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 Artificial intelligence (AI) has significantly advanced speech 

recognition applications. However, many existing neural network-

based methods struggle with noise, reducing accuracy in real-world 

environments. This study addresses isolated spoken Persian digit 

recognition (zero to nine) under noisy conditions, particularly for 

phonetically similar numbers. A hybrid model combining residual 

convolutional neural networks and bidirectional gated recurrent units 

(BiGRU) is proposed, utilizing word units instead of phoneme units 

for speaker-independent recognition. The FARSDIGIT1 dataset, 

augmented with various approaches, is processed using Mel-

Frequency Cepstral Coefficients (MFCC) for feature extraction. 

Experimental results demonstrate the model’s effectiveness, 

achieving 98.53%, 96.10%, and 95.92% accuracy on training, 

validation, and test sets, respectively. In noisy conditions, the 

proposed approach improves recognition by 26.88% over phoneme 

unit-based LSTM models and surpasses the Mel-scale Two 

Dimension Root Cepstrum Coefficients (MTDRCC) feature 

extraction technique along with MLP model (MTDRCC+MLP) by 

7.61%. 
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1. Introduction 

Artificial intelligence (AI) has become widely used 

in signal processing, including audio, speech 

recognition, image processing, and machine vision 

[1,2,3,4]. Among these, automatic speech 

recognition (ASR) has garnered extensive interest 

due to its vast applicability in hands-free user 

interfaces, voice-based authentication, and 

assistive technologies [5,6]. Spoken digit 

recognition, as a specific sub-task of ASR, 

demands high precision due to its frequent use in 

structured inputs such as phone numbers, PIN 

codes, and spoken commands. Even minor errors 

in digit recognition can lead to serious 

misunderstandings in critical applications. 

Within ASR, digit recognition serves as a 

fundamental task with applications in 

telecommunication systems, voice-controlled 

banking, and automated customer service. 

Accurate recognition is especially critical when 

used in sensitive scenarios such as password entry 

or financial transactions. 

Research on spoken number recognition has been 

ongoing. Homayounpour et al. [7] reviewed 

methods using hidden Markov models (HMMs) 

and MLP neural networks for Persian number 

recognition, achieving 99.1% accuracy for discrete 

and 83.7% for continuous numbers in the 

FARSDIGIT1 database [8]. In 2008, Hierarchical 

Temporal Memory (HTM) was applied to isolated 

digit recognition [9], and a Gaussian mixture 

model (GMM) classifier with and Delta-Delta Mel-

Frequency Cepstral Coefficients (MFCC) for 

feature extraction achieved 99.3% accuracy in 

Arabic digit recognition [10]. 

In recent years, deep neural networks (DNNs) have 

gained significant interest in speech recognition. 

Danashri et al. [11] used a DNN with a Deep Belief 

Network (DBN), achieving 86.06% accuracy for 
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English numbers from the TIDIGIT database [12]. 

Zada et al. [13] utilized a Convolutional Neural 

Network (CNN) for Pashto number recognition, 

achieving an accuracy of 84.17%. The model 

featured four deep convolutional layers and a 

maximum pooling layer. However, the effect of 

noise on recognition accuracy remains largely 

unexplored. 

In [14], an LSTM-based network was presented 

that categorizes discrete numbers into groups with 

similar phonetic characteristics and trains an 

LSTM neural network for each class, 

independently. It achieved 91.7% accuracy in 

noise-free conditions but dropped to an average of 

69.22% when various noises are added to the audio 

data. 

More recently, the combination of multi-layer 

perceptron (MLP) and Mel-scale Two Dimension 

Root Cepstrum Coefficients (MTDRCC) feature 

extraction method was used for number 

recognition in noisy conditions, achieving 98.85% 

accuracy in noise-free conditions and 88.49% in 

noisy ones [15], for Persian numbers. Viriri et al. 

[16] combined recurrent neural network (RNN) 

and LSTM, achieving 99% accuracy on English 

numbers, while Sotisna et al. [17] used transfer 

learning networks, like AlexNet and GoogleNet, 

reporting lower recognition rates, 72% for AlexNet 

and 66% for GoogleNet. In 2023, a hybrid deep 

CNN model for Bengali digit recognition, utilizing 

a unique hybrid feature extraction, including 

MFCC, Spectral Sub-band Energy (SSE), and Log 

Spectral Sub-Band Energy (LSSE), achieved 

98.52% accuracy [18]. 

In another recent study, Ramadan and Ezzat [19] 

proposed two approaches for spoken digit 

recognition using the Free-Spoken Digit Dataset 

(FSDD) [20]. The first approach combines Wavelet 

Time Scattering with a Support Vector Machine 

(SVM) classifier, achieving 96.67% accuracy. The 

second approach employs Mel-frequency 

spectrograms as input to a Deep Convolutional 

Neural Network (DCNN), leading to a small 

increase in recognition accuracy of 97.67%. Their 

results highlight that even traditional ML 

techniques, when paired with robust feature 

extraction methods, can be competitive. However, 

their work focuses on English digits and does not 

explicitly address noisy conditions or phonetically 

similar classes. 

To address limited data for many non-English 

languages, data augmentation has proven effective. 

Lunas et al. [21] applied techniques like adding 

white noise and altering sound length, using a 

Markov model for recognition. Tom Ko et al. [22] 

expanded a 300-hour dataset to 900 hours with 

noise and room simulation techniques, employing 

MFCC and BiLSTM for recognition. 

Yet, these methods often rely on phoneme-level 

segmentation and struggle with phonetic 

similarities among digits. 

In recent years, combining different types of deep 

neural networks has become a promising approach 

to enhance model performance, especially in tasks 

where both spatial and temporal features are 

critical. Fusion strategies enable networks to 

leverage the strengths of individual architectures, 

leading to more robust and accurate systems. 

Hybrid CNN–RNN models have been widely 

applied in speech recognition and image-based 

sequence modeling. These models typically 

employ CNNs for spatial feature extraction and 

RNNs (e.g., LSTM, GRU) for temporal pattern 

modeling. For example, Mahdavi et al. [23] 

proposed a hybrid CNN–LSTM architecture with 

optimized fusion coefficients for RSS-based 

localization in wireless sensor networks. Their 

results demonstrated significant improvements in 

localization accuracy by intelligently combining 

the outputs of two deep models. 

In Persian-language contexts, digit recognition 

presents additional challenges due to phonetic 

similarities among digits (e.g., /sefr/ vs. /se/, /do/ 

vs. /noh/) and the limited availability of large 

annotated speech datasets. These issues are further 

compounded in noisy environments, where 

acoustic interference can drastically degrade 

recognition performance. 

To address these challenges, recent efforts have 

explored various architectures, ranging from 

traditional statistical models to deep learning 

frameworks. However, many of these approaches 

either lack robustness to environmental noise or 

fail to effectively capture temporal dependencies 

and linguistic nuances in Persian digits. 

Motivated by these limitations, we propose a novel 

DNN architecture that combines Residual CNNs 

with Bidirectional Gated Recurrent Units 

(BiGRUs). The proposed method adopts word-

level units instead of phoneme-level 

representations, enhancing robustness to noise and 

improving the recognition of phonetically similar 

digits. 

This paper presents a novel Persian digit 

recognition approach, addressing linguistic and 

recognition challenges. Key aspects include: 

 

 Data Augmentation: Improves robustness 

with limited data. 

 MFCC Features: Extracts relevant speech 

characteristics. 
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 Word Units: Enhances accuracy over 

phoneme-based methods. 

 Hybrid Network: Combines Residual CNN 

and BiGRU for superior performance. 

 

In addition, our method investigates the effects of 

various noises, including monotonous horns, 

nature sounds, vehicle movement sounds, 

humming sounds, and factory sounds, on the 

speech recognition performance. 

Although it is technically possible to generalize our 

architecture to broader speech recognition tasks—

such as by adopting end-to-end frameworks like 

DeepSpeech—doing so would require substantial 

changes, particularly in the output layers and the 

training strategy. Our intention, however, is not to 

develop a general-purpose ASR system, but rather 

to build a robust and efficient model specifically 

for digit recognition, which is a representative 

command-level task commonly used in real-world 

applications (e.g., phone-based services, voice-

controlled authentication, and user interfaces) 

The paper is organized as follows: Section 2 covers 

the data generation method. Section 3 discusses the 

DNN architecture. Section 4 presents experimental 

results, and Section 5 concludes with key 

takeaways from the study. 

 

2. Datasets 

This study utilizes recordings from 51 speakers in 

the FARSDIGIT1 database [8], containing discrete 

and continuous Persian numbers (zero to nine). The 

recordings, captured over telephone lines (both 

intra- and inter-city), have an SNR of 

approximately 8.8 dB and a sampling rate of 11025 

Hz. The dataset includes 31 male speakers (ages 

12–61) and 20 female speakers (ages 14–52). Each 

speaker recorded numbers in one to two sessions, 7 

to 30 days apart, with 10 repetitions per number, 

totaling 510 audio data samples per digit. 

To prevent neural network overfitting, we apply 

the data augmentation on the dataset using: 

 Sound Speed Variation [21]: Adjusting 

playback speed. 

 Reverb Filter [22]: Simulating different 

acoustic environments. 

 Background Noise [24]: Adding various 

ambient sounds. 

 Hall Environment Simulation [25]: 

Introducing additional reverberation effects. 

 

The data augmentation methods were applied with 

different probabilities: 70% for noise, 15% for 

speed changes, and 7.5% each for reverb and hall 

simulation. Noise sources included horns, nature 

sounds, vehicle engines, buzzing, and industrial 

sounds, with SNR levels of 0, 5, 10, 15, and 20 dB. 

These noise samples were obtained from a publicly 

available dataset on Kaggle [26]. 

These probabilities were chosen to ensure diverse 

audio conditions: 70% noise to introduce varied 

SNR levels, 15% speed changes to explore audio 

variations, and 7.5% each for reverb and hall 

simulation due to their similar shape features. This 

distribution supports a balanced augmentation 

strategy for comprehensive dataset enrichment. 

Applying augmentation increased the dataset size 

5x, resulting in 25,500 data samples (2,550 per 

digit). Figure 1 illustrates the distribution of 

augmented data. 

 

 
Figure 1. Input data count after data augmentation. 

This expanded dataset enhances DNN training, 

ensuring robustness in diverse real-world noise 

conditions. 

 

3. The Proposed Spoken Digit Recognition 

Method 

The proposed method consists of three main stages: 

 Data augmentation technique described in 

Section 2 

 Speech feature extraction using the MFCC 

technique. 

 The proposed neural network architecture. 

3.1. Speech Feature Extraction Using the 

MFCC Technique 

Feature extraction is crucial in speech recognition, 

as raw audio contains noise and irrelevant 

parameters that affect accuracy. Common feature 

extraction techniques include [27]: 

 MFCCs: Capture both spectral and temporal 

speech characteristics. 

 Perceptual Linear Prediction: Similar to 

MFCCs but models the human auditory 

perception with non-linearity. 
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 Mel-Frequency Discrete Wavelet 

Coefficients: Applies wavelet transform to the 

speech signal in the mel-frequency domain. 

 Spectrogram: 2D representation of frequency 

changes over time. 
 

MFCC stands as the primary choice for speech 

feature extraction due to its efficiency, noise 

resilience, and ability to emulate human auditory 

perception. MFCCs excel in capturing both 

spectral and temporal characteristics of speech, 

while reducing the dimensionality of the data, thus 

offering an efficient representation of speech 

signals [27]. 

In the proposed method, to account for and mitigate 

the impact of facet similarities on the recognition 

rate, the input data is first separated based on words 

and numbers and the MFCC technique is 

subsequently used to extract features from 

segmented speech signals instead of using raw 

audio signals. 

Figure 2 illustrates the MFCC process for feature 

extraction. The input audio undergoes pre-

emphasis to enhance high frequencies, followed by 

framing and windowing to reduce spectral leakage. 

The Short-Time Fourier Transform (STFT) 

computes the power spectrum, which is processed 

through a triangular filter bank to mimic human 

auditory perception. A Discrete Cosine Transform 

(DCT) is then applied to the log-filtered energies to 

obtain MFCCs, retaining only relevant 

coefficients. Finally, mean normalization ensures 

scale consistency across samples [23,24]. 

 
Figure 2. MFCC block diagram [27]. 

 

For this study, MFCC extraction was configured 

with a pre-emphasis coefficient (α) of 0.97 [27], a 

sampling rate of 16,000 Hz, a frame size of 25 

milliseconds, and an FFT size of 512 points 

(NFFT), in accordance with the acoustic 

characteristics of the speech data. A total of 40 

MFCC coefficients were extracted per frame to 

capture a detailed spectral representation.  

Given the approximate 1-second duration of each 

audio sample and the corresponding frame shift, 

every sample was converted into an MFCC feature 

map of size 40 × 80, where 40 denotes the number 

of cepstral coefficients and 80 represents the 

number of time frames. To ensure consistent input 

dimensions for the network, all MFCC feature 

maps were either zero-padded or truncated to a 

fixed size of 40 × 80. This fixed-size representation 

was treated as a single input patch for the model. 
 

3.2. The Proposed DNN Architecture 

The proposed DNN for Persian digit recognition is 

inspired by DeepSpeech2 [28], with modifications 

to enhance performance. It consists of a CNN layer, 

residual CNN blocks, a Fully Connected (FC) 

layer, and Bidirectional GRU (BiGRU) blocks, as 

illustrated in Figure 3. Each component plays a key 

role in feature extraction and classification. 

The CNN layer [3] extracts feature and adjusts 

input dimensions. Next, three residual CNN blocks 

[29] refine feature representation. Unlike 

DeepSpeech2, word units are used instead of 

phonemes, and the Cross-Entropy Loss function 

replaces Connectionist Temporal Classification 

(CTC). The FC layer [30] further adjusts feature 

dimensions before classification. 

As opposed to the LSTM architecture used in 

DeepSpeech2, the proposed method employs 

BiGRU blocks [31]. This modification is motivated 

by GRU’s advantage of having fewer parameters 

than that of the LSTM, resulting in a reduction in 

the network weights and the computational 

resource consumption while often achieving 

superior performance. In addition, the BiGRU’s 

configuration enables the network to process each 

frame by considering data from both previous and 

next frames, leading to more accurate predictions. 

Five BiGRU blocks classify features, followed by 

two FC layers with a softmax function to determine 

results. 

These modifications optimize DeepSpeech2 for 

robust Persian digit recognition in noisy 

environments. The following sections detail the 

CNN layer, residual CNN blocks, FC layer, and 

BiGRU blocks. 
 

3.2.1. CNN Layer 

The CNN layer transforms input audio data into 

feature vectors while adjusting input dimensions. A 

single CNN layer is used with one input channel 

and 32 output channels to extract diverse features 

from the raw audio input. A kernel size of 3 is 

utilized to reinforce feature extraction, while a 

stride of 2 enables down-sampling, reducing 

computational complexity while preserving 

essential information. 
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Figure 3. Block diagram of the proposed DNN. 

3.2.2. Residual CNN Blocks  
Three residual CNN blocks [29] are used to learn 

audio features, enhancing the model’s depth and 

ability to recognize complex patterns in spoken 

Persian digits, even in noisy environments.  

Each block includes two normalization layers 

(normalized shape: 20) to stabilize and accelerate 

the training process, two Gaussian Error Linear 

Unit (GELU) activation functions for contribute to 

the non-linearity of the model, and two CNN layers 

(32 input/output channels, kernel size: 3, stride: 1, 

padding: 1). Crucially, the output from these layers 

is summed with the input to form the final result of 

the Residual CNN block. This design choice 

enables the network to retain essential information 

from the input while incorporating the features 

extracted through the normalization and 

convolutional layers. 
 

3.2.3. FC Layer  

An FC layer [30] connects the residual CNN blocks 

to the BiGRU, optimizing extracted features before 

passing them forward. Configured with an input 

size of 25,600 and an output size of 512, it 

compresses information for efficient processing.  

Additionally, two FC layers handle classification, 

each with dropout regularization, GELU, and 

softmax activation functions. The first FC layer 

reduces 1,024 inputs to 512 outputs, simplifying 

classification, while the second maps 512 inputs to 

10 outputs. The final softmax activation converts 

outputs into probability scores across the 10 

Persian digit classes, ensuring accurate 

recognition. This configuration allows for effective 

classification and prediction, contributing to the 

overall accuracy of our neural network in 

recognizing spoken Persian digits. 

 

3.2.4. BiGRU Block  

The BiGRU block [31], applied five times, 

captures temporal dependencies essential for 

recognizing spoken Persian digits. Each block 

includes layer normalization with a parameter of 

512 to stabilize training and prevent vanishing 

gradient problem often associated with recurrent 

neural networks. A GELU activation function adds 

non-linearity to the model, enhancing its capacity 

to capture complex patterns. 

BiGRU is a variant of the Gated Recurrent Unit 

(GRU) that processes input sequences in both 

forward and backward directions. Unlike 

unidirectional GRUs, BiGRU captures both past 

and future context within a sequence, making it 

highly suitable for speech recognition tasks where 

information from upcoming frames improves 

prediction accuracy. Its internal gating 



Bekrani, et al./ Journal of AI and Data Mining, Vol. 13, No. 3, 2025 
 

342 
 

mechanism—specifically the update and reset 

gates—allows the network to selectively preserve 

or discard information, enabling efficient learning 

of long-range dependencies with fewer parameters 

than LSTM. 

At the core, the BiGRU processes input 

bidirectionally with an input size of 512 and a 

hidden layer size of 512. This design enables the 

network to process input sequences in both forward 

and backward directions, capturing contextual 

information from both past and future time steps. 

 

4. Results and Discussion 

The dataset is divided into training, validation, and 

testing sets, with frequency distributions shown in 

Figures 4, 5 and 6, respectively. Data shuffling is 

performed before applying MFCC for feature 

extraction. 

 
Figure 4. Frequency chart of each class in Train data. 

 

 
Figure 5. Frequency chart of each class in the Validation 

data. 

Training is conducted on Google Colab, utilizing a 

Tesla T4 GPU (15.1 GB RAM, 78.19 GB storage, 

12.68 GB processing RAM). The model is 

implemented in Python programming language and 

the library used to create and train the model is 

PyTorch.  

 

 
Figure 6. Frequency chart of each class in the Test data. 

The training process was conducted using the 

Adam optimization algorithm with a learning rate 

of 0.005 over 25 epochs and a batch size of 1.  

Initially, simpler networks like CNN and GRU are 

evaluated but achieve limited validation accuracies 

of 83.22% and 78.76%, respectively, due to their 

smaller sizes and struggling to effectively learn 

from the noisy data. The LSTM model improves 

upon these, achieving 87.86%. 

Figure 7 illustrates the proposed model’s accuracy 

across training, validation, and testing over 25 

epochs. The final accuracy reaches 98.53% 

(training), 96.10% (validation), and 95.92% 

(testing).  

 

 
Figure 7. Recognition accuracy of the proposed CNN-

BiGRU model on training, validation, and test sets over 

25 epochs. 
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In addition to evaluating the model on the full test 

set (comprising both clean and noisy speech 

samples), an attempt was made to assess its 

performance using only clean data. Initially, 

training exclusively on clean samples (5,100 

recordings) resulted in overfitting, with the model 

achieving 99.16% training accuracy but only 

95.69% test accuracy after 25 epochs. This 

performance gap highlights the model’s sensitivity 

to data scarcity, especially given its architectural 

complexity. To address this, data augmentation 

was applied to the clean dataset to increase its size 

and diversity. Following this enhancement, the 

model achieved 99.96% training accuracy and 

99.84% test accuracy on clean speech samples 

(25500 recordings) after 25 epochs demonstrating 

improved generalization. These findings 

emphasize the importance of sufficient and varied 

training data—even in clean conditions—for 

achieving optimal performance. 

Table 1 compares these results, confirming the 

superior performance of the proposed model. 

Table 1. Classification accuracy (%) of various models on 

the Persian digit recognition task across training, 

validation, and test sets. 

Test Validation Training Network 

86.82% 87.45% 91.16% LSTM 

83.49% 83.22% 76.05% GRU 

80.59% 80.34% 82.90% CNN 

95.92% 96.10% 98.53% 
Proposed 

DNN 

 

The robustness of the proposed model was further 

assessed by conducting three independent training 

runs with different random initializations. The 

results exhibited high consistency across both 

training and testing phases, yielding an average 

training accuracy of 98.79% ± 0.22 and a test 

accuracy of 95.57% ± 0.42. The low standard 

deviations confirm the stability and reliability of 

the architecture in recognizing spoken digits under 

noisy conditions. 

Figure 8 presents the confusion matrix of the model 

on the test set, illustrating the classification 

accuracy for each digit. Diagonal elements indicate 

correct predictions, while off-diagonal entries 

reflect misclassifications. 

As can be seen from Fig. 8, the model performs 

well across all digit classes; however, certain 

confusions arise, particularly between phonetically 

similar Persian digits. For example, the digit "0" 

(/sefr/) is occasionally misclassified as "3" (/se/), 

likely due to their shared initial consonant /s/ and 

short syllabic structures—especially when masked 

by background noise. Similarly, the digit "2" (/do/) 

sometimes gets confused with "9" (/noh/), which 

may be attributed to the similar long vowel /o/ and 

their open articulation patterns under noisy 

conditions. 

 

 
Figure 8. Confusion matrix for the test set. 

 

Furthermore, since the majority of augmented 

samples include background noise resembling the 

acoustic pattern of the digit "3" (/se/), increased 

misclassifications toward "3" are observed across 

different classes, as reflected in Figure 8. 

Table 2 presents a comparative overview of the 

proposed model alongside several prior approaches 

in speech recognition. It is important to note that 

the datasets used across these studies are not 

entirely uniform, which limits the direct 

comparability of the reported results. For each 

baseline, we attempted to reimplement the original 

architecture based on the descriptions provided in 

the respective papers. However, since our 

reimplementation consistently yielded lower 

accuracy than the original reports, we have 

referenced the published results for a fairer 

comparison. 

Despite these dataset differences, the results clearly 

demonstrate the superior performance of our 

proposed model, particularly under noisy 

conditions. While methods based on MLP, DBN, 

and GMM exhibit limited robustness, and CNN- or 

LSTM-based architectures perform relatively 

better, they still fall short of the accuracy and 

generalization achieved by our hybrid model. 

Specifically, our approach outperforms the 

MTDRCC model using MLP by 7.61%, and 

improves upon the phoneme unit-based LSTM 

model for Persian digits by an average margin of 

26.88% under noisy conditions.  
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Table 2. Accuracy comparison of our method with related works. 
Dataset Accuracy (%) Method Reference 

FARSDIGIT1[8] 83.7 (cont. num.), 99.1 (disc. num.) HMM + MLP (clean) 2003 [7] 

TI digits [12] 86.06 (valid.) DBN 2016 [11] 

Pashto numbers [32] 84.17 (valid.) MFCC + CNN 2020 [13] 

FarsDat 91.7 (clean), 69.2 (noisy) LSTM (clean/noisy) 2021 [14] 

Persian numbers 98.85 (clean), 88.49 (noisy) MTDRCC + MLP 2022 [15] 

English digits [20]  99 (valid.) RNN + LSTM (clean) 2022 [16] 

- 72 (AlexNet), 66 (GoogleNet) Transfer Learning (AlexNet, GoogleNet) 2022 [17] 

FARSDIGIT1[8] 98.53 (train), 96.10 (valid.) Residual CNN + BiGRU (noisy) Our Method 

To better understand the computational cost of the 

proposed model, a structural complexity analysis is 

presented. The architecture begins with an initial 

convolutional layer, followed by three residual 

blocks, each containing two convolutional and two 

normalization layers (totaling six convolutional 

and six normalization layers). This is succeeded by 

five BiGRU blocks, each comprising a 

bidirectional GRU layer and a normalization layer. 

Additionally, a dense layer connects the final 

residual block and the first BiGRU block, with two 

dense layers used at the output stage. Although the 

hybrid model is relatively complex to capture both 

spatial and temporal patterns in noisy Persian 

speech, it balances computational demand with 

significant performance gains. 

Training was conducted on Google Colab with a 

Tesla T4 GPU, with each epoch taking about 8 

minutes. While the model is more computationally 

demanding than simpler MLP or shallow CNN 

alternatives, the substantial improvement in 

accuracy—especially under noisy conditions—

justifies the additional complexity. The trade-off 

between accuracy and computational cost thus 

favors our hybrid approach in applications where 

robustness is critical. 

 

5. Conclusion 

This paper presents a deep neural network (DNN) 

for Persian spoken digit recognition, integrating 

CNN, residual CNN, BiGRU, and fully connected 

layers. By adopting word units instead of phoneme 

units, the model effectively handles phonetic 

similarities, enhancing feature extraction and 

recognition, particularly in noisy conditions. 

Experimental results confirm that the proposed 

DNN surpasses phoneme-based and LSTM-based 

methods in accuracy. This word unit-based 

approach offers a robust solution for spoken digit 

recognition, contributing to advancements in 

speech recognition technology with potential real-

world applications. 
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 CNN-BiGRU  های نویزی با استفاده از مدل ترکیبیمقاوم ارقام فارسی در محیط بازشناسی

 

  رجبی روزبه و * بکرانی مهدی،  علی نصر اصفهانی

 .ایران قم، دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی قم،

 29/05/2025 پذیرش؛ 25/04/2025 بازنگری؛ 25/03/2025 ارسال

 چکیده:

های عصبی در های مبتنی بر شبکهگفتار داشته است. با این حال، بسیاری از روش بازشناسیپیشرفت چشمگیری در کاربردهای  (AI) هوش مصنوعی

جداگانه ارقام گفتاری فارسی )از صفر تا  بازشناسیبه  مقالهیابد. این های واقعی کاهش میها در محیطرو هستند و دقت آنمواجهه با نویز با مشکل روبه

  (Residual CNN) های عصبی پیچشی باقیماندهی اعداد دارای شباهت آوایی. یک مدل ترکیبی شامل شبکهویژه براپردازد، بهنه( در شرایط نویزی می

مستقل از  بازشناسیای برای پیشنهاد شده است که به جای استفاده از واحدهای واجی، از واحدهای واژه (BiGRU) دوطرفه گیتیو واحدهای بازگشتی 

برای  (MFCC) های مختلف تقویت شده است، با استفاده از ضرایب کپسترال فرکانس ملکه با روش FARSDIGIT1 برد. پایگاه دادهگوینده بهره می

های در مجموعه ٪95.92و  ٪9۶.۱0، ٪9۸.53های ای که به دقتگونهدهد، بهها اثربخشی مدل را نشان میشود. نتایج آزمایشاستخراج ویژگی پردازش می

مبتنی بر واحدهای   LSTMهایرا نسبت به مدل بازشناسین دست یافته است. در شرایط نویزی، روش پیشنهادی دقت آموزشی، اعتبارسنجی و آزمو

 .دهدرا نشان می ٪۷.۶۱بهبود  MLP همراه با مدل MTDRCC استخراج ویژگی ترکیبی دهد و همچنین نسبت به روشافزایش می ٪2۶.۸۸واجی تا 

 .دوطرفه گیتیارقام گفتاری، افزایش داده، شبکه عصبی پیچشی، واحد بازگشتی  بازشناسی :کلمات کلیدی

 


