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 Storing and processing large volume datasets presents one of the most 

critical challenges in large-scale processing. Therefore, reducing their 

size before further processing is essential. This paper proposes a 

framework for data reduction in large-scale datasets, based on the 

MapReduce algorithm. The framework comprises three steps. Firstly, 

reservoir sampling is used to select instances from the dataset. In the 

second step, the features of these selected instances are weighted 

using the ReliefF algorithm. Subsequently, the weights for each 

feature are averaged, and features with the highest average weights 

are selected. Finally, these selected features are used in the 

classification process. Implementation results demonstrate that the 

proposed framework effectively reduces processing time and, when a 

large amount of data is removed by eliminating irrelevant features, 

either increases or maintains classification accuracy. 
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1. Introduction 

The extensive use of the internet, particularly social 

networks, has led to a rapid increase in the volume 

of information. Furthermore, sensors in the Internet 

of Things (IoT) and other tools generate vast 

amounts of data, requiring specialized storage and 

processing capabilities. Researchers refer to this 

data as large-scale data or massive data, 

characterized by its volume, variety, and velocity 

[1]. 

One challenge in storing and processing large-scale 

data is compressing and extracting useful 

information. Numerous methods have been 

developed to address this problem, including data 

reduction techniques. These methods aim to 

remove redundant and noisy data, thereby 

increasing the accuracy and efficiency of results 

while reducing processing time and costs [2]. They 

are often applied in the preprocessing phase of 

machine learning and data mining algorithms. 

When data is represented as a table (with features 

as columns and instances as rows), three primary 

types of data reduction methods can be employed: 

Feature reduction: This category encompasses 

feature selection and feature extraction methods. 

Feature selection involves selecting a subset of 

features and discarding the rest, while feature 

extraction combines existing features to create new 

ones. 

Instance reduction: This type includes instance 

(or record) reduction methods, such as sampling (or 

instance selection) and information compression. 

Sampling involves randomly selecting a subset of 

instances [3] or using specialized methods [4]. 

Information compression, similar to feature 

extraction, combines and/or compresses instances 

into a smaller form [5, 6]. 

Discretizing feature values: These methods 

convert real-valued features into discrete values, 

reducing the domain of values for each feature [7]. 

Large-scale data often exhibits a high volume and 

may be distributed across multiple machines in a 

network. Consequently, processing such data using 

conventional systems can be costly, time-

consuming, and sometimes infeasible. Parallel and 

distributed data reduction techniques are essential 

for tackling this challenge. 

Numerous papers explore data reduction 

techniques for large-scale datasets and their 
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associated challenges. Papers [8, 9, 10] propose 

feature selection algorithms for this purpose. 

Researchers in [11, 12, 13, 14, 15] present various 

methods for feature reduction in large-scale 

datasets. Additionally, [16, 17, 12] investigate 

feature reduction techniques implemented in a 

distributed manner, particularly using MapReduce. 

Instance selection using MapReduce for 

imbalanced datasets [1], instance selection based 

on stratification strategies [7], and ensemble 

instance selection [18, 19] are other proposed 

approaches for data reduction based on instance 

selection. Studies like [20], [21], and [22] focus on 

instance selection for application in large datasets. 

Efforts have been made to study instance and 

feature selection concurrently. Addressing both 

selection problems simultaneously is reasonable as 

they can be executed independently. This approach 

facilitates further data reduction and improves 

classification accuracy [2]. Studies such as [23, 24, 

25, 26, 27, 28, 29] fall into this category. However, 

none of these studies have implemented the 

combination of feature and instance selection on 

large-scale datasets in a distributed manner. 

Moreover, most datasets used in reviewed papers 

do not have a large volume. Consequently, 

methods like evolutionary algorithms or ensembles 

of classifiers, which are employed as data reduction 

techniques, are feasible for these smaller datasets. 

Implementing these algorithms on large-scale and 

distributed data, however, is impractical. 

This paper proposes a framework that combines 

feature selection and instance selection algorithms. 

The proposed framework is based on MapReduce 

[1], a programming model for data processing 

designed to handle large datasets [30, 31]. 

MapReduce has gained widespread adoption and 

become the de facto standard for large-scale data 

analysis. Hadoop [32] provides an implementation 

of MapReduce. Apache Hadoop is a framework 

that utilizes simple programming models for the 

distributed processing of large-scale datasets. To 

leverage Hadoop's parallel processing capabilities, 

our query must be expressed as a MapReduce job 

[30]. MapReduce enables the processing of large-

scale data through distributed computing, 

eliminating concerns regarding concurrency, 

robustness, scalability, and other common 

challenges [33]. 

The proposed framework combines an instance 

selection algorithm called Reservoir Sampling [34] 

with enhancements and a feature selection 

algorithm called ReliefF [35] in a parallel and 

distributed manner. 

Reservoir Sampling is a technique for selecting 

instances without replacement. It is particularly 

useful for datasets with an undefined number of 

instances or those that grow continuously (such as 

data streams). Reservoir Sampling operates in 

optimal time and requires constant memory to 

execute [34]. To select k items uniformly from a 

dataset containing n items (where n ≥ k), the 

original reservoir sampling algorithm functions as 

Pseudo-code 1. 

This algorithm, guarantees that each item in the 

dataset has an equal probability (k/n) of being 

included in the final selected set. The procedure 

maintains this uniform probability distribution 

throughout the sampling process. 
 

1. the first k items from the dataset are selected 

as the initial set. 

2. for each subsequent item i where i > k: 

o generate a uniformly distributed random 

integer r in the interval [1, i]. 

o if r ≤ k, replace the r-th item in the selected 

set with the i-th item. 

Pseudo-code 1. Reservoir Sampling Algorithm. 

Relief [36] is a filter method [37, 15] inspired by 

instance-based learning. It is one of the most 

successful preprocessing algorithms and a general 

feature estimator, widely used in various problems 

[38]. Relief is particularly effective in ranking 

features based on their quality and can be applied 

to both nominal and numerical features [35]. The 

core idea behind Relief is to estimate the relevance 

of features by measuring their separation between 

instances that are close to one another [38]. Despite 

its advantages, Relief has some limitations. It 

cannot handle incomplete data and is restricted to 

problems with only two classes [35]. To address 

these limitations, ReliefF was introduced. ReliefF 

can operate on datasets with incomplete and 

multiclass data [35]. 

The ReliefF algorithm functions as shown in 

Pseudo-code 2. First, the algorithm calculates the 

prior probability (pc) for each class in the dataset 

(line 5). It then randomly selects an instance from 

the dataset (line 6.a) and identifies its B nearest 

neighbors from the same class (hits) as well as B 

nearest neighbors from each of other classes 

(misses) (lines 6.b to 6.d).  

The algorithm proceeds to compute feature weights 

using a difference function (δ) that measures the 

distance between the selected instance  and its 

nearest hits, as well as the distance between it and 

its nearest misses (line 6.e). The term 

/ (1 ( ( ))tpc p class x in the feature weight formula 
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is used for making the facility of using ReliefF in 

multi-class problem [39]. Finally, the algorithm 

returns a list of feature weights that can be used for 

feature selection, where features with weights 

below a predefined threshold may be removed  

[38]. 

Algorithm ReliefF (input:X, L, B) 

1. /*X=the set of training instances */ 

2. /*L=the number of random instances to draw/* 

3. /*B=the number of nearest neighbours to 

compute*/ 

4. For each feature k{wk=0.0} 

5. For each class c{pc:=the fraction of X 

belonging to class c} 

6. For l:=1 to L do 

a. Randomly select an instance (xt,yt) 

b. Let hits be the set of B instances (xi,yi) 

nearest to xt such that yi=yt. 

c. For each class c≠yt 

c-1. Let misses be the set of B instances (xj,yj) 

Nearest to xt such that yj=c. 

d. End for 

e. For each feature k 

, , , ,

( , ) ( , )

1
( , ) ( , )

(1 ( ( )))
i i t i i

k k t k i k t k i k
tx y Hit c y x y

pc
w w x x x x

LB p class x LB
 

 

  


  

 

f. End for 

7. End for 

8. Return the set of weights wk 

9.End ReliefF 

Pseudo-code 2. ReliefF algorithm. 

The rest of this paper is organized as follows: 

Section 2 discusses the structure of the proposed 

framework. Section 3 presents the implementation 

results and further discussions. Finally, the paper 

concludes in Section 4. 

2. Methods 

This section describes our proposed data reduction 

framework. A server, as used in this paper, can 

refer to a separate computer, a dedicated processor, 

or even a separate core within a processor capable 

of independent function. The framework comprises 

three steps: 

Initially, the input dataset is horizontally 

partitioned into subsets. Each partition contains a 

complete set of features but a subset of instances. 

Each server receives one partition. If data resides 

on different servers in a network or is collected 

from sensors or other sources near a server, 

partitioning is unnecessary. However, all servers 

must store the same features in their datasets to 

enable independent execution of subsequent steps. 

In the first step, each server runs parallel reservoir 

sampling to reduce the number of instances under 

the MapReduce model. Each mapper performing 

reservoir sampling creates a min-heap [40] for 

instances of each class. A min-heap is a data 

structure where each node's key (value) is less than 

or equal to the keys of its children, and the node 

with the lowest key is at the root. We assume each 

instance has a unique ID, used as the key to create 

the min-heap node. 

The use of min-heaps is an innovative approach 

introduced in this study to enhance reservoir 

sampling implementation. This modification 

simplifies the distributed algorithm's execution and 

ensures balanced sampling across all data classes, 

effectively addressing imbalanced datasets (as 

elaborated below). The MapReduce-based 

reservoir sampling process is shown in Pseudo-

code 3. 

Mapper Phase: 

1. In each mapper, for each class, select the 

first k records and insert them into their 

corresponding class-labeled min-heap in 

the appropriate position. 

2. Repeat until end of the data partition (or for 

a predefined number of ) 

a) For each subsequent record (at 

position i), generate a random instance 

ID (r) uniformly from [1, i]. 

b) Insert the record into its class-specific 

min-heap based on r. 

Reducer Phase:  

1. Aggregate all min-heap key-value pairs to 

generate the final output (Each server 

produces a list of selected instances). 

 

Pseudo-code 3. MapReduce-based reservoir sampling. 

As previously mentioned, the proposed sampling 

algorithm distinguishes itself from conventional 

approaches through its distributed implementation 

and effectiveness in handling imbalanced datasets. 

In imbalanced datasets, such as KDDCup99, some 

classes have significantly more instances than 

others. Random or blind sampling in these datasets 

may eliminate instances from certain classes. 

However, by assigning a min-heap to each class in 

the proposed algorithm, at least some instances are 

selected from each class, ensuring representation in 

the reduced dataset. 

In the second step, servers act as mappers, each 

independently running the ReliefF algorithm. As 

described previously, ReliefF calculates a weight 
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for each feature by selecting a random instance and 

finding nearest samples within the same class or 

from other classes. After calculating weights for all 

features, they are sent to a reducer function, which 

calculates the average weight for each feature. 

These average values become the final feature 

weights, similar to the final decision-making 

process in ensemble classifiers. In ensemble 

classifiers, each classifier independently generates 

an output, and the final value is obtained through 

majority voting or averaging the outputs. The 

reducer then retains a predefined ratio of features 

with the highest weights, removing the rest. 

Users define the reduction ratio. Once the final 

selected features are determined, they can be used 

for classification in the third step. Classification 

can be performed non-distributed on a single server 

or locally on each server. As this paper focuses on 

data reduction, it does not detail the classification 

process. However, the proposed distributed 

framework significantly reduces inter-server 

communication and classification runtime. 

Figure 1 illustrates the framework's application to 

a dataset with 18 instances and 8 features, using 

three servers. In the first step, the dataset is 

partitioned into three parts, with each server 

receiving one part containing six instances. 

Applying the reservoir algorithm with a 50% 

reduction ratio to the partitions across different 

servers, each server selects only three instances. 

These selected instances are then passed to the 

second step. In the second step, the ReliefF 

algorithm assigns weights to features based on the 

selected instances. The reducer calculates the 

average weight for each feature based on the votes 

received from the mappers. After applying a 50% 

reduction ratio, only the four features with the 

highest weight values remain. Finally, the 

classification algorithm is applied to the dataset, 

now containing only the four features and nine 

selected instances. 

 

3.   Implementation Results 

3.1. Specifications and implementation 

parameters 

This section presents the experimental results to 

evaluate the proposed framework's performance. 

First, we describe key aspects, including hardware 

and software support, dataset characteristics, 

algorithm and MapReduce framework parameters, 

and the performance measures used for evaluation. 

Next, the framework's performance is evaluated on 

two datasets, KDDCup99 and MNIST, by applying 

a classification algorithm to the reduced data. 

Finally, the obtained results are presented and 

discussed. 

Two datasets were used to test and analyze the 

proposed framework. Table 1 presents the 

characteristics of these datasets. "# Instances" 

shows the number of instances, while "# Features" 

and "# Classes" represent the number of features 

and classes, respectively. Additionally, the original 

dataset was classified using the C4.5 algorithm 

[41]. The table provides the runtime required for 

classification and the classification accuracy for 

comparison with the experimental results. 
 

Table 1. Summary description of datasets. 

Datasets # 

instances 

# 

features 

#classes Accuracy 

(percent) 

Runtime for 

classification 

(sec) 

KDDcup99 4,898,431 41 23 99.9915 13767 

Mnist 

(test part) 

50,000 784 10 86.5824 470 

 

The KDDCup dataset was used for detecting 

network intrusions and distinguishing between 

attacks and normal traffic. It contains a standard set 

of audit data, including a variety of simulated 

intrusions within a military network environment. 

As previously mentioned, this dataset is 

imbalanced, with some classes containing only a 

few instances. The MNIST (Mixed National 

Institute of Standards and Technology) database is 

a large dataset of handwritten digits, commonly 

used for training image processing systems. It is 

also widely used for training and testing machine 

learning algorithms. Notably, this paper uses only 

the test portion of the MNIST dataset. These 

datasets were chosen due to their large number of 

instances and features, enabling a thorough 

evaluation of the proposed framework. 

To compare the proposed framework with the 

original method and measure the efficiency of the 

MapReduce model, the experiments were 

conducted in two ways. One approach involves 

reducing the data using the MapReduce 

framework, which runs on a 3-node cluster. This 

cluster consists of a master node and two slave 

nodes. The features of each node are shown in 

ERROR! REFERENCE SOURCE NOT FOUND. . 

 

Table 2. The software specifications for Map-reduce 

implementation. 

 CPU RAM Hard disk 

Master 2Core from a cpu with below 

specification (intel core i7 6700hq) 

4Gb  100Gb  

slaves 2Core from a cpu with below 

specification (intel core i7 6700hq) 

4Gb  100Gb  

 

The software specifications are as follows: 

 JAVA version: 1.8.0 

 Hadoop version: 1.2.1 
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 Operating system: CENTOs 6.4 

 MapReduce version:1.2.1 

 Map slot: 11 

 Reduce slot: 1 

 
In Hadoop 1.0, the user must specify the number of 

mappers and reducers that the cluster can run 

simultaneously. Typically, 2 slots (jobs) can be 

defined for each CPU core. The cluster used for the 

experiments consists of 3 machines, each with two 

cores. Therefore, to achieve better performance, up 

to 12 jobs can run simultaneously. Since the 

proposed framework has one reducer in each phase, 

we define 11 map slots and one reducer slot. 

The other method for reducing data involves 

running the original reservoir sampling and the 

original ReliefF algorithm on a conventional, 

standard system. It should be noted that in this 

approach, none of the proposed modifications have 

been implemented in these algorithms. The original 

algorithms were only executed to compare their 

results with those obtained using the MapReduce 

framework. It is worth mentioning that, due to the 

high volume of data, implementing the algorithms 

on a standard system requires a very fast computer. 

For example, running the sampling algorithm on 

the KDDCup dataset required about 20 GB of 

memory. Therefore, the standard system used for 

running the algorithms is much more powerful than 

the system on which Hadoop runs. If the original 

algorithms were implemented in a non-parallel 

manner on a system with the same specifications as 

the one used for Hadoop, a memory error would 

likely occur during algorithm execution. 

The software and hardware specifications of the 

computer used to run the algorithms in the second 

method (standard system) are as follows: 

 CPU: Intel® Xeon® CPU E5-2620 v3 @ 

2.40GHz  (2 processors) 

 RAM: 40 GB 

 Operating system: Windows 7 

 The used software for ReliefF and 

Reservoir sampling: Weka 3.7. 

In each approach, three models are applied to 

reduced data: 1) The reservoir sampling algorithm 

alone, referred to as SO (Sampling Only) in this 

paper. 2) Feature reduction using only the ReliefF 

algorithm, referred to as FO (Feature Reduction 

Only) in this paper. 3) A combination of reservoir 

sampling followed by the ReliefF algorithm 

applied to the reduced data, referred to as S+F 

(Sampling + Feature Reduction) in this paper. 

To evaluate the efficiency of the proposed methods 

compared to other distributed approaches, datasets 

are reduced using the distributed methods 

introduced in [18] and [16], too and the results are 

show in the related tables along with our proposed 

method. Since no existing study was found that 

simultaneously performs distributed feature and 

instance reduction (F+S) on the mentioned 

datasets, the results in Tables 7 and 8 could not be 

directly compared with those of another work. In 

[18], a voting-based method for instance selection 

is proposed, and its results are demonstrated in the 

SO (Sampling Only) implementation. 

Additionally, paper [16] proposes a distributed 

feature selection approach based on horizontal or 

vertical partitioning of the dataset, and its results 

are presented in the FO (Feature Reduction Only) 

reduction. To compare the outcomes of data 

reduction using MapReduce and a standard system, 

the Weka software is used to classify the obtained 

results, with the C4.5 algorithm employed for 

classification. It generates a decision tree and 

prunes it after creation. C4.5 can handle attributes 

with missing values and supports both continuous 

and discrete attributes [42]. The algorithm uses the 

concept of information entropy to construct the 

tree. At each node, C4.5 selects the feature that 

most effectively splits the instances into subsets 

enriched in one class or another [43]. In all 

experiments, 66% of the dataset is used for training 

the classifier, while the remaining portion is used 

for testing. The classification algorithm is also 

executed on the same machine that performs the 

reduction algorithm in a non-parallel manner 

(standard system).  

The measures used to evaluate the quality of the 

proposed framework are: Accuracy, Reduction 

Rate [19] (defined as (1)), Runtime, and Root-

Mean-Square Error (RMSE)[44].  
( _ )

e _
( _ )

size decreased dataset
R duction Rate 1

size original dataset
   

(1) 

 

This measure is shown in percent in this paper. 

 

3.2. Execution results 

In this subsection, we present the results obtained 

from the experiments. Following each table, the 

parameters of the corresponding execution are 

explained. The results of running the sampling 

(SO) algorithm on the KDDcup and Mnist datasets 

are shown in Tables 3 and 4, respectively. These 

tables display the outcomes for each sampling state 

when executed on either the standard system or the 

MapReduce framework. 
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Figure 1. Example of how to apply the proposed framework on a dataset. 
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In the MapReduce implementation, the number of 

map functions used for sampling the KDDcup 

dataset is 11, while for the Mnist dataset, it is 9. 

The number of map functions indicates the number 

of parallel tasks processing the data. Additionally, 

since the proposed framework employs a single 

reducer to combine the results, all data reductions 

using MapReduce utilize only one reduce function. 

Furthermore, the results of the method presented in 

[18], referred to as Democratic Selection, are 

provided in Table 4. In [18], multiple voters 

perform instance selection on the same dataset in a 

distributed manner, and the instances receiving the 

most votes are selected. Due to the large size of the 

KDDcup dataset, the Democratic Selection method 

was not implemented on this dataset. 

As the sampling results demonstrate, the runtime of 

the proposed algorithm is significantly lower than 

that of the standard algorithm and the Democratic 

Selection method. This is because, in Democratic 

Selection, each voter processes all instances, and 

additional time is spent calculating the instances 

with the highest number of votes, which increases 

the runtime compared to the standard method. 

Additionally, the prediction accuracy and RMSE of 

the data classification do not differ significantly 

across the three methods and are nearly identical. 

Only in some cases do the RMSE and accuracy for 

the proposed method show slight improvements. 

As the results indicate, for the KDDcup dataset, 

despite the large volume of data removed, the 

accuracy of data classification remains relatively 

unchanged. It is worth noting that the precision of 

Democratic Selection depends on the sampling 

algorithm used by the voters. Since the reservoir 

sampling algorithm is used in this simulation, the 

accuracy achieved does not differ significantly 

from the other two methods. Furthermore, this 

method does not provide solutions for handling 

imbalanced datasets. 
 

 

Table 3. The results of sampling (SO) for KDDcup99 dataset.

Runtime (sec) RMSE Accuracy (percent) # Attributes # Instances Reduction rate 

Map 

Reduce 

Standard System Map 

Reduce 

Standard 

System 

Map 

Reduce 

Standard 

System 

30 465 0.0041 0.0057 99.9802 99.9694 42 489835 90 % 

49 519 0.0036 0.0041 99.985 99.9826 42 1469517 70 % 

65 575 0.0032 0.0027 99.988 99.9912 42 2449210 50% 

Table 4. The results of sampling (SO) for Mnist (test part) dataset. 

Runtime (sec) RMSE Accuracy (percent) # 

Attributes 

# 

Instances 

Reduction 

rate 

Map 

Reduce 

Democratic 

selection 

Standard 

system 

Map 

Reduce 

Democratic 

selection 

Standard 

system 

Map 

Reduce 

Democratic 

selection 

Standard 

system 

19 38 26 0.198 0.213 0.216 78.340 74.6471 74.279 784 4997 90 % 

21 74 30 0.179 0.182 0.176 82.290 82.0588 83.012 784 14996 70 % 

22 100 42 0.172 0.17 0.168 84.013 84.4706 84.693 784 24998 50% 

The results of feature reduction using the ReliefF 

algorithm (FO) for the KDDcup and MNIST 

datasets are presented in Tables 5 and 6, 

respectively. In this execution model, the number 

of map functions used to run ReliefF is 100 for the 

KDDcup dataset and 10 for the MNIST dataset.  

The parameters employed for ReliefF in these 

implementations are L and B, where L represents 

the number of selected instances to execute the 

algorithm, and B denotes the number of neighbors 

used to identify the closest instances. For the 

experiments conducted in this study, the values of 

L are set to 1,000,000 and 2,000,000 for the 

KDDcup dataset, and 25,000 and 50,000 for the 

MNIST dataset. 

The value of B used for the experiments in this 

paper is 10. Additionally, as shown in the tables, 

the time required to select and rank features in the 

ReliefF algorithm is significant, rather than the 

reduction rate. This is because, after ranking all the 
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features, only a subset of the top-ranked features is 

selected, which does not impact the runtime. The 

time differences observed in the table for the 66% 

and 50% reduction rates are attributed to external 

factors influencing the system's speed. 

Table 6 also presents the results of feature selection 

using the proposed method described in [16]. The 

reason this method was not implemented for the 

KDDcup dataset is that the complexity measures 

introduced in the article are applicable only to 

numerical data (not nominal data). We employed 

the vertical partitioning technique from [16], with 

the parameters set to 5 rounds and an alpha value 

of 0.25. Additionally, we utilized the ReliefF 

algorithm to select features in each round. In the 

method proposed in this paper, the feature 

reduction rate is not directly specified. Instead, the 

number of features to be removed is determined by 

a formula. The number of selected features can 

vary significantly depending on parameters such as 

the alpha value and the type of features. As a result, 

implementing this method with the mentioned 

parameters produces a dataset with 192 features. 

The classification results for this reduced dataset 

are presented in the table. As shown in Table 6, 

although this method did not improve accuracy or 

RMSE, its runtime is even longer than that of the 

standard method. 

Because there are a few rounds in this way. In each 

round, the dataset is divided into several parts, and 

feature selection is performed in parallel. However, 

the execution of the rounds themselves is non-

parallel, meaning that as the number of rounds 

increases, the algorithm's runtime also increases. 

Additionally, after completing this step, a 

significant amount of time is required to calculate 

the number of features to be eliminated. 

 

Table 5. The results of ReliefF Algorithm(FO) for KDDcup99 dataset. 

Runtime (sec) RMSE Accuracy (percent) # Attribute # Instances  ReliefF 

execution 

parameters 

Reduction 

rate Map 

Reduce 

Standard 

system 

Map 

Reduce 

Standard 

system 

Map 

Reduce 

Standard 

system 

 

 L 

23935 58484 0.0062 0.0079 99.9502 99.9256 14 4,898,431  1000000 66% 
47733 128156 0.0061 0.0081 99.9500 99.9237 14 4,898,431  2000000 66% 
23927 58492 0.0050 0.0053 99.9653 99.9629 21 4,898,431  1000000 50% 
47720 128167 0.0050 0.0052 99.9652 99.9628 21 4,898,431  2000000 50% 

 

Table 6.  The results of ReliefF Algorithm(FO) for Mnist dataset. 

Runtime (sec) RMSE Accuracy (percent) 

#
 A
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 L 

5019 39113 12355 0.156 0.16 0.156 86.770 86.105 86.747 262 50000 25000 66% 

10366 27985 0.157 0.157 86.652 86.588 262 50000 50000 66% 

5033 12364 0.155 0.155 87.011 87.047 392 50000 25000 50% 

10354 27997 0.154 0.154 87.305 87.123 392 50000 50000 50% 

 

The results of running both instance and feature 

reduction (F+S) are presented in Tables 7 and 8. 

Additionally, in the tables, the "# mapfunctions" 

column indicates the number of map functions used 

to execute the (F+S) algorithm on the datasets. As 

can be seen in the tables, although the data volume 

has been significantly reduced, the classification 

accuracy has remained relatively unchanged. As 

evident from the accuracy values in Tables 4 and 8, 

the MNIST dataset's relatively small sample size 

compared to KDDCup and the fact that most 

features in this dataset contain irrelevant data, 

means that applying either (SO) or (F+S) results in 

significant loss of valuable data. This is particularly 

noticeable when the data reduction rate is 90%. In 

contrast, (FS) reduction method does not decrease 

the accuracy parameter because only irrelevant 

features are removed.  

This outcome occurs due to the elimination of a 

significant number of valuable instances, and thus, 

even the type of reduction algorithm does not have 

a substantial impact on this issue. We note that a 

substantially larger initial dataset volume would 

likely mitigate this accuracy reduction when 

removing instances. More generally, both the 

quantity and quality of collected data in a dataset 

can significantly influence the selection of an 

appropriate data reduction methodology. 
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Table 7. The results of running both sampling and ReliefF Algorithm(F+S) for KDDcup99 dataset.

Run time (sec) RMSE Accuracy (percent) # Map 

functions 

# Attribute # Instances ReliefF 

execution 

parameters 

R
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d
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c
tio

n
 ra

te 

O
f  R

e
lie

fF
 

R
e
d

u
c
tio

n
 ra

te 
o

f  sa
m

p
lin

g 

Map 

Reduce 

Standard 

system 

Map 

Reduce 

Standard 

system 

Map 

Reduce 

Standard 

system 
L 

2408 6189 0.0113 0.0106 99.8727 99.8943  

20 

14 489,835 1000000 66% 90% 

2391 6172 0.0088 0.0077 99.9293 99.9412 21 50% 
4734 13079 0.0114 0.0109 99.8726 99.8895 14 489,835 2000000 66% 90% 

4717 13062 0.0087 0.0081 99.9297 99.9364 21 50% 
7234 18067 0.0088 0.0087 99.8943 99.9211 60 14 1,469,517 1000000 66% 70% 
7220 18054 0.0066 0.0058 99.9556 99.962 21 50% 

14060 38438 0.0083 0.0087 99.9051 99.9211 14 1,469,517 2000000 66% 70% 
14042 38423 0.0063 0.0065 99.9556 99.9532 21 50% 
12216 30029 0.0081 0.008 99.9015 99.9233 100 14 2,449,210 1000000 66% 50% 
12200 30012 0.0057 0.0058 99.9562 99.9605 21 50% 
23443 62664 0.0078 0.008 99.9064 99.9245 14 2,449,210 2000000 66% 50% 
23428 62659 0.0058 0.0056 99.956 99.960 21 50% 

Table 8. The results of running both sampling and ReliefF Algorithm(F+S) for Mnist dataset.
Run time (sec) RMSE Accuracy (percent) # Map 

functions 

# Attribute # Instances ReliefF 

execution 

parameters 

R
e
d
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n
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te 
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f R

e
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fF
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Map 

Reduce 

Standard 

system 

Map 

Reduce 

Standard 

system 

Map 

Reduce 

Standard 

system L 

1461 3683 0.207 0.214 76.633 75.044 1 262 4997 25000 66% 90% 

1448 3670 0.214 0.213 74.867 74.926 392 50% 

2866 7721 0.215 0.208 75.809 75.632 262 4997 50000 66% 90% 

2854 7709 0.212 0.212 75.279 75.279 392 50% 

1736 4264 0.186 0.192 81.447 79.678 3 262 14996 25000 66% 70% 

1723 4251 0.179 0.191 82.526 79.952 392 50% 

3602 9746 0.183 0.186 81.780 81.267 262 14996 50000 66% 70% 

3589 9734 0.181 18.693 82.427 81.306 392 50% 

2851 6898 0.169 0.179 84.527 82.24 5 262 24998 10000 66% 50% 

2837 6882 0.168 0.176 84.574 82.689 392 50% 

5672 15254 0.170 0.181 84.339 82.191 262 24998 20000 66% 50% 

5672 15240 0.168 0.177 84.598 82.555 392 50% 

3.3. Discussions 

According to the results, we evaluated the reduced 

data in two aspects: classification accuracy and the 

time required for data reduction. Results from the 

KDDcup dataset indicate that whether the 

algorithms are implemented in parallel or non-

parallel has little effect on accuracy. Additionally, 

the data reduction model—whether it is instance 

reduction (SO), feature reduction (FO), or both 

(F+S)—does not significantly impact the results. 

Even the reduction rate has minimal influence on 

the accuracy of the predicted outcomes. In the 

worst-case scenario, the number of misclassified 

instances may reach up to 7,000 out of 5 million 

instances (0.14%). This is likely due to the large 

volume of data and the presence of irrelevant 

information.  

A good data reduction algorithm should achieve 

optimal results using the minimum necessary data. 

It must eliminate data whose removal does not 

significantly affect the classifier's precision. 

However, if a dataset is small or contains essential 

and useful information, data reduction may lead to 

a decrease in classification accuracy. 

The results for the MNIST dataset are slightly 

different. In this dataset, the number of instances is 

much smaller compared to the KDDcup dataset, 

and a large number of features have zero values. 

These features are essentially redundant and do not 

contribute to classification. As shown in Table 4, 

the fewer instances removed, the more accurate the 

classification results. The reasons for this are the 

smaller number of instances per class, the relative 

balance among classes, and the fewer repeated or 

overlapping instances. 

As shown in Table 6, the accuracy of data reduced 

by feature selection is higher than that of data 

reduced by sampling. This is because the dataset 
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contains many unnecessary features; removing 

them does not significantly affect accuracy. 

Table 6 also indicates that the accuracy levels are 

similar across all three methods. 

Table 8 demonstrates that both instance and feature 

reduction at a 50% reduction ratio can effectively 

reduce data while maintaining accurate 

classification. The results reveal that the 

MapReduce method yields slightly higher 

accuracy. This improvement occurs because 

multiple ReliefF algorithms (one per mapper) are 

executed, and the final result is derived from their 

average. Additionally, prior sampling removed 

certain instances, further enhancing the accuracy of 

ReliefF. 

To evaluate the efficiency of the proposed 

framework from a runtime perspective, we first 

analyze the computational complexity of the 

proposed algorithms and then compare the results. 

The original Reservoir Sampling algorithm has 

a time complexity of O(n), as it must traverse all n 

elements and perform constant-time operations for 

each element. However, when we used the min-

heap structure as proposed in this paper—where a 

heap tree is used for each class and 

insertion/deletion operations take O(log k) time (k 

is the size of the selected list) )—two cases may 

occur. 

The worst case occurs when the dataset is highly 

imbalanced (e.g., nearly all data belongs to a 

special class). In this case, since every potential 

element requires an insertion or deletion operation 

in a heap tree, the overall time complexity becomes

( log )O n k . Conversely, if the data is uniformly 

distributed among classes, the average time 

complexity of Reservoir Sampling using the min-

heap approach approximates ( log( / ))O n k c , 

where c represents the number of classes. 

If MapReduce is used to execute the modified 

Reservoir Sampling algorithm with a min-heap in 

a distributed manner—assuming n instances and m 

mappers—each mapper processes an average of 

n

m
 instances when the data is uniformly 

distributed. In this situation, in the worst-case 

(highly imbalanced data distribution), each mapper 

takes (( ) log )
n

O k
m

 time. And in the average-case 

(uniform data distribution), each mapper takes 

(( )log( ))
n k

O
m c

 time. 

Additionally, the overhead from data transfer 

between mappers and the reducer is negligible due 

to the small size of the transmitted data. Also, the 

reducer performs no significant computations; it 

merely merges the candidate lists from the mappers 

into a final list. Thus, its runtime contribution can 

be disregarded. 

So, by using MapReduce and increasing the 

number of mappers (m), the computational load per 

mapper decreases significantly, leading to a 

substantial reduction in overall execution time. 

As shown in Tables 3 and 4, sampling in the 

standard system takes longer than in the 

MapReduce model. Although processing a single 

instance is not time-consuming, the sampling 

algorithm must be applied to every instance. Thus, 

execution time increases proportionally with the 

number of instances. But in the MapReduce model, 

as the number of instances increases, the number of 

mappers will increase (as far as system power 

allows). In this case, each mapper processes a 

subset of instances, distributing the computational 

load and reducing overall runtime. 

The democratic selection method is even slower 

than the standard method. While it performs 

sampling in parallel across multiple stages, 

additional time is required to partition the data into 

disjoint sets with different permutations. 

Moreover, after sampling, further time is needed to 

tally votes for each sample. 

The time complexity of the original ReliefF 

algorithm primarily depends on four key 

parameters: the number of training instances (n), 

features (m), nearest neighbors (k), and classes (c). 

Additional factors influencing execution time 

include the specific difference measurement 

function employed (such as Manhattan or 

Euclidean distance) and the number of iterations 

performed in the main loop of the algorithm (line 6 

in Pseudo-code 2). 

By using a simple difference metric and executing 

the main loop over all n training instances, the 

algorithm demonstrates a time complexity of 

O(n·m·k·c). However, in practical 

implementations where both k (typically 5-10 

neighbors) and c represent relatively small 

constants, the effective complexity simplifies to 

O(n·m).  

When executing the ReliefF algorithm in the 

proposed MapReduce framework, the time 

complexity becomes as follows  : 

 Each Mapper operates on a subset of the data 

(e.g., 
n

p
 of instances, where p is the number of 

Mappers). Thus, the computational complexity 

per Mapper is:
.

( )
n m

O
p

. 

 The Reducer aggregates and averages the 

weights obtained from all Mappers. For m 



A New Framework For Data Reduction In Large-Scale Data Using Mapreduce 

451 

 

features, the Reducer computes an average of the 

weights received from p Mappers for each 

feature. Calculating this average for p values, 

takes O(p) time, so performing this operation for 

all features requires O(m⋅p) time. 

 Data transfer to the Reducer depends on the 

number of features, as each Mapper sends an m-

sized list. Since this operation is typically 

performed in parallel by the Mappers, its 

overhead is negligible unless the number of 

features is extremely large.  

Considering these factors, the total computational 

complexity of ReliefF with MapReduce can be 

approximated as:
.

( . )
n m

O m p
p

 . 

Since typically 
.

( . )
n m

m p
p

  (because p is usually 

small compared to n and m), the execution speed 

improves by approximately a factor of p. 

 

 

Figure 1. The average value of accuracy. 

Figure 2 presents a comparative analysis of average 

classification accuracy across distinct data 

reduction methods, visualized using a stock-style 

chart. Each method’s performance is represented 

by its mean accuracy (central marker), bounded by 

vertical error bars indicating the minimum-to-

maximum range observed across execution trials. 

As shown in the chart, the MapReduce-based data 

reduction achieves equal or better results in most 

cases—except when applying the combined feature 

selection and sampling (F+S) method to the 

KDDcup dataset. The chart also highlights the 

importance of selecting an appropriate reduction 

model for each dataset. For instance: 

 The sampling model (SO) performs better on 

the KDDcup dataset, where the number of 

instances significantly exceeds the number of 

features. 

 In contrast, the feature selection model (FO) is 

more effective for the Mnist dataset, which 

contains numerous unnecessary and irrelevant 

features. 

 The combined (F+S) model is beneficial for 

datasets with both a high number of instances 

and redundant features. 

Figure 3 illustrates the mean execution time across 

various evaluated data reduction models. As the 

execution time of SO was very lower than other 

reduction techniques and thus not visible on the 

plot, the data are presented using a logarithmic 

scale was employed on the Y-axis to enable clear 

comparison across all measurement points. The 

results demonstrate that the MapReduce 

implementation requires significantly less time 

than other approaches. Additionally, the sampling 

algorithm (SO) has a much shorter runtime 

compared to FO or F+S, as it merely scans the 

dataset once without performing complex 

calculations per record. 

4. Conclusion 

Due to the importance of reducing data volume and 

enabling faster processing, this paper proposes a 

framework for reducing both instances and features 

while preserving useful information. The proposed 

framework is based on MapReduce, a parallel and 

distributed processing model.  

In the proposed method, the dataset is first 

partitioned into multiple segments, each assigned 

to a separate server. Reservoir sampling is applied 

on each server under MapReduce to reduce the 

number of samples. The sampled data is then 

processed by another MapReduce program, where 

each mapper independently executes the Relief 

algorithm across all features.  

Next, the mapper outputs a list of feature weights, 

which are sent to the reducer. The reducer 

computes the average weight of each feature and 
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selects the highest-weighted features based on the 

specified reduction rate. Finally, the selected 

instances (containing the chosen features) are sent 

to the server for classification. 

Implementation results demonstrate that the 

proposed framework achieves comparable—and in 

some cases, superior—results to standard system 

implementations while significantly reducing 

processing time. This framework can be utilized for 

data reduction in the preprocessing phase of 

machine learning algorithms. 

Further research is needed to develop methods for 

effectively combining feature reduction and 

instance reduction algorithms. Additionally, more 

studies should focus on identifying algorithms that 

can be efficiently parallelized using MapReduce. 

 

 

Figure 2. The average of time.
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 چکیده:

 به کاهش ازین شتر،یقبل از پردازش ب ن،یبزرگ اسک.. بنابرا اسیمشککلا  در پردازش در م  نیتراز مهم یکی میحج یهاو پردازش مجموعه داده رهیذخ

 تمیگوربر اه یمبتن یشکککنهادیچارچوب پ. دهایارائه م میحج یهاهکا در مجموعه دادهککاهش داده یبرا یم کاهکه چکارچوب نیانکاازه ننهکا ودود دارد. ا

MapReduce در مرحله دوم، شکککونایمجموعه داده انتخاب م کیاز  ییهااز مخزن، نمونه یبردارچارچوب سکککه مرحله دارد. ابتاا با نمونه نیاسککک.. ا .

و  شونایم یریگنیانگیم یژگیهر و یها برام وزن. سپس، تماشونایم یدهوزن ReliefF تمیانتخاب شکاه با اسکتداده از اهگور یهانمونه نیا یهایژگیو

وب چارچ یسککازادهیپ جیانا. نتااسککتداده شککاه یبناانتخاب شککاه در قب ه یهایژگیو .،ی. در نهاشککونایوزن انتخاب م ریم اد نیبا باهاتر ییهایژگیو

نن را  ای دهایم شیدق. را افزا ،یبناقب ه یهاتمینامربوط در اهگور یهایژگیبا حذف و نی. همچندهایدر زمان را نشککان م یکاهش خوب ،یشککنهادیپ

 .شونایها حذف ماز داده یادیکه م اار ز یزمان حتی کنایحدظ م

 انتخاب نمونه. ،یژگی، انتخاب وMapReduceبزرگ،  با م یاس یهاداده :کلمات کلیدی

 


