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 In the context of advancing sixth-generation (6G) communication 

networks, ensuring high-quality user coverage across varying 

geographic landscapes remains a paramount objective. Terrestrial base 

stations conventionally provide this coverage; however, they are 

susceptible to disruption due to adverse environmental conditions. 

Consequently, the integration of airborne mobile stations is pivotal for 

continued user coverage support. Among the viable solutions for 

terrestrial station augmentation, the deployment of drone base stations 

(DBS) emerges as the optimal substitute. Nonetheless, the 

establishment of a drone-based infrastructure presents challenges in 

terms of time and cost efficiency. Thus, the strategic positioning of 

DBSs, aimed at maximizing user coverage while simultaneously 

minimizing path loss and the number of drones required, is essential to 

achieving efficient and high-quality service provisioning.  

This study introduces a novel and optimized DBS placement strategy 

utilizing the Marine Predators Algorithm (MPA)—a recent 

metaheuristic renowned for its potent resistance to entrapment in local 

optima. Through simulation, we demonstrate that our proposed 

methodology distinctly surpasses analogous approaches with regard to 

optimization of path loss and user coverage. Simulation outcomes 

reveal average path losses of 71.75 dB for the Gray Wolf Optimization 

(GWO), 75.78 dB for the Weighted Time-Based Non-Orthogonal 

Multiple Access (TW-NOMA), and a significantly reduced 56.13 dB 

for our proposed MPA-based method, thereby indicating a substantial 

decrease of at least 15 dB in path loss compared to current techniques.  
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1. Introduction 

Drone base station (DBS) positioning in 6G 

cellular networks is a critical aspect facilitating 

enhanced communication and social capabilities of 

this advanced technology. In 6G, DBSs equipped 

with mobility features can be deployed in various 

locations, significantly increasing network 

coverage and improving connectivity in remote and 

dynamic areas. This technology not only 

accelerates data transmission rates and reduces 

communication latency but also enhances location-

based services by precisely positioning DBSs, 

offering improved spatial and regional services 

[1,2]. Advanced DBS positioning capabilities are 

particularly crucial in emergency situations and for 

intelligent network resource management [3,4]. 

Through precise positioning, DBSs can 

intelligently respond to communication demands in 

high-traffic regions and optimize resource 

distribution. Furthermore, with enhanced 

positioning accuracy, 6G networks can support 

location-based services such as location-based 

payments, advanced navigation, and new location-

centric services. DBSs can also be employed for 

various applications, including environmental 

monitoring, traffic control, and emergency 

communication in remote areas [5,6]. 
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Consequently, DBS positioning in 6G plays a 

pivotal role in advancing future network 

capabilities [7]. 

In addition, this advanced positioning technology 

can be applied in fields such as industrial 

automation, smart agriculture, and machine-to-

machine (M2M) communication [8,9]. DBSs, 

through precise positioning, enable increased 

interactions on the 6G network platform, ensuring 

seamless communication among smart vehicles, 

connected devices, and autonomous systems. 

Additionally, location-based intelligent tasks like 

efficient energy management, traffic forecasting, 

and urban system optimization can be realized 

using this technology [10,11]. Therefore, DBS 

positioning in 6G networks not only improves 

communications but also contributes to building 

dynamic, intelligent infrastructures across various 

fields. 

One effective approach for DBS positioning in 6G 

networks involves the use of machine learning 

algorithms. In [12], the problem of dispatching 

DBSs in B5G/6G multi-cell networks is addressed, 

aiming to maximize system utility and provide 

services to the largest possible number of users 

with minimal cost. A reinforcement learning (RL) 

approach is adopted to adaptively distribute DBSs, 

enhancing overall operator utility. The method in 

[13] employs a two-layer optimizer based on the 

pre-trained VGG-19 model and non-orthogonal 

multiple access (NOMA), significantly improving 

network performance. This approach leverages 

cuckoo search, grey wolf, and particle swarm 

optimization algorithms, achieving high 

performance. In [14], the application of cellular-

active drones as airborne base stations in next-

generation networks is discussed. The main 

concepts are based on flying ad hoc networks 

(FANETs) as clusters of deployable relays for 

expanding bandwidth accessibility. In [15], an 

adaptive unmanned aerial migration strategy 

(UAMS) is proposed to enhance migration 

efficiency, with simulation results indicating 

substantial improvements in system performance. 

Research in [16] addresses UAV coverage in 

cellular networks, providing a decision-making 

model for UAV-BS coverage areas with 

simulations showing improved packet delivery and 

reduced latency. Study [17] examines the impact of 

UAV base station altitude and transmission power 

on downlink and uplink data rates, suggesting that 

in most scenarios, either the maximum or minimum 

achievable altitude offers optimal results. Resource 

allocation in B5G and 6G networks with cognitive 

radio (CR) capability is explored in [18], where a 

D-OFDMA scheduling protocol enhances network 

throughput, achieving up to 90% and 150% 

improvements over traditional methods. In [19], 

drones are utilized as base stations for emergency 

communication systems in 5G with mMTC, 

implementing a DDQN-based reinforcement 

learning technique to optimize energy efficiency 

and resource allocation, outperforming DQN and 

Q-learning models. Reference [20] reviews swarm 

intelligence-based optimization techniques for 

determining optimal DBS locations, with the grey 

wolf algorithm yielding the best performance. 

Additionally, [21] applies a two-layer TW-NOMA 

optimizer and the VGG-19 neural network model 

to address DBS placement, minimizing path loss 

and enhancing network efficiency. 

In this study, the Marine Predators Algorithm 

(MPA) is utilized to optimize DBS positioning in 

6G cellular networks, aiming to maximize user 

coverage while minimizing path loss. MPA’s high 

capability in exploring complex, multidimensional 

spaces, enables rapid convergence toward optimal 

solutions, making it highly effective for DBS 

positioning, reducing computational time, and 

achieving efficient optimization. Moreover, 

MPA’s mechanisms, such as migration and 

predation, establish a balanced trade-off between 

local exploitation and global exploration, 

preventing entrapment in local optima and yielding 

highly optimized DBS placement results. 

The remainder of this article is organized as 

follows: Section 2 provides a detailed description 

of the proposed method, Section 3 evaluates its 

performance through various experiments, and 

Section 4 presents a general summary and 

conclusion. 

 

2. Proposed Method 

This study aims to present an effective method for 

positioning drone base stations (DBSs) within a 6G 

network to maximize user coverage and minimize 

path loss. For this purpose, the Marine Predators 

Algorithm (MPA) is employed. Through 

mechanisms such as migration and predation, the 

MPA establishes a balanced trade-off between 

local exploitation and global exploration. This 

characteristic helps avoid entrapment in local 

optima, thereby yielding more optimal DBS 

positioning results. Additionally, due to its high 

adaptability, the MPA can effectively respond to 

environmental changes and dynamic conditions 

(such as varying user numbers and network 

demands) by adjusting DBS locations accordingly. 

Moreover, compared to other optimization 

algorithms, MPA demonstrates greater stability in 

delivering optimal results and displays enhanced 
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reliability when tackling the challenges inherent in 

6G networks. 

 

2.1. System Model 

This section introduces the system model for 

evaluating DBS service provision to Internet of 

Things (IoT) devices. Figure 1 presents the system 

model. In this model, {1. . }S S  represents the 

set of IoT devices, while {1. . }K K  denotes the 

set of DBSs serving these devices.  

The IoT devices are randomly distributed in a 

spatial area, with the DBSs positioned above them. 

 

 
 

Figure 1. Conceptual System Model [19]. 

 

Conventional channel models are insufficient to 

simulate the relationship between DBSs and 

ground-based devices due to the variable altitude of 

DBSs. The two primary types of links utilized for 

modeling the relationship between DBSs and IoT 

devices are Line-of-Sight (LoS) and Non-Line-of-

Sight (NLoS) links. 

 

2.2. Information Propagation Model 

The probability of information propagation for the 

air-to-ground (AtG) model between the k-th DBS 

and the s device in the direct LoS condition can be 

calculated by the following equation: 
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where the coefficients   and  depend on the 

environment type (e.g., urban, suburban). The 

horizontal distance between the k-th DBS and the s 

device is given by: 
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(2) 

 

where .k kx y  and .s sx y denote the horizontal 

positions of the DBS and the IoT device, 

respectively. Using the LoS and NLoS 

probabilities, the path loss can be calculated as: 
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In these equations: 

-  denotes the mean additional path loss, 

- A represents the difference in mean path loss 

between LoS and NLoS conditions, 

- cf  is the carrier frequency in Hz, and 

- c is the speed of light. 

 

2.3. Objective Function for Optimal DBS 

Positioning 

The primary objective of this study is the optimal 

positioning of DBSs based on two objectives: 

minimizing path loss and maximizing coverage for 

IoT devices, which will be addressed using the 

Marine Predators Algorithm (MPA). Since the 

objective function is the most critical component of 

a metaheuristic algorithm, we first present the 

objective function for this algorithm in detail. 

 

2.3.1. Minimizing Average Path Loss  

According to Shannon’s equation, assuming 

constant bandwidth and system noise, an increase 

in the corresponding signal power enhances the 

data rate of a device. The received power at an IoT 

device on the ground depends on the path traversed 

by the wireless channel, which can be expressed as: 

 

 .r t

s k k s NP P PL h d P  
 

(6) 

 

where t

kP  is the transmit power of the k-th DBS 

and NP  represents the additional white Gaussian 

noise power (AWGN). Given that t

kP is fixed, 

reducing the distance between the device and DBS 

increases received power. Consequently, 

optimizing DBS positions minimizes the average 

path loss experienced by devices. Assuming each 

device is connected to its nearest DBS, the 

optimization problem is formulated as follows: 

                                                        



Khosroabadi & Aad Hassan Alaboodi / Journal of AI and Data Mining, Vol. 13, No. 2, 2025 
 

178 
 

 

 
1 1

. .

.

 subject to:  1: .

                  2 : .

                  3 : .

K S

k sk S

x y h

k

min D max

k

min D max

k

min D max

PL h d
minimize

S

C x x x k

C y y y k

C h h h k

 

  

  

  

 

  

(7) 

where x, y, and h represent each DBS’s location in 

3D space, while min max min max/ , /x x y y  and 

min max/h h  define the area boundaries. 

 

2.3.2. Maximizing Device Coverage by DBSs 

If the quality of service (QoS) for a device is met, 

it is considered covered. Another way to define a 

covered device is by establishing a path loss 

threshold T; if path loss falls below this threshold, 

the device is considered under coverage. The 

relevant optimization problem is therefore 

expressed as: 
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where 
.k sC  is defined as: 
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The solutions to these optimization problems are 

challenging to obtain. Therefore, the Marine 

Predators Algorithm is employed as an efficient 

solution for DBS positioning. 

 

2.4. Optimal Positioning of Drone Base Stations 

Using the Marine Predators Algorithm (MPA)   

In this study, the Marine Predators Algorithm 

(MPA) is employed to determine the optimal 

positioning of DBSs according to the defined 

objective functions of minimizing path loss and 

maximizing IoT user coverage. MPA is a 

population-based metaheuristic method in which 

each population member's position serves as a 

candidate solution for DBS positioning. The initial 

population is uniformly distributed across the 

search space (the allowable DBS location range): 

 0  min max minX X rand X X  
 

(10) 

 

where 
minX  and 

maxX  denote the lower and upper 

bounds of the DBS location search space, and rand 

represents a uniformly random vector between 0 

and 1. 

According to the theory of survival of the fittest, it 

is assumed that the top predators in nature have a 

greater aptitude for locating food. Therefore, the 

most suitable solution is designated as the "top 

predator," forming a matrix known as "Elite," 

which holds potential solutions for the optimal 

DBS positions. The elements of this matrix track 

and update the search process based on prey 

location information: 
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where IX represents the vector of the top predator 

repeated n times to construct the Elite matrix, with 

n denoting the number of search agents and d the 

number of dimensions. Notably, both the predator 

and prey are considered search agents since, while 

the predator is seeking prey, the prey is also 

foraging. At the end of each iteration, if a superior 

predator emerges, Elite is updated accordingly. 

A secondary matrix called Prey, with dimensions 

matching those of Elite, is also initialized. Prey 

assists in updating the predators’ positions based 

on the prey's configuration, ultimately leading to 

the optimal (Elite) solutions: 
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where ,  i jX  represents the j-th dimension of the i-th 

prey. It is noteworthy that the entire optimization 

process is primarily and directly linked to these two 

matrices. 

Ultimately, when the termination criterion is met, 

and the top predator yielding the best solution 

(optimal DBS locations) is found, the final Elite 

matrix is established. The best solution is 

determined by optimizing the MPA objective 

functions. Here, the stopping criterion involves 

assessing factors such as network coverage, 

capacity, and reliability, which are compared to 

predefined targets or benchmarks. 

In conclusion, MPA follows a sequence of stages, 

and the continuous optimization of these stages 

enables the algorithm to identify the optimal DBS 
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locations within the 6G network, thereby 

enhancing network performance and efficiency. 

 

3. Results Evaluation  

This section presents a comprehensive assessment 

of the proposed method’s performance in locating 

optimal DBS positions under varying parameters. 

The evaluation is based on numerical simulation 

results obtained through multiple experiments. 

These experiments examine the effects of factors 

such as the number of drones, path loss, 

environment type, and the number of generations 

in the MPA algorithm. All simulations were 

conducted using MATLAB 2022. The simulation 

parameters are shown in table 1. 

 
Table 1. Simulation Parameters. 

Value Parameters 

100,110,120 threshold values 

 

5,50,100,200,500 

Number of maximum 

iterations 

Urban, Suburban, Dense Urban, 
High-rise Urban 

Environments 

20,40,60,80,100 Number of DBSs 

 

3.1. Experiment 1: Effect of the Number of 

Drones on Coverage Probability at Different 

Threshold Levels  

The first experiment investigates the impact of 

varying the number of drones on coverage 

probability, considering threshold values of 100, 

110, and 120. Figure 2 illustrates the effect of drone 

count on network coverage probability at a 

threshold of 100. As shown, coverage probability 

increases as the number of DBSs rises.  

 
Figure 2. Coverage Probability of IoT Devices by the 

Proposed Method and Other Approaches at a Threshold 

of 100. 

In the proposed method, coverage probability 

reaches 100% once the number of DBSs reaches 

40, outperforming other methods. It is evident that 

even with 100 DBSs, other positioning methods 

fail to achieve full coverage. 

Figure 3 compares the proposed method's coverage 

probability at a threshold of 110 with other 

methods. As illustrated, the proposed method 

achieves 100% coverage when the number of 

DBSs reaches 40. 

 
Figure 3. Coverage Probability of IoT Devices by the 

Proposed Method and Other Approaches at a Threshold 

of 110. 
 

Similarly, Figure 4 presents a comparison at a 

threshold level of 120. As depicted, the proposed 

method achieves full coverage with 60 DBSs. 

Figures 2 through 4 illustrate DBS coverage 

probabilities for IoT devices using various 

methods, including the proposed MPA-based 

approach, across threshold values of 100, 110, and 

120 with different DBS counts. 

 
Figure 4. Coverage Probability of IoT Devices by the 

Proposed Method and Other Approaches at a Threshold 

of 120. 

 

These results reveal an increase in coverage 

probability with additional DBSs. Notably, the 

proposed MPA-based optimization for DBS 

positioning yields higher coverage probability than 

all other evaluated methods. 

 

3.2. Experiment 2: Impact of the Number of 

Generations on Average Path Loss 

In this experiment, the effectiveness of the 

proposed method in reducing path loss is evaluated 

in relation to the number of iterations of various 

metaheuristic algorithms.  
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Figure 5 illustrates the path loss values for different 

approaches across varying iteration counts in 

metaheuristic algorithms. Evidently, the proposed 

method (MPA algorithm) yields the lowest path 

loss values. Additionally, it is clear that path loss 

decreases with an increase in the number of 

algorithmic cycles.  

This result stems from the fact that the convergence 

of a metaheuristic algorithm towards the desired 

solution becomes more refined with a greater 

number of iterations. 
 

 
Figure 5. Comparison of Path Loss in Optimal DBS 

Positioning by Several Metaheuristic Methods across 

Different Iteration Counts. 

 

3.3. Experiment 3: Impact of Different 

Environments on Average Path Loss 

The third experiment considers four propagation 

environments: suburban, urban, dense urban, and 

high-rise urban. The propagation parameters for 

each environment are provided in Table 2. 
 

Table 2. Propagation Parameters in Various 

Environments 

LosN  
Los              Environment 

20 1 0.16 9.61 Urban 
21 0.1 0.43 4.88 Suburban 

23 1.6 0.11 12.08 Dense Urban 

34 2.3 0.08 27.23 High-raise Urban 
 

Figure 6 illustrates the average path loss in 

different environments, where lower path loss 

signifies more effective DBS positioning. 

For example, in urban environments, the proposed 

method achieves an average path loss of 57, 

compared to 80, 82, 78, and 80 for the CS, PSO, 

GWO, and TW-NOMA methods, respectively. 

As shown, the results obtained from the proposed 

method based on the Marine Predator Optimization 

Algorithm (MPA) indicate the superiority of this 

method in reducing Pathloss in Urban, Dense 

Urban, and High-rise Urban environments. 

 
Figure 6. Comparison of Path Loss in Optimal DBS 

Positioning by Several Metaheuristic Methods across 

Different Environments. 

This superiority is due to the special features of the 

MPA algorithm and its ability to adapt to complex 

environmental conditions. The MPA algorithm, by 

utilizing three stages of exploration, transfer, and 

exploitation, establishes a good balance between 

local and global search. This feature, together with 

inspiration from the behavior of marine predators, 

allows the algorithm to more effectively achieve 

optimal locations for base stations in dense and 

complex environments (such as Dense Urban and 

High-rise Urban). In these environments, there are 

many challenges such as the presence of many 

obstacles and multi-path signals, but MPA 

identifies the best points with an energy-efficient 

mechanism and the use of multi-dimensional 

random movements and significantly reduces 

Pathloss. However, in the Suburban environment, 

the performance of the proposed method was 

weaker than in other environments. The reason for 

this difference can be attributed to the 

characteristics of the Suburban environment, where 

the density of buildings and obstacles is lower and 

signal propagation is relatively simpler. In such 

environments, simpler algorithms that are less 

dependent on the precise exploitation of the search 

space can provide similar or even better 

performance than MPA. Since the MPA algorithm 

is designed for more complex environments and 

performs more effective optimization in the face of 

conditions such as high density of obstacles, its 

performance in the Suburban environment has been 

observed with less difference than other methods. 

This difference indicates that the main advantage 

of MPA is in conditions where the system needs to 

adapt more to obstacles and complex 

environmental conditions. However, in order to 

examine the average efficiency of the proposed 

method in all environments compared to other 



Innovative Drone Base Station Placement in 6G Networks: A Marine Predators Algorithm Approach 

181 

 

works, the average path loss is compared in Table 

3, which indicates the overall better performance of 

the proposed method considering all environments. 

In Figure (7), the path losses are illustrated for 

various numbers of search agents and different 

methods. The results indicate that the proposed 

MPA algorithm achieves the lowest path loss, 

measuring 84.5 dB for 100 search agents. 

Furthermore, as the number of search agents in 

optimization algorithms increases, the average path 

losses decrease. This reduction occurs because a 

higher number of search agents in metaheuristic 

algorithms enhances the likelihood of identifying 

optimal points, leading to lower average path 

losses. 
 

 
Figure 7. Comparison of Path Loss in Optimal DBS 

Positioning by Several Metaheuristic Methods across 

Different Number of Search Agents. 
 

3.4. Comparative Results  

This section compares the average path loss of the 

proposed approach against other methods, as 

presented in Table 3. The average path loss across 

different environments for the proposed method is 

calculated and compared with previous methods. 

As shown in Table 3, the proposed method 

achieves an average path loss of 56.13. By 

comparison, the TW-NOMA method in [19] 

yielded 75.78, while the Grey Wolf Optimization 

(GWO) algorithm in [20] produced 71.75. This 

comparison highlights a reduction of 19.65 and 

15.62 units in path loss for the proposed method 

relative to TW-NOMA and GWO, respectively. In 

the proposed method, the marine predator 

algorithm, which is a novel metaheuristic 

algorithm, is used to locate UAV base stations. 

This algorithm, using three main stages (discovery, 

transfer, and exploitation), establishes a suitable 

balance between local and global search, which 

prevents the possibility of getting stuck in local 

optima and ensures faster convergence towards the 

optimal solution. Features inspired by the adaptive 

behaviors of predators such as chasing prey, 

ambushing, and group cooperation, along with the 

energy efficiency mechanism, have increased the 

efficiency of the algorithm in discovering optimal 

areas and reducing the convergence time. In 

addition, high flexibility in parameter adjustment 

and intelligent design of multidimensional random 

movements have increased the ability of the 

algorithm to avoid getting stuck in local optima. 

Compared to other algorithms such as PSO, CS, 

and GWO, it shows superior performance in 

solving nonlinear and complex problems with 

higher accuracy, greater stability, and shorter 

convergence time. 
 

Table 3. Comparison of Average Path Loss for the 

Proposed Method versus Other Methods. 
Average path loss Method Author 

73.9 CS 

Pliatsios et al. [20] 74.75 PSO 

71.75 GWO 

75.78 TW-NOMA Alsolai et al. [21] 

56.13 MPA Proposed 
 

 

4. Conclusion   

Positioning drone base stations in 6G networks is 

critical for optimizing network performance and 

enhancing connectivity. Advanced techniques such 

as metaheuristic algorithms, including the Marine 

Predators Algorithm (MPA), provide a promising 

approach for addressing the complex optimization 

challenge of DBS placement. By accounting for 

factors such as signal strength, coverage area, 

interference, and capacity, these algorithms can 

effectively determine optimal DBS locations. 

Successful DBS placement within 6G networks 

enhances network coverage, capacity, and overall 

performance, facilitating the realization of 

advanced wireless capabilities and the seamless 

integration of emerging technologies in future 

wireless networks. In this study, MPA was 

employed to determine the optimal DBS positions 

based on two criteria: path loss and effective 

coverage of IoT devices. By continually refining 

solutions through Elite matrix updates, the MPA 

yields optimal placement solutions, thereby 

improving network coverage and capacity. 

Simulation results demonstrate that the average 

path loss in the GWO, TW-NOMA, and proposed 

methods is 71.75, 75.78, and 56.13, respectively, 

signifying a minimum 15 dB reduction in path loss 

for the proposed method. This algorithm, which 

has shown superior performance over traditional 

placement approaches, provides a promising 

pathway for optimizing DBS positioning in 6G 

networks and advancing future wireless 

communication capabilities. 
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بهبود پوشش شبکه با استفاده از  یبرا (6G) ششم نسل یپهپاد در شبکه سلول هیپا ستگاهیا یابیمکان 

 ییایدر انیشکارچ یساز نهیبه تمیالگور

 

 *بادیآسعید خسروو  حسین العبودی 

 ، ایرانمشهدعلیه السلام، امام رضا بین المللی  ، دانشگاهبرق یگروه مهندس

 03/02/2025 پذیرش؛ 22/01/2025 بازنگري؛ 19/12/2024 ارسال

 چکیده:

باشد. از ري میهاي جغرافیایی مختلف یکی امر ضرودهی با کیفیت به کاربران در محیطپوشش (6G)هاي مخابراتی نسل ششم با توجه به توسعه شبکه

دهی مختل پوشش شود و در برخی مواقع با توجه به شرایط بد محیطی اینهاي زمینی انجام میدهی به کاربران معمولا توسط ایستگاهآنجا که پوشش

هاي زمینی، یگزینی ایستگاهدهی به کاربران استفاده کرد. بهترین گزینه براي جاتحرک براي پشتیبانی از پوششهاي هوایی مشود، باید بتوان از ایستگاهمی

ان قرار گرفتن ایستگاه پایه بر و پر هزینه است باید مکباشد. اما از آنجا که ایجاد زیر ساخت براي پهپادها بسیار زمانمی (DBS)هاي پایه پهپاد ایستگاه

ا کیفیت بالا، ایجاد دهی به کاربران و کمترین تلفات مسیر به منظور خدمات دهی ببیشترین پوشش DBSاي باشد که با کمترین تعداد گونهپهپادها به 

 ده است. الگوریتمارائه ش (MPAها با استفاده از الگوریتم فراابتکاري شکارچیان دریایی )DBSیابی بهینه براي شود. در این پژوهش، یک روش مکان

MPA باشد. با توجه به نتایج شبیه هاي محلی در آن بسیار کم میهاي فراابتکاري است که احتمال گرفتار شدن در اکسترممیکی از جدیدترین الگوریتم

عملکرد دهی کاربران هاي مقایسه شده، از نظر تلفات مسیر و میزان پوششها نسبت به سایر روشDBSیابی بهینه سازي، روش پیشنهادي در مکان

، 75/71 ادي به ترتیب برابرو روش پیشنه GWO ،TW-NOMAهاي دهد میانگین تلفات مسیر در روشها نشان میسازيبهتري داشته است. نتایج شبیه

 باشد.دسیبل میزان تلفات مسیر براي روش پیشنهادي می 15گر کاهش حداقل باشد که بیانمی 13/56و  78/75

 بهینه سازي شکارچیان دریایی.الگوریتم  ،مخابرات نسل ششم ،قرارگیري ایستگاه پایه پهپاد :کلمات کلیدی

 


