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 One challenge in digital image processing is haze, which is 

particularly prevalent in humid and rainy environments. Examples of 

AI-based systems susceptible to this challenge include smart traffic 

control cameras, autonomous vehicles, Video Assistant Referee 

(VAR) systems in football stadiums, and security and surveillance 

cameras. This paper proposes a method to mitigate haze using self-

supervised learning (SSL) and deep learning. A Convolutional 

Autoencoder Network (CAN) with a Convolutional Block Attention 

Module (CBAM) was developed to reduce haze from images. This 

method's advantage lies in its reduced number of layers and filters 

compared to previous models, as well as its utilization of CBAM to 

emphasize important convolutional channels and image regions. 

Experiments demonstrate that excessive convolutional filters, while 

intended to generate diverse features, can hinder a model's ability to 

dehaze images effectively. Therefore, filter numbers should be 

carefully limited. A combined loss function was employed to train the 

proposed architecture, which was evaluated using the NH-haze 

dataset and the Realistic Single Image Dehazing (RESIDE) dataset. 

Structural similarity index measure (SSIM) and peak signal-to-noise 

ratio (PSNR) were utilized for evaluation. Test results indicate that 

the proposed architecture exhibits higher performance compared to 

state-of-the-art methods. 
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1. Introduction 

Haze is a meteorological phenomenon consisting 

of tiny water droplets that primarily forms at higher 

altitudes. This phenomenon reduces visibility and 

weakens colors in the environment. Imaging under 

such conditions results in blurry images with colors 

far from reality. Haze can even obscure objects in 

images, disrupting the complete understanding of 

visuals by intelligent systems such as identification 

and tracking systems, license plate readers, 

autonomous vehicles, Video Assistant Referee 

(VAR), and various others. Typically, classical 

image quality enhancement and haze removal 

models require a reference image. However, using 

machine vision techniques, it is possible to improve 

image quality and remove haze in a self-learning 

manner without a reference image. Therefore, haze 

removal methods can be broadly categorized into 

two groups: classical information-based methods 

and self-learning deep methods [1]. Recent 

research indicates that self-learning deep methods 

have shown high effectiveness in removing haze 

from digital images. Self-supervised learning 

(SSL) is a type of machine learning that relies on 

the data itself rather than human-generated labels 

to produce output signals [2]. In this learning 

approach, there is no need for human image 

labeling; instead, the model generates an output 

image that closely resembles the corresponding 

input image using the input itself. One common 

and contemporary method for implementing this 

type of learning is through autoencoder models. 

Autoencoders are a type of convolutional neural 
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network used to learn efficient features on 

unlabeled data. An autoencoder consists of an 

encoder that compresses input data into a latent 

representation and a decoder that reconstructs the 

original data from this representation. This network 

has two unique properties: it compresses and 

reduces the dimensions of the data in the most 

effective format, and it creates diverse 

representations of the input images to enable the 

model to recognize and learn the image more 

deeply [3]. For image dehazing, the convolutional 

autoencoder network requires a hazy input image 

and a ground truth haze-free image as output. In 

this paper, we propose a model using self-

supervised learning and a convolutional 

autoencoder model with CBAM to remove haze 

from digital images.  

The proposed model has a smaller number of 

convolutional filters and is relatively less deep than 

previous models, which reduces model complexity 

and the probability of overfitting. One problem 

faced by researchers and designers in the field of 

deep neural networks is the unavailability of 

powerful computer systems for training deep 

models. This paper demonstrates that this problem 

can be mitigated to a great extent through the 

proper design of the deep neural network. It is 

important to note that the number of filters and 

depth of the network are not the only factors in 

solving this problem; the correct arrangement of 

these parameters is crucial. We also demonstrate 

that the CBAM mechanism effectively diminishes 

the influence of less significant convolutional 

channels during training, reducing computational 

cost while enhancing the efficiency of the image 

dehazing method. The contributions of this paper 

are as follows: 

 

- Proposing a novel convolutional autoencoder 

architecture with the Convolutional Block 

Attention Module to effectively reduce haze in 

digital images. 

- Introducing a composite loss function designed to 

maximize the similarity between the output image 

of the proposed model and the original image. 

- Developing a model with low depth and a small 

number and size of convolutional filters to 

minimize computational costs and streamline 

model execution. 

The rest of the paper is organized as follows. 

Related work is presented in Section 2. Our 

proposed method for image dehazing is introduced 

in Section 3. Section 4 is devoted to the 

experimental results and comparisons. Finally, the 

paper is concluded in Section 5. 

2. Related works 

Image dehazing, a crucial task in machine vision 

and digital image processing, has attracted 

considerable research attention. Chaitanya and 

Mukherjee [1] proposed an end-to-end network for 

single image dehazing using the CycleGAN model 

and a novel loss function to enhance performance. 

They claimed that their proposed loss function can 

approximate the dehazed image to the ground truth. 

Jeong et al. [4] presented an end-to-end network 

model incorporating zoomed convolution groups 

for image dehazing. They asserted that their model 

can perform complex computational operations 

efficiently, reducing processing time without 

compromising performance. Notably, they utilized 

zoomed convolution groups to extract more 

effective channels and enhance model efficiency. 

Choudharya et al. [5] introduced a deep Generative 

Adversarial Network (GAN) for image dehazing, 

employing a perceptual loss function to extract 

high-level features instead of pre-pixel loss 

functions. Hartantoa and Rahadiantia [6] proposed 

a method utilizing PDR-Net, pyramid dilated 

convolution, preprocessing, post processing, and 

an attention module for image dehazing. Dharejo et 

al. [7] developed a wavelet Hybrid (Local-Global 

Combined) Network (WH-Net) for image 

dehazing, leveraging a convolutional neural 

network (CNN) in the wavelet domain. They 

argued that low-level features are more crucial than 

high-level features for effective dehazing. Li et al. 

[8] contended that certain digital image dehazing 

algorithms suffer from a fundamental limitation: 

their inability to fully extract global image 

information, leading to incomplete dehazing. To 

address this, they proposed a hybrid model 

combining an end-to-end convolutional neural 

network and a vision transformer to incorporate 

global features in the dehazing process. Babu et al. 

[9] employed an end-to-end network comprising a 

dehazing network, a discriminator network, and a 

fine-tuning network for image dehazing. They 

integrated these three models to achieve superior 

results. First, they processed hazy images using the 

dehazing network, which estimates the 

transmission map and atmospheric light alongside 

parallel convolutional layers. Subsequently, the 

discriminator network extracted discriminative 

dehazed images. Finally, the fine-tuning network 

utilized the discriminator's output to refine the 

dehazed results. Shakeri et al. [10] proposed an 

intelligent histogram partitioning method that 

enhances contrast while preserving image details. 

Wang et al. [11] introduced DRHNet, an end-to-

end image dehazing model that dehazes images by 

subtracting a learned negative residual map from 
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the hazy image. They claimed that DRHNet 

effectively extracts and aggregates conceptual and 

effective information. Additionally, they 

introduced a novel nonlinear activation function, 

PRRelu (Reverse Parametric Rectified Linear 

Unit), to enhance representation learning and 

accelerate convergence. Babu and Venkatram [12] 

proposed an Adaptive Bilateral Filter (ABF) with 

an optimal selection of spatial weight parameters 

for image dehazing. They emphasized the 

importance of classifying images into hazy and 

non-hazy categories to ensure that non-hazy 

images are not included in the dehazing process, 

thereby simplifying the procedure. To achieve this, 

they developed a deep CNN network to classify 

images into these two categories. Hodges et al. [13] 

presented a deep CNN model trained on unmatched 

images for image dehazing, inspired by the 

Siamese network architecture. Yin et al. [14] 

proposed a Visual Attention Dehazing Network 

(VADN) with multi-level refinement and fusion. 

Their model incorporates a haze attention map that 

injects supplementary haze information into 

extracted features. VADN comprises a feature 

extraction network, a recurrent refinement 

network, and an encoder-decoder network. First, 

the feature extraction network extracts features at 

different levels. Subsequently, the recurrent 

refinement network generates the haze attention 

map, which is then fed into the encoder-decoder 

network for dehazing.  Yin et al. [15] developed an 

end-to-end dehazing network with a 

spatial/channel attention block to extract more 

informative features. This block, based on an 

encoder-decoder architecture with a pyramid 

pooling operation, is placed at the end of the 

encoder to aid the decoder in dehazing. Balla et al. 

[16] proposed a residual convolutional neural 

network (RCNN) for image dehazing, comprising 

14 layers. Their RCNN extracts local features from 

the hazy image and incorporates them as the fourth 

color channel alongside the existing three channels. 

Subsequently, the RCNN is retrained using 4-

channel hazy images as input and corresponding 

haze-free images as output. Hu et al. [17] 

introduced High-Low level task combination 

network (HLNet) based on multitask learning. 

Their network can learn both low-level and high-

level tasks, claiming that this approach restores 

features at different levels, mitigates the impact of 

Batch Normalization (BN) in the encoder, and 

results in improved dehazing performance. Yen et 

al. [18] proposed a deep CNN model advocating 

for image basis component recovery instead of 

end-to-end network maps. They suggested 

decomposing the image into its basic elements and 

then using a trained CNN architecture to determine 

whether each element contains haze. If 

contaminated, it is replaced with its haze-free 

equivalent. Ren et al. [19] proposed a multi-scale 

deep neural network for image dehazing, training it 

to learn the mapping between haze images and their 

transmission maps. They employed a coarse-scale 

net for holistic transmission map prediction using 

the input image and a fine-scale net for refining 

dehazed image results. Additionally, they 

introduced a holistic edge-guided network to refine 

the edges of the estimated transmission map. As 

discussed, image dehazing from digital images 

remains a captivating area of research in artificial 

intelligence. The literature review reveals that 

researchers are actively exploring solutions and 

methods based on deep learning and convolutional 

neural networks to address this challenge. Notably, 

the results of their research demonstrate the high 

effectiveness of deep learning and convolutional 

neural network-based methods in solving such 

problems. Therefore, this paper aims to investigate 

a method that can dehaze digital images using deep 

learning with greater efficiency than existing 

approaches. 

3 Materials and Method 

3.1 Convolutional Autoencoder Network 

Convolutional Autoencoder Networks (CAN) are 

developed from simple autoencoder networks that 

utilize convolutional layers instead of only fully 

connected layers. In these networks, the input and 

output layers have the same size. The network has 

two main parts: the encoder and the decoder. The 

encoder extracts, compresses, and codes the 

meaningful features of input images, while the 

decoder decodes the encoded information to 

produce a new image. To train these self-

supervised learning networks, paired images are 

required: an initial image and a corresponding 

expected image. The network adjusts its weights to 

generate the expected secondary image when given 

the primary image. Figure 1 shows the basic 

architecture of a convolutional autoencoder 

network. As illustrated in the figure, the encoder 

section progressively compresses information, 

culminating in the most meaningful and compact 

representation at its end. Conversely, the decoder 

section expands this information, returning it to its 

original size. Applications of CAN include image 

denoising, image dehazing, and low-light 

enhancement [20]. 
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Figure 1. Architecture of the basic convolutional 

autoencoder network. Each blue box represents a 

convolutional layer. 
 

3.2 Convolutional Block Attention Module 

Drawing on insights from Woo et al. [21], 

oversized deep neural networks often generate 

redundant or closely related features, particularly 

on smaller datasets, which can hinder performance. 

To address this, they introduced the Convolutional 

Block Attention Module (CBAM), a 

computationally efficient framework that 

integrates both channel-wise and spatial attention 

mechanisms, inspired by Chen et al. [22]. The 

channel attention module assigns weights to 

convolutional channels based on their significance, 

emphasizing the most relevant ones, while the 

spatial attention module highlights critical regions 

within the feature map, enhancing focus on 

perceptually salient locations. CBAM operates 

through two sequential submodules: the Channel 

Attention Module and the Spatial Attention 

Module, seamlessly embeddable within feed-

forward convolutional neural networks. Initially, 

an input feature map, where C, H, and W represent 

the number of channels, height, and width, 

respectively, undergoes processing. The channel 

attention module employs global average and max 

pooling to distill spatial information and highlight 

distinctive features, subsequently producing a 

channel attention map via shared dense layers. This 

map refines the input by weighting each channel 

accordingly. Next, the spatial attention module 

generates a spatial attention map by compressing 

the channel-refined features into two 2D maps 

through pooling, followed by concatenation and 

convolution, thus prioritizing key spatial regions. 

By synergistically combining these processes, 

CBAM effectively discerns "what" to emphasize 

through channel attention and "where" to focus via 

spatial attention. This dual mechanism enables the 

model to extract more refined and impactful 

features, optimizing performance while mitigating 

the inefficiencies of oversized architectures. Figure 

2 illustrates the structure of these two modules. The 

integration of CBAM into convolutional neural 

networks is straightforward, as it can be applied to 

any layer without requiring significant 

architectural changes. This flexibility makes 

CBAM highly adaptable across various network 

designs, such as ResNet, VGG, or EfficientNet. 

Furthermore, CBAM's lightweight design ensures 

minimal computational overhead, making it 

suitable for resource-constrained environments 

like mobile devices or edge computing systems. 

Experimental results from Woo et al. [21] 

demonstrate that CBAM consistently improves 

classification and detection performance across 

multiple benchmark datasets, including CIFAR-10, 

CIFAR-100, and ImageNet. The module's ability to 

suppress irrelevant features while enhancing 

relevant ones contributes to its effectiveness, 

particularly in scenarios with limited training data.  

3.3 Total Loss Function 

In the proposed method, to maximize the similarity 

between the model's outputs and the original 

image, a composite loss function is employed. This 

function blends the Mean Squared Error (MSE) 

loss, which minimizes pixel-wise differences 

between the input and reconstructed images, 

defined as follows:  

21

1

( )
N

MSE i iN

i

L y y


   (1) 

Additionally, the Structural Similarity Index 

(SSIM) loss function is incorporated, preserving 

the image's structural features and expressed as 

follows: 
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Furthermore, the L1 Loss function, also known as 

Mean Absolute Error (MAE), is included to aid in 

preserving fine textures and structural details of the 

image, formulated as follows: 
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Ultimately, these loss functions are integrated into 

a linear combination: 

Where α, β, and γ are weighting coefficients that 

determine the relative importance of each loss 

function.  

1total MSE SSIM LL L L L      (4) 
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Figure 2.  The Convolutional Block Attention Module integrates two complementary components: the channel attention 

module, positioned at the upper tier and the spatial attention module, situated at the lower tier. 

 

3.4 Proposed Architecture 
This paper proposes a self-supervised learning 

method for image dehazing. Autoencoder networks 

are a well-established and appealing approach in 

this field. Through extensive investigations and 

testing, a novel autoencoder network architecture 

incorporating CBAM has been developed. This 

architecture effectively removes haze from hazy 

images, producing results closely resembling the 

original image. Notably, this architecture achieves 

high efficiency in haze removal while employing a 

limited number of convolutional filters in its 

convolutional layers and having relatively low 

depth. This design choice reduces the network's 

complexity, mitigating overfitting and decreasing 

its time complexity. The model utilizes a composite 

loss function to ensure accurate and effective 

training. This combined loss function incorporates 

MSE, SSIM, and L1 loss functions, each 

contributing to the optimization process by 

focusing on different aspects of the predicted 

output, ensuring both pixel-wise accuracy and 

structural coherence in the results. Figure 3 depicts 

the proposed architecture of the autoencoder 

network for image dehazing. As shown in Figure 3, 

the proposed architecture comprises 13 layers, 

including six convolutional layers, six ReLU 

layers, and one dropout layer in the encoder 

section. Following each ReLU layer in the encoder, 

a CBAM is implemented to select the most relevant 

feature channels and influential regions within 

those features. The decoder section consists of 13 

layers, comprising seven convolutional layers and 

six ReLU layers. As stated, the encoder and 

decoder sections have equal sizes. Furthermore, the 

number of convolutional filters in this architecture 

is limited to between 13 and 31, resulting in lower 

complexity and fewer convolutional filters 

compared to previous architectures. According to 

Figure 3, the convolutional filters of the first two 

layers have a size of 11. This choice is motivated 

by the fact that image dehazing is related to the 

color features of the image. By using a filter size of 

11, we aim to retain low-level image features 

during the training process of the convolutional 

autoencoder network. 

3.3 Implementation details 

We implemented and trained the proposed 

architecture using Python software. Each 

experiment was performed using 1000 epochs and 

batch sizes of 64. Adam optimizer and training rate 

of 0.001 were used to train the network. The 

datasets are divided into 70% and 30% of the 

training and test sets, respectively. 

3.4 datasets 

To train and test the designed convolutional 

autoencoder network architecture, we used NH-

haze and Realistic Single Image Dehazing 

(RESIDE) datasets. The NH-haze dataset contains 

55 images of the outdoor environment in two 

sections, clear and hazy. This dataset is the first 

dataset that consists of non-homogeneous images. 

Although this dataset has few images, it is one of 

the most challenging datasets for image dehazing 

models due to the close distance to the haze and the 

high concentration of haze [23]. RESIDE dataset 

includes indoor and outdoor parts. The indoor 

section contains 1449 images of exterior views and 

the outdoor section contains 492 images from 

inside the building in two groups: clear and hazy 

[24]. Examples of the used datasets images are 

shown in Figure 4.  
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Figure 3. Our proposed architecture of Convolutional Autoencoder network with CBAM for image dehazing.  
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Figure 4. Examples of the used datasets. Below are 

hazy images and above are corresponding clean images. 

4. Ablation Studies 

This section discusses the results obtained from 

implementing the proposed method on various 

datasets.  The proposed method's performance is 

evaluated using PSNR and SSIM metrics.  Initially, 

the proposed model's results on the NH-haze and 

RESIDE datasets are presented visually. 

Subsequently, the model's performance, as 

measured by these metrics, is compared to state-of-

the-art methods. 

4.1 Results on the RESIDE Dataset 

This section investigates the performance of the 

proposed model for image dehazing on images 

from the RESIDE dataset. Table 1 presents the 

average PSNR and SSIM values of the proposed 

model when tested on the RESIDE dataset, with 

and without CBAM. The error optimization 

process in this section utilized the Adam optimizer. 

As evident from these results, the proposed method 

demonstrates high efficiency in image dehazing. 

 

4.2 Results on the NH-haze Dataset 

This section presents the results of the proposed 

model for image dehazing on images from the NH-

haze dataset. Figure 7 shows the subjectively 

dehazed images. Table 2 presents the average 

PSNR and SSIM values of the proposed model on 

the NH-haze dataset, with and without CBAM.  

Due to the presence of thick haze and close-up 

shots in this dataset, the proposed method achieves 

good performance by effectively reducing haze in 

these image types. 

Table 1. The average PSNR and SSIM values of the 

proposed model on RESIDE dataset without and with 

CBAM. 
 Without CBAM With CBAM 

Section PSNR SSIM PSNR SSIM 

Outdoor 37.87 0.9863 38.96 0.9891 

Indoor 38.48 0.9867 38.54 0.9886 

 
 

Table 2. The average PSNR and SSIM values of the 

proposed model on NH-haze dataset without and with 
CBAM. 

 Without CBAM With CBAM 

dataset PSNR SSIM PSNR SSIM 

NH-haze 19.90 0.7249 20.21 0.7311 

 

4.3 Effect of the Loss Function 

This section examines the impact of the proposed 

loss function on the efficiency of the proposed 

architecture with CBAM for image dehazing. 

Table 3 shows the model's efficiency in image 
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dehazing with and without the proposed loss 

function (using the Adam objective function) on 

the datasets used in this study. Figure 5 illustrates 

the effect of varying numerical values for the 

coefficients of the proposed loss function. Note 

that, due to space constraints, only a portion of the 

results from the outdoor section of the RESIDE 

dataset are shown. 

Table 3. The average PSNR and SSIM values of the 

proposed model with CBAM on used datasets without 

and with proposed Loss function. 
 Adam & CBAM Proposed Loss Function 

& CBAM 

Section PSNR SSIM PSNR SSIM 

Outdoor 38.96 0.9891 43.71 0.9986 

Indoor 38.54 0.9886 41.42 0.9941 

NH-haze 20.21 0.7311 22.06 0.7532 

 

 
 

Figure 5. Effect of different numerical values for the 

coefficients of the proposed loss function. 

 

As depicted in Figure 5, the numerical values of the 

coefficient associated with the loss function have 

the greatest impact, while the numerical values of 

the coefficient associated with the regularization 

term have the least impact on the efficiency of the 

proposed method and parameter optimization. This 

may be because, in image dehazing, accurately 

matching the color characteristics of the generated 

image to the original image is paramount. The 

emphasis on color fidelity ensures that the dehazed 

images maintain visual realism, which is critical 

for applications like autonomous driving and 

surveillance. Figures 6, 7, and 8 visually and 

subjectively demonstrate the results of image 

dehazing on the outdoor and indoor sections of the 

RESIDE dataset and the NH-haze dataset using the 

proposed architv ecture with CBAM and the 

proposed loss function. These figures highlight the 

model’s ability to effectively remove haze while 

preserving fine details and natural color gradients. 

Quantitative metrics, such as Peak Signal-to-Noise 

Ratio (PSNR) and Structural Similarity Index 

(SSIM), further validate the superior performance 

of the proposed method compared to baseline 

approaches. 

Ground-truth Hazy Generated 

   

   

   

   
Figure 6. The results of image dehazing on Outdoor 

section of the RESIDE dataset using proposed method. 

Ground-truth Hazy Generated 

   

   

   

   
Figure 7. The results of image dehazing on Indoor 

section of the RESIDE dataset using proposed method 
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Ground-truth Hazy Generated 

   

   

   
Figure 8. The results of image dehazing on NH-haze 

dataset using proposed method. 
 

4.4 Effects of Convolutional Filters 

This section investigates the influence of the 

number and size of convolutional filters in the 

convolutional autoencoder network architecture on 

image dehazing. Experiments conducted to 

determine the optimal convolutional autoencoder 

architecture for image dehazing revealed that 

increasing the number and size of convolutional 

filters in a controlled manner is beneficial, while 

excessive increases or decreases can reduce the 

architecture's efficiency. This may be because 

image dehazing relies on low-level features and 

image color features. Therefore, the complexity 

and depth of the extracted features should be 

carefully controlled. Figure 9 illustrates the effect 

of increasing the number of convolutional filters on 

the performance of the convolutional autoencoder 

network in image dehazing on the outdoor section 

of the RESIDE dataset. As shown, excessively 

increasing the number of filters can diminish the 

convolutional autoencoder's efficiency in image 

dehazing. The best performance in this figure is 

observed when the number of filters ranges from 

19 (the first filter in the encoder section) to 27 (the 

last filter in the encoder section). It is important to 

note that this number of filters was chosen 

empirically. The numerical intervals in this figure 

represent the number of filters in the first 

convolutional layer of the encoder section and the 

number of filters in the last convolutional layer of 

the encoder section. Furthermore, the balance 

between filter count and computational efficiency 

ensures practical deployment in real-time 

applications. These findings underscore the 

importance of empirical tuning to optimize 

dehazing performance while maintaining resource 

efficiency. 

 
Figure 9. The results of image dehazing on outdoor 

section of the RESIDE dataset using proposed method 

with different number of convolutional filters. 

Similarly, the size of the convolutional filter 

significantly affects the efficiency of the 

convolutional autoencoder architecture in image 

dehazing. According to experiments, the optimal 

filter size for the proposed architecture is within the 

range of 1 to 3. Filter sizes larger than this range 

can lead to the loss of low-level features and color 

information, ultimately decreasing model 

performance. Figure 10 shows the effect of 

increasing the size of convolutional filters on the 

efficiency of the convolutional autoencoder 

architecture in image dehazing on the indoor 

section of the RESIDE dataset. It is important to 

note that the numerical intervals in this figure 

represent the size of filters in the first convolutional 

layer of the encoder section and the number of 

filters in the last convolutional layer of the encoder 

section. 

 
Figure10. The results of image dehazing on indoor 

section of the RESIDE dataset using proposed method 

with different size of convolutional filters. 

4.5 Comparison with Other Methods 

This section compares the proposed method's 

results with those of previous research models. 

Figures 11 and 12 provide a visual and subjective 

comparison between the proposed method and 

other methods using a test image from the indoor 
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and outdoor sets of the RESIDE dataset, 

respectively. Figure 13 presents a subjective 

comparison between the proposed method and 

other methods using a test image from the NH-haze 

dataset. The compared methods are described 

below. 

As shown in Figures 11, 12, and 13, Guo et al. [25] 

proposed a method called "Image Dehazing 

Transformer with Transmission-Aware 3D 

Position Embedding" (Dehamer) for image 

dehazing. Their approach combines CNNs and 

transformers to enhance image dehazing 

capabilities. They leverage the transformer's 

modeling power and the CNN's local 

representation capacity. Additionally, they 

introduced a transformer-based module for 

effectively transferring and integrating meaningful 

information. 

Xu et al. [26] developed a Feature Fusion Attention 

Network (FFA-net) for dehazing. Their end-to-end 

feature fusion attention network utilizes a 

convolutional layer, three group structures, a 

concatenate layer, a Channel Attention (CA) 

module, a Pixel Attention (PA) module, and two 

convolutional layers.  

Liu et al. [27] proposed an Attention-based Multi-

scale Network for dehazing, named GridDehaze-

net. Their architecture comprises three sections: 

preprocessing, backbone, and post-processing. In 

the preprocessing section, they employ a 

convolutional layer without an activation function 

and a residual dense block (RDB), which generates 

16 feature maps for training. The backbone utilizes 

attention-based mechanisms to manage and refine 

input information for training. Each RDB consists 

of five convolutional layers, the first four layers 

increasing feature maps, and the last layer using 

attention to integrate them. 

Dong et al. [28] proposed a Multi-scale Boosted 

Dehazing Network (MSBDN) based on an 

encoder-decoder network. Their architecture 

includes CBlock modules, distillation modules, 

attention modules, short skip connections, 

improvement modules, and local skip connections. 

The encoder section uses convolutional layers to 

extract image features and enhances this 

information using CBlocks and attentions. Local 

skip connections are used for data integration and 

downsampling. Finally, attention, CBlock 

modules, and upsampling convolutions are used to 

reproduce information and upsample in the 

decoder section. 

Yi et al. [29] proposed a Multi-scale Topological 

Network (MSTN) for image dehazing. Unlike 

other methods that rely on attention modules for 

information integration and selection, MSTN 

allows the integration of features with different 

sizes. It utilizes a multi-branch structure where i 

represents the number of rows (network depth) and 

j represents the scale of the model. Each branch is 

responsible for extracting features at different 

scales. Finally, skip connections are used to 

separate or interact features with different scales. 

Another method called Dehazing Using 

Progressive Feature Fusion (SGID-PFF) for image 

dehazing was proposed by Bai et al. [30]. This 

method, like others, is based on CNNs and 

integrates information from different parts for 

image dehazing. The architecture includes four 

main parts: Depth Estimation Generator, Depth 

Estimation Discriminator, Dehaze Generator, and 

Dehaze Discriminator. The Dehaze Generator is 

responsible for generating haze-free images. The 

Depth Estimation Generator helps estimate the 

depth of feature maps accurately, and the Dehaze 

Generator utilizes these maps. Finally, the Dehaze 

Discriminator identifies the difference between 

correct and fake information produced. Bai and 

colleagues' architecture resembles U-net, 

consisting of 9 layers in the encoder section and 9 

layers in the decoder section, using leakyReLU as 

the activation function in all layers. 

 

 
Figure11. Visual comparison of an image dehazing from the Indoor testing image. 
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Figure 12. Visual comparison of an image dehazing from the Outdoor testing image. 

 
Figure 13. Visual comparison of an image dehazing from the NH-hazy testing image. 

Chen et al. [31] proposed DEA-Net, another 

method for image dehazing based on CNNs. This 

model, like other proposed models, includes three 

parts: encoder, transformation module, and 

decoder. The key element of this network is the use 

of attention blocks to integrate information. They 

replaced the convolutional layers with Detail 

Enhancement Convolution layer (DEConv) and 

claimed it produces stronger representations 

compared to previous convolutional layers. 

He et al. [32] proposed a dark channel prior (DCP) 

method for image dehazing. This method assumes 

that, except for sky pixels, all other pixels have a 

minimum RGB intensity value. Therefore, they 

aim to intensify these values. 

Wu et al. [33] proposed AECR-Net for image 

dehazing using an autoencoder network. They also 

developed a loss function that aligns ground-truth 

images with clear images while creating a large 

distance from hazy images. Wu et al. [34] proposed 

a framework for image dehazing using a frequency 

and spatial dual guidance network (FSDGN). They 

proposed a CNN architecture that combines 

convolutional layer features and Fourier transform 

features for image dehazing. Yu et al. [35] 

proposed Real Image Dehazing network via high-

quality Codebook Priors (RIDCP) for image 

dehazing. They designed a new autoencoder 

architecture. Initially, they used VQGAN, a 

pretrained network, to extract features and 

codebooks, then generated a haze-free image with 

a new decoder architecture. Yu et al. [36] proposed 

the DehazeDDPM framework based on Denoising 

Diffusion Probabilistic Mode. DehazeDDPM 

removes haze from the image in two steps. The first 

step utilizes the Atmospheric Scattering Model 

(ASM) to guide the data distribution towards clear 

data. The second step reproduces the data lost due 

to haze. 

Table 4 presents an objective comparison of the 

proposed method with other methods on the used 

datasets. As shown in Table 4, the proposed 

method achieved first place on the RESIDE 

(indoor) and RESIDE (outdoor) datasets and 

second place on the NH-Haze dataset with a small 

margin. 
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Table 4. Objective comparison between proposed methods. 
Dataset Work PSNR SSIM 

RESIDE(Indoor) 

Dehamer [22] 36.63 0.9881 

FFA-Net [23] 36.39 0.9886 

GridDehazeNet [24] 32.16 0.9836 

MSBDN [25] 32.61 0.9799 

MSTN [26] 35.64 0.9894 

SGID-PFF [27] 38.31 0.9860 

DEA-net [28] 41.16 0.9937 

Proposed method 41.42 0.9941 

RESIDE(Outdoor) 

Dehamer [22] 35.07 0.9849 

FFA-Net [23] 33.57 0.9837 

GridDehazeNet [24] 30.75 0.9811 

MSBDN [25] 34.71 0.9849 

MSTN [26] 32.91 0.9831 

SGID-PFF [27] 30.16 0.9803 

DEA-net [28] 36.14 0.9882 

Proposed method 43.71 0.9986 

NH-HAZE 

DCP [29] 12.72 0.4410 

GridDehaze [24] 13.80 0.5370 

FFA-net [23] 18.13 0.6515 

MSBDN [25] 17.97 0.6647 

AECR-net [30] 19.88 0.7170 

Dehamer [22] 20.66 0.6844 

RIDCP [31] 13.52 0.552 

FSDGN [32] 19.99 0.7306 

DehazeDDPM [33] 22.28 0.7309 

Proposed method 22.06 0.7532 

 

 

Compared to the approaches reviewed in this 

section, particularly those in [31] and [36], which 

have demonstrated comparable performance, the 

proposed method exhibits several strengths: 

1. The model requires significantly fewer 

parameters, making it more suitable for 

deployment on resource-constrained devices. 

2. The proposed architecture exhibits greater 

robustness across diverse weather and lighting 

conditions, as demonstrated by our additional 

qualitative results. 

3. The integration of attention mechanisms 

enhances the interpretability of feature 

selection during the dehazing process. 

4. The model maintains high performance while 

reducing computational costs, making it more 

suitable for real-time applications. 

5. Conclusion  

One of the key challenges leading to the failure of 

digital images and diagnostic systems based on 

digital image processing is the presence of haze in 

these images. To address this issue, researchers 

have proposed numerous methods leveraging 

machine vision and deep learning. In this paper, we 

present a novel deep learning-based approach for 

image dehazing. Our method employs self-

supervised learning and introduces a new 

convolutional encoder architecture incorporating 

the Convolutional Block Attention Module 

(CBAM), along with a custom loss function to 

optimize learning parameters. We evaluated the 

effectiveness of the proposed architecture on 

multiple datasets, demonstrating its high 

performance in dehazing digital images. 

Furthermore, the results indicate that a well-

designed convolutional encoder network—without 

excessive complexity—can partially alleviate the 

reliance on high-performance hardware for digital 

image dehazing, addressing a critical need in the 

research community. 
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 .4141سال  ،چهارمشماره  ،دوره سیزدهم، کاویمجله هوش مصنوعی و داده                                                                                            لو و رستگارختن

 

 پیچشیتوجه یکپارچه  بلوکشبکه خودرمزگذار با  کیبا استفاده از  ریتصو ه ازحذف م

 

  *حسن ختن لوو  همایون رستگار

 .گروه مهندسی کامپیوتر، دانشکده مهندسی، دانشگاه بوعلی سینا، همدان، ایران

 41/40/0402 پذیرش 01/42/0402 بازنگری؛ 41/41/0402 ارسال

 چکیده:

بر  یمبتن یهاستمیاز س ییها. نمونهباشدیم عیشا یمرطوب و باران یهاطیدر مح ژهیووجود مه است که به تال،یجید ریپردازش تصو یهااز چالش یکی

 ییئودیو یداورکمک یهاستمیخودران، س یخودروها ک،یکنترل هوشمند تراف یهانیشامل دورب رند،یگیچالش قرار م نیا ریکه تحت تأث یهوش مصنوع

(VAR )یخودنظارت یریادگیکاهش مه با استفاده از  یبرا یمقاله روش نی. اشودیم یتیو امن ینظارت یهانیفوتبال و دورب یهاومیدر استاد (SSL و )

تا مه را  تتوسعه داده شده اس (CBAM) یچشیهمراه با ماژول توجه بلوک پ( CAN) یچشیشبکه خودکدگذار پ کی. دهدیم شنهادیپ قیعم یریادگی

 یهابر کانال دیتأک یبرا CBAMاستفاده از  نیو همچن یقبل یهابا مدل سهیدر مقا لترهایو ف هاهیروش در تعداد کمتر لا نیا تیحذف کند. مز ریاز تصاو

 ییوانات توانندیمتنوع، م یهایژگیو دیبا وجود هدف تول ازحد،شیب یچشیپ یلترهایکه ف دهندینشان م هاشیاست. آزما ریمهم تصو یو نواح یچشیپ

 یشنهادیپ یآموزش معمار یبرا یبیترک انیتابع ز کیبه دقت محدود شود.  دیبا لترهایتعداد ف ن،یرا مختل کنند. بنابرا ریمدل در حذف مؤثر مه از تصاو

 ،یابیارز ی. برادیگرد یابیارز (RESIDE) یتک ریحذف مه از تصو انهیگراو مجموعه داده واقع NH-haze یهامجموعه داده یبه کار گرفته شد که رو

 سهیدر مقا یشنهادیپ یکه معمار دهندینشان م هاشیآزما جیاستفاده شد. نتا (PSNR) کیپ زیبه نو گنالیو نسبت س( SSIM) یشباهت ساختار اریمع

 دارد. یموجود، عملکرد بالاتر شرفتهیپ یهابا روش

 .حذف مه، شبکه خودرمزگذار پیچشی، یادگیری عمیق، یادگیری خودناظر، بلوک توجه یکپارچه پیچشی :کلمات کلیدی

 


