation enables the model to store spatial 

dependencies more effectively and track the long-
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term evolution of patterns within brain MRI data. 

To prevent numerical instability caused by large 

exponential values, the xLSTM normalizes the 

input and forget gates by their combined sum. This 

stabilization mechanism ensures that the gate 

activations remain bounded between 0 and 1, 

preventing issues such as exploding gradients and 

improving overall training stability. 

Additionally, the xLSTM integrates a query-key-

value mechanism to dynamically access and update 

the matrix memory. At each time step, the query 

vector tq , key vector tk , and value vector tv  are 

generated from the current input and the previous 

hidden state. The interaction between the query, 

key, and value vectors allows the xLSTM to 

selectively retrieve and update information from 

the matrix memory.  

By combining exponential gating and matrix-based 

memory, the xLSTM effectively captures complex 

spatial and temporal dependencies, making it 

particularly suited for modeling brain dynamics in 

MRI data. Algorithm 1 shows the proposed model.  
 

Algorithm 1 The Proposed Model 

Input: Brain MRI images, Graph parameters (n_segments, compactness) 

Output: Classification predictions (e.g., AD or NC) 

1: function ConstructGraph(image) 

2:     segments ← SLIC (image, n_segments, compactness) 

3:     nodes ← {ExtractFeatures(region) for each region in segments} 

4:    edges ← {(segments [ , ]r c , segments [ , ]r c  ) for adjacent pixels ( , )r c  and ( , )r c   if segments [ , ]r c  ≠ segments 

[ , ]r c  } 

5:     return Graph (nodes, edges) 

6: end function 

 

7: function xLSTMCell( x , hidden_state) 

8:     h , c  ← hidden_state if hidden_state else (0, 0) 

9:     combined ← concat( x , h ) 

10:    gates ← exp (
iW  · combined), exp (

fW  · combined) 

11:    
ti , 

tf  ← gates / (sum(gates) +  ) 

12:    nextc  ← 
tf  * c  + 

ti  * tanh (
cW  · combined) 

13:    nexth  ← sigmoid (
oW  · combined) * tanh( nextc ) 

14:    return nexth , ( nexth , nextc ) 

15: end function 

 

16: function GNNxLSTMBlock( x , edge_index, hidden_state) 

17:     outgnn  ← GCNConv( x , edge_index) 

18:     nexth , new_hidden ← xLSTMCell( outgnn , hidden_state) 

19:     return Dropout (ReLU(BatchNorm( nexth  + Residual( x )))), new_hidden 

20: end function 

 

21: function GNN-xLSTM(brain_mri_images) 

22:     graphs ← {ConstructGraph(image) for image in brain_mri_images} 

23:     hidden_states ← [null] * len(graphs) 

24:     for graph in graphs 

25:         x  ← BatchNorm(graph.node_features) 

26:         for i in range(num_blocks) 

27:             x , hidden_states[ i ] ← GNNxLSTMBlock( x , graph.edges, hidden_states[ i ]) 

28:         pooled ← GlobalMeanPool( x , graph.batch) 

29:         logits ← Linear_2(Dropout (ReLU(Linear_1(pooled)))) 

30:         predictions ← Softmax(logits) 

31:         Update model parameters using loss (predictions, true labels) 

32:     return trained_model 

33: end function 

 

34: function Classify (image, trained_model) 

35:     return trained_model(ConstructGraph(image)) 

36: end function
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5. Experiments 

5.1. Data preprocessing 

All data analyzed in this study were obtained from 

the ADNI repository (adni.loni.usc.edu). The 

dataset comprises a total of 14,966 T1-weighted 

structural MRI samples, including 7,536 AD, 922 

MCI, and 7,430 NC cases. This distribution 

presents a class imbalance, particularly due to the 

relatively low number of MCI samples. To mitigate 

this, the proposed method employs random under 

sampling of the majority classes (AD and NC) to 

balance the dataset prior to training. 

Initially, these original images underwent 

augmentation, involving steps like random 

rotations, flips, and noise addition. Upon obtaining 

the preprocessed MRI images, they were divided 

into regions, thereby delineating each image into 

16 patches. Classification performance is then 

evaluated across the classification task (AD vs. 

MCI vs. NC). 

 

5.2. Experimental setup 

The proposed approach was implemented using 

PyTorch and PyTorch Geometric frameworks, and 

training was conducted using a single NVIDIA 

RTX 4080 GPU (13 GB RAM). The Adaptive 

Moment Estimation with Weight Decay (AdamW) 

optimizer [35] was used for network optimization, 

with a learning rate and weight decay set to 1e-4 

and 1e-3, respectively. A dropout rate of 0.5 was 

applied to the hidden layers in all models. The 

maximum number of epochs was set to 50. The use 

of ReLU activation functions ensured non-linearity 

and improved the model's capacity to capture 

complex relationships within the graph structure. 

The negative log-likelihood loss function was used 

to compute the loss between predicted and true 

labels. Max-pooling layers were also applied to 

reduce spatial dimensions and computational 

complexity. The final layer was a fully connected 

output layer for classification. Various 

performance metrics, including accuracy, F1-

score, precision, and recall, were considered to 

evaluate classification performance. 

 

5.3. Comparison experiment 

The performance of the proposed GNN-xLSTM 

model was evaluated against three baseline models: 

Vanilla GNN [36], CNN [37], and BiPro [22]. The 

models were evaluated on a brain MRI 

classification task, and the aforementioned 

performance metrics were considered to determine 

the effectiveness of each model. The results are 

summarized below. 

From Table 2, it is evident that the proposed 

method shows superior performance. 

Table 2. Classification results of different models on the 

AD vs. NC vs. MCI. 

Metric 
Vanilla 

GNN [36] 

CNN 

[37] 

BiPro 

[22] 
GNN-xLSTM 

Accuracy 0.5400 0.8000 0.8110 0.8200 

F1 Score 0.5300 0.7900 0.8080 0.8100 

Precision 0.5500 0.7800 0.7900 0.8000 

Recall 0.5400 0.8000 0.8000 0.8200 

Execution time (s) 210 445 475 821 
 

In the AD vs. NC vs. MCI classification task, the 

proposed GNN-xLSTM model achieves the 

highest accuracy of 0.8200, outperforming BiPro 

(0.8110), CNN (0.8000), and significantly 

surpassing the Vanilla GNN baseline (0.5400). 

This demonstrates the effectiveness of combining 

graph-based spatial modeling with xLSTM’s 

ability to capture long-range dependencies in brain 

MRI data. Additionally, we further demonstrated 

the performance of our method for the three-

classification task by generating a confusion 

matrix, as illustrated in Figure 5. A comparative 

analysis across the four models highlights the 

superiority of the proposed approach in 

distinguishing between AD, NC, and MCI. The 

Vanilla GNN model shows moderate classification 

capability, with 65% accuracy for AD, but 

struggles with MCI, achieving only 45%. 

Misclassifications between NC and MCI are 

particularly evident, indicating a limited capacity 

for temporal modeling. The CNN model performs 

better for MCI (80%) but misclassifies NC and AD 

more frequently, likely due to the absence of 

explicit graph or temporal modeling, which is 

crucial for subtle transitions between classes. The 

BiPro model improves upon both previous 

baselines, reaching 80% for AD and 81% for NC, 

but its performance on MCI (80%) is slightly less 

consistent, with minor confusion between classes. 

This demonstrates the benefits of temporal 

modeling and imputation used in BiPro, but also 

suggests room for improvement in integrating 

spatial and sequential information. In contrast, the 

proposed GNN-xLSTM achieves the best balance 

across all three categories. It classifies AD with 

82% accuracy, NC with 83%, and MCI with 82%, 

demonstrating a notable reduction in off-diagonal 

errors. These results affirm the effectiveness of 

combining GNN for spatial feature learning with 

xLSTM for enhanced temporal dependency 

modeling. The GNN-xLSTM model not only 

outperforms in raw accuracy but also shows a more 

consistent and reliable classification behavior 

across the three classes, reflecting its robustness 

and applicability for real-world diagnostic support 

in Alzheimer’s progression analysis. 
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From an execution time perspective, where we 

measured the time to complete one epoch, the 

proposed GNN-xLSTM model achieves the best 

overall classification performance, at the expense 

of a longer runtime. As Table 2 shows, GNN-

xLSTM attains an accuracy of 82.0% (vs. 80.0% 

for CNN and 54.0% for Vanilla GNN), an F1-score 

of 0.810 (vs. 0.790 and 0.530), and the highest 

recall of 0.820, thanks to its ability to jointly 

exploit neighborhood structure in the brain network 

and forward-and backward-looking patient 

trajectories. This richer representational backbone 

comes at a computational cost—GNN-xLSTM 

requires 821 s of execution time, less than double 

that of BiPro (475 s) and less than twice that of the 

CNN (445 s)—but the trade-off is justified by its 

superior predictive power in distinguishing AD, 

MCI, and NC. 

To provide a more intuitive representation of the 

classification accuracy in various comparative 

experiments, we employed a box plot of accuracy 

distribution over 4 runs, depicted in Figure 6, to 

directly showcase the differences in their 

performance. As shown, the GNN-xLSTM model 

consistently outperforms the other approaches, 

achieving the highest mean accuracy of 0.8219, 

with a narrow distribution range, indicating both 

superior performance and high stability across 

multiple runs. The BiPro model follows with a 

mean accuracy of 0.8110, showing strong but 

slightly less consistent performance. Though 

effective in capturing temporal patterns, BiPro 

lacks the enhanced sequential modeling offered by 

the xLSTM component in the proposed 

architecture. The CNN model shows a mean 

accuracy of 0.8006, performing relatively well due 

to its deep learning structure, but limited by its 

inability to explicitly capture spatial graph 

structures or model temporal dependencies. 

Notably, CNN's performance exhibits greater 

variance and outliers, which suggests susceptibility 

to data fluctuations. 

In contrast, the Vanilla GNN achieves the lowest 

mean accuracy of 0.5349, with a wider interquartile 

range and noticeable outliers, reflecting both poor 

generalization and unstable performance. This 

result highlights the inadequacy of static GNNs in 

handling longitudinal AD data without temporal 

modeling mechanisms.

 
Figure 5. Confusion matrix of different models for AD vs. NC vs. MCI classifications. 

 

 
 Figure 6. box plot of accuracy distributions of different models. 

 

Figure 7 presents both the overall and per-class F1-

score comparisons among Vanilla GNN, CNN, 

BiPro, and GNN-xLSTM models. The overall F1-

score results indicate that GNN-xLSTM achieves 
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the highest score of 0.8230, outperforming BiPro 

(0.8080), CNN (0.7900), and significantly 

surpassing Vanilla GNN (0.5300). The per-class 

F1-score comparison further highlights the 

superiority of GNN-xLSTM across all three 

classes. For AD classification, CNN, BiPro, and 

GNN-xLSTM all achieve strong F1-scores of 0.82, 

0.81, and 0.82, respectively, whereas Vanilla GNN 

lags behind at 0.52. In the NC class, GNN-xLSTM 

again attains the highest F1-score of 0.83, narrowly 

outperforming BiPro (0.81), CNN (0.76), and 

considerably surpassing Vanilla GNN (0.55). 

Similarly, for MCI classification, GNN-xLSTM 

leads with an F1-score of 0.82, followed by BiPro 

(0.80), CNN (0.78), and Vanilla GNN (0.52). 

These results clearly demonstrate that the proposed 

GNN-xLSTM model provides more robust and 

consistent classification performance across all 

diagnostic categories. This improvement can be 

attributed to its hybrid architecture, which 

effectively combines the spatial learning 

capabilities of GCN layers with the temporal 

modeling strength of xLSTM cells. The GCN 

layers capture complex topological and relational 

features between brain regions, while the xLSTM 

units enable the model to learn temporal 

dependencies across imaging sequences or spatial 

transitions, improving context-awareness. 

Moreover, the incorporation of matrix-based 

memory representation and stabilized exponential 

gates in xLSTM enhances training stability and 

information retention. Together, these architectural 

innovations allow GNN-xLSTM to identify subtle 

and distributed patterns in neuroimaging data, 

thereby improving its ability to discriminate 

between closely related cognitive conditions like 

MCI, NC, and AD. 

To further demonstrate the convergence of the 

proposed GNN-xLSTM model, error rates from 

different models were recorded at each epoch, with 

corresponding curves depicted in Figure 8. The 

results show that GNN-xLSTM achieves a 22.5% 

lower final error rate (0.1380) compared to BiPro 

(0.1780), 35.2% lower than CNN (0.2130), and a 

remarkable 72.7% reduction versus Vanilla GNN 

(0.5063). Beyond these substantial improvements 

in final performance, GNN-xLSTM converges 

approximately 30% faster than BiPro and nearly 

twice as fast as CNN, reaching stability within the 

first 15 epochs. The model's steep initial error 

decline (60% drop in the first 5 epochs versus 

BiPro's 40%) indicates its rapid learning capability, 

while Vanilla GNN maintains a high residual error 

throughout training, never achieving better than 

50% of GNN-xLSTM's convergence quality. 

These quantitative advantages stem from GNN-

xLSTM's matrix memory and stabilized 

exponential gates, which enable both faster and 

more precise learning dynamics compared to 

conventional architectures. 

 
 Figure 7. Overall and per-class F1-score comparison across different models. 
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6. Conclusion 

This study proposed a hybrid GNN-xLSTM model 

to enhance AD classification by integrating graph-

based spatial feature modeling (via GCN layers) 

with temporal dependency learning (via xLSTM 

cells). The xLSTM component introduces matrix-

based memory representation and exponential gate 

stabilization, resulting in richer feature 

representations and improved training stability 

compared to traditional models. 

Experimental results on the publicly available 

ADNI dataset confirm that the proposed GNN-

xLSTM model outperforms baseline models across 

all performance metrics. Specifically, GNN-

xLSTM achieves an average accuracy of 82.19%, 

representing a 28.70% improvement over Vanilla 

GNN (53.49%), a 1.89% improvement over CNN 

(80.06%), and a 1.09% improvement over BiPro 

(81.10%). Furthermore, it obtains the highest 

overall F1-score of 0.8230, exceeding both BiPro 

(0.8080) and CNN (0.7900), and significantly 

outperforming Vanilla GNN (0.5300). 

Per-class F1-score analysis further demonstrates 

that GNN-xLSTM delivers consistently high 

performance across all diagnostic categories, 

including AD, NC, and MCI. These results validate 

the effectiveness of combining spatial and temporal 

modeling, particularly the ability of xLSTM cells 

to capture sequential transitions and subtle spatial 

dependencies in neuroimaging data. This makes 

GNN-xLSTM a promising and interpretable tool 

for MRI-based neurological analysis. 

Future work will aim to extend the dataset, 

optimize the model's computational complexity, 

and explore more advanced memory architectures 

to further enhance performance and generalization 

capabilities across diverse clinical scenarios.

 
 Figure 8. The convergence curve of different models over 150 iterations. 
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هفته اسخخ.. در ن ییدروازه نما .یو تثب سیبر ماتر یحافظه مبتن شینما قیاز طر افتهیتوسخخعه مدتکوتاه -لندمدتبحافظه  افتهیبهبود یمتوال یریادگی

و  شوندیداده م شیساختار شبکه نما کیگره گراف متصخ  در  کیکه هر کدام به عنوان  شخوندیم میتقسخ یمغز به مناطق ریتصخاو ،یشخنهادیپ کردیرو

 مدتکوتاه -لندمدتبحافظه  یهاگراف، سخخلول یچشخخیشخخبکه پ یهاهیشخخام  لا یشخخنهادیپ ی. معمارشخخوندیهر گره اسخخت رام م یبرا یژگیو یبردارها

که بر پیشنهادی  اس.. مدل یو زمان یمحل ،یجهان یهایثب. مشترک وابستگ یبرا dropoutو  یادسخته یسخازنرمال مانده،ی، اتصخالات باقافتهیتوسخعه

 هیپا یهااز مدل F1 ازیو امت یادآوریشده اس.، از نظر دق.، صح.،  یابیارز( ADNI) مریآلزا یماریب یعصب یربرداریطرح تصخو یهامجموعه داده یرو

 F1 ازامتی در ٪4402و  یادآوری در ٪4401 ،صخخح. در ٪4402 دق.، در ٪4401بهبود  متوسخخطبه طور  GNN-xLSTMمثال،  ی. براکندیبهتر عم  م

نشان  مربیماری آلزای یبندمغز و بهبود عملکرد طبقه یاتیمناطق ح ییمدل را در شناسا یاثرب شخ ج،ینتا نی. اآوردیرا به دسخ. م هیپا رینسخب. به مقاد

 .دهدیم

، حافظه یپیچش، شبکه عصبی گراف یچشخیشخبکه پ، گراف های اتصخالات مغزی، تصخویربرداری تشخدید مغناطیسخی، مریآلزا یماریب :کلمات کلیدی
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