
1

Journal of Artificial Intelligence and Data Mining (JAIDM), Vol. 13, No. 4, 2025, 441-454.

Shahrood University of

Technology

Journal of Artificial Intelligence and Data Mining (JAIDM)
Journal homepage: http://jad.shahroodut.ac.ir

Research paper

A New Framework for Data Reduction in Large-scale Data Using

Mapreduce

Zeinab Abbasi*

.Faculty of Engineering, Mahallat Institute of Higher Education, Mahallat, Iran

Article Info Abstract

Article History:
Received 04 May 2025
Revised 08 June 2025

Accepted 10 July 2025

DOI:10.22044/jadm.2025.16130.2732

 Storing and processing large volume datasets presents one of the most

critical challenges in large-scale processing. Therefore, reducing their

size before further processing is essential. This paper proposes a

framework for data reduction in large-scale datasets, based on the

MapReduce algorithm. The framework comprises three steps. Firstly,

reservoir sampling is used to select instances from the dataset. In the

second step, the features of these selected instances are weighted

using the ReliefF algorithm. Subsequently, the weights for each

feature are averaged, and features with the highest average weights

are selected. Finally, these selected features are used in the

classification process. Implementation results demonstrate that the

proposed framework effectively reduces processing time and, when a

large amount of data is removed by eliminating irrelevant features,

either increases or maintains classification accuracy.

Keywords:
Large-scale Data, MapReduce,

Feature Selection, Instance

Selection.

*Corresponding author:

z.abbasi@mahallat.ac.ir (Z.Abbasi).

1. Introduction

The extensive use of the internet, particularly social

networks, has led to a rapid increase in the volume

of information. Furthermore, sensors in the Internet

of Things (IoT) and other tools generate vast

amounts of data, requiring specialized storage and

processing capabilities. Researchers refer to this

data as large-scale data or massive data,

characterized by its volume, variety, and velocity

[1].

One challenge in storing and processing large-scale

data is compressing and extracting useful

information. Numerous methods have been

developed to address this problem, including data

reduction techniques. These methods aim to

remove redundant and noisy data, thereby

increasing the accuracy and efficiency of results

while reducing processing time and costs [2]. They

are often applied in the preprocessing phase of

machine learning and data mining algorithms.

When data is represented as a table (with features

as columns and instances as rows), three primary

types of data reduction methods can be employed:

Feature reduction: This category encompasses

feature selection and feature extraction methods.

Feature selection involves selecting a subset of

features and discarding the rest, while feature

extraction combines existing features to create new

ones.

Instance reduction: This type includes instance

(or record) reduction methods, such as sampling (or

instance selection) and information compression.

Sampling involves randomly selecting a subset of

instances [3] or using specialized methods [4].

Information compression, similar to feature

extraction, combines and/or compresses instances

into a smaller form [5, 6].

Discretizing feature values: These methods

convert real-valued features into discrete values,

reducing the domain of values for each feature [7].

Large-scale data often exhibits a high volume and

may be distributed across multiple machines in a

network. Consequently, processing such data using

conventional systems can be costly, time-

consuming, and sometimes infeasible. Parallel and

distributed data reduction techniques are essential

for tackling this challenge.

Numerous papers explore data reduction

techniques for large-scale datasets and their

mailto:z.abbasi@mahallat.ac.ir

Abbasi/ Journal of AI and Data Mining, Vol. 13, No. 4, 2025

442

associated challenges. Papers [8, 9, 10] propose

feature selection algorithms for this purpose.

Researchers in [11, 12, 13, 14, 15] present various

methods for feature reduction in large-scale

datasets. Additionally, [16, 17, 12] investigate

feature reduction techniques implemented in a

distributed manner, particularly using MapReduce.

Instance selection using MapReduce for

imbalanced datasets [1], instance selection based

on stratification strategies [7], and ensemble

instance selection [18, 19] are other proposed

approaches for data reduction based on instance

selection. Studies like [20], [21], and [22] focus on

instance selection for application in large datasets.

Efforts have been made to study instance and

feature selection concurrently. Addressing both

selection problems simultaneously is reasonable as

they can be executed independently. This approach

facilitates further data reduction and improves

classification accuracy [2]. Studies such as [23, 24,

25, 26, 27, 28, 29] fall into this category. However,

none of these studies have implemented the

combination of feature and instance selection on

large-scale datasets in a distributed manner.

Moreover, most datasets used in reviewed papers

do not have a large volume. Consequently,

methods like evolutionary algorithms or ensembles

of classifiers, which are employed as data reduction

techniques, are feasible for these smaller datasets.

Implementing these algorithms on large-scale and

distributed data, however, is impractical.

This paper proposes a framework that combines

feature selection and instance selection algorithms.

The proposed framework is based on MapReduce

[1], a programming model for data processing

designed to handle large datasets [30, 31].

MapReduce has gained widespread adoption and

become the de facto standard for large-scale data

analysis. Hadoop [32] provides an implementation

of MapReduce. Apache Hadoop is a framework

that utilizes simple programming models for the

distributed processing of large-scale datasets. To

leverage Hadoop's parallel processing capabilities,

our query must be expressed as a MapReduce job

[30]. MapReduce enables the processing of large-

scale data through distributed computing,

eliminating concerns regarding concurrency,

robustness, scalability, and other common

challenges [33].

The proposed framework combines an instance

selection algorithm called Reservoir Sampling [34]

with enhancements and a feature selection

algorithm called ReliefF [35] in a parallel and

distributed manner.

Reservoir Sampling is a technique for selecting

instances without replacement. It is particularly

useful for datasets with an undefined number of

instances or those that grow continuously (such as

data streams). Reservoir Sampling operates in

optimal time and requires constant memory to

execute [34]. To select k items uniformly from a

dataset containing n items (where n ≥ k), the

original reservoir sampling algorithm functions as

Pseudo-code 1.

This algorithm, guarantees that each item in the

dataset has an equal probability (k/n) of being

included in the final selected set. The procedure

maintains this uniform probability distribution

throughout the sampling process.

1. the first k items from the dataset are selected

as the initial set.

2. for each subsequent item i where i > k:

o generate a uniformly distributed random

integer r in the interval [1, i].

o if r ≤ k, replace the r-th item in the selected

set with the i-th item.

Pseudo-code 1. Reservoir Sampling Algorithm.

Relief [36] is a filter method [37, 15] inspired by

instance-based learning. It is one of the most

successful preprocessing algorithms and a general

feature estimator, widely used in various problems

[38]. Relief is particularly effective in ranking

features based on their quality and can be applied

to both nominal and numerical features [35]. The

core idea behind Relief is to estimate the relevance

of features by measuring their separation between

instances that are close to one another [38]. Despite

its advantages, Relief has some limitations. It

cannot handle incomplete data and is restricted to

problems with only two classes [35]. To address

these limitations, ReliefF was introduced. ReliefF

can operate on datasets with incomplete and

multiclass data [35].

The ReliefF algorithm functions as shown in

Pseudo-code 2. First, the algorithm calculates the

prior probability (pc) for each class in the dataset

(line 5). It then randomly selects an instance from

the dataset (line 6.a) and identifies its B nearest

neighbors from the same class (hits) as well as B

nearest neighbors from each of other classes

(misses) (lines 6.b to 6.d).

The algorithm proceeds to compute feature weights

using a difference function (δ) that measures the

distance between the selected instance and its

nearest hits, as well as the distance between it and

its nearest misses (line 6.e). The term

/ (1 (())tpc p class x in the feature weight formula

A New Framework For Data Reduction In Large-Scale Data Using Mapreduce

443

is used for making the facility of using ReliefF in

multi-class problem [39]. Finally, the algorithm

returns a list of feature weights that can be used for

feature selection, where features with weights

below a predefined threshold may be removed

[38].

Algorithm ReliefF (input:X, L, B)

1. /*X=the set of training instances */

2. /*L=the number of random instances to draw/*

3. /*B=the number of nearest neighbours to

compute*/

4. For each feature k{wk=0.0}

5. For each class c{pc:=the fraction of X

belonging to class c}

6. For l:=1 to L do

a. Randomly select an instance (xt,yt)

b. Let hits be the set of B instances (xi,yi)

nearest to xt such that yi=yt.

c. For each class c≠yt

c-1. Let misses be the set of B instances (xj,yj)

Nearest to xt such that yj=c.

d. End for

e. For each feature k

, , , ,

(,) (,)

1
(,) (,)

(1 (()))
i i t i i

k k t k i k t k i k
tx y Hit c y x y

pc
w w x x x x

LB p class x LB
 

 

  


  

f. End for

7. End for

8. Return the set of weights wk

9.End ReliefF

Pseudo-code 2. ReliefF algorithm.

The rest of this paper is organized as follows:

Section 2 discusses the structure of the proposed

framework. Section 3 presents the implementation

results and further discussions. Finally, the paper

concludes in Section 4.

2. Methods

This section describes our proposed data reduction

framework. A server, as used in this paper, can

refer to a separate computer, a dedicated processor,

or even a separate core within a processor capable

of independent function. The framework comprises

three steps:

Initially, the input dataset is horizontally

partitioned into subsets. Each partition contains a

complete set of features but a subset of instances.

Each server receives one partition. If data resides

on different servers in a network or is collected

from sensors or other sources near a server,

partitioning is unnecessary. However, all servers

must store the same features in their datasets to

enable independent execution of subsequent steps.

In the first step, each server runs parallel reservoir

sampling to reduce the number of instances under

the MapReduce model. Each mapper performing

reservoir sampling creates a min-heap [40] for

instances of each class. A min-heap is a data

structure where each node's key (value) is less than

or equal to the keys of its children, and the node

with the lowest key is at the root. We assume each

instance has a unique ID, used as the key to create

the min-heap node.

The use of min-heaps is an innovative approach

introduced in this study to enhance reservoir

sampling implementation. This modification

simplifies the distributed algorithm's execution and

ensures balanced sampling across all data classes,

effectively addressing imbalanced datasets (as

elaborated below). The MapReduce-based

reservoir sampling process is shown in Pseudo-

code 3.

Mapper Phase:

1. In each mapper, for each class, select the

first k records and insert them into their

corresponding class-labeled min-heap in

the appropriate position.

2. Repeat until end of the data partition (or for

a predefined number of)

a) For each subsequent record (at

position i), generate a random instance

ID (r) uniformly from [1, i].

b) Insert the record into its class-specific

min-heap based on r.

Reducer Phase:

1. Aggregate all min-heap key-value pairs to

generate the final output (Each server

produces a list of selected instances).

Pseudo-code 3. MapReduce-based reservoir sampling.

As previously mentioned, the proposed sampling

algorithm distinguishes itself from conventional

approaches through its distributed implementation

and effectiveness in handling imbalanced datasets.

In imbalanced datasets, such as KDDCup99, some

classes have significantly more instances than

others. Random or blind sampling in these datasets

may eliminate instances from certain classes.

However, by assigning a min-heap to each class in

the proposed algorithm, at least some instances are

selected from each class, ensuring representation in

the reduced dataset.

In the second step, servers act as mappers, each

independently running the ReliefF algorithm. As

described previously, ReliefF calculates a weight

Abbasi/ Journal of AI and Data Mining, Vol. 13, No. 4, 2025

444

for each feature by selecting a random instance and

finding nearest samples within the same class or

from other classes. After calculating weights for all

features, they are sent to a reducer function, which

calculates the average weight for each feature.

These average values become the final feature

weights, similar to the final decision-making

process in ensemble classifiers. In ensemble

classifiers, each classifier independently generates

an output, and the final value is obtained through

majority voting or averaging the outputs. The

reducer then retains a predefined ratio of features

with the highest weights, removing the rest.

Users define the reduction ratio. Once the final

selected features are determined, they can be used

for classification in the third step. Classification

can be performed non-distributed on a single server

or locally on each server. As this paper focuses on

data reduction, it does not detail the classification

process. However, the proposed distributed

framework significantly reduces inter-server

communication and classification runtime.

Figure 1 illustrates the framework's application to

a dataset with 18 instances and 8 features, using

three servers. In the first step, the dataset is

partitioned into three parts, with each server

receiving one part containing six instances.

Applying the reservoir algorithm with a 50%

reduction ratio to the partitions across different

servers, each server selects only three instances.

These selected instances are then passed to the

second step. In the second step, the ReliefF

algorithm assigns weights to features based on the

selected instances. The reducer calculates the

average weight for each feature based on the votes

received from the mappers. After applying a 50%

reduction ratio, only the four features with the

highest weight values remain. Finally, the

classification algorithm is applied to the dataset,

now containing only the four features and nine

selected instances.

3. Implementation Results

3.1. Specifications and implementation

parameters

This section presents the experimental results to

evaluate the proposed framework's performance.

First, we describe key aspects, including hardware

and software support, dataset characteristics,

algorithm and MapReduce framework parameters,

and the performance measures used for evaluation.

Next, the framework's performance is evaluated on

two datasets, KDDCup99 and MNIST, by applying

a classification algorithm to the reduced data.

Finally, the obtained results are presented and

discussed.

Two datasets were used to test and analyze the

proposed framework. Table 1 presents the

characteristics of these datasets. "# Instances"

shows the number of instances, while "# Features"

and "# Classes" represent the number of features

and classes, respectively. Additionally, the original

dataset was classified using the C4.5 algorithm

[41]. The table provides the runtime required for

classification and the classification accuracy for

comparison with the experimental results.

Table 1. Summary description of datasets.

Datasets #

instances

features

#classes Accuracy

(percent)

Runtime for

classification

(sec)

KDDcup99 4,898,431 41 23 99.9915 13767

Mnist

(test part)

50,000 784 10 86.5824 470

The KDDCup dataset was used for detecting

network intrusions and distinguishing between

attacks and normal traffic. It contains a standard set

of audit data, including a variety of simulated

intrusions within a military network environment.

As previously mentioned, this dataset is

imbalanced, with some classes containing only a

few instances. The MNIST (Mixed National

Institute of Standards and Technology) database is

a large dataset of handwritten digits, commonly

used for training image processing systems. It is

also widely used for training and testing machine

learning algorithms. Notably, this paper uses only

the test portion of the MNIST dataset. These

datasets were chosen due to their large number of

instances and features, enabling a thorough

evaluation of the proposed framework.

To compare the proposed framework with the

original method and measure the efficiency of the

MapReduce model, the experiments were

conducted in two ways. One approach involves

reducing the data using the MapReduce

framework, which runs on a 3-node cluster. This

cluster consists of a master node and two slave

nodes. The features of each node are shown in

ERROR! REFERENCE SOURCE NOT FOUND. .

Table 2. The software specifications for Map-reduce

implementation.

 CPU RAM Hard disk

Master 2Core from a cpu with below

specification (intel core i7 6700hq)

4Gb 100Gb

slaves 2Core from a cpu with below

specification (intel core i7 6700hq)

4Gb 100Gb

The software specifications are as follows:

 JAVA version: 1.8.0

 Hadoop version: 1.2.1

A New Framework For Data Reduction In Large-Scale Data Using Mapreduce

445

 Operating system: CENTOs 6.4

 MapReduce version:1.2.1

 Map slot: 11

 Reduce slot: 1

In Hadoop 1.0, the user must specify the number of

mappers and reducers that the cluster can run

simultaneously. Typically, 2 slots (jobs) can be

defined for each CPU core. The cluster used for the

experiments consists of 3 machines, each with two

cores. Therefore, to achieve better performance, up

to 12 jobs can run simultaneously. Since the

proposed framework has one reducer in each phase,

we define 11 map slots and one reducer slot.

The other method for reducing data involves

running the original reservoir sampling and the

original ReliefF algorithm on a conventional,

standard system. It should be noted that in this

approach, none of the proposed modifications have

been implemented in these algorithms. The original

algorithms were only executed to compare their

results with those obtained using the MapReduce

framework. It is worth mentioning that, due to the

high volume of data, implementing the algorithms

on a standard system requires a very fast computer.

For example, running the sampling algorithm on

the KDDCup dataset required about 20 GB of

memory. Therefore, the standard system used for

running the algorithms is much more powerful than

the system on which Hadoop runs. If the original

algorithms were implemented in a non-parallel

manner on a system with the same specifications as

the one used for Hadoop, a memory error would

likely occur during algorithm execution.

The software and hardware specifications of the

computer used to run the algorithms in the second

method (standard system) are as follows:

 CPU: Intel® Xeon® CPU E5-2620 v3 @

2.40GHz (2 processors)

 RAM: 40 GB

 Operating system: Windows 7

 The used software for ReliefF and

Reservoir sampling: Weka 3.7.

In each approach, three models are applied to

reduced data: 1) The reservoir sampling algorithm

alone, referred to as SO (Sampling Only) in this

paper. 2) Feature reduction using only the ReliefF

algorithm, referred to as FO (Feature Reduction

Only) in this paper. 3) A combination of reservoir

sampling followed by the ReliefF algorithm

applied to the reduced data, referred to as S+F

(Sampling + Feature Reduction) in this paper.

To evaluate the efficiency of the proposed methods

compared to other distributed approaches, datasets

are reduced using the distributed methods

introduced in [18] and [16], too and the results are

show in the related tables along with our proposed

method. Since no existing study was found that

simultaneously performs distributed feature and

instance reduction (F+S) on the mentioned

datasets, the results in Tables 7 and 8 could not be

directly compared with those of another work. In

[18], a voting-based method for instance selection

is proposed, and its results are demonstrated in the

SO (Sampling Only) implementation.

Additionally, paper [16] proposes a distributed

feature selection approach based on horizontal or

vertical partitioning of the dataset, and its results

are presented in the FO (Feature Reduction Only)

reduction. To compare the outcomes of data

reduction using MapReduce and a standard system,

the Weka software is used to classify the obtained

results, with the C4.5 algorithm employed for

classification. It generates a decision tree and

prunes it after creation. C4.5 can handle attributes

with missing values and supports both continuous

and discrete attributes [42]. The algorithm uses the

concept of information entropy to construct the

tree. At each node, C4.5 selects the feature that

most effectively splits the instances into subsets

enriched in one class or another [43]. In all

experiments, 66% of the dataset is used for training

the classifier, while the remaining portion is used

for testing. The classification algorithm is also

executed on the same machine that performs the

reduction algorithm in a non-parallel manner

(standard system).

The measures used to evaluate the quality of the

proposed framework are: Accuracy, Reduction

Rate [19] (defined as (1)), Runtime, and Root-

Mean-Square Error (RMSE)[44].
(_)

e _
(_)

size decreased dataset
R duction Rate 1

size original dataset
 

(1)

This measure is shown in percent in this paper.

3.2. Execution results

In this subsection, we present the results obtained

from the experiments. Following each table, the

parameters of the corresponding execution are

explained. The results of running the sampling

(SO) algorithm on the KDDcup and Mnist datasets

are shown in Tables 3 and 4, respectively. These

tables display the outcomes for each sampling state

when executed on either the standard system or the

MapReduce framework.

Abbasi/ Journal of AI and Data Mining, Vol. 13, No. 4, 2025

446

Figure 1. Example of how to apply the proposed framework on a dataset.

A New Framework For Data Reduction In Large-Scale Data Using Mapreduce

447

In the MapReduce implementation, the number of

map functions used for sampling the KDDcup

dataset is 11, while for the Mnist dataset, it is 9.

The number of map functions indicates the number

of parallel tasks processing the data. Additionally,

since the proposed framework employs a single

reducer to combine the results, all data reductions

using MapReduce utilize only one reduce function.

Furthermore, the results of the method presented in

[18], referred to as Democratic Selection, are

provided in Table 4. In [18], multiple voters

perform instance selection on the same dataset in a

distributed manner, and the instances receiving the

most votes are selected. Due to the large size of the

KDDcup dataset, the Democratic Selection method

was not implemented on this dataset.

As the sampling results demonstrate, the runtime of

the proposed algorithm is significantly lower than

that of the standard algorithm and the Democratic

Selection method. This is because, in Democratic

Selection, each voter processes all instances, and

additional time is spent calculating the instances

with the highest number of votes, which increases

the runtime compared to the standard method.

Additionally, the prediction accuracy and RMSE of

the data classification do not differ significantly

across the three methods and are nearly identical.

Only in some cases do the RMSE and accuracy for

the proposed method show slight improvements.

As the results indicate, for the KDDcup dataset,

despite the large volume of data removed, the

accuracy of data classification remains relatively

unchanged. It is worth noting that the precision of

Democratic Selection depends on the sampling

algorithm used by the voters. Since the reservoir

sampling algorithm is used in this simulation, the

accuracy achieved does not differ significantly

from the other two methods. Furthermore, this

method does not provide solutions for handling

imbalanced datasets.

Table 3. The results of sampling (SO) for KDDcup99 dataset.

Runtime (sec) RMSE Accuracy (percent) # Attributes # Instances Reduction rate

Map

Reduce

Standard System Map

Reduce

Standard

System

Map

Reduce

Standard

System

30 465 0.0041 0.0057 99.9802 99.9694 42 489835 90 %

49 519 0.0036 0.0041 99.985 99.9826 42 1469517 70 %

65 575 0.0032 0.0027 99.988 99.9912 42 2449210 50%

Table 4. The results of sampling (SO) for Mnist (test part) dataset.

Runtime (sec) RMSE Accuracy (percent) #

Attributes

Instances

Reduction

rate

Map

Reduce

Democratic

selection

Standard

system

Map

Reduce

Democratic

selection

Standard

system

Map

Reduce

Democratic

selection

Standard

system

19 38 26 0.198 0.213 0.216 78.340 74.6471 74.279 784 4997 90 %

21 74 30 0.179 0.182 0.176 82.290 82.0588 83.012 784 14996 70 %

22 100 42 0.172 0.17 0.168 84.013 84.4706 84.693 784 24998 50%

The results of feature reduction using the ReliefF

algorithm (FO) for the KDDcup and MNIST

datasets are presented in Tables 5 and 6,

respectively. In this execution model, the number

of map functions used to run ReliefF is 100 for the

KDDcup dataset and 10 for the MNIST dataset.

The parameters employed for ReliefF in these

implementations are L and B, where L represents

the number of selected instances to execute the

algorithm, and B denotes the number of neighbors

used to identify the closest instances. For the

experiments conducted in this study, the values of

L are set to 1,000,000 and 2,000,000 for the

KDDcup dataset, and 25,000 and 50,000 for the

MNIST dataset.

The value of B used for the experiments in this

paper is 10. Additionally, as shown in the tables,

the time required to select and rank features in the

ReliefF algorithm is significant, rather than the

reduction rate. This is because, after ranking all the

Abbasi/ Journal of AI and Data Mining, Vol. 13, No. 4, 2025

448

features, only a subset of the top-ranked features is

selected, which does not impact the runtime. The

time differences observed in the table for the 66%

and 50% reduction rates are attributed to external

factors influencing the system's speed.

Table 6 also presents the results of feature selection

using the proposed method described in [16]. The

reason this method was not implemented for the

KDDcup dataset is that the complexity measures

introduced in the article are applicable only to

numerical data (not nominal data). We employed

the vertical partitioning technique from [16], with

the parameters set to 5 rounds and an alpha value

of 0.25. Additionally, we utilized the ReliefF

algorithm to select features in each round. In the

method proposed in this paper, the feature

reduction rate is not directly specified. Instead, the

number of features to be removed is determined by

a formula. The number of selected features can

vary significantly depending on parameters such as

the alpha value and the type of features. As a result,

implementing this method with the mentioned

parameters produces a dataset with 192 features.

The classification results for this reduced dataset

are presented in the table. As shown in Table 6,

although this method did not improve accuracy or

RMSE, its runtime is even longer than that of the

standard method.

Because there are a few rounds in this way. In each

round, the dataset is divided into several parts, and

feature selection is performed in parallel. However,

the execution of the rounds themselves is non-

parallel, meaning that as the number of rounds

increases, the algorithm's runtime also increases.

Additionally, after completing this step, a

significant amount of time is required to calculate

the number of features to be eliminated.

Table 5. The results of ReliefF Algorithm(FO) for KDDcup99 dataset.

Runtime (sec) RMSE Accuracy (percent) # Attribute # Instances ReliefF

execution

parameters

Reduction

rate Map

Reduce

Standard

system

Map

Reduce

Standard

system

Map

Reduce

Standard

system

 L

23935 58484 0.0062 0.0079 99.9502 99.9256 14 4,898,431 1000000 66%
47733 128156 0.0061 0.0081 99.9500 99.9237 14 4,898,431 2000000 66%
23927 58492 0.0050 0.0053 99.9653 99.9629 21 4,898,431 1000000 50%
47720 128167 0.0050 0.0052 99.9652 99.9628 21 4,898,431 2000000 50%

Table 6. The results of ReliefF Algorithm(FO) for Mnist dataset.

Runtime (sec) RMSE Accuracy (percent)

#
 A

ttr
ib

u
te

#
 In

sta
n

c
e
s

ReliefF

execution

parameters R
e
d

u
c
tio

n

r
a

te

M
a

p
 R

e
d

u
ce

D
istr

ib
u

te
d

F
S

S
ta

n
d

a
r
d

sy
ste

m

M
a

p
 R

e
d

u
ce

D
istr

ib
u

te
d

F
S

S
ta

n
d

a
r
d

sy
ste

m

M
a

p
 R

e
d

u
ce

D
istr

ib
u

te
d

F
S

S
ta

n
d

a
r
d

sy
ste

m

 L

5019 39113 12355 0.156 0.16 0.156 86.770 86.105 86.747 262 50000 25000 66%

10366 27985 0.157 0.157 86.652 86.588 262 50000 50000 66%

5033 12364 0.155 0.155 87.011 87.047 392 50000 25000 50%

10354 27997 0.154 0.154 87.305 87.123 392 50000 50000 50%

The results of running both instance and feature

reduction (F+S) are presented in Tables 7 and 8.

Additionally, in the tables, the "# mapfunctions"

column indicates the number of map functions used

to execute the (F+S) algorithm on the datasets. As

can be seen in the tables, although the data volume

has been significantly reduced, the classification

accuracy has remained relatively unchanged. As

evident from the accuracy values in Tables 4 and 8,

the MNIST dataset's relatively small sample size

compared to KDDCup and the fact that most

features in this dataset contain irrelevant data,

means that applying either (SO) or (F+S) results in

significant loss of valuable data. This is particularly

noticeable when the data reduction rate is 90%. In

contrast, (FS) reduction method does not decrease

the accuracy parameter because only irrelevant

features are removed.

This outcome occurs due to the elimination of a

significant number of valuable instances, and thus,

even the type of reduction algorithm does not have

a substantial impact on this issue. We note that a

substantially larger initial dataset volume would

likely mitigate this accuracy reduction when

removing instances. More generally, both the

quantity and quality of collected data in a dataset

can significantly influence the selection of an

appropriate data reduction methodology.

A New Framework For Data Reduction In Large-Scale Data Using Mapreduce

449

Table 7. The results of running both sampling and ReliefF Algorithm(F+S) for KDDcup99 dataset.

Run time (sec) RMSE Accuracy (percent) # Map

functions

Attribute # Instances ReliefF

execution

parameters

R
e
d

u
c
tio

n
 ra

te

O
f R

e
lie

fF

R
e
d

u
c
tio

n
 ra

te
o

f sa
m

p
lin

g

Map

Reduce

Standard

system

Map

Reduce

Standard

system

Map

Reduce

Standard

system
L

2408 6189 0.0113 0.0106 99.8727 99.8943

20

14 489,835 1000000 66% 90%

2391 6172 0.0088 0.0077 99.9293 99.9412 21 50%
4734 13079 0.0114 0.0109 99.8726 99.8895 14 489,835 2000000 66% 90%

4717 13062 0.0087 0.0081 99.9297 99.9364 21 50%
7234 18067 0.0088 0.0087 99.8943 99.9211 60 14 1,469,517 1000000 66% 70%
7220 18054 0.0066 0.0058 99.9556 99.962 21 50%

14060 38438 0.0083 0.0087 99.9051 99.9211 14 1,469,517 2000000 66% 70%
14042 38423 0.0063 0.0065 99.9556 99.9532 21 50%
12216 30029 0.0081 0.008 99.9015 99.9233 100 14 2,449,210 1000000 66% 50%
12200 30012 0.0057 0.0058 99.9562 99.9605 21 50%
23443 62664 0.0078 0.008 99.9064 99.9245 14 2,449,210 2000000 66% 50%
23428 62659 0.0058 0.0056 99.956 99.960 21 50%

Table 8. The results of running both sampling and ReliefF Algorithm(F+S) for Mnist dataset.
Run time (sec) RMSE Accuracy (percent) # Map

functions

Attribute # Instances ReliefF

execution

parameters

R
e
d

u
c
tio

n
 ra

te

O
f R

e
lie

fF

R
e
d

u
c
tio

n
 ra

te

o
f sa

m
p

lin
g

Map

Reduce

Standard

system

Map

Reduce

Standard

system

Map

Reduce

Standard

system L

1461 3683 0.207 0.214 76.633 75.044 1 262 4997 25000 66% 90%

1448 3670 0.214 0.213 74.867 74.926 392 50%

2866 7721 0.215 0.208 75.809 75.632 262 4997 50000 66% 90%

2854 7709 0.212 0.212 75.279 75.279 392 50%

1736 4264 0.186 0.192 81.447 79.678 3 262 14996 25000 66% 70%

1723 4251 0.179 0.191 82.526 79.952 392 50%

3602 9746 0.183 0.186 81.780 81.267 262 14996 50000 66% 70%

3589 9734 0.181 18.693 82.427 81.306 392 50%

2851 6898 0.169 0.179 84.527 82.24 5 262 24998 10000 66% 50%

2837 6882 0.168 0.176 84.574 82.689 392 50%

5672 15254 0.170 0.181 84.339 82.191 262 24998 20000 66% 50%

5672 15240 0.168 0.177 84.598 82.555 392 50%

3.3. Discussions

According to the results, we evaluated the reduced

data in two aspects: classification accuracy and the

time required for data reduction. Results from the

KDDcup dataset indicate that whether the

algorithms are implemented in parallel or non-

parallel has little effect on accuracy. Additionally,

the data reduction model—whether it is instance

reduction (SO), feature reduction (FO), or both

(F+S)—does not significantly impact the results.

Even the reduction rate has minimal influence on

the accuracy of the predicted outcomes. In the

worst-case scenario, the number of misclassified

instances may reach up to 7,000 out of 5 million

instances (0.14%). This is likely due to the large

volume of data and the presence of irrelevant

information.

A good data reduction algorithm should achieve

optimal results using the minimum necessary data.

It must eliminate data whose removal does not

significantly affect the classifier's precision.

However, if a dataset is small or contains essential

and useful information, data reduction may lead to

a decrease in classification accuracy.

The results for the MNIST dataset are slightly

different. In this dataset, the number of instances is

much smaller compared to the KDDcup dataset,

and a large number of features have zero values.

These features are essentially redundant and do not

contribute to classification. As shown in Table 4,

the fewer instances removed, the more accurate the

classification results. The reasons for this are the

smaller number of instances per class, the relative

balance among classes, and the fewer repeated or

overlapping instances.

As shown in Table 6, the accuracy of data reduced

by feature selection is higher than that of data

reduced by sampling. This is because the dataset

Abbasi/ Journal of AI and Data Mining, Vol. 13, No. 4, 2025

450

contains many unnecessary features; removing

them does not significantly affect accuracy.

Table 6 also indicates that the accuracy levels are

similar across all three methods.

Table 8 demonstrates that both instance and feature

reduction at a 50% reduction ratio can effectively

reduce data while maintaining accurate

classification. The results reveal that the

MapReduce method yields slightly higher

accuracy. This improvement occurs because

multiple ReliefF algorithms (one per mapper) are

executed, and the final result is derived from their

average. Additionally, prior sampling removed

certain instances, further enhancing the accuracy of

ReliefF.

To evaluate the efficiency of the proposed

framework from a runtime perspective, we first

analyze the computational complexity of the

proposed algorithms and then compare the results.

The original Reservoir Sampling algorithm has

a time complexity of O(n), as it must traverse all n

elements and perform constant-time operations for

each element. However, when we used the min-

heap structure as proposed in this paper—where a

heap tree is used for each class and

insertion/deletion operations take O(log k) time (k

is the size of the selected list))—two cases may

occur.

The worst case occurs when the dataset is highly

imbalanced (e.g., nearly all data belongs to a

special class). In this case, since every potential

element requires an insertion or deletion operation

in a heap tree, the overall time complexity becomes

(log)O n k . Conversely, if the data is uniformly

distributed among classes, the average time

complexity of Reservoir Sampling using the min-

heap approach approximates (log(/))O n k c ,

where c represents the number of classes.

If MapReduce is used to execute the modified

Reservoir Sampling algorithm with a min-heap in

a distributed manner—assuming n instances and m

mappers—each mapper processes an average of

n

m
 instances when the data is uniformly

distributed. In this situation, in the worst-case

(highly imbalanced data distribution), each mapper

takes (() log)
n

O k
m

 time. And in the average-case

(uniform data distribution), each mapper takes

(()log())
n k

O
m c

 time.

Additionally, the overhead from data transfer

between mappers and the reducer is negligible due

to the small size of the transmitted data. Also, the

reducer performs no significant computations; it

merely merges the candidate lists from the mappers

into a final list. Thus, its runtime contribution can

be disregarded.

So, by using MapReduce and increasing the

number of mappers (m), the computational load per

mapper decreases significantly, leading to a

substantial reduction in overall execution time.

As shown in Tables 3 and 4, sampling in the

standard system takes longer than in the

MapReduce model. Although processing a single

instance is not time-consuming, the sampling

algorithm must be applied to every instance. Thus,

execution time increases proportionally with the

number of instances. But in the MapReduce model,

as the number of instances increases, the number of

mappers will increase (as far as system power

allows). In this case, each mapper processes a

subset of instances, distributing the computational

load and reducing overall runtime.

The democratic selection method is even slower

than the standard method. While it performs

sampling in parallel across multiple stages,

additional time is required to partition the data into

disjoint sets with different permutations.

Moreover, after sampling, further time is needed to

tally votes for each sample.

The time complexity of the original ReliefF

algorithm primarily depends on four key

parameters: the number of training instances (n),

features (m), nearest neighbors (k), and classes (c).

Additional factors influencing execution time

include the specific difference measurement

function employed (such as Manhattan or

Euclidean distance) and the number of iterations

performed in the main loop of the algorithm (line 6

in Pseudo-code 2).

By using a simple difference metric and executing

the main loop over all n training instances, the

algorithm demonstrates a time complexity of

O(n·m·k·c). However, in practical

implementations where both k (typically 5-10

neighbors) and c represent relatively small

constants, the effective complexity simplifies to

O(n·m).

When executing the ReliefF algorithm in the

proposed MapReduce framework, the time

complexity becomes as follows :

 Each Mapper operates on a subset of the data

(e.g.,
n

p
 of instances, where p is the number of

Mappers). Thus, the computational complexity

per Mapper is:
.

()
n m

O
p

.

 The Reducer aggregates and averages the

weights obtained from all Mappers. For m

A New Framework For Data Reduction In Large-Scale Data Using Mapreduce

451

features, the Reducer computes an average of the

weights received from p Mappers for each

feature. Calculating this average for p values,

takes O(p) time, so performing this operation for

all features requires O(m⋅p) time.

 Data transfer to the Reducer depends on the

number of features, as each Mapper sends an m-

sized list. Since this operation is typically

performed in parallel by the Mappers, its

overhead is negligible unless the number of

features is extremely large.

Considering these factors, the total computational

complexity of ReliefF with MapReduce can be

approximated as:
.

(.)
n m

O m p
p

 .

Since typically
.

(.)
n m

m p
p

 (because p is usually

small compared to n and m), the execution speed

improves by approximately a factor of p.

Figure 1. The average value of accuracy.

Figure 2 presents a comparative analysis of average

classification accuracy across distinct data

reduction methods, visualized using a stock-style

chart. Each method’s performance is represented

by its mean accuracy (central marker), bounded by

vertical error bars indicating the minimum-to-

maximum range observed across execution trials.

As shown in the chart, the MapReduce-based data

reduction achieves equal or better results in most

cases—except when applying the combined feature

selection and sampling (F+S) method to the

KDDcup dataset. The chart also highlights the

importance of selecting an appropriate reduction

model for each dataset. For instance:

 The sampling model (SO) performs better on

the KDDcup dataset, where the number of

instances significantly exceeds the number of

features.

 In contrast, the feature selection model (FO) is

more effective for the Mnist dataset, which

contains numerous unnecessary and irrelevant

features.

 The combined (F+S) model is beneficial for

datasets with both a high number of instances

and redundant features.

Figure 3 illustrates the mean execution time across

various evaluated data reduction models. As the

execution time of SO was very lower than other

reduction techniques and thus not visible on the

plot, the data are presented using a logarithmic

scale was employed on the Y-axis to enable clear

comparison across all measurement points. The

results demonstrate that the MapReduce

implementation requires significantly less time

than other approaches. Additionally, the sampling

algorithm (SO) has a much shorter runtime

compared to FO or F+S, as it merely scans the

dataset once without performing complex

calculations per record.

4. Conclusion

Due to the importance of reducing data volume and

enabling faster processing, this paper proposes a

framework for reducing both instances and features

while preserving useful information. The proposed

framework is based on MapReduce, a parallel and

distributed processing model.

In the proposed method, the dataset is first

partitioned into multiple segments, each assigned

to a separate server. Reservoir sampling is applied

on each server under MapReduce to reduce the

number of samples. The sampled data is then

processed by another MapReduce program, where

each mapper independently executes the Relief

algorithm across all features.

Next, the mapper outputs a list of feature weights,

which are sent to the reducer. The reducer

computes the average weight of each feature and

Abbasi/ Journal of AI and Data Mining, Vol. 13, No. 4, 2025

452

selects the highest-weighted features based on the

specified reduction rate. Finally, the selected

instances (containing the chosen features) are sent

to the server for classification.

Implementation results demonstrate that the

proposed framework achieves comparable—and in

some cases, superior—results to standard system

implementations while significantly reducing

processing time. This framework can be utilized for

data reduction in the preprocessing phase of

machine learning algorithms.

Further research is needed to develop methods for

effectively combining feature reduction and

instance reduction algorithms. Additionally, more

studies should focus on identifying algorithms that

can be efficiently parallelized using MapReduce.

Figure 2. The average of time.

References
Journal Article in Print: Full titles

[1] S. d. Río, V. Lopez, J. M. Benítez and F. Herrera,

"On the use of MapReduce for imbalanced big data

using Random Forest," Information Sciences. vol. 285,

pp. 112-137, 2014.

[2] J. Derrac, S. Garcia and F. Herrera, "IFS-CoCo:

Instance and feature selection based on cooperative

coevolution with nearest neighbor rule," Pattern

Recognition, vol. 43, no. 6, pp. 2082-2105, 2010.

[3] P. Bradley, U. Fayyad and C. Reina, " Clustering

very large databases using EM mixture models," In

Proceedings 15th International Conference on Pattern

Recognition, Barcelona, ICPR-2000, 2000, pp. 76-80.

[4] H. Liu, H. Motoda and L. Yu, "A selective sampling

approach to active feature selection," Artificial

Intelligence, vol. 159, pp. 49-74, 2004.

[5] W. G. Cochran, Sampling Techniques,1st ed., New

York: Wiley, 1977, [E-book] Available:

www.cambridge.org.

[6] H. Liu and H. Motoda, Instance Selection and

Construction for Data Mining, 1st ed., Boston: Kluwer

Academic, 2001, [E-book] Available:

https://books.google.com/.

[7] J. R. Cano, F. Herrera and M. Lozano, "On the

combination of evolutionary algorithms and stratified

strategies for training set selection in data mining,"

Applied Soft Computing, vol. 6, p. 323–332, 2006.

[8] M. Rashid, J. Kamruzzaman, T. Imam, S. Wibowo

and S. Gordon, "A tree-based stacking ensemble

technique with feature selection for network intrusion

detection," Applied Intelligence, vol. 52, no. 9, pp. 9768-

9781, 2022.

[9] A. V. Turukmane and R. Devendiran, "M-

MultiSVM: An efficient feature selection assisted

network intrusion detection system using machine

A New Framework For Data Reduction In Large-Scale Data Using Mapreduce

453

learning," Computers & Security, vol. 137, p. 103587,

2024.

[10]F. Pedregosa, G. Varoquaux, A. Gramfort, V.

Michel, B. Thirion, O. Grisel, M. Blondel ,

P.Prettenhofer, R. Weiss, V. Dubourg and j. Vanderplas,

"Scikit-learn: Machine learning in python," Journal of

machine learning research, vol. 12, pp. 2825-2830,

2011.

[11] F. Li, Z. Zhang and C. Jin, "Feature selection with

partition differentiation entropy for large-scale data

sets," Information Sciences , vol. 329, pp. 690-700,

2016.

[12] J. Qian, P. Lv, X. Yue, C. Liu and Z. Jing,

"Hierarchical attribute reduction algorithms for big data

using MapReduce," Knowledge-Based Systems, vol. 73,

p. 18–31, 2015.

[13] X. Yu and X. Cai, "A multi-objective evolutionary

algorithm with interval based initialization and self-

adaptive crossover operator for large-scale feature

selection in classification," Applied Soft Computing,

vol.127, p. 109420, 2022.

[14] Y. Lv, P. Liu, J. Wang, Y. Zhang, A. Slowik and J.

Lv, "GA‐based feature selection method for oversized

data analysis in digital economy," Expert Systems,

vol.41, no. 1, p. 13477, 2024.

[15] H. Liu and L. Yu, "Feature selection for high-

dimensional data: A fast correlation-based filter

solution," in Proceedings of the 20th international

conference on machine learning, Washington, ICML-

03, 2003, pp. 856-863.

[16] L. MoránF., V. B. Canedo and A. A. Betanzos,

"Centralized vs. distributed feature selection methods

based on data complexity measures," Knowledge-Based

Systems, vol. 117, pp. 27-45, 2017.

[17] C. Kai, W. W. qiang and L. Yun, "Differentially

private feature selection under MapReduce framework,"

The Journal of China Universities of Posts and

Telecommunications, vol. 20, no.5, pp. 85-103, 2013.

[18] C. García-Osorio, A. d. Haro-García and N. G.

Pedrajas, "Democratic instance selection: A linear

complexity instance selection algorithm based on

classifier ensemble concepts," Artificial Intelligence,

vol. 174, no. 5-6, pp. 410-441, 2010.

[19]D. S. F. Isaac Triguero, "MRPR: A MapReduce

solution for prototype reduction in big data

classification," Neurocomputing, vol.150, p. 331–345,

2015.

[20] G. E. Melo-Acosta, F. Duitama-Muñoz and J. D.

Arias-Londoño, "An Instance Selection Algorithm for

Big Data in High imbalanced datasets based on LSH,"

preprint arXiv:2210. 04310, 2022.

[21] C. Gong, Z.-g. Su, P.-h. Wang, Q. Wang and Y.

You, "Evidential instance selection for K-nearest

neighbor classification of big data," International

Journal of Approximate Reasoning, vol. 138, pp. 123-

144, 2021.

[22] L. Qin, X. Wang and Z. Jiang, "A distributed

evolutionary based instance selection algorithm for big

data using Apache Spark," Applied Soft Computing,

vol.159, p. 111638, 2024.

[23] D. Fragoudis, D. Meretakis and S. Likothanassis,

"Integrating feature and instance selection for text

classification," in 8th ACM SIGKDD international

conference on Knowledge discovery and data mining,

New York, KDD '02, 2002, pp. 501-506.

[24] K. Yu, X. Xu, M. Ester and H.-P. Kriegel, "Feature

weighting and instance selection for collaborative

filtering: An information-theoretic approach,"

Knowledge and Information Systems, vol. 5, no. 2, pp.

201-224, 2003.

[25] H. Ahn and K.-j. Kim, "Bankruptcy prediction

modeling with hybrid case-based reasoning and genetic

algorithms approach," Applied Soft Computing, vol.9,

no.2, pp. 599-607, 2009.

[26] C.-F. Tsai, W. Eberle and C.-Y. Chu, "Genetic

algorithms in feature and instance selection,"

Knowledge-Based Systems, vol. 39, p. 240–247, 2013.

[27] T. Chen, X. Zhang, S. Jin and O. Kim, "Efficient

classification using parallel and scalable compressed

model and its application on intrusion detection," Expert

Systems with Applications, vol. 41, no.13, pp. 5972-

5983, 2014.

[28] Z.-H. You, Y.-H. Hu, C.-F. Tsai and Y.-M. Kuo,

"Integrating feature and instance selection techniques in

opinion mining," Research Anthology on Implementing

Sentiment Analysis Across Multiple Disciplines- IGI

Global, vol.1, pp. 800-815, 2022.

[29] C. F. Tsai, K.-L. Sue, Y.-H. Hu and A. Chiu. ,

"Combining feature selection, instance selection, and

ensemble classification techniques for improved

financial distress prediction," Journal of Business

Research, vol. 130, pp. 200-209, 2021.

[30] T. White, Hadoop, The Definitive Guide, 3rd ed.,

USA: O’Reilly Media, 2012, [E-book] Available:

books.google.com.

[31] J. Dean and S. Ghemawat, "MapReduce: Simplified

Data Processing on Large Clusters," Communications of

the ACM, vol. 51, no.1, pp. 107-113, 2008.

[32] Apache Software Foundation, "Apache Hadoop

Project," 2013. [Online]. Available:

<http://hadoop.apache.org/>. [Accessed December

2013].

[33] D. Miner and A. Shook, MapReduce Design

Patterns: Building Effective Algorithms and Analytics

for Hadoop and Other Systems,1st ed., USA: O’Reilly

Media, 2012, [E-book] Available:books.google.com.

[34] J. S. vitter, "Random sampling with a reservoir,"

ACM Transactions on Mathematical Software (TOMS)

vol.11, no.1, pp. 37-57, 1985.

Abbasi/ Journal of AI and Data Mining, Vol. 13, No. 4, 2025

454

[35] E. Š. M. R.-Š. Igor Kononenko, "Overcoming the

myopia of inductive learning algorithms with

RELIEFF," Applied Intelligence, vol. 7, no.1, pp. 39-55,

1997.

[36] L. A. R. Kenji Kira, "The feature selection problem:

Traditional methods and a new algorithm," AAAI, vol. 2,

pp. 129-134, 1992.

[37] S. Das, "Filters, wrappers and a boosting-based

hybrid for feature selection," in Proceedings of the 18th

international conference on machine learning, San

Francisco, ICML-01, 2001, pp. 74-81.

[38] I. K. Marko Robnik-Šikonja, "Theoretical and

empirical analysis of ReliefF and RReliefF," Machine

learning, vol. 53, no.1-2, pp. 23-69, 2003.

[39] G. Frederickson, "An Optimal Algorithm for

Selection in a Min-Heap," Information and

Computation, vol. 104, no. 2, pp. 197-214, 1993.

[40] J. R. Quinlan, C4.5: Programs for Machine

Learning, 1st ed., USA: Morgan Kaufmann Publishers,

1993, [E-book] Available: books.google.com.

[41] J. R. Quinlan, "Improved use of continuous

attributes in c4.5," Journal of Artificial Intelligence

Research, vol.4, pp. 77-90, 1996.

[42] R. J. Hyndman and A. B. Koehler, "Another look at

measures of forecast accuracy," International Journal of

Forecasting, vol. 22, no. 4, p. 679–688, 2006.

[43] S. Mii Rostami, and M. Ahmadzadeh, “Extracting

predictor variables to construct breast cancer

survivability model with class imbalance

problem, “Journal of AI and Data Mining, vol.6, no. 2,

263-276, 2018.

[44] R. J. Hyndman, and A. B. Koehler,” Another look

at measures of forecast accuracy,” International journal

of forecasting, vol.22, no.4, 679-688, 2006.

 .4141سال ،چهارمشماره ،دوره سیزدهم ،کاویمجله هوش مصنوعی و داده عباسی

 (MapReduceبزرگ با استفاده از با مقیاسها کاهش حجم داده یبرا دیچارچوب جد کی)

 *زینب عباسی

 .رانیمحلات، محلات، ا یمرکز آموزش عالدانشکده مهندسی،

 44/40/0400 پذیرش؛ 40/40/0400 بازنگری 41/40/0400 ارسال

 چکیده:

 به کاهش ازین شتر،یقبل از پردازش ب ن،یبزرگ اسک.. بنابرا اسیمشککلا در پردازش در م نیتراز مهم یکی میحج یهاو پردازش مجموعه داده رهیذخ

 تمیگوربر اه یمبتن یشکککنهادیچارچوب پ. دهایارائه م میحج یهاهکا در مجموعه دادهککاهش داده یبرا یم کاهکه چکارچوب نیانکاازه ننهکا ودود دارد. ا

MapReduce در مرحله دوم، شکککونایمجموعه داده انتخاب م کیاز ییهااز مخزن، نمونه یبردارچارچوب سکککه مرحله دارد. ابتاا با نمونه نیاسککک.. ا .

و شونایم یریگنیانگیم یژگیهر و یها برام وزن. سپس، تماشونایم یدهوزن ReliefF تمیانتخاب شکاه با اسکتداده از اهگور یهانمونه نیا یهایژگیو

وب چارچ یسککازادهیپ جیانا. نتااسککتداده شککاه یبناانتخاب شککاه در قب ه یهایژگیو .،ی. در نهاشککونایوزن انتخاب م ریم اد نیبا باهاتر ییهایژگیو

نن را ای دهایم شیدق. را افزا ،یبناقب ه یهاتمینامربوط در اهگور یهایژگیبا حذف و نی. همچندهایدر زمان را نشککان م یکاهش خوب ،یشککنهادیپ

 .شونایها حذف ماز داده یادیکه م اار ز یزمان حتی کنایحدظ م

 انتخاب نمونه. ،یژگی، انتخاب وMapReduceبزرگ، با م یاس یهاداده :کلمات کلیدی

