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 This paper focuses on the design of advanced controllers and the 

implementation of magnetic and velocity tracking at the position and 

formation control levels for a group of quadcopters. Initially, PID 

controllers are developed based on the quadcopter structure, and then 

a constrained fuzzy-PID controller is introduced to steer the system to 

the desired position. The performance of this controller is compared 

with classical PID and fuzzy-PID controllers. This study examines the 

arrangement and formation coordination of six quadcopters under 

three different scenarios, evaluating their formation control and 

coordination. Each quadcopter has an internal controller responsible 

for maintaining formation accuracy and system stability. Due to the 

complexity of quadcopter dynamics, trajectory tracking is challenging 

research. fuzzy-PID controller is proposed to stabilize the quadcopter 

along predefined trajectories, utilizing speed information as input. 

Simulation results in the MATLAB/Simulink environment 

demonstrate that the fuzzy-PID controller outperforms the classical 

PID controller. exhibiting greater resistance to external disturbances 

across all axes, higher accuracy in reducing tracking errors, and 

improved stability. This superiority is particularly evident in multi-

agent systems, emphasizing the significance of advanced control 

techniques in enhancing the regulation of both single and multi-agent 

quadcopters. Ultimately, this improves tracking performance while 

ensuring dynamic efficiency in uncertain environments. 
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1. Introduction 

A quadcopter is an aircraft that uses four rotors to 

lift and propel itself, arranged in a cross 

configuration. Its primary maneuvers rely on 

manipulating the speeds of these rotors. Although 

it has only six degrees of freedom (DOF), it has 

four actuators, making it underactuated and prone 

to unstable dynamics. One key challenges of small 

aerial vehicles is hardware redundancy, which adds 

to this constraint and necessitates careful 

consideration in control system design, crucial 

achieving acceptable and efficient performance. 

Small unmanned aerial vehicles (UAVs) are 

increasingly used for various civilian and military 

applications[1]. A quadcopter is of vertical takeoff 

and landing (VTOL)aircraft, consisting of four 

motors, providing great stability and 

maneuverability. Advantages include reduced 

energy consumption and ease of control. 

Furthermore, quadcopters can be remotely piloted, 

making them suitable for hazardous operations. 

Multirotor quadcopters are more stable than fixed-

wing aircraft in applications involving mapping, 

aerial monitoring, and disaster response [2]. 

Although a quadcopter is an unmanned aerial 

vehicle capable of flying without a pilot, a good 

control system essential for fulfilling this task. 

Such a system primarily focused on rotor speed  

control, keeps the aircraft flying smoothly and 

While linear control techniques often provide 

dequate stabilization for basic stability, 

quadcopters  well-known complex dynamic 

models and are  exceptionally susceptible to 
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external disturbances such as wind or unpredictable 

environmental factors. Consequently, a nonlinear 

control system is required, which can be further 

enhanced through algorithms designed to help the 

controller adapt to challenging situations. Due to 

their higher adaptability and decision-making 

efficiency in changing environments, intelligent 

control methods are increasingly successful in 

augmenting traditional control approaches [3]. The 

control problem of quadcopters has been 

extensively studied in the literature using various 

control approaches. These include classical 

techniques such as Proportional-Integral-

Derivative (PID), optimal methods like Linear 

Quadratic Regulator (LQR), and robust control 

strategies such as H-infinity control for linear 

systems. For nonlinear systems, common methods 

include backstepping, feedback linearization, and 

model predictive control. Comparative analyses 

between PID and LQR controllers on micro 

quadcopters have shown that while both 

approaches can stabilize the system in hover mode, 

PID control exhibits lower performance under 

varying operating conditions. This highlights the 

advantage of LQR in achieving more efficient and 

robust control across diverse operating conditions 

[4, 5]. The design of an effective position and 

attitude controller is crucial for managing such 

complex systems, leading to extensive research on 

both linear and nonlinear control techniques. 

Among these, the PID controller remains one of the 

most widely used methods [6-8]. Acknowledging 

the limitations of conventional PID controllers, 

researchers have explored various methods for 

automatic tuning to enhance performance and 

adaptability [9]. Among various methods for 

tuning PID parameters, the integration of fuzzy 

neural networks has emerged as a noteworthy 

solution. For instance, Davanipour et al. (2018) 

introduced a self-adjusting PID controller based on 

a fuzzy wavelet neural network, which exhibited 

enhanced adaptability and performance in dynamic 

environments[10]. Similarly, Tripathy et al. (2019) 

developed a fuzzy PID controller for load 

frequency regulation, utilizing Spider Monkey 

Optimization (SMO) to optimize parameters, 

leading to improved stability and responsiveness 

under fluctuating load conditions [11]. 

Furthermore, Wang et al. (2017) proposed an 

advanced fuzzy PID controller integrated with a 

predictive functional control framework, achieving 

greater precision and flexibility in dynamic 

systems [12]. While these studies have 

significantly contributed to simplifying the PID 

tuning process, many of the suggested techniques 

remain complex for practical applications, and 

further advancements in control performance are 

still necessary. Despite the numerous benefits of 

drones, stabilization remains a critical challenge, 

particularly in achieving precise regulation and 

robustness. These concerns have driven extensive 

research into optimizing quadcopter controller 

performance. Although PID controllers are 

commonly employed for this purpose, they exhibit 

limitations such as weak adaptability, high 

sensitivity to noise, insufficient robustness, 

inability to handle multiple objectives 

simultaneously, and substantial computational 

demands. Consequently, PID controllers alone may 

not always ensure accurate quadcopter stabilization 

[13-15]. In some scenarios, they may even lead to 

instability, necessitating the integration of 

intelligent control algorithms like fuzzy logic 

controllers to address these shortcomings. By 

combining the inference capability of fuzzy logic 

with the learning adaptability of PID control, this 

hybrid framework enhances system robustness 

against parameter variations and disturbances 

while improving stability and reliability across 

different operational conditions. Another 

advantage of fuzzy PID controllers is their ease of 

adjustment, as the controlled model can 

dynamically evolve. Comprehensive surveys on 

formation control for multi-agent systems, such as 

[16], have examined consensus-based formation 

strategies. However, these studies have not 

extensively covered notable research on inter-agent 

distance-based formation control. Reports on 

behavior-based formation control strategies can be 

found in [17, 18], while virtual structure-based 

approaches have been explored in [19, 20], 

Additionally, formation control techniques 

employing virtual structures have been discussed in 

[21, 22]. Each of these methodologies has distinct 

advantages and drawbacks. For instance, leader-

follower strategies are relatively simple to 

implement but lack direct formation feedback and 

are less resilient due to their dependence on the 

leader's stability. Conversely, behavior-based 

approaches effectively prevent collisions, yet their 

mathematical formulation remains complex [23]. 

UAV swarm formation controllers based on a 

consensus-driven strategy were designed in [24], 

demonstrating that the consensus method 

maintained structural integrity even in the presence 

of communication disruptions. Seo et al. combined 

consensus protocols with output feedback 

linearization to address formation control 

challenges, thereby enabling partially time-varying 

formations. Turpin et al. [25] also studied the 

leader-follower strategy of deploying and 

maintaining Unmanned Surface Vehicles (USVs) 
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networks [26]. This study addressed uncertainties 

and stochastic disturbances affecting network 

resilience, proposing a robust control strategy to 

stabilize the formation under these conditions. In 

contrast, [27] introduced a distributed optimal 

cooperative control (DOCC) approach for multi-

agent systems (MASs), which considers 

constraints such as input saturation and collision 

avoidance. Furthermore, the authors in [28] 

presented an approach for localizing a radio 

frequency (RF) source by leveraging 

environmental obstacles. This method enhances 

localization accuracy by accounting for signal 

reflections from surfaces, especially in cases where 

direct line-of-sight is obstructed. Experimental 

results demonstrated that 3D localization accuracy 

significantly improved when both direct and 

reflected signals were considered, particularly in 

large environments.in [29], the problem of optimal 

adaptive leader-follower consensus for linear 

multi-agent systems is investigated, considering 

both known and unknown agent dynamics. A 

distributed control framework is proposed to 

ensure that all follower agents asymptotically track 

the leader's trajectory while minimizing a 

predefined performance cost. For agents with 

unknown dynamics, adaptive control laws are 

developed to estimate uncertain parameters in real 

time, ensuring stability and consensus 

convergence. The approach combines optimal 

control techniques with adaptive mechanisms, 

providing robustness and improved performance in 

the presence of system uncertainties. 

The simulation results presented in this paper 

illustrate the efficacy of the proposed method 

across diverse conditions and disturbances. The 

key contributions of this work can be outlined as 

follows: 
 

 Design of a fuzzy control system incorporating 

disturbance rejection for quadcopter control. 

 Development of a comprehensive quadcopter 

model. 

 Performance comparison between fuzzy 

controllers and PID controllers using Simulink, 

along with analysis and comparison of their 

responses in the presence of disturbance. 

 Implementation of two different scenarios of 

single-integrator formation control on a 

nonlinear model with a Fuzzy-PID controller. 

This study begins by introducing the nonlinear 

models of the quadcopter, Subsequently, a single-

integrator formation control strategy is formulated 

for a fleet of six quadcopters, with clearly defined 

control inputs aimed at tracking a Helix and 

Variation Formation. Finally, simulation results 

and outputs for each phase are presented in the 

concluding section, enabling a thorough 

comparative analysis. 

The rest of this paper is organized as follows: 

Section 2 deals with the mathematical modeng of 

the quadcopter. Section 3 discusses Controller 

Design. Section 4 addresses multi-agent 

quadcopter formation control. Simulations of the 

controllers and the formation strategies are 

presented in Section 5. After that, we deliver our 

final thoughts and conclusions in the last section. 
 

2. Quadrotor Dynamics and Kinematics 

In a standard quadcopter design, four rotors are 

arranged in a cross configuration. Throttle 

adjustments involve simultaneously increasing or 

decreasing the speeds of all four rotors equally, 

generating a vertical force (denoted as (𝑢1)in the 

body-fixed frame), which allows the quadcopter to 

ascend or descend. To control roll movement, the 

speed of the left rotor is increased while the right 

rotor’s speed is decreased, as shown in Figure 1. 

Similarly, this method is applied to the other two 

rotors to control pitch movement. For yaw control, 

the quadcopter modifies the speed of its front and 

rear rotors by rotating them counterclockwise, 

while the other two rotors rotate clockwise. This 

adjustment enables the quadcopter to perform a 

yaw maneuver by increasing the speed of the 

counterclockwise rotors and decreasing the speed 

of the clockwise rotors. 

 
Figure 1. Quadcopter configuration. 

To describe the motion of a quadcopter, two 

reference frames are defined, as illustrated in 

Figure 1. The quadcopter's orientation is 

determined by three Euler angles: roll ( ), pitch (

 ), and yaw ( ), which together form the vector 

 Ω , , . T    These angles specify the quadcopter’s 

attitude in three-dimensional space. Additionally, 

its position in the inertial frame is represented by 

the vector.  , , . Tr x y z A rotation matrix R is 

utilized to transform vectors between the body-

fixed frame and the inertial frame. This 
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mathematical framework serves as the basis for 

analyzing and regulating the quadcopter's 

movement. 
 

2.1 Kinematics 

The quadcopter's absolute position in the world 

frame is represented by the ,  ,x y  and z   axes, 

encapsulated in a column vector .  Its attitude, or 

angular orientation, in the world frame is described 

by ,  Which includes the roll angle  The pitch 

angle , .  and the yaw angle .  Collectively, these 

angles are known as Euler angles. 

x

y

z



 
 

  
  

 







 
 

   
  

 

(1) 

The quadcopter’s body frame is centered at its 

center of mass. In this frame, the linear velocities 

along the three principal axes are denoted as 

𝑣𝐵,While the associated angular velocities are 

represented by 𝜈. More specifically, the rotational 

velocities around the x, y, and z axes are labeled as 

p, q, and r, respectively. 

,

,

,
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(2) 

To monitor the state of the quadcopter, the 

positions and angular velocities measured in the 

body frame must be transformed into the world 

frame. For positions, this transformation between 

the two frames is accomplished using rotation 

matrices corresponding to each axis. These rotation 

matrices are as follows: 

,
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,

0 0 1

0

0

xR cos sin
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  

 

 
 

  
  

 

(3) 

The overall rotation matrix from the body frame to 

the world frame is derived from this as follows:  

 

. . . . . . .

. . . . . . .

. .

c c c s s s c c s c s s

R s c s s s c c s s c c s

s c s c c

           

           

    

  
 

   
  

 (4) 

The inverse of the rotation matrix   ,R  Which 

transforms coordinates from the world frame to the 

body frame, is equivalent to its transpose ( 1 TR R 

) due to the orthogonality property of R . The 

angular velocities of the quadcopter, measured in 

the body frame, differ from their representation in 

the world frame. To express these.angular 

velocities in the world frame, they must be 

transformed using the rotation matrix .  

 v   

 

1    

0

0 / /

sin tan cos tan p

cos sin q

sin cos cos cos r
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(5) 

During operation, the quadcopter’s motors 

generate an upward force, F, along the body 

frame’s z-axis. This force is directly related to the 

square of each motor’s angular velocity. 

Furthermore, as the motors rotate, they collectively 

produce torque, 𝜏, around the three principal axes 

of the body frame. This torque is also proportional 

to the angular velocities of all four motors. 

 
4 4
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(6) 

The force generated by the 
thi motor is denoted as 

if , where if is calculated using the thrust 

coefficient TC and the motor's angular velocity. 

The total forces in the body frame are represented 

as a vector BF . 

The torques generated by the four motors include 

,    , and  , which act along the x-axis, y-axis, 

and z-axis of the body frame, respectively. These 

torques contribute to the roll, pitch, and yaw 

motions of the quadcopter. 
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 2 2 2 2
1 2 3 4 T         

(7) 

Where 𝐿 being the distance between the rotor and 

the center of mass of the quadcopter, 𝑏 represents 

the constant thrust coefficient , and d They can be 

explained in equation (7). 
 

 

2.2 Dynamic model 

The dynamical model of a quadrotor is represented 

by six equations. Three equations govern the 

quadrotor's translational motion, describing its 𝑥, 𝑦, 
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and 𝑧 positions. The other three equations describe 

its rotational dynamics, capturing the roll, pitch, 

and yaw motions. These equations take the angular 

velocities of the four motors, 𝜔, as inputs and 

determine the next state of the quadcopter. The 

dynamics of the quadcopter are formulated using 

Newton-Euler equations. Newton's equations 

represent the translational motion and are 

expressed in the inertial (world) frame, 

incorporating the gravitational force vector 𝐺. 
¨

Bm G RF    

¨

¨

¨

0 0

0 0

x

m y R

mg F
z

 
 

    
          
        

 
 

 
(8) 

It is possible to simplify (8) and isolate the vector 𝜉̈: 

 

¨

¨

¨
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m
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        

 
 

 (9) 

The rotational dynamics of the quadcopter are 

described by Euler's equations of motion, as 

outlined in equation (10). This equation is most 

effectively formulated in the body frame because 

the control inputs are directly applied in this frame. 

Furthermore, measurements from onboard sensors, 

such as gyroscopes and accelerometers, are 

inherently aligned with the body frame, making it 

a practical choice for analyzing and controlling 

rotational motion. By working in the body frame, 

the system's rotational behavior can be more 

intuitively modeled and controller, leveraging the 

natural alignment of sensor data and control inputs. 
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(10) 

In the rotational dynamics of the quadcopter, rj

represents the inertia matrix, which contains the 

mass moments of inertia for each axis: xxI , yyI ,and 

zzI . By simplifying equation (10), it is possible to 

isolate the time derivative of the angular velocity 

vector,     ,   , 
T

v p q r   , leading to a more concise 

representation of the rotational motion in terms of 

its dynamics. 
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 (11) 

Equation (11) can be converted to the inertial frame 

after being integrated with Equation (5). These 

Newton-Euler equations are considered 

straightforward since they exclude external forces 

and torques, and they can be expressed in the 

following equation form. 
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(12) 

That the torques that are created by the four 

motors consist of   ,      and  and T in the 

direction of the body ,     x y and z  axes. 
  

3. Control Algorithm 

In this section, the attitude control of the 

quadcopter is first analyzed, followed by the 

simultaneous control of both position and attitude. 

a PID algorithm is employed, for attitude control, 

while a fuzzy logic controller regulates the z-

position. Feedback linearization is adopted to 

achieve precise attitude control. The proposed 

control strategy accounts for variations in the 

quadcopter's mass and moments of inertia, 

ensuring robust performance under changing 

conditions. The controllers are designed to enable 

the quadcopter to follow a predefined trajectory 

accurately. The structure of the proposed cascaded 

control system is illustrated in Figure 2. 

Figure 2  provides a general overview of the 

quadcopter's control. The reference trajectory is 

first input into the system, and then passes through 

the position and attitude controllers. The inner 

control loop includes the x and y positions; due to 

the nature of quadcopter control, the output of this 
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section computes the desired roll and pitch angles. 

These angles are then fed into their respective 

attitude controllers. The z-position controller 

operates separately, based on the specific dynamics 

and control laws of the quadcopter. 

 
Figure 2. Control architecture. 

Following these stages, the outputs of the z-

position controller and the desired roll, pitch, and 

yaw angles are used, according to the quadcopter 

control laws, to compute the total thrust (T) and the 

moments in roll, pitch, and yaw. These values are 

then transformed into angular velocities    in the 

subsequent block. It is important to note that these 

transformation relationships are given explicitly in 

Equation (15), which is part of the standard 

quadcopter control laws. Finally, the computed ω 

values are fed into the quadcopter model block, 

which outputs six state variables: three positions 

and three angles. These outputs are then fed back 

into the system in a closed-loop configuration to 

complete the control process. A clearer and more 

detailed representation of the control flow is 

provided in Figure 3 of the manuscript. 
 

3.1 PID Controller 

A robust and effective control strategy for the 

quadcopter can be achieved by employing a PID 

controller optimized using the Ziegler-Nichols 

methodology. The PID controller's simplicity and 

practicality make it a preferred choice for 

quadcopter control applications. Due to the 

complexity of the quadcopter dynamics and the 

interdependence of different control loops, we 

followed a step-by-step tuning approach: we first 

tuned the outer-loop controllers, which include the 

x and y position controllers, and then proceeded to 

tune the inner-loop controllers, which include the z 

position and attitude controllers. 

This stepwise tuning process ensured that the 

interactions between different control loops were 

properly handled and the system performance was 

optimized. 

In this strategy, the PID controller is utilized to 

maintain the quadrotor's orientation. Assuming 

stability in the rotational subsystem, with roll and 

pitch angles set to zero ( 0    0and   ),the PID 

controller's individual components are represented 

by an equation. The altitude error signal, calculated 

as the difference between the desired altitude  zd  

and the actual altitude   ,z  serves as input to the 

attitude controller. This attitude controller 

generates a control signal  1u  to adjust the 

quadcopter's orientation and maintain its desired 

altitude. 

     
 

0
    

t
i

i p i i i d

de t
u t k e t k e t dt k

dt
  

  1,2,3,4,5,6i   

 

(13) 

The controller  1  u t is linked to the position on the 

Z-axis, while the controllers    2 4    ) u t tou t

correspond to the angles ,  ,   and    (Roll, Pitch, 

Yaw) respectively. This setup allows for 

controlling three positional axes and the yaw 

direction, with roll and pitch direction controllers 

incorporated within. Effectively, the signal from 

the position controller determines the thrust vector 

in the inertial frame. The orientation of this vector 

establishes the reference points for the roll and 

pitch controllers, as illustrated in Figure 2. 

Moreover, the PID controller section internally 

computes the PID values for each component and 

feeds these computations into the power control 

system to derive T ,  ,  , and . These values 

are subsequently forwarded to the angular speed 

control interface to calculate the final values of 1w

, 2w , 3w  and 4w , as depicted in Figure 3, 

representing the stages outlined earlier. 

In the Quadcopter system, there are six positional 

states  ,  , x y z and three angular orientations  ,  ,   

. However, only four control inputs are available, 

represented by the angular velocities of the four 

rotors, denoted as . i The relationship between 

these states and the total thrust  T  and torque     

generated by the rotors is described in the 

Quadcopter's dynamics, as shown in Equation (12). 

The total thrust  1  T primarily affects the 

acceleration along the Z-axis, crucial for 

maintaining the Quadcopter airborne. Meanwhile, 

torque 1 influences the angular acceleration 

around the   angle, torque 1 impacts the angular 

acceleration around the   angle, and torque 1 

contributes to the angular acceleration around the 
  angle. 

 

  

  

  

  

1 1

1 2

1 3

1 4

.

xx

yy

zz

m
T g u t

cos cos

u t I

u t I

u t I







 







  

 

 

 

 
(14) 
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In this context, the gravity g , mass m, and 

moments of inertia I  of the quadcopter are also 

taken into account. The correct angular velocities 

of the rotors, i , can be determined using Equation 

(7), with the relevant values obtained from 

Equation (14). 

 
12 11

1
4 2 4

T

K Kl b




     

 
1 12 1

2
4 2 4

T

K Kl b

  
     

 
12 11

3
4 2 4

T

K Kl b




     

 
1 12 1

4
4 2 4

T

K Kl b

  
     

(15) 

To manage the two positional degrees of freedom 

(x, y) in quadcopter control, a hierarchical cascade 

structure with dual control loops is implemented. 

The inner control loop employs linear PID 

regulators to directly manage lateral adjustments 

along the x and y axes, leveraging their fast 

response characteristics to maintain dynamic 

stability. Simultaneously, the outer control loop 

uses additional PID controllers to calculate target 

roll ( d ) and pitch ( d ) angles, which act as 

reference inputs for the inner loop. These 

orientation commands enable indirect position 

control by translating horizontal thrust into tilt-

induced movement. The outer loop thus bridges 

high-level positional goals with low-level attitude 

adjustments, while the inner loop executes rapid 

corrections. This layered architecture decouples 

positional and angular control objectives, allowing 

simultaneous precision in both trajectory tracking 

(via the outer loop) and stability during maneuvers 

(via the inner loop), ensuring accurate and robust 

aerial positioning. 

 5d sat u   

 6d sat u   
(16) 

In our work on quadcopter control, specifically the 

position control in both the x and y axes the 

controllers are utilized to control position errors 5 e

and 6e , defined as desired x and y positions (x 

desired and y desired) actual positions (x and y). 

Saturation blocks will bound the output signal 

(±0.05) as the outputs of the controllers to limit the 

control effort and to keep the system stable. These 

blocks are for controlling different parameters for 

the quadcopter, notably the roll ( d ) and pitch ( d

) angles. Block dialogs and system settings show 

that the simulation can be configured with 

adjustable parameters.  

 

Figure 3. Full architecture of the quadcopter using 

Simulink. 

3.2. Fuzzy Controller 

Fuzzy logic has emerged as a powerful tool for 

incorporating human knowledge and managing 

uncertainties in control system processes [30]. A 

fuzzy self-tuning PID controller integrates fuzzy 

logic principles into a traditional PID framework 

[31, 32]. Fuzzy logic systems, a subset of artificial 

intelligence, are designed to manage uncertainty 

and imprecision by leveraging fuzzy set theory in 

decision-making. Unlike traditional binary logic, 

which operates strictly on true or false values, 

fuzzy logic incorporates intermediate truth levels, 

represented by membership values ranging from -1 

to 1. This adaptability makes it particularly useful 

for handling complex and ambiguous real-world 

problems where precise boundaries are difficult to 

define. In the context of self-tuning a PID 

controller, a fuzzy relationship is established 

between the three PID gains—proportional, 

integral, and derivative—and the error terms "e" 

(current error) and "ed" (error rate of change), as 

illustrated in Figure 4. Similarly, for x and y 

position control, this relationship is depicted in 

Figure 5. By applying fuzzy control principles, the 

PID gains are continuously adjusted based on the 

varying values of "e" and "ed" to satisfy specific 

control objectives. This adaptive tuning 

mechanism enhances both the transient and steady-

state performance of the system. 

A set of seven fuzzy values is chosen to represent 

the linguistic variables for "e" (error) and "ed" 

(error derivative), as well as seven fuzzy values for 

the output. The membership functions employed in 

these controllers consist of a mix of triangular and 

Gaussian functions. Importantly, the widths of 

these fuzzy sets are non-uniform and have been 

fine-tuned through iterative trial-and-error testing, 

as depicted in Figure 6  for the x-position and 

Figure 7  for the y-position. The foundation of a 

fuzzy controller lies in its linguistic rule set, which 

is typically formulated based on expert knowledge 

and experience, though it can also be refined 

through experimental adjustments. The fuzzy rules 

utilized for adjusting the PID gains are outlined in 

Tables 1 and 2. Furthermore, the membership 
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functions for all input and output variables have 

been carefully structured to achieve optimal control 

performance. 

 
Figure 4. The fundamental design of a fuzzy controller for 

managing angles and z –position. 

 
Figure 5. Basic structure of a fuzzy controller for x and y 

position. 

 
Figure 6.  Membership function for all inputs and outputs 

for angles and z-position. 

 
Figure 7. Membership function for all inputs and outputs 

for x and y position. 

4. Formation control 

In this section, the positions of all formation 

members would be detected by each quadrotor in 

the system with respect to a common reference 

coordinate system. Its control architecture 

comprises inner and outer control loops. The inner 

loop stabilizes the individual quadrotor platform 

and the outer loop achieves reference path tracking. 

Due to the large difference in time constant 

between these two loops, they can be treated 

independently with low-level and high-level 

dynamics [33,34],  The high-level dynamics, are 

used for swarm control, as depicted in Figure 8. , 

which shows a schematic of the controlled 

nonlinear dynamics in formation. 
 

Table 1. FUZZY RULE FOR KP, KI. 

 Error 

E
rr

o
r 

R
at

e 

 NB NM NS ZO PS PM PB 

NB M S VS VVS VS S M 

NM B M S VS S M B 

NS VB B M S M B VB 

ZO VVB VB B M B VB VVB 

PS VB B M S M B VB 

PM B M S VS S M B 

PB M S VS VVS VS S M 
 

Table 2. FUZZY RULE FOR KD. 

 Error 

E
rr

o
r 

R
at

e 

 NB NM NS ZO PS PM PB 

NB M B VB VVB VB B M 

NM S M B VB B M S 

NS VS S M B M S VS 

ZO VVS VS S M S VS VVS 

PS VS S M B M S VS 

PM S M B VB B M S 

PB M B VB VVB VB B M 
 
 

4-1. Communication Graph Between Agents in 

Multi-agent Control 

The communication graph between agents plays an 

important role in multi-agent control, because it 

determines how information is balanced and 

exchanged among them. This graph can have 

various characteristics that influence the 

performance of the multi-agent system. 

A communication graph is typically represented 

as  ,G V E  where: 

 V is a set of nodes, each representing an 

agent. 

 E is a set of edges that represent 

communication links between agents. If 

 ,E i jò , it means that agent  i can share its 

information with agent  j . 

The selection of a suitable communication 

graph depends on various factors: 

 Type of system: For example, in a group 

of quadcopters, a connected yet optimized 

graph might be preferred to reduce energy 

consumption. 

 Communication cost: Fully connected 

graphs enable extensive communication 

but are resource-intensive. 
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 Fault tolerance: Denser graphs are 

generally more resilient to link failures. 

 Nature of the mission: In leader-tracking 

missions, leader-follower graphs are more 

appropriate.asWX 

For controlling the agents in this article, the 

following communication graph is proposed: 

All agents receive path information from a leader 

and adjust their position and velocity to maintain a 

desired formation relative to the leader. 

Additionally, when agents are in close proximity to 

each other, they communicate to maintain safe 

distances and avoid collisions. 

This section describes the general structure of the 

multi-agent system, consisting of six quadcopters, 

and the way they are controlled in a leader-follower 

configuration. 

System Structure: Leader-Follower:  

 Number of agents: Six quadcopters 

 Role distribution: One leader and five followers 

 Interaction and communication diagram: 

o The leader has a motion reference and 

communicates unidirectionally with the 

followers: it sends commands or position data 

but does not receive any control input from the 

followers. 

o The followers receive the leader’s position and 

also communicate with each other to avoid 

collisions. 

o As a result, the communication graph is as 

follows: 

 Node 1 (leader) → outgoing edges to all 

followers 

 Between followers (nodes 2 to 6), a fully 

connected bidirectional graph exists for 

repulsion force calculation. 

 
Figure 8. Communication graph between agents. 
 

Figure 9 presents a schematic representation of 

how nonlinear dynamics are controlled within a 

group formation. This figure illustrates how each 

member synchronizes its behavior with the 

collective group through high-level control, while 

low-level control locally stabilizes each quadrotor. 

This efficient combination of local and collective 

control forms the foundation of successful 

performance in group flight systems. Ultimately, 

this hybrid control structure plays a crucial role in 

accomplishing complex, multi-agent flight 

missions by offering high levels of flexibility, 

stability, and adaptability. 

 
Figure 9. Schematic Formalization of Nonlinear 

Controlled System. 

In addition to the overall control structure 

previously described, this section explores three 

distinct formation patterns within the group flight 

system. These formations are designed to enhance 

the system's efficiency, flexibility, and adaptability 

in response to varying environmental conditions 

and diverse mission requirements. Each formation 

possesses unique characteristics and specific 

applications. The helix formation is one of these 

structures, in which the group members are 

arranged to form a three-dimensional helix  pattern.  

This configuration enables the even distribution of 

quadrotors across different altitudes and positions, 

making it highly suitable for missions that require 

extensive spatial coverage or imaging from 

multiple angles. In this formation, precise control 

over the altitude and horizontal position of each 

member is essential to maintain the spiral structure. 

The variation formation refers to a class of 

configurations in which the group's structure 

continuously and adaptively changes. Based on 

mission demands or environmental conditions, the 

spatial parameters of the agents are adjusted in real 

time. This type of formation offers high flexibility 

to respond to unexpected changes and requires the 

use of adaptive control algorithms and real-time 

decision-making at the group level. 

For the sake of simplification, the control system is 

modeled as a double integrator, as expressed by the 

following equation. Accordingly, the control input 

for the leader and the other agents is defined as 

follows: 

 
¨

   1,2, ,iiq u i N    (17) 

For the leader factor we have: 

    
¨

1 1 1 1 11  d ddu q q q q q     (18) 

And for the leaders  we have  1,2, .j N   

      

i

i a j i j i

j N

u K q q q q



    
(19) 
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Theorm:  Lyapunov-Based Stability Proof 

We define the following Lyapunov function to 

analyze stability of the formation: 

  
6

22

2

1

2 2

p
i j i j

i

k
V v v q q



      (20) 

This function is positive definite, and 0V   only 

when all agents match the desired formation and 

move with the same velocity. 
 

 Derivative of the Lyapunov Function: 
We compute the time derivative of 𝑉: 

Relative Velocity Error: 

   
6

1 1

2

T

i j i

i

V v v q q



    
(21) 

From the control law (1), for each follower: 

   1 i r i j a i jv u k q q k v v         (22) 

So : 

      
6

1 1

2

T
i r i j a i j

i

V v v k q q k v v



        
    (23) 

This expression will simplify using symmetry in 

the graph (undirected), and noting that: 

 The terms involving position errors cancel 

with the derivative of the second term in V 

1.1 Position Error Term 

    2

T

p i j i jV k q q v v     (24) 

This term also contributes to reducing the error 

since it promotes velocity alignment to correct 

position errors. 

Putting both parts together: 

 2
a i jV k v v     (25) 

This is: 

 Negative semi-definite, as it’s a sum of 

squared velocity differences 

 Zero only when all agents have equal 

velocities. 
 

4.6. Helix formation 

This section focuses on the coordination of 

multiple quadrotors within a specified formation 

framework, leveraging the nonlinear dynamics 

inherent to quadrotor systems. Specifically, we 

consider a formation composed of six quadrotors, 

aiming for convergence of all agents to a 

predefined geometric configuration. We propose a 

formation control strategy grounded in a layered 

unified double-integrator formation model. A 

primary application of this approach, detailed in the 

subsequent section, involves the integration of the 

nonlinear system dynamics regulated in the 

secondary control layer with the overarching 

formation control scheme. 

In this system, the leader is considered the primary 

agent that directly follows the reference trajectory. 

The position and velocity of this agent are 

controlled according to specific dynamic equations 

to minimize tracking error along the given path. 

The desired trajectory is defined such that initially, 

the agents ascend from their initial positions while 

attempting to form a Hexagon formation up to an 

altitude of 5 meters. Then, they proceed along the 

path at a constant altitude, beginning to execute a 

spiral motion. In this operating system, a primary 

node is initially designated as the leader, which 

must follow the path outlined below. 

For the leader factor we have: 

    
¨

1 1 1 1 11  d ddu q q q q q     (26) 

On the other hand, we know that: 

 1  ,  , 
T

d d d dq x y z     (27) 

The vector 1  ,  , 
T

d d d dq x y z     represents the desired 

position components, and the specific values for 

dx  ,  dy , and dz are provided in the simulation 

section.  

And for the leaders  we have  1,2, .j N   

      

i

i ij a j i ij j i

j N

u a K q q d q q



    
    

(28) 

where ,  ij ija d  are calculated from Equations (34) 

and (35). 
 

4.2. Variation formation 

Variation formation control is an advanced control 

methodology utilized in multi-agent systems, such 

as quadcopter swarms, to dynamically adapt the 

formation of the group based on mission 

objectives, environmental constraints, or system 

state variations. This approach ensures that a fleet 

of quadcopters can perform cooperative tasks 

effectively, such as search and rescue operations, 

environmental monitoring, or payload transport. 

The behavior of n  quadcopters in the airspace is 

referred to as variation formation or in more 

common terms formation control, we are designing 

on the principle that with this one element we can 

create space in order to have n quadcopters to have 

a given configuration. This allows each quadcopter 

to adapt its position and orientation with respect to 

others, making it possible for the swarm to 

simultaneously execute tasks such as monitoring or 
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transport in an environment while maintaining a 

desired formation pattern. In this section, system is 

in the general equations of double integrator with 

variation formation can be written as follows: 

 
¨

  iiq u  (29) 

even though formation changes after st  and the 

relation and distance between agents is determined 

through the following equation 

       1 2 1 st t
i i i sd d d e u t t


     (30) 

According to (30), j  and i  in 
j

id  show the 

position of the quadcopter in varying formation and 

the i’th agent, respectively. Then, control input is 

applied to system as follows:  

   
¨

1 0
1 2 1 2 12 2

11

1 1
d dd

a

q q
u q q q q q K

r rr

 
        

 

 (31) 

where 1r  is the distance from each agent to the 

forward face of an obstacle with radius R: 

 1 1 0r q q R   (32) 

where: 

  ar is the area of influence of the obstacle’s 

repulsive potential field, 

 2dq  is the reference trajectory of the 

agents. 

 0   q is the position of the center of the 

obstacle. 

And for the leaders, we have  1,2, .j N   

    1 2  

i

i j i i j i

j N

u q q d q q 



     
   

(33) 

5. Simulation and Results 

We present three examples involving systems 

controlled by various combinations of PID and 

Fuzzy-PID controllers under both disturbed and 

undisturbed conditions. The next section evaluates 

the performance of Fuzzy-PID controllers in these 

scenarios. The simulation constants for the 

quadcopter are provided in Table 3. The discussion 

is organized into two main sections. The first 

section focuses on the design and comparison of 

two controllers to address internal issues. The 

second section explores three distinct formation 

control scenarios using the selected controller. 

 

5.1.Comparison of PID and Fuzzy-PID 

Controllers 

To enable simulation and performance evaluation, 

the mathematical model and corresponding control 

systems for the quadcopter were developed in 

MATLAB/Simulink. Initially, the quadcopter is 

considered to be in hover mode with specific angles 

of pitch, roll, and yaw. The system is then 

transitioned into a static state, where these angles 

reach their setpoints progressively. Both control 

methods are implemented, and their outcomes are 

compared. The gains of the classical PID controller 

were tuned using the Ziegler-Nichols method, and 

the resulting PID gain parameters are shown in 

Table 4, a Fuzzy-PID controller was developed for 

performance comparison with the classical PID 

controller. The data for the Fuzzy-PID controller 

are based on this strategy and given in Table 5. 
 

Table 3. DisISGN PARAMETERS OF QUADCOPTER 

symbol Description and unit Value 

   Roll angle - 

   Pitch angle - 

   Yaw angle - 

 m  Mass Of quadcopter  0.5  

     L  
Center of quadcopter to center of 

propeller distance  0.2  

 xxI  Body moment of inertia around 

the x-axis  34.85 10  

 yyI  Body moment of inertia around 
the y-axis  34.85 10  

 zzI  Body moment of inertia around 

the z-axis  38.81 10  

 b  Thrust factor  53.36 10  

 d  Drag factor  71.12 10  

      rj  Rotor inertia  62.92 10  
 

Table 4. PARAETER OF PIDAIN. 

  pK   iK   dK  

ψ  1000 0.01 400 

  80 0.01 12.3 

θ  50 0.03 50 

x  40 0 80 

y  1 0 1 

z  5 0.1 2 
 

Table 5. INPUT RANG OF MEMBERSHIP 

FUNCTIONS IN FUZZY PID CONTROLLER. 

  pK   iK   dK  

roll [40 59] [0 0.01] [14 20] 

pitch [100 120] [0 0.9] [20 25] 

yaw [40 70] [0.020.18] [20 25] 

x  [2 6] [0 0.01] [0.1 4] 

y  [35 55] [0 0.01] [90 120] 

z  [0.1 0.5] [0 0.01] [0.7 1.5] 

 

The figures demonstrate the dynamic performance 

of the quadcopter's control system using both PID 

and fuzzy-PID controllers in the absence of 

external disturbances. Each subplot captures a 
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distinct motion characteristic: Figure 10  illustrates 

the pitch response, Figure 11  shows the roll 

response, and  Figure 12  presents the yaw 

response. Additionally, Figure 13  depicts the z-

position behavior, while Figures 14 and 15  focus 

on the x-position and y-position, respectively. 

These plots provide a comparative analysis of the 

two controllers, emphasizing differences in settling 

times, oscillation levels, and steady-state precision. 

The findings indicate that the fuzzy-PID controller 

delivers smoother and more stable performance 

across various motion parameters, with its 

effectiveness influenced by specific system 

characteristics. 

 
Figure 10. Pitch angle response without disturbances for 

(a) PID-Controller and (b) Fuzzy-PID Controller. 

 
Figure 11. roll angle response without disturbances for (a) 

PID-Controller and (b) Fuzzy-PID Controller. 

 
Figure 12. Yaw angle response without disturbances for 

(a) PID-Controller and (b) Fuzzy-PID Controller. 

 
Figure 13. Response of z-position controllers without 

disturbance.  

 
Figure 14. Response of x-position controllers without 

disturbance. 

 
Figure 15. Response of y-position controllers without 

disturbance. 

 Furthermore, a disturbance with a step size of 0.6 

is applied to both PID and Fuzzy-PID,controllers 

within the time range of 10 to 12 seconds. Figure 

16 and Figure 17 compare the performance of PID 

and fuzzy-PID controllers under conditions with 

external disturbances, specifically for the pitch 

angle of the system. The figures demonstrate the 

dynamic response differences, where the fuzzy-

PID controller shows enhanced stability and 

robustness, reducing oscillations and achieving 

quicker settling times. Figure 16 through Figure 21 

further validate this by providing detailed 

responses across various disturbance scenarios, 

highlighting the superior adaptability of the fuzzy-

PID controller in maintaining control accuracy and 

minimizing error. These comparisons underline the 

fuzzy-PID controller's ability to handle external 

perturbations effectively while maintaining 
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smoother system behavior. Notably, the pitch angle 

experiences substantial overshoot initially with the 

classical PID controller, requiring approximately 5 

seconds to stabilize in the presence of a 

disturbance. 

 
Figure 16. Pitch angle with disturbances for (a) PID-

Controller and (b) Fuzzy-PID Controller. 

 

Figure 17. roll angle response with disturbances for (a) 

PID-Controller and (b) Fuzzy-PID Controller. 

 

Figure 18. Yaw angle response with disturbances for (a) 

PID-Controller and (b) Fuzzy-PID Controller. 

 

Figure 19. Response of Z-position controller with 

disturbance. 

 

Figure 20. Response of x-position controllers with 

disturbance. 

 

Figure 21. Response of y-position controllers with 

disturbance. 

In contrast, the fuzzy-PID controller effectively 

mitigates the disturbance much faster, achieving 

stability within 2.5 seconds. This highlights the 

fuzzy-PID controller's superior performance in 

managing the pitch angle. For the roll angle, while 

the classical PID controller exhibits slightly less 

overshoot and undershoot compared to the fuzzy-

PID controller, it tends to approach the instability 

threshold over time. Conversely, the fuzzy-PID 

controller successfully maintains control and 

achieves stability more rapidly in the presence of 

disturbances. This comparison demonstrates the 

fuzzy-PID controller's superiority in achieving 

quicker and more stable angular responses across 

multiple axes. All these changes have been 

calculated in Tables 6 .and Table 7,  and for IAE 

and ISE in Tables 8 and 9. 

Table 6. comparison of classical PID and Fuzzy-PID 

controllers for angle control. 

angle 
RT-
PID 

RT-

Fuzzy-

PID 

OS-
PID 

OS-

Fuzzy-

PID 

ST-
PID 

ST-

Fuzzy-

PID 

roll 0.3 0.15 0.15 0 1 0.5 

Pitch 0.3 0.15 0.05 0.002 0.7 0.3 

yaw 0.4 0.3 0.4 0.3 2.5 2 

Table 7. Comparison Between Classical PID and Fuzzy-

PID Controllers for Position Control. 

position 
RT-

PID 

RT-

Fuzzy-
PID 

OS-

PID 

OS-

Fuzzy-
PID 

ST-

PID 

ST-

Fuzzy-
PID 

x 0.3 0.15 1.2 0.001 1 0.6 

y 1.2 0.3 0.4 0.3 5.1 0.6 

z 1.5 0.2 0 0 3.5 0.5 
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Table 8. COMPARISON OF IAE and ISE for Angles PID 

AND Fuzzy-PID Controller. 

angle IAE-PID 

IAE-

Fuzzy-

PID 

ISE-PID 

ISE-

Fuzzy-

PID 

Roll 2.5 0.3 2 0.1 

Pitch 1.8 0.2 1.5 0.1 

Yaw 3.5 3 2 1.8 
 

Table 9. COMPARISON OF IAE and ISE for Position 

PID AND Fuzzy-PID Controller 

position IAE-PID 

IAE-

Fuzzy-
PID 

ISE-PID 

ISE-

Fuzzy-
PID 

x 3 1 2.5 0.5 

y 5 1.2 4 0.6 

z 4 0.8 3.5 0.4 
 

5.2. Formation Controller 

The results reveal that the Fuzzy-PID controller 

effectively rejects disturbances and accurately 

controls all outputs. Ultimately, we explore a 

problem involving six agents and conduct 

comprehensive simulations to implement 

formation control on a nonlinear model. 

At this juncture, it is essential to outline three 

scenarios to illustrate the controller's performance. 

The forthcoming discussion will encompass these 

scenarios, showcasing the robustness and precision 

of the Fuzzy-PID controller in various formation 

control tasks.  
 

5.2.1 Helix Formation  

In this scenario, we chose these parameters for the 

helix formation, adjoint matrix is shown in (34). 
0 1 1 1 1 1

0 0 1 1 1 1

0 1 0 1 1 1

0 1 1 0 1 1

0 1 1 1 0 1

0 1 1 1 1 0

A

 
 
 
 

  
 
 
 
  

 (34) 

Additionally, the desired distance matrix has been 

defined below: 
0 1.1756 1.9021 1.9021 1.1756 1

1.1756 0 1.1756 1.9021 1.9021 1

1.9021 1.1756 0 1.1756 1.9021 1

1.9021 1.9021 1.1756 0 1.1756 1

1.1756 1.9021 1.9021 1.1756 0 1

1 1 1 1 1 0

d

 
 
 
 

  
 
 
 
  

   

(35) 

Furthermore, to achieve the formation among 

agents, The unknown object trajectory for the three 

dimensions x, y, and z is established in Equation 

(36) 

5sin
20

dx t


  

5cos
20

dy t


  

0.1dz t  

(36) 

Figure 22 illustrates the helix formation 

configuration through two perspectives: 3D and 2D 

representations.  

 

(a) 

 

 
Figure 22. Agent’s formation in desired path (a)- 3D view 

of the helix trajectory for agents, (b) -2D planar 

projection of the helix trajectory. 

Figure 22. (a) depicts the 3D visualization of the 

helix trajectory, demonstrating how all agents 

maintain their spatial alignment along the curved 

three-dimensional path. This perspective highlights 

the dynamic coordination of the agents in achieving 

the desired helix formation. Conversely, Figure 22. 

(b) provides a 2D projection of the same formation, 

focusing on the planar alignment of agents. This 

top-down view simplifies the trajectory, 

emphasizing the positional relationships and 

movement of the agents within the formation. 

Together, these representations validate that the six 

controlled nonlinear dynamic factors successfully 

reach the desired helix configuration. The results 

confirm that using system dynamics with internal 

controllers and specified formulas enables precise 
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path-following, ensuring the agents achieve the 

defined structure in both 3D and 2D spaces. 

After that, in another scenario, we added a 

disturbance with a step signal entered in time 10s 

and with amplitude of 1 and duration of 0.8s; 

outputs are shown in Figure 23. This figure  

illustrates the helix formation configuration under 

the presence of external disturbances, represented 

in both 3D and 2D perspectives. Figure 23. (a) 

shows the 3D visualization of the trajectory, where 

the agents successfully maintain their alignment 

along the desired helix path despite the imposed 

disturbances. This perspective highlights the 

robustness of the control system in compensating 

for dynamic perturbations and ensuring stability. 

Figure 23. (b) provides the 2D planar projection of 

the disturbed helix trajectory. While slight 

deviations from the ideal path are noticeable, the 

agents demonstrate the capability to adjust their 

positions and realign with the formation 

dynamically. 

(a) 

 
(b) 

Figure 23. Agent’s formation in desired path with one 

Disturbance (a)-3D view of the trajectory with 

disturbance compensation, (b)-2D planar projection of 

the trajectory under disturbances. 

 

Finally, in another scenario, two disturbances were 

applied to our formation system. The first 

disturbance occurred within the time range of 10 to 

12 seconds with a step size of 0.1, and the second 

disturbance was introduced between 50 and 52 

seconds with a step size of 0.6. The results 

demonstrated that the quadcopter system is capable 

of handling multiple disturbances effectively, 

maintaining its formation, and continuing along its 

helix trajectory, as illustrated in Figure 24. This 

figure  demonstrates the helix formation under the 

influence of two disturbances applied 

simultaneously to the system.  

 

(a) 

 

 
Figure 24. Agent’s formation in desired path with Two 

Disturbance (a)- 3D representation showcasing trajectory 

adaptation in response to disturbances, (b)-2D projection 

highlighting planar alignment and recovery to maintain the helix 

structure. 

Figure 24 (a) illustrates the 3D representation of the 

trajectory, showing how the agents dynamically 

adapt to the dual disturbances while maintaining 

the helix configuration. This perspective highlights 

the robustness of the controlled dynamics in a 

three-dimensional space. On the other hand, Figure 

24 (b) presents the 2D projection, providing a 

clearer view of the agents' planar positions and 
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their ability to recover and maintain the desired 

formation. The results validate that the proposed 

control system effectively compensates for 

multiple disturbances, enabling precise path-

following and helix structure maintenance in both 

3D and 2D views. 

 

5.2.2. Variation formation 

In this section, time-varying formation is 

considered. Before the 50s, the formation was as a 

line, and afterward, it was changed to a Hexagon 

shape, as illustrated in Figure 25.  This figure  

presents the variation formation configuration 

through two distinct perspectives: 3D and 2D 

representations.  

 

(a) 

 
(b) 

Figure 25. pentagonal formation in variation formation 

(a)-3D view illustrating the spatial adaptation and 

dynamic formation of agents; (b) 2D projection 

emphasizing the positional relationships and planar 

movements of agents within the variation formation. 
 

Figure 25 (a) illustrates the 3D view of the variation 

formation, where the agents adapt their spatial 

alignment dynamically, showcasing the flexibility 

of the system in achieving the desired formation. 

This visualization highlights the smooth transitions 

and continuous adjustments of the agents along the 

curved three-dimensional trajectory. On the other 

hand, Figure 25 (b) offers a 2D projection of the 

same variation formation, providing a planar 

perspective that emphasizes the positional 

relationships and movement of the agents. The Z 

trajectory is considered zero in the plotting. 

Parameters and gains regarding this formation are 

shown in Table 10. 
 

Table 10. variation formation parameters. 

symbol  parameter  value  

1   Constant coefficient  5 

2   Constant coefficient  5 

st     Formationtransitiontime  50 

ar  𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑟𝑎𝑑𝑖𝑜s 5 

oq  𝐶𝑖𝑟𝑐𝑙𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜n  10,10,2.5  

K  𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒nt 10 

ak  𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛t 10 

   Exponential rate  10 

1
1d   Desired distance  0 6

T
    

2
1d   Desired distance  0 2

T
    

1
2d   Desired distance  0 4

T
    

2
2d   Desired distance     2cos 18 2sin 18

T
 
 

 

1
3d   Desired distance  0 2

T
    

2
3d   Desired distance  

   2cos 18 2sin 18
T

 
 

 

1
4d   Desired distance  0 2

T
    

2
4d   Desired distance  

   2cos 54 2 54sin
T

 
 

 

1
5d   Desired distance  0 4

T
    

2
5d   Desired distance  

   2cos 54 2 54sin
T

 
 

 

1
6d   Desired distance  0 6

T
    

2
6d   Desired distance  

   2cos 18 2 18cos
T

  
 

 

2dq  reference trajectory  50 , 50 , 5
T

    

 

In the subsequent scenario, a disturbance was 

introduced in the form of a step signal at the 10-

second mark, with an amplitude of 1 and a duration 

of 0.8 seconds. The resulting outputs are presented 

in Figure 26. This figure  illustrates the variation 

formation under the influence of a single 

disturbance, represented in two perspectives: 3D 

and 2D. Figure 26 (a) shows the 3D representation 

of the formation, where the disturbance introduces 

temporary deviations in the agents’ trajectories 

along the spatial path. Despite these deviations, the 

system effectively guides the agents back to the 
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desired configuration, ensuring the integrity of the 

variation formation. Figure 26 (b) provides a 2D 

projection of the same scenario, highlighting the 

planar deviation and subsequent recovery of the 

agents. This view emphasizes the positional 

adjustments made by the agents in response to the 

disturbance. Both perspectives confirm the 

robustness of the system in maintaining formation 

stability despite external disruptions. 

 
(a) 

 

 

(b) 

Figure 26. Variation formation under the influence of a 

one disturbance, with (a) showing the 3D representation 

and (b) the 2D projection, illustrating the system's 

resilience in maintaining the desired configuration. 

In a final scenario, two disturbances were applied 

to the formation system. The first disturbance was 

introduced between 10 and 12 seconds with a step 

size of 0.1, while the second disturbance occurred 

between 50 and 52 seconds with a step size of 0.6. 

The results showed that the quadcopter system 

successfully managed both disturbances, 

maintaining formation integrity and continuing 

along its helical trajectory, as depicted in Figure 27.   

This figure  demonstrates the variation formation 

under the influence of two simultaneous 

disturbances, presented in both 3D and 2D 

perspectives. Figure 27 (a) depicts the 3D 

visualization of the formation, showcasing how the 

agents momentarily deviate from their spatial 

trajectories due to the disturbances. Despite these 

perturbations, the system efficiently readjusts the 

agents' paths, successfully restoring the intended 

formation along the three-dimensional variation 

trajectory. Figure 27 (b) illustrates the 2D 

projection of the same scenario, providing a clear 

view of the agents’ deviations and the corrective 

measures undertaken by the system in a planar 

context. This projection emphasizes the system’s 

ability to counteract the combined effects of 

multiple disturbances, ensuring stability and 

alignment. Both representations validate the 

robustness of the control system in maintaining the 

variation formation under complex dynamic 

conditions. 

 

(a) 

 

(b) 

Figure 27. Variation formation under the influence of two 

simultaneous disturbances, with (a) showing the 3D 

representation, (b) the 2D projection, demonstrating the 

system's robustness in restoring the desired configuration. 
 

6. Conclusion 

This study investigated the control of a quadcopter 

system by exploring both classical PID and fuzzy-

PID control strategies. Initially, the nonlinear 
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dynamics of the quadcopter were analyzed, 

followed by linearization to derive its state-space 

representation. The primary control objective was 

to achieve precise position control of the nonlinear 

quadcopter model using six individual PID 

controllers. These controllers were tuned to 

effectively manage all system outputs, with their 

parameters optimized to ensure stable and accurate 

responses. The resulting output plots confirmed 

that the selected PID gains were appropriately 

configured to regulate the system's behavior. A 

constrained fuzzy-PID controller was developed to 

improve performance while operating within 

system limitations. A comparative evaluation 

between the fuzzy-PID and conventional PID 

controllers demonstrated that the fuzzy-PID 

approach provided superior output regulation, 

particularly under constrained conditions. This 

controller exhibited a greater capability to 

accommodate physical limitations, ensuring 

smoother control inputs and better adaptability to 

nonlinear system dynamics. Additionally, the study 

explored the formation control of six quadcopters, 

incorporating their nonlinear characteristics. 

Various theoretical formation strategies were 

analyzed and subsequently implemented using a 

nonlinear fuzzy-PID controller. Simulation results 

confirmed the effectiveness of this method, 

successfully achieving formation control 

objectives while preserving system stability. A key 

feature of this research was the integration of the 

Ziegler-Nichols tuning method for initial PID 

parameter adjustment, followed by fine-tuning 

through a fuzzy supervisory controller. This two-

step strategy was employed to independently 

regulate the three Euler angles of the quadcopter. 

Extensive MATLAB/Simulink simulations 

highlighted the benefits of the fuzzy-PID approach, 

such as reduced reliance on an exact system model, 

greater robustness against disturbances, and 

enhanced handling of nonlinear dynamics. The 

fuzzy-PID controller outperformed the classical 

PID controller in critical performance aspects, 

including lower overshoot, shorter settling time, 

and smoother transient responses. Notably, the 

design of the fuzzy controller, encompassing its 

membership functions and rule base, was guided by 

expert knowledge and iterative optimization. 
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 چکیده:

پرنده  یهاچندعامله متشکل از ربات ستمیس کی یابیشیو آرا تیکنترل موقع یبرا شرفتهیپ یکنترل یهایاستراتژ یسازادهیو پ یبه طراح در این مقاله،

و  یستمیس یهاینیدر حضور نامع شیآرا یداریمرجع و حفظ پا یرهایکردن مسدقت بالا در دنبالبه یابیدست ،یهدف اصل. پردازدی)کوادکوپترها( م

 لیبه دل حال،نیاند. بااشده یاستاندارد کوادکوپتر طراح یکینامیبر اساس مدل د کیکلاس PID یهاکنندهاست. در ابتدا، کنترل یاغتشاشات خارج

شده است تا عملکرد  شنهادیمحدودشده پ PID- یفاز یبیکننده ترککنترل کیو اغتشاشات،  بودنیرخطیها در مواجهه با غکنندهکنترل نیا تیمحدود

 ریمتغ طیمتناسب با شرا یکنترل یخودکار پارامترها می، امکان تنظPID یو سادگ یاز منطق فاز یریگبا بهره ،یشنهادیپ کنندهکنترل.ابدیبهبود  ستمیس

با  سهیدر مقا PID- یکننده فازعملکرد کنترل یدهنده برترنشان MATLAB/Simulink طیگسترده در مح یهایسازهی. شبآوردیرا فراهم م ستمیس

کردن دنبال یدر کاهش خطا یدقت بالاتر ،یحرکت یکننده در تمام محورهاکنترل نیاستاندارد است. ا PID- یو فاز کیکلاس PID یهاندهکنکنترل

د کنترل هوشمن  یهاکیاستفاده از تکن ژهیو تیاهم قیتحق نیا .دهدیشش کوادکوپتر از خود نشان م یگروه شیدر حفظ آرا یبهتر یداریو پا ریمس

. دهدیقرار م دیهستند، موردتأک یعوامل متک انیم یاطلاعات محل یگذاراشتراککه به شدهعیتوز یهایدر معمار ژهیورا به یچندعامل یهاستمیدر س

 . ازدسیهموار م ندهیآ یواقع یکاربردها یرا برا ریو مس دهیو نامطمئن گرد ایوپ یهاطیتوجه عملکرد کنترل در محشده موجب بهبود قابلارائه کردیرو

 بندی متغییر با زمان. کنترل آرایش، ، مسیریابی  PID-، کنترل کننده فازی PIDکوادکوپتر، کنترل کننده  :کلمات کلیدی

 


