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 Liver disorders are among the most common diseases worldwide, and 

their timely diagnosis and prediction can significantly improve 

treatment outcomes. In recent years, the application of artificial 

intelligence, particularly machine learning and deep learning 

algorithms, has gained tremendous importance in the medical field, 

leading to reduced healthcare costs. This study utilized the ILPD 

dataset from the UCI Machine Learning Repository, which comprises 

583 liver patient records with 11 features. A predictive framework 

based on a Multilayer Perceptron (MLP) was employed to predict 

liver disorders. To address class imbalance in the binary classification 

dataset, the Synthetic Minority Oversampling Technique (SMOTE)–

Tomek approach was implemented to improve data balance. Robust 

scaling was applied to manage the presence of outlier values. Finally, 

the proposed method’s performance was compared with three well-

known machine learning algorithms. Five-fold cross-validation was 

employed across all classifiers to enhance evaluation robustness. All 

simulations were conducted using Python. The results indicate that 

the proposed method achieves superior performance, with an 

accuracy of 90.90%, surpassing state-of-the-art approaches. 
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1. Introduction 

Recent advancements in artificial intelligence (AI) 

have enabled researchers to leverage techniques 

such as machine learning (ML) and deep learning 

(DL) to enhance disease diagnosis, ultimately 

improving treatment strategies and preventive care 

[1-3]. This approach has not only reduced 

healthcare costs but has also significantly 

contributed to improving the quality of medical 

services, expediting disease diagnosis, and 

facilitating more informed clinical decision-

making [4, 5]. 

Liver disease is one of the most dangerous and fatal 

diseases, according to the World Health 

Organization (WHO) [6]. Liver diseases can 

develop due to various factors, including viral 

infections such as hepatitis, which cause liver 

inflammation, as well as obesity, excessive alcohol 

consumption, medication overuse, and inherited 

genetic risks [7, 8]. Liver disorders, including fatty 

liver disease, fibrosis, cirrhosis, and hepatitis, may 

disrupt normal physiological functions and, in 

severe cases, can lead to patient mortality [9]. 

Early detection of liver disease symptoms is 

particularly challenging because the liver continues 

to function normally until significant damage has 

occurred [10]. Therefore, timely diagnosis is 

crucial for preventing complications, controlling 

disease progression, and reducing healthcare costs 

[11]. In recent years, AI algorithms have gained 

considerable attention as powerful tools for disease 

diagnosis and prediction [3, 12-14]. Recent studies 

indicate that classification models in ML and DL 

can significantly assist physicians and healthcare 

professionals in early diagnosis and the timely 

administration of appropriate treatments [15, 16]. 

Section 2 reviews related work. Section 3 presents 

the dataset related to liver disorders and the 

proposed methodology. Section 4 evaluates the 
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proposed method and analyzes the results in 

comparison with three well-known machine 

learning algorithms. Finally, the conclusion 

summarizes the findings and presents the final 

conclusions.  

 

2. Related Works  

In recent years, a substantial number of scholars 

have focused on employing artificial intelligence 

algorithms to predict, diagnose, and classify 

patients with liver disease. 

The authors of [17] worked with the Indian Liver 

Patient Dataset (ILPD) to classify liver patients by 

leveraging integrated projection-based statistical 

feature extraction with machine learning (ML) 

algorithms. They employed Support Vector 

Machine (SVM), Random Forest (RF), Multilayer 

Perceptron (MLP), Logistic Regression (LR), K-

Nearest Neighbor (KNN), and the ensemble voting 

classifier. They achieved the highest accuracy of 

88.10% using the Random Forest (RF) classifier. 

The authors of [18] proposed an enhanced 

preprocessing framework incorporating data 

balancing, feature scaling, and selection to improve 

testing accuracy in liver disease prediction using 

the ILPD dataset. The study evaluated ensemble 

methods including XGB, Bagging, RF, ET, GB, 

and Stacking and reported the highest accuracy of 

86.06% for RF, underscoring the approach's 

efficacy. The authors of [19] examined supervised 

machine learning models for liver disease risk 

prediction. Employing SMOTE with 10-fold cross-

validation, they evaluated and compared various 

methods. Their results revealed that the Voting 

classifier achieved the highest testing accuracy of 

80.1%, underscoring its potential for effective early 

detection of liver disease. 

The authors of [20] developed an early detection 

model for liver disorders from imbalanced Liver 

Function Test datasets. They combined the ILPD 

dataset from UCI and a primary dataset from 

Madhya Pradesh, India. Utilizing SVM and KNN 

algorithms with SMOTE for data balancing, they 

reported improved accuracy, specificity, and 

precision, demonstrating the system's potential to 

aid healthcare practitioners in early diagnosis. In 

[21], researchers analyzed registry data from 

Denmark spanning 1996–2014 to uncover 

comorbidities associated with alcoholic liver 

disease. They applied ML models, including SVM, 

RF, LightGBM, and Naive Bayes, achieving an 

AUC of 0.89 for detecting alcoholic liver cirrhosis. 

Their findings highlight the potential of high-

dimensional statistical techniques in predicting 

disease progression. In [22], the authors proposed 

an intelligent model for early liver disease 

detection using machine learning techniques. Their 

system achieved an accuracy of 88.4% and a miss-

rate of 11.6% by evaluating various ML 

algorithms. This study demonstrates the efficacy of 

automated diagnosis in reducing diagnostic costs 

and expediting treatment initiation. 

The authors of [23] studied ensemble methods for 

early liver disease prediction by employing 

approaches such as AdaBoost (AB), LogitBoost, 

BeggRep, BeggJ48, and Random Forest. They 

analyzed clinical attributes including total 

bilirubin, direct bilirubin, age, sex, total protein, 

albumin, and globulin ratio. Their study 

demonstrated that LogitBoost achieved the highest 

testing accuracy of 71.53%, highlighting its 

comparative efficacy. The authors of [24] proposed 

a novel classifier by extending the XGBoost model 

with a genetic algorithm for predicting liver disease 

in Indian patients. They evaluated various 

classification models while incorporating feature 

selection and eliminating outliers using an isolation 

forest. Their experimental results revealed that the 

Random Forest classifier delivered the highest 

accuracy of 88.00%, underscoring its superior 

performance. The authors of [25] conducted a 

comparative study of machine learning and deep 

learning techniques for liver disease prediction 

using the ILPD dataset. They implemented models 

including MLP, SGD, RBM with logistic 

regression, SVM, and Random Forest. Their 

findings indicated that the deep learning-based 

MLP model achieved the highest accuracy of 

72.00%, offering valuable insights into the efficacy 

of different predictive methods. 

The authors of [26] analyzed liver function tests to 

predict liver disease using classifiers such as SVM, 

KNN, Hard Voting Classifier (HVC), and MLP. 

They evaluated models based on accuracy, 

precision, recall, specificity, and F-score. Their 

findings showed that HVC achieved the highest 

accuracy of 78.62%, making it the most effective 

model for diagnosing liver disease using patient 

data. The study in [27] focused on chronic liver 

disease prediction using machine learning models, 

including RF, Logistic Regression, DT, SVM, and 

KNN. The highest accuracy of 72.00% was 

achieved using the Random Forest classifier. 

Additionally, SHAP kernels were used to enhance 

model interpretability, improving trust in 

predictions and aiding in disease diagnosis. The 

authors of [28] developed the StackLD framework, 

a stacking-ensemble model for liver disease 

detection. They applied XGB, LGBM, DT, KNN, 

and RF on the ILPD dataset, which was balanced 

using SMOTE. The stacking approach 

outperformed other models, achieving an accuracy 
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of 86.22%. Their study highlighted the significance 

of Alkphos, SGOT, and SGPT in diagnosing liver 

disease. 

The authors of [29] examined the performance of 

various classification algorithms, including 

Bagging, IBK, J48, JRip, MLP, and Naive Bayes, 

on multiple medical datasets from the UCI 

repository. Their study compared these methods 

across datasets such as Breast Cancer, Chronic 

Kidney Disease, Hepatitis, and ILPD, providing 

valuable insights into the relative testing accuracy 

of each classifier.  The authors of [30] proposed a 

novel approach for predicting liver disease by 

enhancing classification performance and severity 

estimation using machine learning algorithms 

combined with GridSearchCV. Their method was 

evaluated on both the ILPD and HCV datasets. For 

the ILPD dataset, the Extra Tree classifier achieved 

a testing accuracy of 80%. 

Table 1 presents a comprehensive comparison 

between state-of-the-art methods and the proposed 

technique on the ILPD dataset. 

Based on the literature review, a significant 

research gap persists in effectively addressing class 

imbalance and outlier management within liver 

disorder prediction datasets while leveraging deep 

learning architectures to enhance prediction 

accuracy. This study introduces an innovative 

technique that employs an MLP-based deep neural 

network, incorporating the Synthetic Minority 

Oversampling Technique (SMOTE)-Tomek 

approach, a combination not previously explored 

on the ILPD. The SMOTE-Tomek approach 

strategically balances datasets by synthesizing 

minority-class instances while eliminating 

ambiguous boundary cases through Tomek Links, 

thereby mitigating noise-induced bias and 

enhancing the model's reliability and accuracy. 

This technique enhances data balance, reduces 

overfitting risks, and achieves superior 

performance metrics compared to existing state-of-

the-art methods, particularly in medical fields like 

liver disease diagnosis. 

 

3. Materials and Methods  

3.1. ILPD Data 

This research leverages the Indian Liver Patient 

Dataset (ILPD), accessible through the UC Irvine 

Machine Learning Repository, to advance the 

understanding of liver disease diagnostics. This 

dataset has been extensively utilized in 

contemporary studies aimed at enhancing the 

diagnosis and prediction of liver disorders [16, 17, 

19]. The ILPD dataset comprises 11 features, with 

10 attributes reflecting clinical symptoms and one 

attribute designated as the diagnostic outcome, 

serving as the target variable. Comprising 583 

records, the dataset includes 416 instances of liver 

disorder patients and 167 instances of healthy (non-

liver disorder) individuals. The target variable 

effectively delineates the presence or absence of 

liver dysfunction based on the sample’s feature set. 

A comprehensive overview of the ILPD dataset’s 

feature specifications is systematically presented in 

Table 2 [31]. 

 

3.2. Data Pre-processing  

Data pre-processing represents the initial phase in 

developing any model based on data mining 

techniques. The statistical information of the ILPD 

dataset is presented in Table 3. 

To enhance data quality, which ultimately 

improves the performance of the proposed AI 

methods, pre-processing was executed in four 

distinct stages as outlined below: 

 

3.2.1. Missing Value Analysis 

Missing values are common in real-world datasets 

and can adversely affect data analysis and the 

performance of machine learning (ML) models. To 

address this issue, various methods are available, 

such as deleting incomplete records, imputing with 

mean or median values, and employing advanced 

algorithms like KNN imputation [32]. Given the 

presence of missing values in the albumin to 

globulin (A/G) ratio feature of the ILPD dataset, 

the KNN imputation method with five neighbors (k 

equals five) was employed. This approach 

leverages the similarities among samples to 

estimate and replace missing values, thereby 

enhancing data quality and improving model 

performance. 

 

3.2.2. Data Normalization 

Model inputs are characterized by varying scales, 

which can hinder convergence, prolong training 

time, and increase the frequency of weight updates. 

Therefore, normalization is crucial to harmonize 

the data and prevent bias from features with 

excessively large values. 

While z-score and min–max methods have been 

widely used in previous studies [20, 21], the robust 

scaling method was used due to the significant 

presence of outliers in the ILPD dataset. This 

approach relies on the median and quartiles instead 

of the mean to reduce the impact of outliers. It 

scales the data according to the interquartile range 

(IQR), defined as the difference between the 25th 

and 75th percentiles [33, 34]. The robust scaling 

equation is mathematically expressed as follows: 

𝑥𝑟𝑜𝑏𝑢𝑠𝑡 =
𝑥 − 𝑄1

𝑄3 − 𝑄1

 (1) 
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Table 1. Comparison of the state-of-the-art methods and the proposed technique on the ILPD. 
Accuracy (%) G-mean SMOTE-Tomek Robust  Classifier Year Reference No. 

88.10    RF, SVM, KNN, MLP, LR, Ensemble 2023 [17] 1 

86.06    XGB, Bagging, RF, ET, GB, Stacking ensemble 2023 [18]  2 

80.10    Voting classifier 2023 [19] 3 

89.00* 
   SVM, RF, LGBM and NB 2020 [21] 4 

88.00    
RF, DT, KNN, LR, MLP, GB, XGB, AB, and 

LGBM 
2020 [24] 5 

72.00    MLP, RBM, SVM, SGD, and RF 2022 [25] 6 

78.62    HVC, SVM, MLP, KNN 2023 [26] 7 

72.00    RF, KNN, DT, and SVM 2024 [27] 8 

86.22    XGB, LGBM, DT, KNN, RF, KNN 2024 [28] 9 

80.00    ET, SVC, DT, GB, KNN, MLP, and BC 2023 [30] 10 

90.90    MLP, RF, SVC, ET, and KNN The proposed technique 

Cross () sign indicates ‘no’, Tick () sign indicates ‘yes’ 

* AUC was used instead of accuracy. 

Table 2. The ILPD data description. 
Range Type Description Feature No. 

4-90 Numeric Patient age Age 1 

0/1 Nominal Patients gender (Male or Female) Gender 2 

0.4-75 Numeric Total Bilirubin TB 3 

0.1-19.7 Numeric Direct bilirubin DB 4 

10-2000 Numeric Alanine Aminotransferase Sgpt 5 

10-4929 Numeric Aspartate Aminotransferase Sgot 6 

63-2110 Numeric Alkaline phosphatase Alkphos 7 

0.9-5.5 Numeric Albumin ALB 8 

2.7-9.6 Numeric Total Protein TP 9 

0.3-2.8 Numeric Albumin and globulin ratio A/G 10 

1/2 Nominal Selector which classifies the liver disorder Selector Field 11 

Table 3. The ILPD data statistics. 
75% 50% 25% Stdv Mean Feature 

58.00 45.00 33.00 16.18 44.74 Age 

2.60 1.00 0.80 6.20 3.29 TB 

1.30 0.30 0.20 2.80 1.48 DB 

60.50 35.00 23.00 182.62 80.71 Sgpt 

87.00 42.00 25.00 288.91 109.91 Sgot 

298.00 208.00 175.50 242.93 290.57 Alkphos 

3.80 3.10 2.60 0.79 3.14 ALB 

7.20 6.60 5.80 1.08 6.48 TP 

1.10 0.93 0.70 0.31 0.94 A/G 

 

3.2.3. Data Balancing  

The ILPD dataset exhibits a class imbalance, with 

a significantly higher number of samples diagnosed 

with liver disorder compared to healthy samples (a 

ratio of 2.491). This imbalance can negatively 

impact the performance of classification models. 

To mitigate this challenge, several techniques, 

including SMOTE, ROS, RUS, and Adasyn, have 

been applied to medical datasets [1, 3]. Previous 

research on liver diseases [19, 20, and 35] has 

commonly utilized the SMOTE method to balance 

the ILPD dataset. However, the SMOTE-Tomek 

method is employed in [36] for data balancing. The 

primary distinction between SMOTE-Tomek and 

SMOTE lies in the former’s dual approach: it not 

only oversamples the minority class using SMOTE 

but also leverages the Tomek Links algorithm to 

eliminate majority class samples situated near 

decision boundaries. This process enhances the 

quality of the balanced dataset and minimizes class 
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overlap. According to [36], SMOTE-Tomek 

outperforms other methods, particularly in highly 

imbalanced medical datasets, owing to its capacity 

to reduce noise and improve class separability. This 

advantage has also been validated in achieving 

more precise predictions in medicine. Detailed 

information about the original ILPD dataset and its 

post-balancing state is provided in Table 4. 

Additionally, Figure 1 illustrates this data using a 

bar plot for improved visual comparison. 

Table 4.  Original and balanced ILPD. 
Sum Majority Minority 

ILPD  
 No. Sample (%) No. Sample (%) 

583 416               50 % 167              28.65 % Original  

806 403               50 % 403              71.35 % Balanced  

 

 
Figure 1. Distribution of the ILPD before and after 

applying the SMOTE-Tomek. 

3.2.4. Splitting ILPD  

In this subsection, random sampling was employed 

to allocate 80% of the data for training and 20% for 

testing the classifiers. For preprocessing the ILPD, 

prominent Python libraries such as Pandas, 

NumPy, Seaborn, Matplotlib, and Scikit-learn were 

utilized. Furthermore, to balance the ILPD, the 

SMOTE-Tomek method from the imbalanced-

learn package was applied.  

 

3.3. Proposed Hybrid AI Methods 

This research proposes a hybrid AI method that 

synergistically combines advanced data pre-

processing techniques with established machine 

learning (ML) and deep learning (DL) algorithms 

to improve classification performance on datasets 

characterized by class imbalance and outliers. 

Specifically, we employ the SMOTE-Tomek 

method to address class imbalance by 

simultaneously oversampling the minority class 

and under-sampling the majority class, thus 

creating a more balanced dataset. Additionally, 

Robust Scaling, which leverages the median and 

interquartile range to normalize features, is utilized 

to mitigate the adverse effects of outliers. These 

pre-processing techniques are applied to four AI 

classifiers as stated below. 

 

3.3.1. Robust SVM (RSVM) 

The Support Vector Machine (SVM), a robust 

classification technique widely acknowledged for 

its ability to delineate class boundaries through an 

optimal hyperplane [3], forms the foundation of the 

Robust SVM (RSVM). Traditional SVMs, 

however, are susceptible to distortions caused by 

outliers and imbalanced datasets, which can 

compromise their effectiveness. To overcome these 

limitations, RSVM integrates Robust scaling, 

normalizing features based on their median and 

interquartile range to diminish the influence of 

extreme values. Furthermore, the SMOTE-Tomek 

technique is incorporated to balance the ILPD. This 

dual pre-processing approach strengthens RSVM’s 

capacity to construct a reliable decision boundary, 

thereby improving its generalization across diverse 

and challenging datasets. 
 

3.3.2. Robust Extra Tree (RET)  

The Extra Tree classifier, also known as Extremely 

Randomized Trees, is an ensemble technique that 

constructs multiple decision trees by employing 

randomized feature splits and utilizing the entire 

dataset for each tree, offering computational 

efficiency and potential performance gains [29]. To 

augment its resilience, the Robust Extra Tree 

(RET) incorporates Robust scaling, which 

normalizes feature values to minimize the 

disruptive impact of outliers on split decisions. 

Additionally, SMOTE-Tomek is applied to ensure 

a balanced class distribution, preventing the 

ensemble from disproportionately favoring the 

majority class. By synthesizing these pre-

processing steps with the inherent strengths of the 

Extra Tree framework, RET achieves enhanced 

classification accuracy, particularly for minority 

class instances, making it well-suited for datasets 

with anomalies. 

 
3.3.3. Robust KNN (RKNN)  

The K-Nearest Neighbors (KNN) algorithm, a 

straightforward instance-based learning method 

that assigns class labels based on the majority vote 

of an instance’s nearest neighbors [3], is adapted 

into the Robust KNN (RKNN) to address its 

sensitivity to feature scaling and class imbalance. 

In RKNN, Robust scaling is employed to 

standardize feature values, ensuring that distance 

computations remain consistent and reliable even 

in the presence of outliers. Concurrently, the 

SMOTE-Tomek technique balances the dataset, 
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enriching the neighbourhood of each instance to 

reflect both classes equitably. This pre-processing 

enhances RKNN’s ability to accurately classify 

minority class samples, thereby overcoming the 

limitations of traditional KNN and improving its 

performance on complex datasets. 
 

3.3.4. Robust MLP-based Deep Neural Network 

(RMLP) 

The Multilayer Perceptron (MLP), a deep neural 

network architecture capable of capturing intricate 

patterns through multiple interconnected layers of 

neurons [3], serves as the basis for the Robust 

MLP-based Deep Neural Network (RMLP). While 

MLP excels in modeling complex relationships, its 

performance can be hindered by imbalanced 

datasets and outliers. To address these challenges, 

RMLP employs Robust scaling to normalize input 

features, reducing the impact of extreme values on 

the network’s learning dynamics. Additionally, 

SMOTE-Tomek is utilized to equilibrate the 

training data, enabling the network to learn 

effectively from both majority and minority 

classes. This hybrid approach enhances RMLP’s 

robustness and predictive accuracy, particularly for 

underrepresented samples, making it a powerful 

tool for classification tasks in the presence of data 

anomalies. 

In this study, TensorFlow and Keras were 

employed to implement the Robust Multilayer 

Perceptron (RMLP) model, integrating dropout and 

L2 regularization techniques to enhance 

performance. Dropout functions by randomly 

deactivating a subset of neurons during training, 

which helps prevent overfitting by reducing inter-

neuron dependencies. This method confirms that 

the model does not rely too heavily on specific 

neurons, promoting better generalization to unseen 

data [37]. L2 regularization, commonly referred to 

as weight decay, incorporates a penalty term into 

the loss function that is proportional to the sum of 

the squared values of the model's weights. This 

technique encourages the model to maintain 

smaller weight values, thereby simplifying the 

model and reducing the risk of overfitting. By 

mitigating the presence of excessively large 

weights, L2 regularization enhances the model's 

capacity to generalize effectively to unseen data. 

The combined application of dropout and L2 

regularization in the RMLP model significantly 

improved its predictive accuracy, demonstrating 

the effectiveness of these regularization methods in 

refining deep learning models for complex data 

scenarios [37]. 

 

 

3.4. Evaluation Metrics 

This subsection presents the metrics employed to 

evaluate the performance of the algorithms 

proposed in Subsection 3.3. The evaluation criteria 

utilized in this study to assess the classifiers’ 

performance encompass widely recognized 

metrics, including accuracy, precision, confusion 

matrix, recall, F1-score, and the area under the 

curve (AUC), as referenced in [38, 39, 40]. 

Additionally, given the imbalanced nature of the 

ILPD dataset, the G-mean metric has been 

incorporated alongside these conventional 

measures to provide a more comprehensive 

assessment of the classifiers’ effectiveness. 

The G-mean (Geometric Mean) serves as a critical 

evaluation metric for assessing classifier 

performance on imbalanced datasets, particularly 

within the domain of medical diagnostics. Defined 

as the square root of the product of sensitivity and 

specificity, G-mean offers a balanced indicator of a 

model’s capability to accurately classify instances 

from both the minority and majority classes. This 

metric proves especially valuable in scenarios 

where misclassification of minority class instances, 

such as patients with a disease, carries significant 

consequences, offering a more reliable alternative 

to traditional accuracy [41]. Table 5 illustrates the 

confusion matrix. 

Table 5.  Confusion Matrix for Binary Classification 

  Actual Class 

Actual 

Positive 

Actual 

Negative 

P
re

d
ic

te
d

 C
la

ss
 Classified 

Positive 
TP FP 

Classified 

Negative 
FN TN 

 

In binary classification, the terms TP, TN, FP, and FN 

are defined as follows: 

 True Positive (TP): The number of instances 

correctly identified as positive. 

 True Negative (TN): The number of instances 

correctly identified as negative. 

 False Positive (FP): The number of instances 

incorrectly identified as positive. 

 False Negative (FN): The number of instances 

incorrectly identified as negative. 
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The formulas corresponding to the aforementioned 

metrics are provided below: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

(2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(4) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

(5) 

𝐺𝑚𝑒𝑎𝑛 = √𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 × 𝑅𝑒𝑐𝑎𝑙𝑙 (6) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
× 100 

(7) 

 

4. Results and Discussions 

During the pre-processing stage of the ILPD 

dataset, missing value handling and outlier 

management were initially applied.  Subsequently, 

data normalization was performed using the Robust 

Scaling method, which is well-suited for datasets 

with outliers and commonly applied in medical 

applications. Considering the imbalanced nature of 

the ILPD dataset, the SMOTE-Tomek technique 

was employed for data balancing, increasing the 

number of samples from 583 to 806.  The dataset 

was then split into training and testing sets in an 

80:20 ratio, comprising 644 training samples and 

162 testing samples, respectively. The hybrid AI 

classifiers introduced in Section 3.3 were 

subsequently applied to the dataset. 

Hyperparameter tuning is a key element in the 

development of AI algorithms. The following 

details the tuning process for the proposed AI 

classifiers: 

RSVM Classifier: The kernel type was identified as 

a pivotal hyperparameter. Its effect on accuracy 

was assessed by varying the kernel (Linear, 

Polynomial, Sigmoid, and radial basis function 

(rbf) kernel) while maintaining other 

hyperparameters at default values. The effect on 

accuracy is illustrated in Table 6 and Figure 2, from 

which the optimal kernel yielding the highest 

accuracy was determined to be the rbf kernel. 

Table 6. Hyperparameter of the RML Classifiers. 

Accuracy  
Hyperparameter Classifier 

Optimal Kernel Type 
RSVM 

74.54 % rbf Linear, poly, rbf, sigmoid 

83.24 % 28 
Max_depth 

RET 
Range: [2-50] 

k-value  

 

 

Figure 2. Effect of Kernel Type on Accuracy for the 

RSVM Classifier. 

RET Classifier: For the RET classifier, maximum 

depth is a significant hyperparameter. By holding 

other hyperparameters constant, only the impact of 

variations in maximum depth on accuracy was 

evaluated and is illustrated in Table 6 and Figure 3. 

The optimal maximum depth was determined to be 

28. 

 
Figure 3. Effect of Maximum Depth on Accuracy for 

the RET Classifier. 
 

RKNN Classifier: In the RKNN classifier, the value 

of k is an essential hyperparameter. With other 

parameters fixed, the effect of changing k on 

accuracy was examined and is shown in Table 6 

and Figure 4, leading to the determination of the 

optimal k value, which was found to be 3. 
 

 
Figure 4. Effect of the k Value on Accuracy for the RKNN 

Classifier. 

RMLP Classifier: For the proposed hybrid 

classifier RMLP, hyperparameter values along 

with changes in the optimizer were evaluated based 
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on accuracy and the loss function, using the binary 

cross-entropy loss function as the criterion. Figures 

5 and 6 display the curves of accuracy and loss 

concerning different optimizers (Adam, SGD, 

RMSprop, Adadelta, Nadam, and Ftrl), from which 

Adam was identified as the optimal optimizer in 

both accuracy and loss curves. The 

hyperparameters of the proposed RMLP-based 

neural networks are presented in Table 7. 

Table 7. Hyperparameters of the RMLP Classifier. 
Value Hyperparameter 

3 Number of Hidden Layers 

0.008 Learning rate 

ReLU Activation Function (Hidden Layers) 

Sigmoid Activation Function (Output Layer) 

RMSprop Optimizer 

0.1 Dropout 

Binary cross-entropy Loss Function 

300 Epochs 

32 Batch Size 

 

Figure 5. Accuracy Curve of the RMLP Classifier Across 

Different Optimizers. 

 

Figure 6. Loss Curve of the RMLP Classifier Across 

Different Optimizers. 

The 𝑅𝑒𝑙𝑈 activation function, used within the 

RMLP classifier, is defined as: 
𝑅𝑒𝑙𝑈(𝑥) = max (0, 𝑥) (8) 

where, 𝑥 is the input. If 𝑥 is greater than 0, so 

𝑅𝑒𝑙𝑈(𝑥) equals 𝑥 and otherwise, it equals zero. 

The binary cross-entropy loss function is 

formulated as: 

𝐿𝑜𝑠𝑠 = −
1

𝑁
∑[𝑦𝑖 log(𝑦𝑖̂) + (1 − 𝑦𝑖)log (1 − 𝑦𝑖̂)

𝑁

𝑖=1

] (9) 

where, 𝑦𝑖  is the true label for the 𝑖-th sample, and     

𝑦𝑖̂ is the predicted probability of the positive class 

for the 𝑖-th sample. Also, 𝑁 is the total number of 

samples in the dataset. 

The output layer of the RMLP classifier employs 

the sigmoid activation function, expressed as: 

𝜎(𝑥) =
1

1 + 𝑒−𝑥
 (10) 

here,  𝑥 is the input to the function, and 𝜎(𝑥) is the 

output of the sigmoid function.  

Table 8 compares the accuracy, precision, recall, 

and F1-score metrics for the four proposed hybrid 

AI classifiers. A comprehensive comparison is 

illustrated in the bar plot presented in Figure 7.  

Table 8. Comparative Performance Metrics for the 

Proposed AI Classifiers. 
Evaluation Metrics Proposed 

Classifier F1-score Recall Precision Accuracy 

78.03 % 90.06 % 68.93 % 74.54 % RSVM 

84.41 % 90.69 % 79.03 % 83.24 % RET 

81.54 % 91.61 % 73.66 % 79.20 % RKNN 

91.38 % 95.34 % 88.07% 90.90% RMLP 

 

 
Figure 7. Comparing Accuracy, Precision, Recall, 

and F1-score Across the Proposed Hybrid Classifiers. 

 

Furthermore, Table 9 presents additional 

evaluation metrics, including AUC, G-mean, p-

value as a statistical significance indicator, and 

training time, providing a more comprehensive 

performance comparison across classifiers. 

In addition, a t-test was conducted on the accuracy 

scores obtained through 5-fold cross-validation to 

statistically validate the classification results. The 
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resulting p-values, reported in Table 9, indicate that 

the proposed classifiers perform significantly 

better than the defined significance threshold 

(𝛼 = 0.05). These analyses further strengthen the 

robustness of the findings and underscore the 

meaningful differences among the compared 

models. 

Table 9. Comparison of AUC, G-mean, p-value, and 

training time for the proposed classifiers. 
Proposed Classifier 

Criteria 
RMLP RKNN RET RSVM 

96.78 85.33 92.79 81.50 AUC (%) 

90.65 78.00 82.83 72.71 G-mean (%) 

0.00003 0.00002 0.00002 0.00016 P-value 

16.5265 0.0029 0.6191 0.2576 Training Time 

 

The corresponding linear curves for these metrics 

across the classifiers are shown in Figure 8. 

 

Figure 8. Comparing AUC and G-mean Metrics for the 

Proposed Hybrid Classifiers. 

Furthermore, the performance metrics of accuracy, 

precision, recall, and F1-score for each classifier 

are individually plotted in Figures 9, 10, 11, and 12, 

respectively, for enhanced visualization. 

 
Figure 9. Performance Metrics of the RSVM Classifier. 

 

 

Figure 10. Performance Metrics of the RET Classifier. 

 

Figure 11. Performance Metrics of the RKNN Classifier. 

 

Figure 12. Performance Metrics of the RMLP Classifier. 

The relative importance of the input features was 

evaluated using the ANOVA F-test, as illustrated 

in Figure 13. The analysis reveals that features such 

as DB, TB, SGPT, and SGOT exhibit the highest 

F-scores (135.46, 128.48, 122.66, and 118.37, 

respectively), indicating a strong statistical 

relationship with the target variable. These features 

are therefore considered to play a more significant 

role in classifying liver disorder status. Mid-ranked 

features such as Alkphos (86.09), A/G Ratio 

(27.17), ALB (17.21), and Age (11.67) also 

contribute to the classification task to varying 

degrees. In contrast, features such as Gender (1.12) 

and TP (0.22) demonstrated the lowest F-scores. 

An increased F-score reflects a greater dependency 

of the features on the target variable. 
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Figure 13. Feature importance based on ANOVA F-test 

scores. 

To further evaluate the performance of the 

proposed hybrid classifiers, confusion matrices are 

presented in Figures 14, 15, 16, and 17 for the 

RSVM, RET, RKNN, and RMLP methods, 

respectively. 

 

Figure 14. Confusion Matrix of the RSVM. 

 

Figure 15. Confusion Matrix of the RET. 

 

 

Figure 16. Confusion Matrix of the RKNN. 

 

Figure 17. Confusion Matrix of the RMLP. 

The RMLP-based model demonstrated superior 

performance across all evaluation metrics, 

including accuracy, precision, recall, F1-score, 

AUC, and G-mean, when compared to the baseline 

classifiers. Specifically, the RMLP model yielded 

an accuracy of 90.90 %, precision of 88.08 %, 

recall of 95.34 %, F1-score of 91.38 %, AUC of 

96.78 %, and G-mean of 90.65%, indicating its 

robust classification capability. The model’s 

behavior is further illustrated in Figures 18 and 19, 

which show the accuracy and loss curves across 

epochs and confirm its stable convergence on the 

ILPD dataset. 

 
Figure 18. Accuracy Curve of the RMLP Classifier Over 

Epochs. 
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Figure 19.  Loss Curve of the RMLP Classifier Over 

Epochs. 

Although the results of this study are promising, 

two important limitations should be noted. First, 

the number of samples in the ILPD dataset is 

limited. While techniques such as SMOTE–Tomek 

balancing, dropout regularization, and cross-

validation have been applied to reduce the risk of 

overfitting, it is expected that using larger datasets, 

especially in deep learning applications, would 

further improve model performance. Second, since 

the proposed model was evaluated solely on the 

ILPD dataset, using real-world clinical data in 

future studies could provide a valuable opportunity 

to enhance the generalizability of the results. 

 

5. Conclusion 

This research introduces an innovative hybrid 

framework for liver disorder prediction, combining 

a multilayer perceptron (MLP)-based deep neural 

network with advanced preprocessing techniques. 

Employing the SMOTE-Tomek method to mitigate 

class imbalance and robust scaling to handle 

outliers, the proposed Robust MLP (RMLP) 

classifier was assessed using the Indian Liver 

Patient Dataset (ILPD). A five-fold cross-

validation strategy was employed to ensure robust 

evaluation, enhancing the reliability and 

generalizability of the results.  

The model achieved superior performance, 

attaining an accuracy of 90.90%, precision of 

88.07%, recall of 95.34%, F1-score of 91.38%, 

AUC of 96.78%, and G-mean of 90.65%, 

outperforming existing state-of-the-art methods. 

Statistical analysis further confirmed the 

significance of these results, with a p-value < 0.05, 

underscoring the model’s robustness and 

reliability. These findings emphasize the potential 

of combining deep learning models with robust 

preprocessing techniques as an effective method to 

address prevalent challenges in medical datasets, 

particularly class imbalance and outlier sensitivity. 

The RMLP model’s ability to provide consistent 

and precise predictions positions it as a promising 

tool for clinical decision-making, enabling early 

and accurate detection of liver conditions to 

enhance patient outcomes. Future research could 

explore more advanced deep learning architectures 

and apply metaheuristic optimization techniques 

for hyperparameter tuning to further enhance 

classification performance. 
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 SMOTE-Tomekروش  با استفاده از (MLP) هیبر پرسپترون چندلا یمبتن قیعم یشبکه عصبیک 

 یمقاوم اختلالات کبد ینیبشیپ یبرا

 

  *الهه مرادی

 ن.رایتهران، ا ،یدانشگاه آزاد اسلام ،ی)ره( شهررینیامام خم ادگاریواحد ، برق گروه مهندسی

 44/40/0402 پذیرش؛ 41/40/0402 بازنگری؛ 41/41/0402 ارسال

 چکیده:

ا بهبود درماه ر جینتا یتواهطور قابلبه تواندیها مآه موقعبه ینیبشیو پ صیدر ساراسار اهاه هنتند و ت   هایماریب نیترعیاز شاا یاختلالات کبد

و  کرده دایپ یدر حوزه پزشک یادیز تیاهم ق،یعم یریادگیو  نیماشا یریادگی یهاتمیالگور ژهیوبه ،یکاربرد هوش مصانوع ر،یاخ یهاب  اد  در ساال

استفاده کرده که  UCI نیماش یریادگیمواود در م زه  ILPDداده مطالعه از مجموعه نیشده است  ا یبهداشت یهامراقبت یهانهیمنجر به کاهش هز

 یاختلالات کبد ینیبشیپ یبرا (MLP) هیبر شبکه پرسپتروه چندلا یمبتن ینیبشیچارچوب پ کیاست   یژگیو 44با  یکبد ماریپرونده ب 285شاامل 

ها استفاده شد  بهبود تعادل داده یبرا SMOTE–Tomekاز روش  ،ییدودو یبندداده طبقهها در مجموعهرفع عدم تعادل کلاس یبه کار گرفته شاد  برا

شد   نهیقام نیماش یریادگیمعروف  تمیبا سه الگور ی نهادیعملکرد روش پ ت،یپرت به کار گرفته شاد  در نها ریمقاد تیریمد یمقاوم برا یبنداسیمق

انجام  توهیبا استفاده از پا هایساازهیشاب یشاد  تمامبندها به کار گرفته طبقهدر تمامی  Five-fold cross-validationارزیابی،  اساتککامبرای افزایش 

   است  پی ی گرفتهمواود   رفتهیپ هایروش از ،٪۰4.۰4داشته و با دقت  یعملکرد برتر ی نهادیکه روش پ دهدین اه م جینتاشد  

  کبدی، یادگیری ماشین بیماری ،هاتعادل داده، SMOTE-Tomek، هیپرسپتروه چندلایادگیری عمیق،  :کلمات کلیدی

 


