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 Image inpainting, the process of restoring missing or corrupted 

regions of an image by reconstructing pixel information, has recently 

seen considerable advancements through deep learning-based 

approaches. Aiming to tackle the complex spatial relationships within 

an image, in this paper, we introduce a novel deep learning-based pre-

processing methodology for image inpainting utilizing the Vision 

Transformer (ViT). Unlike CNN-based methods, our approach 

leverages the self-attention mechanism of ViT to model global 

contextual dependencies, improving the quality of inpainted regions. 

Specifically, we replace masked pixel values with those generated by 

the ViT, utilizing the attention mechanism to extract diverse visual 

patches and capture discriminative spatial features. To the best of our 

knowledge, this is the first instance of such a pre-processing model 

being proposed for image inpainting tasks. Furthermore, we 

demonstrate that our methodology can be effectively applied using a 

pre-trained ViT model with a pre-defined patch size, reducing 

computational overhead while maintaining high reconstruction 

fidelity. To assess the generalization capability of the proposed 

methodology, we conduct extensive experiments comparing our 

approach with four standard inpainting models across four public 

datasets. The results validate the efficacy of our pre-processing 

technique in enhancing inpainting performance, particularly in 

scenarios involving complex textures and large missing regions. 
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1. Introduction 

Image inpainting, commonly referred to as image 

completion or reconstruction, involves estimating 

pixel values to restore missing regions within an 

input image [1]. As an interesting task in computer 

vision, image inpainting supports numerous 

applications, including image editing [1], image-

based rendering [2], computational photography 

[1], object removal [2], and image denoising [3]. 

One of the primary challenges in this field is 

synthesizing visually realistic and semantically 

plausible pixels for missing regions that harmonize 

with the surrounding content [3]. To address this 

challenge, researchers have proposed various 

solutions in recent years [4-14]. However, there 

remains significant potential to enhance the quality 

of generated images. One promising approach 

involves leveraging auxiliary information, either 

from surrounding areas within the image or 

external data sources [4]. Another strategy adapts 

techniques from texture synthesis, in which 

background patches are matched and transferred 

into missing regions, either progressing from low-

resolution to high-resolution or propagating from 

hole boundaries [5]. This technique is particularly 

effective in background inpainting tasks and is 

widely applied in practical contexts [6]. However, 

it struggles with complex, non-repetitive structures 

and faces challenges in capturing high-level 

semantic information [7]. 
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Recent advancements in deep learning, particularly 

through Convolutional Neural Networks (CNNs) 

[8], Generative Adversarial Networks (GANs) [9], 

and Transformer models [10], have led to 

substantial progress in image inpainting [11-14]. In 

this framework, image inpainting is formulated as 

a conditional image generation problem, utilizing a 

convolutional encoder-decoder network trained 

alongside adversarial networks to ensure 

consistency between generated and real pixels. 

While these models generate plausible new 

content, they often exhibit boundary artifacts, 

distorted structures, and blurry textures that are 

inconsistent with surrounding areas. Consequently, 

despite the advancements in inpainting models, 

further improvements are needed to achieve 

enhanced performance in this field. 

In general, an image inpainting/restoration task 

aims to address three problems: feature extraction, 

finding neighbor patches, and collecting auxiliary 

information. The first problem aims to extract the 

effective features for making connections between 

missing and known areas. Relying on automatic 

feature extraction from data, deep learning-based 

models have been extensively used in recent years 

for this end. One of the most interesting deep 

learning-based models for image inpainting is the 

encoder-decoder model that extracts the features 

using the CNN in both encoder and decoder parts 

of the model [3, 11, 13-15]. More specifically, 

Pathak et al. presented Context Encoders, as a 

CNN-based model trained to generate the contents 

of an arbitrary image region conditioned on its 

surroundings, for unsupervised visual feature 

learning in the image reconstruction. Considering 

both the content of the entire image as well as 

plausible contents for the missing parts of the 

image, the proposed model can successfully 

reconstruct the image. More specifically, the 

Context Encoders model can simultaneously learn 

the appearance and also the semantics of visual 

structures in the image [13]. Moreover, a multi-

scale neural patch synthesis method is proposed by 

Yang et al. [15] based on joint optimization of 

image content and texture constraints. This method 

aims to keep both contextual structures as well as 

high-frequency details of the image. Results on two 

public datasets show that this model can produce 

sharper and more coherent results than prior 

methods [15]. Following the [13, 15], a new deep 

generative model has been designed in [3] to 

synthesize novel image structures using 

surrounding image features. The proposed model 

contains a fully convolutional neural network for 

processing multiple holes with variable sizes at 

different locations in the image. Results on 

multiple datasets confirm the effectiveness of the 

proposed methodology. Though, these models 

need to simultaneously consider and combine both 

global and local features in the model to enhance 

the results. The second problem is conducted to 

explicitly finding the neighbor components in the 

image for generating the realistic details [3, 11, 13-

17]. Complex and various structures in the missing 

areas and the context can lead to the performance 

degradation of the generation process. Moreover, 

the process of finding the neighbor patches is time-

consuming. To overcome this challenge, the 

proposed model in this work applies the search 

mechanism only during the train phase for finding 

the neighbor patches. Merging the auxiliary 

information to make the optimal candidates for 

missing patches is the main idea of the third 

problem. Using the spatial-variant constraints can 

help to make the optimal patch candidates by 

assigning the lower and higher constraints to the 

boundary and center areas, respectively. As a 

result, the adversarial loss has been recently 

employed to learn multi-modality by assigning 

different weights to loss for boundary consistency 

[17, 18]. In addition, the multi-column structure 

[19-21] is used in the model since it can decompose 

images into components with different receptive 

fields and feature resolutions. Unlike multi-scale or 

coarse-to-fine strategies [15, 22] that use resized 

images, branches in the multi-column network 

directly use full-resolution input to characterize 

multi-scale feature representations regarding 

global and local information. Moreover, an Implicit 

Diversified Markov Random Field (ID-MRF) term 

is used in the training phase only. Rather than 

directly using the matched features, which may 

lead to visual artifacts, this term is incorporated as 

a regularization term. Additionally, a confidence-

driven reconstruction loss is employed that 

constrains the generated content according to the 

spatial location. With all these improvements, the 

performance improvement is obtained using these 

methods. 

In image inpainting, preprocessing plays a crucial 

role in improving the quality of the output. 

Preprocessing helps to prepare the input images, 

ensuring that the inpainting model performs 

optimally. There are different preprocessing 

mechanisms that can be used to reconstruct the 

image, such as normalization, mask creation, 

denoising, and edge detection [1], enhancing the 

model’s ability to produce high-quality inpainting 

results. These preprocessing techniques are often 

adjusted based on the specific dataset and the 

model architecture used in the inpainting task. As a 

result, we focus on the inpainting mask, aiming to 
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enrich it before feeding to an image inpainting 

model. For this purpose, we propose a pre-

processing methodology using Vision Transformer 

(ViT) model and various visual patches in the 

image. More specifically, our contributions can be 

summarized as follows: 

Pre-processing Mechanism: ViT is used as a 

preprocessor for the input image. The intuition 

behind using ViT is substituting the mask values 

with the values obtained from the ViT. With this 

objective, different visual patches are used in the 

input image, aiming to obtain discriminative spatial 

features. The specific operation within the ViT that 

makes the generated feature map more beneficial 

than a binary mask for image inpainting is the 

multi-head self-attention mechanism. By dividing 

an image into patches and enabling each patch to 

attend to all others, ViT captures long-range 

dependencies and contextual information. This 

allows the model to infer missing regions based on 

semantically related, non-missing patches, 

providing richer guidance than a static binary 

mask. As a result, the ViT output is highly effective 

for use as a pre-processing step in image 

inpainting. To the best of our knowledge, this is the 

first time that such a pre-processing model is 

proposed to the image inpainting task. 

Performance: Experimental results comparing 

with four standard models on four public datasets 

confirm the efficacy of the proposed pre-

processing methodology for image inpainting task. 

The rest of this paper is organized as follows: 

section 2 briefly reviews recent works in image 

inpainting. Details of the proposed model will be 

presented in section 3. Experimental results with 

presenting a brief introduction to datasets, 

implementation details, and a discussion on the 

obtained results are mentioned in sections 4 and 5. 

Finally, section 6 concludes the work by providing 

a future roadmap for improvement. 

 

2. Related work 

Generally, the current models for image inpainting 

can be studied from different perspectives. For 

instance, some models employ the traditional 

methods as well as the low-level features to transfer 

the information from the background regions to the 

missing ones. However, these methods are more 

suitable for the stationary textures compared to 

non-stationary data such as natural images [23, 24]. 

Accordingly, a bidirectional patch similarity-based 

method has been suggested by Simakov et al. [25] 

for modeling the nonstationary visual data in image 

inpainting. This model suffers from the 

computational complexity of patch similarity. To 

overcome this challenge, PatchMatch, as a fast 

nearest-neighbor method, has been suggested, 

obtaining the significant results in image inpainting 

[17]. The recent advances in deep learning models, 

especially CNN-based models, are used in some 

models for pixel prediction of the missing regions. 

Consequently, some efforts have been done to 

develop the GAN-based models with the embedded 

CNN in the generator and discriminator networks. 

Different approaches have been used accordingly, 

such as training CNN on small image regions [26, 

27] and using the Context Encoders [13] for 

inpainting large missing regions. Moreover, using 

the global and local discriminators as adversarial 

losses is the main idea of the model proposed by 

Iizuka et al. [11] to improve the performance of the 

Context Encoders models. Accordingly, the dilated 

convolutions are employed to substitute channel-

wise fully connected layer in Context Encoders, 

aiming to extend the receptive fields of output 

neurons. In addition, some studies have been 

concentrated on generative face inpainting. For 

instance, Yeh et al. [14] suggested a model to find 

the nearest encoding in latent space of the image 

with missing regions and decode to obtain the 

completed image. Moreover, an auxiliary loss has 

been included in the loss function by Li et al. [12] 

for face completion. However, these models need 

post processing steps, such as image blending 

operation to enforce color consistency near the 

boundaries of the missing regions. Another 

approach defines the image restoration as an 

optimization problem using the ideas from the 

image stylization [28, 29]. Considering this, a 

multiscale neural patch synthesis model has been 

designed by Yang et al. [15] using the joint 

optimization of image content and texture 

constraints. While this model has obtained the 

promising results, it suffers from the high 

complexity due to the optimization process. Using 

the spatial attention in deep networks is another 

approach for learning the contextual information, 

aiming to improve the image inpainting 

performance. Accordingly, a parametric spatial 

attention approach, namely Spatial Transformer 

Network (STN), as well as the spatially attentive or 

active convolutional kernels [30, 31] have been 

suggested by researchers for performance 

improvement in image restoration task. However, 

these methods are not effective for modeling patch-

wise attention as well as predicting a flow field 

from the background region to the hole.  

Recent studies highlight the importance of 

capturing long-range dependencies in missing 

region reconstruction in image. To address this, 

many existing methods leverage attention 

mechanisms or transformers, typically at low 
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resolutions to manage computational costs. For 

instance, Li et al. [32], have proposed a 

transformer-based model designed for large-hole 

inpainting, which integrates the strengths of 

reconstructed images. This model introduces a 

specialized inpainting-focused transformer block, 

where the attention mechanism selectively 

aggregates non-local information from a subset of 

valid tokens, guided by a dynamic mask. 

Experimental results show the effectiveness of the 

proposed approach across multiple benchmark 

datasets; however, DL-based inpainting methods 

often suffer from artifacts, particularly around 

boundaries and in highly textured regions. To 

address these issues, Wu et al. [33] have developed 

an end-to-end, two-stage generative model that 

operates in a coarse-to-fine manner. This approach 

combines a Local Binary Pattern (LBP) learning 

network with an image inpainting network. In the 

first stage, a U-Net-based LBP learning network is 

employed to accurately predict the structural 

details of the missing regions, which then guides 

the second-stage inpainting network for more 

precise pixel restoration. Additionally, an 

enhanced spatial attention mechanism has been 

integrated into the inpainting network, ensuring 

consistency not only between the known and 

generated regions but also within the generated 

area itself. Evaluation results on public datasets 

demonstrate the effectiveness of the proposed 

model in [33]. 

Aiming to make the performance improvement in 

image reconstruction, in this paper, we propose a 

pre-processing methodology using deep learning 

models. More specifically, we use the ViT model 

with various visual patches, aiming to fill the zero 

values in the missing areas with the values obtained 

from the ViT. We assess the generalization 

capability of the proposed methodology on four 

comparative models using four public datasets, 

confirming the efficacy of the introduced method. 

 

3. Proposed approach   

In this section, we present the details of the 

proposed approach for image inpainting, including 

two main blocks: ViT pre-processing and replacing 

the missing regions. 

 

3.1. ViT pre-processing 

Let consider an input image along with a binary 

region mask, M, which have to feed to an image 

inpainting model. Generally, most of the previous 

works use a binary mask, which includes a matrix 

filled with 0 and 1 values for the known and 

unknown pixels. Furthermore, the unknown 

regions are filled with zero values in input image. 

These models aim to complete the unknown 

regions of the input image and provide a complete 

image. Here, we propose a pre-processing 

methodology to replace the binary mask with an 

attended mask obtained from the ViT model. To 

this end, we use the input image, including the 

unknown regions filled with zero values and feed it 

to the ViT model. Relying on the self-attention 

mechanism in ViT, a feature map is obtained from 

the input image. Considering the task and the 

characteristics of the image data, different visual 

patches in the image can be used to obtain the 

features. Here, we consider three kinds of visual 

patches in the input image (vertical, horizontal, and 

square) to construct the self-attention matrix. More 

concretely, details of these patches are as follows: 

Vertical patches: In this approach, we use the 

vertical patches in the image to feed to the self-

attention mechanism. Figure 1(Left) shows a 

sample image including the vertical patches. The 

intuition behind using the vertical patches is 

capturing vertical features, such as buildings, trees, 

and other objects that stretch upward in images. 

Moreover, this kind of patches is efficient for 

obtaining the contextual information from the 

objects or patterns that are aligned vertically, 

making it suitable for tasks where vertical 

alignment is significant, like facial recognition 

(capturing nose, mouth, eyes, etc.). Considering 

these advantages, the vertical patches in Fig. 1 are 

self-attended to obtain the visual features from the 

image. 

Horizontal patches: In this approach, we use the 

horizontal blocks in the image to feed to the self-

attention mechanism. Figure 1(Middle) shows a 

sample image including the horizontal patches. 

Horizontal patches capture horizontal features like 

landscapes, horizons, or wide objects. This is 

advantageous for tasks where the spatial relations 

across the width are important. Moreover, in tasks 

involving panoramic views or wide scenes (e.g., 

road images, landscapes), horizontal patches allow 

the model to capture wide features more efficiently. 

Considering these advantages, the horizontal 

patches in Figure 1(Middle) are self-attended to 

obtain the visual features from the image. 

Figure 1: Patches of the image: (Left) Vertical, (Middle) 

Horizontal, and (Right) Square. 
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Square patches: In this approach, we use the 

square patches in the image to feed to the self-

attention mechanism. Figure 1(Right) shows a 

sample image including the square patches. Using 

square patches for self-attention in image 

processing, as commonly done in the ViT model, 

offers several advantages. One key benefit is the 

balanced feature representation. Square patches 

divide the image evenly, which allows for uniform 

extraction of both horizontal and vertical features. 

This symmetry ensures equal treatment of both 

directions — horizontal and vertical. As a result, it 

becomes a robust choice for various image types. 

This includes images containing tall objects, wide 

objects, or both. Additionally, square patches offer 

a uniform distribution across the image, making it 

ideal for tasks where no particular direction 

dominates, such as natural scenes, medical images, 

or textures. Considering these advantages, we use 

the square patches with different dimensions in the 

image to input to the self-attention mechanism. 

The choice of vertical, horizontal, and square 

patches—rather than diagonal or irregularly shaped 

patches—in Vision Transformers (ViT) or related 

image inpainting methods is primarily driven by 

computational simplicity, architectural 

consistency, and efficiency. Here's a breakdown of 

the rationale: 

1. Standard Grid-Based Patch Tokenization: ViT 

divides images into non-overlapping square 

patches in a regular grid (e.g., 16×16 or 32×32). 

This grid structure ensures uniform spatial 

coverage, simplicity in implementation (tensor 

reshaping and linear projections), and 

compatibility with efficient matrix operations (e.g., 

batch matrix multiplication). 

2. Model Compatibility and Positional Encoding: 

Positional encodings (used to preserve spatial 

relationships between patches) are typically 

designed assuming a Cartesian grid. Introducing 

irregular or diagonal patches would break this 

assumption and require a different positional 

encoding scheme and more complex data 

preprocessing and model design.  

3. Semantic Interpretability: Square, vertical, and 

horizontal patches align naturally with the spatial 

structure of objects in most images (edges, 

textures, contours). Diagonal or irregular patches 

do not align well with the convolutional inductive 

bias or visual semantics learned by pre-trained ViT 

models. 

4. Hardware and Efficiency: Uniform patches 

support efficient tensor operations on modern 

hardware (e.g., GPUs/TPUs). Irregular shapes 

would require custom masking or sparse attention 

operations, which are computationally expensive 

and less optimized. 

 

3.2. Mask replacing 

After pre-processing the input image using any of 

the vertical, horizontal, or square patches, the 

obtained feature map is used to multiply with the 

binary mask to fill the missing regions with the 

self-attended features from the ViT. In other words, 

instead of filling the missing regions with the zero 

values, we replace these regions with the attended 

features from the ViT. More specifically, the ViT 

is applied to the masked image, and it produces a 

feature map over its patch-based representation. 

We locate the patches or areas in the ViT output 

that correspond to the zero-valued regions in the 

binary mask and substitute only those areas, 

leaving the unmasked regions unchanged. No 

dimensionality reduction, color mapping, or 

additional transformations are performed—the 

values from the ViT output are directly inserted 

into the masked image based on spatial 

correspondence with the binary mask. 

Consequently, any image inpainting model can use 

this image as a more informative input, expecting 

to better refining the image. Figure 2 shows the 

process of mask replacing in the proposed 

approach. Since the best results have been obtained 

using the vertical (column) attention matrix, we 

only visualize the results corresponding to this 

attention matrix. 

 

3.3. Training process 

Training process includes the following steps: 

Input Image (Y): The input image, referred to as 

(Y), is considered to feed to the proposed model. 

 

Figure 2: The process of mask replacing in our approach. ViT is applied to the masked image, generating a feature map 

based on its patch-wise structure. We identify the regions in this output that align with the masked (zero-valued) areas 

indicated by the binary mask and replace only those specific regions with the ViT output, while preserving the original 

content in the unmasked portions of the image. 
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Binary Mask (M): Generally, in an inpainting 

model, a binary mask is created in such a way that 

the value 0 indicates known pixels and the value 1 

indicates unknown pixels. This mask is sampled at 

a random location on the image. 

Masked Input Image (X): Using the binary mask 

(M), a new image (X) is produced as follows: 

 1X Y M                                                    (1) 

This operation keeps the known pixels from Y 

(because multiplying by 1 doesn't change the 

value) and sets the unknown pixels to 0 (since (1-

M) will be 0 for unknown pixels). 

Rich features extraction (𝑋𝑉𝑖𝑇): Relying on the 

ViT capabilities, richer visual features are 

extracted from the X, as follows: 

 ViTX ViT X                                                   (2) 

Model Input: The generator model G takes the 

concatenation of  ViTX  and M as input. This 

means the model gets both the partially known 

image and the mask indicating where the unknown 

regions  RX are: 

    1R ViTX X M Y M                              (3) 

Final Prediction ˆ( )Y : The model generates a 

prediction for the unknown pixels. The final 

reconstructed image ˆ( )Y  is given by: 

      ˆ 1 ,ViT RY X M Y M G X M M           (4) 

The first and the second terms of above equation 

retain the known parts of the original image and the 

unknown parts with the model's predictions, 

respectively. G is a general inpainting model. Table 

1 present the pseudocode of training mechanism of 

the proposed model. 

 

3.4. ViT’s Self-Attention 

The self-attention mechanism in ViT operates by 

computing attention scores between all pairs of 

image patches. This process enables the model to 

capture contextual relevance and semantic 

similarity across the entire image. 

Patch-wise Tokenization and Embedding: The 

input image is split into fixed-size patches. Each 

patch is flattened and embedded into a vector, 

forming a sequence of patch tokens. 

Multi-Head Self-Attention (MSA): Each token 

(patch) is transformed into a Query (Q), Key (K), 

and Value (V) vector. Attention scores, Att, are 

computed as: 

 

Table 1. Pseudocode of the proposed approach for image 

inpainting. 

Algorithm 1 

1. Procedure Img_Inpainting (Y, M, ViT, G) 

2. Inputs:  

Y ← original input image          

M ← binary mask (1 = unknown pixels, 0 = known pixels) 

ViT ← pre-trained Vision Transformer model 
G ← general inpainting model 

Output: 

𝑌̂ ← final reconstructed image 

3. Create the masked input image (X):  1X Y M       

4. Extract rich features using ViT (𝑋𝑉𝑖𝑇):  ViTX ViT X  

 

5. Prepare the model input:     1R ViTX X M Y M      

6. Obtain the final prediction: 

      ˆ 1 ,ViT RY X M Y M G X M M       

7. End Procedure  

 , , Softmax
T

k

QK
Att Q K V V

d

 
  

 
 

                               (5) 

where d represents the dimensionality of the key 

vectors. Softmax  is the softmax activation function. 

Specifically, it is the number of features in each key 

(and query) vector. This mechanism allows every 

patch to attend to all others, weighted by learned 

semantic importance. 

Capturing Spatial Discriminativeness: Because 

attention is not constrained by locality, ViT can 

relate visually similar structures even if they are 

spatially distant. For inpainting, this is critical: the 

model learns which regions of the image provide 

useful context for reconstructing a missing region. 

Unlike convolutional methods, ViT doesn’t rely on 

hand-crafted kernels—it learns which patches to 

attend to based on training. 

Enriching Masked Regions: The spatially 

discriminative feature map generated by attention 

reflects global visual coherence. When the masked 

region is replaced with ViT-generated features, 

those features are semantically informed, not just 

placeholders. This improves the downstream 

inpainting model’s ability to produce visually 

consistent and structurally plausible restorations. 

This process enables the ViT to serve as a semantic 

guide rather than a simple binary indicator. The 

inpainting model, when given ViT-generated 

features instead of a binary mask, benefits from 

richer, more meaningful inputs—making the 

restoration process more context-aware and 

visually accurate. 
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4. Experiments with four standard models 

In this section, we present the experimental results 

of the proposed methodology on four comparative 

models on four datasets. We used four models with 

publicly available implementation. It is worth 

mentioning that the results have been obtained 

using the best pre-processing methodology (ViT 

with a 2-column attention matrix). Our ablation 

analysis on the proposed methodology will be 

presented in the next section.  

 

4.1. GMCNN 

The GMCNN [4] is a generative multi-stream 

network for image inpainting, which synthesizes 

different components of an image in parallel within 

a single stage. To better capture global structures, a 

confidence-driven reconstruction loss as well as an 

implicit diversified Markov Random Field (MRF) 

regularization have been used to enhance local 

details. The combination of the multi-column 

network with the reconstruction and MRF losses 

allows for the effective propagation of both local 

and global context to the inpainting regions. An 

overview of this model has been shown in Figure 

3.  
 

4.2. MSNPS 

MSNPS [15] is a multi-scale neural patch synthesis 

approach that jointly optimizes image content and 

texture constraints (Figure 4). This method not only 

maintains contextual structures but also generates 

high-frequency details by aligning patches with the 

most similar mid-layer feature correlations from a 

deep classification network. Testing on the 

ImageNet and Paris Streetview datasets, this model 

achieves state-of-the-art performance in inpainting 

accuracy. 

 

4.3. CA 

CA [3] is a deep generative model that not only 

synthesizes new image structures but also 

explicitly leverages surrounding image features as 

references during training for more accurate 

predictions. This model is a fully convolutional, 

feed-forward neural network capable of handling 

multiple holes of varying sizes and arbitrary 

locations during testing. Experiments conducted on 

diverse datasets, including faces (CelebA, CelebA-

HQ), textures (DTD), and natural images 

(ImageNet, Places2), demonstrate that this 

approach produces higher-quality inpainting 

results compared to existing methods. An overview 

of the CA model after applying the proposed pre-

processing method can be found in Figure 5. 

 

 

4.4. Context Encoders (CE) 

CE is unsupervised visual feature learning 

algorithm based on context-driven pixel prediction. 

Inspired by the concept of autoencoders, CE is 

designed by the Authors in [13], as a CNN 

designed to generate the contents of missing 

regions in an image, using the surrounding areas as 

context. To perform this task effectively, the 

network must not only comprehend the entire 

image's content but also generate plausible 

hypotheses for the missing parts. In training phase, 

two approaches are used: a standard pixel-wise 

reconstruction loss and a combination of 

reconstruction loss and adversarial loss. The latter 

yields significantly sharper results by better 

addressing the multimodal nature of the output. 

The experiments demonstrate that CE learn a 

representation that captures both the visual 

appearance and the underlying semantics of image 

structures. An overview of the CE model [13] after 

applying the proposed pre-processing method can 

be found in Figure 6. 

5. Experimental Results and Discussion 

In this section, we delve into the results of the 

proposed model on four datasets. After the 

presentation of the implementation details of the 

proposed model, an overview of the datasets as 

well as the evaluation metrics, along with the 

ablation analysis, are presented. The section is 

concluded with a comparison with four 

comparative models, accompanied by a discussion 

on the obtained results. 

 

5.1. Implementation Details 

The implementation of our model utilizes the 

Python programming language and PyTorch 

library [34]. PyTorch is a library specifically 

designed for data science and deep learning 

computations. The proposed model has been 

trained on a NVIDIA Tesla K80 GPU, employing 

the Adam optimizer, a mini-batch size of 64, a 

learning rate of 1e-4 with adaptive tuning, 300 

epochs with early stopping, and a weight decay of 

1e-5. For model evaluation, a subset of four 

datasets, namely Paris Street View [13], Places2 

[35], ImageNet [36], and CelebA-HQ [22], have 

been employed with the largest hole size 128 × 128 

in random positions of the input images.  

 

5.2. Datasets 

Four datasets have been used for the model 

evaluation. Here, a brief introduction of these 

datasets is presented as follows: 
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Figure 3. Pre-processing the input image with our method before it is input to the model in [4]. This figure illustrates the 

architecture of the GMCNN [4] for image inpainting. The design features a multi-branch (multi-column) structure, where 

each branch processes the input image at the full resolution but with different receptive field sizes. The outputs from all 

columns are then concatenated and passed through subsequent layers to generate the final inpainted image. 

Figure 4. The input image is first processed using our method, and the resulting output is then provided to the model 

presented in [15]. The proposed model in [15] includes a two-stage high-resolution image inpainting framework that first 

generates a coarse structure and then refines it using multi-scale texture synthesis, combining global semantic guidance 

with local texture consistency to produce realistic results. 

Figure 5. Applying our pre-processing approach prior to passing the input image into the model described in [3]. The 

proposed generative inpainting framework in [3] consists of two stages: a coarse prediction network optimized using 

reconstruction loss, and a refinement network trained with a combination of reconstruction and adversarial losses at 

both global and local scales, following the adversarial loss formulation. 
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• Paris Street View: This dataset includes 

approximately 10,000 images of 12 cities from two 

perspectives and the shape of 936 × 537 pixels. 

• Places2: This dataset contains 10 million scene 

photographs, labeled with scene semantic 

categories, including a large and diverse list of the 

types of environments encountered in the world 

• ImageNet: There are 3.2 million images in total 

in 1000 categories in this dataset. 

• CelebA-HQ: This dataset includes ten thousand 

identities, each of which has twenty images (two 

hundred thousand images in total). 

 

5.3. Evaluation metrics 

Two evaluation metrics are used to evaluate the 

model performance. A brief introduction to these 

metrics is as follows: 

• Peak Signal-to-Noise Ratio (PSNR) [37]: PSNR 

is a measure employed to quantify the quality of a 

reconstructed or compressed image compared to its 

original version. It is expressed in decibels (dB) 

and is derived from the Mean Squared Error (MSE) 

between the two images. 

• Structural Similarity Index Measure (SSIM) 

[37]: SSIM is a metric used to assess the visual 

impact of changes in structural information, 

luminance, and contrast between the original and a 

distorted image. Unlike PSNR, which focuses on 

pixel-wise errors, SSIM considers changes in 

structural information, making it more aligned with 

human visual perception. 

 

5.4. Results and discussion 

In this sub-section, we present the numerical and 

visual results obtained from the suggested method. 

In this way, we compare the results of the 

comparative models in two cases: with and without 

our pre-processing model. More specifically, 

Figures 7-9 show the visual results of four 

comparative models on four public datasets (Pairs 

Street View, ImageNet, Places2, and CelebA-HQ). 

As these figures show, all of the comparative 

models have a better visual performance in the case 

of using our approach. Additionally, the numerical 

results are also reported in Table 2 using two 

evaluation metrics. As the results of this table 

show, all models have a better performance in the 

case of using the proposed method due to capability 

of the proposed methodology in providing more 

informative features for the initial mask. Finally, 

we discuss the impact of pre-training of our 

developed method. Since the original ViT uses the 

input patches with the dimension of 16x16, in the 

case of using our approach, we need to train the 

ViT model with the pre-defined patch size. Once 

the model is trained in this way, the trained model 

can be used in the inference as a pre-trained model. 

In the case of using the original ViT model, we will 

be restricted to the input patch dimension of 16x16. 

Table 3 shows the results of the comparative 

models in three cases: without the proposed pre-

processing, pre-training the ViT with the 

predefined patch size in the proposed pre-

processing, and using the original ViT in the 

proposed pre-processing. As this table shows, 

compared to the original comparative models, 

using the proposed pre-processing leads to 

performance improvement in both cases of pre-

training the ViT with the predefined patch size in 

the proposed pre-processing and using the original 

ViT in the proposed pre-processing. However, pre-

training is led to the better performance. Regarding 

Figure 6. Using the proposed pre-processing mechanism before feeding the input image to the model in [13]. In the 

proposed model in [13], the context image is first processed by the encoder to extract feature representations, which are 

then linked to the decoder through a channel-wise fully connected layer. The decoder uses this information to 

reconstruct the missing parts of the image. 
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model complexity and runtime, we employed the 

ViT-Base model with 12 layers, comprising 

approximately 86 million parameters, and observed 

a single-image inference time of around 50 

milliseconds. 

While it is true that pre-trained ViTs reduce 

training complexity and eliminate the need to learn 

representations from scratch, we acknowledge that 

patch-wise self-attention remains computationally 

intensive, especially for high-resolution images. 

This is due to the quadratic complexity of self-

attention with respect to the number of patches. In 

our approach, however, the ViT is used only once 

during pre-processing, not during iterative 

inpainting or as part of an end-to-end training 

pipeline. Therefore, the computational overhead is 

confined to a single forward pass through the ViT. 

Additionally, since we use a fixed patch size, the 

number of tokens (patches) remains tractable for 

the image resolutions used in our experiments. 

Nevertheless, for very large images or real-time 

applications, this limitation is valid.  

6. Conclusion and future work 

In this paper, we proposed a new deep learning-

based pre-processing methodology using the ViT 

model and various visual patches in the image. In 

this way, ViT is used as a preprocessor for the input 

image to substitute the zero values in the missing 

areas with the attended values obtained from the 

ViT. To achieve this, different visual patches have 

been used in the input image, aiming to obtain the 

efficient spatial features. Relying on the self-

attention mechanism in ViT, a feature map was 

obtained from the input image. Considering the 

task and the characteristics of the image data, 

different visual patches in the image can be used to 

obtain the features that we considered three kinds 

of visual patches in the input image (vertical, 

horizontal, and square) to construct the self-

attention matrix. Experimental results using four 

comparative models on four public datasets 

confirm the efficacy of the proposed pre-

processing methodology for image restoration. As 

a future work, we aim to employ the diffusion 

models for obtaining more efficient and robust 

features, leading to the better performance. 

Moreover, to be compatible with very large images 

or real-time applications, future work could 

explore efficient transformer variants (e.g., Swin 

Transformer, Linformer, or Performer) or 

Figure 9. Visual results of the proposed model: (a) Input 

image, (b) Masked image, (c) Masked image filled out 

with the ViT, (d) Reconstructed image using the base 

model, (e) Reconstructed image using the proposed 

methodology added to the GMCNN. The first, second, 

and third rows are corresponding to CelebA-HQ, 

CelebA-HQ, and ImageNet, respectively. Red boxes show 

the locations with major changes during the inpainting 

process. 

Figure 7. Visual results of the proposed model: (a) Input 

image, (b) Masked image, (c) Masked image filled out 

with the ViT, (d) Reconstructed image using the base 

model, (e) Reconstructed image using the proposed 

methodology added to the GMCNN. The first, second, 

third, and fourth rows are corresponding to Places2, 

Paris Street View, Paris Street View, and Places2, 

respectively.  Red boxes show the locations with major 

changes during the inpainting process. 

Figure 8: Visual results of the proposed model: (a) Input 

image, (b) Masked image, (c) Masked image filled out with 

the ViT, (d) Reconstructed image using the base model, (e) 

Reconstructed image using the proposed methodology 

added to the GMCNN. The first, second, and third rows are 

corresponding to ImageNet, Paris Street View, and Paris 

Street View, respectively.  Red boxes show the locations 

with major changes during the inpainting process. 
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hierarchical patching strategies to reduce the 

computational burden while retaining spatial 

discriminative power. In addition, we plan to 

extend our work by integrating dynamic or 

learnable mask strategies as well as diffusion-based 

or adaptive mask learning techniques and assessing 

how ViT-based pre-processing interacts with such 

mechanisms.  

 

Table 2. Comparison the quantitative results of the proposed model with the SOTA models on four datasets for two distinct 

cases: with and without the proposed method. 

Method Pairs street view-100 ImageNet-200 Places2-2K CelebA-HQ-2K 

PSNR     SSIM PSNR     SSIM PSNR     SSIM PSNR     SSIM 

CE [13] 22.10 0.8550 22.24 0.9010 17.20 0.8010 20.10 0.9002 

CE + Proposed pre-processing  23.50 0.8734 23.58 0.9106 18.10 0.8115 21.30 0.9115 

MSNPS [15] 22.60 0.8560 22.30 0.9030 17.80 0.8080 20.60 0.9050 

MSNPS + Proposed pre-processing  23.78 0.8788 23.64 0.9120 19.15 0.8220 21.90 0.9180 

CA [3] 22.90 0.8477 20.62 0.7217 18.20 0.8280 21.60 0.9260 

CA + Proposed pre-processing  24.44 0.8590 22.65 0.9065 20.03 0.8439 23.90 0.9370 

GMCNN [4] 24.65 0.8650 22.43 0.8939 20.16 0.8617 25.70 0.9540 

GMCNN + Proposed pre-processing  28.10 0.9270 26.90 0.9480 23.60 0.9090 29.80 0.9930 

Table 3. Numerical results of the comparative models in three cases: Original model, Original model plus the 

original ViT model with 16x16 patch size, and Original model plus the ViT model with a predefined patch size. 

Method Pairs street view-100 ImageNet-200 Places2-2K CelebA-HQ-2K 

PSNR     SSIM PSNR     SSIM PSNR     SSIM PSNR     SSIM 

CE [13] 22.10 0.8550 22.24 0.9010 17.20 0.8010 20.10 0.9002 

CE + ViT(16x16) 22.80 0.8630 22.70 0.9040 17.50 0.8040 20.35 0.9025 

CE + ViT(2-Row) 22.95 0.8660 22.90 0.9060 17.80 0.8080 20.60 0.9045 

CE + ViT(2-Column)  23.50 0.8734 23.58 0.9106 18.10 0.8115 21.30 0.9115 

 

MSNPS [15] 22.60 0.8560 22.30 0.9030 17.80 0.8080 20.60 0.9050 

MSNPS + ViT(16x16) 22.96 0.8610 22.65 0.9060 18.15 0.8110 20.90 0.9090 

MSNPS + ViT(2-Row) 23.06 0.8625 22.85 0.9085 18.30 0.8145 20.98 0.9098 

MSNPS + ViT(2-Column)  23.78 0.8788 23.64 0.9120 19.15 0.8220 21.90 0.9180 

 

CA [3] 22.90 0.8590 22.65 0.9065 18.20 0.8280 21.60 0.9260 

CA + ViT(16x16) 23.40 0.8600 22.80 0.9082 18.35 0.8295 21.86 0.9275 

CA + ViT(2-Row) 23.60 0.8630 22.95 0.9110 18.72 0.8310 21.98 0.9292 

CA + ViT(2-Column) 24.44 0.8770 23.40 0.9245 20.03 0.8439 23.90 0.9370 

 

GMCNN [4] 24.65 0.8650 22.43 0.8939 20.16 0.8617 25.70 0.9540 

GMCNN + ViT(16x16) 25.80 0.9010 24.20 0.9220 21.62 0.8774 27.20 0.9714 

GMCNN + ViT(2-Row) 26.10 0.9030 24.65 0.9285 21.90 0.8795 27.45 0.9744 

GMCNN + ViT(2-Column) 28.10 0.9270 26.90 0.9480 23.60 0.9090 29.80 0.9930 
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  چکیده:

 قیاعم یریادگیابار  یمبتنا یکردهاایرو قیااز طر راًیااخ کسا،،یاطلاعاا  پ یبا بازسااز ریتصو کیمناطق خراب شده  یابیباز ندیفرآ ر،یتصو یبازساز

 بار یمبتنا جدیاد پاردازششیروش پ کیا ر،یتصاو کیادر  دهیچیپ یمقاله، با هدف مقابله با روابط مکان نیداشته است. در ا یقاب، توجه یهاشرفتیپ

، های عصابی کانولوشانیشبکهبر  یمبتن یهابرخلاف روش. میکنیم یمعرف( ViT) یینایب ترنسفورمربا استفاده از  ریتصو یبازساز یبرا قیعم یریادگی

شاده را  یمناطق بازساز تیفیو ک کندیاستفاده م یجهان یانهیزم یهایوابستگ یسازمدل یبرا یینایب ترنسفورمر در یخودتوجه سمیما از مکان کردیرو

 یتوجاه بارا سامیو از مکان میکنیما نیگزیجاا ViTشاده توساط  دیاتول ریماسک شده را با مقاد یهاکس،یپ ری. به طور خاص، ما مقادبخشدیبهبود م

 یپردازشاشیمادل پ نینمونه از چنا نیاول نیا م،یدانی. تا آنجا که ما ممیکنیاستفاده م زیمتما یمکان یهایژگیمتنوع و ثبت و یبصر یهااستخراج تکه

 ترنسافورمرمادل  کیابه طور موثر با اساتفاده از  تواندیکه روش ما م میدهیما نشان م ن،یشده است. علاوه بر ا شنهادیپ ریتصو یبازساز یاست که برا

، قابلیات حاال نیرا کااهش دهاد و در عا یسربار محاسابات مورد استفاده قرار گیرد، ،شده فیتعر شیبا اندازه تکه از پ شده دهیآموزش د شیاز پ یینایب

ما را با چهار مدل اساتاندارد  کردیکه رو میدهیرا انجام م یاگسترده یهاشیآزما ،یشنهادیروش پ میتعم تیقابل یابیارز یبرابالا را حفظ کند.  یبازساز

در  ژهیاباه و ،ریتصاو یبازساازعملکارد  شیماا را در افازا پاردازششیپ کیتکن یاثربخش ج،ی. نتاکندیم سهیمقا یدر چهار مجموعه داده عموم یبازساز

 .کندیم دییو مناطق گمشده بزرگ هستند، تأ دهیچیپ یهابافت شام،که  ییوهایسنار

 .شدهیبازساز ریاز دست دادن، تصو ی، خطایینایب ترنسفورمر، یشبکه مولد تخاصم ر،یتصو یبازساز :کلمات کلیدی

 


