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 Web service composition represents a graph of interacting services 

designed to fulfill user requirements, where each node denotes a 

service, and each edge represents an interaction between two services. 

A few candidates with different quality attributes exist on the web for 

conducting each web service. Consequently, numerous compositions 

with identical functionality but differing quality attributes can be 

formed, making the near-optimal composition selection an NP-hard 

problem. This paper proposes a tool-supported Evolutionary 

Optimization Algorithm (EOA) for near-optimal composition 

selection. The proposed EOA is a Discretized and Extended Gray 

Wolf Optimization (DEGWO) algorithm. This approach first 

discretizes the continuous solution space and then extends the 

functionality of GWO to identify global near-optimal solutions while 

accelerating solution convergence. DEGWO was evaluated in 

comparison with other related methods in terms of metrics. 

Experimental results showed DEGWO achieved average 

improvements of 8%, 39%, and 5% in terms of availability, 36%, 

43%, and 30% in terms of response time, and 65%, 53%, and 51% in 

terms of cost compared to the three leading algorithms, 

RDGWO+GA, HGWO, and SFLAGA, respectively. 
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1. Introduction 

Web applications are presented as a set of related 

services where each service specifies a specific 

functionality. For each service, there exists a 

collection of candidates across the Web that can 

perform the functionality with different qualities. 

Selecting the optimal candidate for each service to 

ensure the near-optimal overall quality of the web 

application is a challenging task. The candidates, 

each of which is specified in terms of functionality 

and some quality attributes (QAs), are accessible 

online via Uniform Resource Identifiers (URIs) 

[1].  

Each service in a web application is called an 

abstract service because it denotes just a 

functionality, and each candidate is called a 

concrete service because it can perform an abstract 

service with some specific QAs. Therefore, 

concrete services of an abstract service perform the 

same functionality with different qualities. The 

process of selecting a concrete service for each 

abstract service results in a candidate composition, 

forming a potential solution for a web application 

[2]. A web application/composition with n services 

is referred to as an n-dimensional composition. 

Web Service Composition (WSC) satisfies 

complex user requirements [3]. By leveraging 

WSC, businesses can enable seamless Business-to-

Business Interoperability (B2BI) and support 

various operational processes [4]. Travel planning 

services, as highlighted in [5], exemplify practical 

applications of WSC. Web applications are 

modeled as graphs of abstract services, and their 

corresponding compositions are represented by 

https://doi.org/10.22044/jadm.2025.15435.2654
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graphs of concrete services (candidates), each 

characterized by specific QAs.  

Each WSC, as a potential solution, is assessed 

using a fitness value. To compute this fitness, the 

WSC is abstracted into a single Summary Service 

(SS), where each QA of the SS is derived by 

aggregating the QA values of all WSC services. 

The aggregated value is referred to as Aggregated 

Quality Value (AQV). When the WSC is 

represented as a graph, the SS is visualized as a 

Summary Node (SN). To facilitate this process, we 

develop an interface based on a graph 

summarization technique to generate the SN. 

After generating an SN for each WSC, a selection 

method is required to identify near-optimal WSCs. 

For a web application comprising n nodes and with 

m candidates for each abstract service, the total 

number of possible WSCs is 𝑚𝑛, resulting in 𝑚𝑛 

SNs. To select near-optimal SNs, which is an NP-

hard problem [6, 7], an evolutionary algorithm is a 

good candidate, where the fitness function is 

determined based on AQV, as emphasized in 

related studies [8]. To address this challenge, we 

utilize our node-based graph summarization tool to 

derive SNs efficiently. 

A WSC contains some patterns in the form of 

sequential, parallel, loop, or conditional structures 

of nodes (Figures 1-a to 1-d, respectively). Each 

pattern is summarized step by step until only one 

node remains.  

 
  

 

(a) (b) (c) (d) 

Figure 1. The four structural patterns supported in the summarization graphs of WSC.

Figure 1 illustrates the patterns supported in this 

paper where in Figures: (1) 1-a, Service vy must be 

executed after service vx, (2) 1-b: Services vy1 to vyn 

can be executed in parallel with equal probability 

p, (3) 1-c: One of services vy1 to vyn is selected based 

on its probability pi, and (4) 1-d: a sequence of 

Services v1, v2, …, vn is executed with probability 

pi(1≤i≤n). 

Some studies have addressed the graph 

summarization with limitations. In [9], for 

instance, the authors have overlooked patterns with 

probabilistic edges. Although the graph 

summarization has been addressed in [10], but 

integer programming has been used for the 

selection method, which fails for large graphs 

because of high time and memory consumption and 

is just used for simplicity [10]. For large graphs, 

metaheuristic algorithms are needed. To date, no 

comprehensive tool for graph summarization has 

been developed to address these challenges fully. 

Near-optimal WSCs can be obtained using 

methods of evolutionary optimization. Among 

others, GA (Genetic Algorithm) [1, 11, 12], PSO 

(Particle Swarm Optimization) [1, 13], SFLA 

(Shuffled Frog-Leaping Algorithm) [14], and 

GWO (Grey Wolf Optimizer) [15] were used. 

Moreover, a few methods exploited the advantages 

of two evolutionary algorithms leading to good 

results like SFLA+GA [2], HGWO (Hybrid Grey 

Wolf Optimization) [16], and others [17, 18].  

Among others, GWO has been effectively used in 

various problems such as shop scheduling [19] or 

QA optimization [20]. These successful 

applications are a result of important GWO 

features, convergence performance, and simple 

implementation, and these advantages are crucial 

for WSC selection. In the traditional GWO, the 

hunting strategy enables rapid convergence but 

increases the risk of getting trapped in local optima. 

To address this limitation, this study introduces a 

Discretized and Extended Grey Wolf Optimizer 

(DEGWO). The proposed extension incorporates 

mutation and crossover operators from the GA and 

adopts the subpopulation strategy inspired by the 

SFLA. By partitioning the solution population into 

subgroups, DEGWO effectively expands the 

search space, enhancing the ability to discover the 

global optimum while reducing the likelihood of 

stagnation in local optima. 

This study presents both theoretical and practical 

contributions. From the theoretical aspect, a 

method is presented to summarize composition 

graphs (Section 4.1) including probabilistic 

patterns, and a metaheuristic method, called 

DEGWO, is used to search optimal compositions. 

In DEGWO, a fitness function and a discretization 

method are proposed. DEGWO uses mutation and 

crossover operators from the Genetic Algorithm 

(GA) to overcome local optima challenges and 

expand the solution space, drawing inspiration 
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from the Shuffled Frog-Leaping Algorithm 

(SFLA). 

From the practical aspect, (1) based on the 

presented summarization method, a tool is 

designed for automatic graph summarization, and 

some well-known evolutionary algorithms are 

implemented to apply to the selection method and 

to compare with DEGWO. 

The remainder of this paper is structured as 

follows. Section 2 provides an overview of the two 

evolutionary algorithms utilized in the 

development of DEGWO. Section 3 reviews 

related works. In Section 4, the proposed DEGWO 

approach for selecting near-optimal WSCs is 

presented. Section 5 discusses the experimental 

results obtained by the proposed algorithm and 

seven comparative algorithms, evaluated based on 

AQVs, fitness metrics, similarity measures, and 

execution times. Potential threats to the validity of 

DEGWO are examined in Section 6. Finally, 

Section 7 concludes the paper and outlines 

directions for future research. 

2. Background 

Evolutionary algorithms are widely adopted for 

identifying near-optimal solutions in vast solution 

spaces. Given the immense number of possible 

permutations in Web Service Composition (WSC), 

these algorithms provide an effective approach for 

selecting near-optimal compositions efficiently. 

 

2.1. Evolutionary optimization for the WSCS 

problem 

Due to the NP-Hard nature of the WSCS problem 

[6], evolutionary algorithms are frequently 

employed for selecting the near-optimal WSCs 

(solutions) at a reasonable time. Although these 

algorithms under specific circumstances act very 

well, several issues may arise when the algorithms 

are unable to maintain the balance between the two 

primary opposing criteria of exploration and 

exploitation of solutions. Premature convergence is 

one issue resulting from a lack of population 

diversity, particularly when exploitation is local. 

As a result, there will be a lower chance of 

discovering a global optimal solution. On the other 

hand, having global exploration and population 

diversity reduces the rate of convergence. 

Therefore, it is crucial to maintain the balance 

between these two crucial aspects to produce 

excellent results. 

Exploration and exploitation are the two aspects 

that highlight the use of the advantages of some 

evolutionary algorithms to enhance the 

effectiveness of a method in challenging situations 

[2]. Considering these aspects, the following 

describes two evolutionary algorithms that are used 

in DEGWO. 

 

2.1. Genetic algorithm 

In a Genetic algorithm (GA), each chromosome, 

consisting of a set of genes, is a solution. The initial 

members of the population (chromosomes) are 

randomly selected and called Pt. They are classified 

based on the fitness value of a summarized node of 

the composition graph. To create a new population, 

called Qt, parents are selected from among the 

chromosomes randomly, and a new chromosome is 

created by applying mutation and crossover to the 

parents. This algorithm explores a large space by 

using these two operators. These new 

chromosomes are merged with the previous 

chromosomes and sorting is done based on their 

fitness value of them. The first N members with the 

biggest fitness value are stored and the rest of them 

are discarded. This process continues until the 

termination condition is not fulfilled [1]. 

 

2.3. Shuffled frog leaping algorithm (SFLA) 

The shuffled frog-leaping algorithm (SFLA), a 

memetic meta-heuristic, has been created to 

address combinatorial optimization issues. In this 

algorithm, virtual frogs act as a host or solution and 

each host has a unique memotype that contains 

memes. Memes and memotypes in SFLA are like 

genes and chromosomes in GA. At the beginning 

of the algorithm, hosts or solutions are created 

randomly. These solutions are divided into a few 

memplexes. In each memeplex, the algorithm 

simultaneously runs a local independent search 

which is very similar to particle swarm 

optimization that has been modified for discrete 

issues. The memes of different solutions could be 

derived from the local memplex or the best overall 

memplex of all the memplexes. The solution is 

added to the population if there is an improvement 

in fitness value. After a predetermined number of 

iterations, the memplexes are mixed and new 

memplexes are created by a shuffling process. This 

process is done to ensure global exploration. 

Therefore, local search and global information 

exchange are both incorporated into the algorithm 

[14]. 

 

3. Related work 

In this section, we overview pure and combined 

popular evolutionary algorithms for the WSCS 

problem since 2016. 

3.1. Evolutionary optimization for WSCS 

The basic GWO was used by Karmi et al. [20] to 

find optimal solutions where for each web service, 

four QAs of response time, reliability, availability, 
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and cost have been considered and each of them has 

been weighted by the AHP (Analytical 

Hierarchical Process) weighting method. 

Therefore, the problem has been considered as a 

single objective. It was compared with PSO 

through the optimal rate. The optimal rate is the 

result of dividing the best solution obtained after 

convergence by the best solution obtained from the 

first iteration of the algorithm. By running the 

algorithm 40 times, it was concluded that the GWO 

is better than the PSO in terms of optimal rate.  

Elite-guided Artificial Bee Colony (ABC) 

consisting of ABC and the non-dominated sorting 

method, elite-guided discrete solutions generation, 

and multi-objective fitness function calculation 

method were used by Huo et al. [21]. They have 

considered availability, response time, reliability, 

and throughput as one objective and cost as another 

objective and solved the problem with two 

objectives. The results of the experiments show 

that this algorithm is better than NSGAII, PSO, and 

ABC algorithms in terms of quality indicators of 

GD (Generational Distance), spread, and execution 

time.  

Multi-objective Discrete Elephants Herding 

Optimization (MO-D-EHO) was used by Sadouki 

and Tari [22] for the WSCS problem. The power of 

this method is provided by the process of dividing 

and combining the population with the 

subpopulation (clan), which causes it not to get 

stuck in the local optimal. By comparing this 

algorithm with the PSO and SPEAII (Strength 

Pareto Evolutionary Algorithm II), it was 

concluded that it is significantly better in terms of 

criteria such as coverage ratio, spread, and 

hypervolume. 

Kashyap et al. [1] have utilized GA and PSO to 

manage the WSC problem in IoT. The purpose is 

to minimize the fitness value consisting of 

reliability, response time, and cost, which is 

aggregated in a single objective. The experiment is 

executed with the number of tasks and candidates 

from 10 to 30, and 10 to 50, and the results have 

demonstrated that GA can help in identifying the 

optimal solution and also shows preferable 

outcomes over PSO.  

Yang et al. [23] have presented a modified multi-

objective GWO to find optimal solutions. In this 

algorithm, execution time, cost, reliability, and 

availability are considered the first objective, and 

energy consumption is considered the second one. 

This algorithm has evolved in three steps. In the 

first step, the backward learning strategy is used to 

increase the search efficiency in identifying the 

initial population. In the second step, the strategy 

of adjusting the algorithm parameters improves the 

variety of solutions. In the third step, the search 

space has been increased using the mutation 

operator, which prevents getting stuck in the local 

optimal. Finally, this algorithm has been compared 

with basic GWO and PSO algorithms based on 

standard deviation, spread, GD, and IGD (Inverted 

GD), and its efficiency has been proven.  

Sangaiah et al. [24] have used the Biogeography-

Based Optimization (BBO) method. This 

algorithm uses the BBO immigration operator to 

explore a new search space. The results of the 

experiments show that BBO has superior search 

capabilities versus GA and increases all qualitative 

metrics for three scenarios, 7%, 23%, and 61%, 

respectively.  

 

3.2. Hybrid evolutionary optimization for the 

WSCS problem 

Chandra et al. [25] have introduced an improved 

GWO algorithm to find optimal solutions for the 

WSC problem. To improve the performance of this 

algorithm, the crossover operator is used. This 

algorithm is compared with GA and GWO 

algorithms. By running this algorithm 20 times and 

considering nine QAs as a single objective, it was 

concluded that the average fitness value of the 

improved GWO algorithm during its successive 

iterations is always better than the other two 

algorithms. Also, its convergence speed is much 

better than the GA algorithm and is comparable to 

GWO.  

Gohain et al. [26] have exploited ACO and PSO 

(Particle Swarm Optimization) by considering the 

five QAs, reliability, availability, throughput, cost, 

and response time as a single objective. This 

algorithm has been compared with the PSO 

algorithm during experiments in terms of execution 

time and fitness value, which shows its better 

performance.  

Bouzary et al. [19] have suggested a novel method 

where the GWO and GA operators are used. 

During the hunting phase in GWO, the embedded 

crossover and mutation operators of GA help to 

prevent local optimal. The experimental findings 

demonstrated that, despite a slight increase in 

processing time, the suggested algorithm 

outperforms GA and DGWO (Distributed GWO).  

Asghari et al. [2] have proposed an IoT-based 

cloud service composition conceptual model 

regarding the privacy level computing model and a 

novel evolutionary optimization using the Shuffled 

Frog Leaping Algorithm (SFLA) and genetic 

algorithm (GA), called SFLA-GA. The 

experiments were conducted based on: (1) the 

fitness of composite services and (2) the similarity 

between the results of the method and those of three 
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other meta-heuristic methods. This algorithm is 

used to maximize the fitness value obtained by 

aggregating nine QAs. The proposed approach 

enhances fitness compared to the GA, Cultural, and 

SFLA approaches.  

Thangaraj et al. [27] introduced an algorithm using 

GA and Tabu-search to find the best candidates. In 

this method, the best candidates with maximum 

reliability and throughput are suggested to the end 

user by using Tabu-search. The experiments show 

that the proposed method has improved 0.5% in 

fitness value on average and about 0.25% in error 

reduction.  

Dahan et al. [28] have introduced an algorithm 

exploiting ABC and GA. The ABC algorithm 

adapts its performance based on the parameters that 

have been set by the GA algorithm. The 

experimental results show that the proposed 

method compared to other methods is better in 

terms of cost, response time, reliability, and 

availability although it takes more time.  

Azouz et al. [29] proposed a MO-MA (Multi-

Objective Memetic Algorithm) using MO-LS 

(Multi-Objective Local Search) and GA (MO-GA). 

The main objective is to minimize cost and time 

and maximize availability and reputation. This  

method is evaluated on some datasets generated 

randomly and on the QWS dataset. The numerical 

results demonstrate the effectiveness of the 

proposed MO-MA for WSC. 

Dahan et al. [30] have presented a method using 

ABC and CS (Cuckoo Search) to resolve the 

WSCS problem. CS uses Lévy Flight to improve 

the convergence rate of the ABC algorithm. The 

method is compared with ABC, CS, OABC 

(Optimized ABC), and MOHABC (Multi-

Objective Hybrid ABC). They considered cost, 

response time, reliability, and throughput as the 

objectives. The main goal is to minimize the cost 

and response time and maximize the reliability and 

throughput. The results show that the algorithm is 

better than the others in terms of best fitness value, 

average fitness value, and average execution time. 

Table 1 shows a summary of related studies. 

Table 1. A summary of the related study. 
Article 

 
Year 

Tool 

Support 

Used 

Algorithm 

Compared 

Algorithm 

Evaluation Metrics Probability 

WSC 
Dataset 

Indicator Objective 

[21] 2016 --- GWO+GA GA, GWO CS 
Av, RT, Th, 

FV 
--- QWS 

[22] 2016 ---- PSO+ACO PSO ET FV --- RV 

[23] 2017 --- GWO PSO, IDPSO, QIPSO Optimally Rate --- --- QWS 

[24] 2018 --- EMOABC 
NSGAII, MOPSO, 

MOABC 

GD, ET, Error rate, 

Spread, 

Av, RT, Rl, 

Th, Cst 
--- QWS 

[25] 2019 --- EHO SPEAII, MOPSO 
CR, Spread, 

Hypervolume 
--- --- QWS 

[16] 2019 --- HGWO GA, DGWO ET FV --- RV 

[1] 2020 --- GA PSO --- 
FV, RT, 
Cst, Rl 

--- RV 

[26] 2020 --- EMOGWO MOGWO, MOPSO 
ET, spread, 

GD, IGD 

Cst, Rl, Av, 

EC 
--- RV 

[2] 2020 --- SLFAGA GA, Cultural, SFLA Similarity value FV -- QWS 

[27] 2020 --- BBO GA --- 
Rl, Ava, 

ET, Cst 
--- --- 

[28] 2021 --- 
GA+Tabu-

search 
Worst-GA, Best-GA 

 

Mean Absolute 

Error, Coverage, 

Recall, Precision 

FV 
 

--- RV 

[29] 2021 --- ACO & GA 
ACS, TACO, DAAGA, 

SACO, MAACS 

ET 

 

Cst, RT, 

Av, Rl 
--- QWS 

[30] 2022 --- MO-MA 
NSGA2, MO-GA, 

MO-LS (local search) 
ET Av, Cst, RT --- 

QWS, 

RV 

[31] 2023 --- 
ABC+Cuckoo-

search 

ABC, Cuckoo Search, 

OABC, MOHABC, 
SABC 

Average ET 
Best FV, 

Average FV 
--- RV 

DEGWO   
RDGWO+ 
GA+SFLA 

GA, HGWO, BGWO, 

SFLAGA, 
RDGWO+GA, IPSO, 

SFLA 

CS, ET 

Av, RT, 

Cst, Best 

FV 
 QWS 

Abbreviations: Av.: availability, Rl.: Reliability, RT.: response time, EC.: Energy consumption, Cst.: cost, FV.: Fitness value, ET.: Execution time, 
CS.: Convergence speed, CR.: Coverage ratio, Th.: Throughput, GD.: Generational distance, IGD.: Inverted generational distance, IDPSO: Improved 

Discrete PSO, QIPSO: Quantum Improved PSO, NSGAII, MOPSO: Multi-Objective PSO, MOABC: Multi-Objective ACO, EHO: Elephants Herding 

Optimization, BBO: Biogeography-Based Optimization, EMOABC: Elite-guided multi-objective artificial bee colony, RV: Random values 
 

The related works mentioned in this section show 

that the use of advantages of some evolutionary 

optimizations for the WSCS problem has risen 

significantly in recent years. The use of advantages 

of more than one evolutionary optimization not 

only removes shortcomings of pure ones but also 

leads to an increase of the quality of solutions. 

Accordingly, in this current paper, we extended  
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one of the most popular evolutionary optimization 

algorithms called the basic GWO by GA's cross-

over and mutation operators, and the SFLA 

strategy where GWO helps high convergence and 

SFLA helps us to escape from local optima. 

4. Proposed method 
This section contains subsections WSC 

summarization (Subsection 3.1) and summarized 

node selection (Subsection 3.2). 
 
4.1. WSC summarization 

A WSC contains a graph including the patterns 

illustrated in Figure 1. First, each pattern is 

summarized to a node (service) and finally, the 

summarized patterns are summarized to a node. 

To compute AQV (see Section 1) for each pattern, 

we employ the formulas proposed in [10], as shown 

in Table 2. Additionally, the formula provided in 

Table 3 [10] is used to determine the transition 

probability after summarizing each pattern and 

computing the AQVs. 

Based on the patterns illustrated in Figure 1 and the 

aggregation formulas in Tables 1 and 2, we have 

designed and implemented a WSC summarization 

interface. To demonstrate the practical application 

of this summarization process, we illustrate the use 

of the interface for a web application. A WSC 

graph is presented as a square matrix to the 

interface. 

As an example of summarizing patterns, consider 

the travel agency web application shown in Figure 

2, for instance. It contains 12 abstract services T1, 

..., T12. These services are organized into several 

sequential and parallel patterns. For instance, the 

Flight, Hotel, and Car rental searches are parallel 

services, while the Book up the flight and Ticket 

confirmation services are sequential. 

To select the candidates (concrete services) for the 

abstract services in Figure 2, we utilized the QWS 

dataset [31], which contains 2,507 candidate 

services. These candidates were assigned to the 

abstract web services, ensuring no duplicate  

candidate appeared in the graph of abstract web 

service. The summarization steps for Figure 2 are  

illustrated in Figure 3, showing the sequential, and 

parallel patterns being summarized. The node 

labels in Figure 2 correspond to the numbered 

nodes in Figure 3. 

 

 
Figure 2. An example of a web application consisting of 

web services for a travel agency 

 

                                        

Table 2. Aggregation formula for calculation of AQVs of patterns [10] 

Legends: ax and ay denote the service availabilities in nodes x and y; tx and ty do the service response times in nodes x and y; cx and cy do the service 

costs in nodes x and y; notation ∏ 𝑎𝑦𝑖
𝑛
𝑖=1  shows the product of service availabilities in nodes 1 to n; pi indicates the probability of selecting the service 

in node i. 
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Table 3. Probability of input and output transitions of patterns after summarization [10] 

Legends: Pin and Pout denote probabilities of performing input and output services of the transition after summarization, POkj and POkj are the 

probabilities of output transition j in service of the kth iteration of the loop before and after summarization respectively.

 

 

 
Figure 3 (a)-(c). The first three steps of the summary graph of the summarization of Figure 2. 

Legends: Figure (a) corresponds to Figure 2 where each node number in (a) corresponds to the node number in Figure 2. Node numbers 1,2,3,4,5,12 

in Figure (b) correspond to these nodes in Figure 2 and (6)S(9), (7)S(10), and (8)S(11) nodes (6 and 9), (7 and 10), and (8 and 11) each denotes 
the two sequential nodes combined to one node. Node ((2)P(3))P(4) in Figure (c) denotes the sequential nodes 2 and 3 were combined into a 

node. The combined node and node 4 were sequential and combined into a node. The numbers on vertical and horizontal axes just denote the 

figure scale and have no specific meaning. 
 

 
Figure 3 (d)-(f). Steps 4-6 of the summary graph of the summarization of Figure 2. 

Legends: Node ((2)P(3))P(4) in Figure (d) denotes the parallel nodes (2 and 3) were combined and then the combined node and node 4 were parallel 
and combined to one node. Figures (e) and (f) show the combination of parallel and sequential nodes where (n1)P(n2) and (n3)S(n4) denote the 

summarization of two parallel nodes n1 and n2 and two sequential nodes n3 and n4, respectively. The sequence of numbers and notations P and S beside 

the yellow node in Figure (e) shows how the initial 12 nodes in Figure 2 were summarized to one SN. 
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This process continues until only one node, 

referred to as the SN, remains. If the graph contains 

undefined patterns, such as unstructured 

conditional ones, the summarization cannot 

proceed further. These undefined patterns are 

beyond the scope of this paper (refer to Figure 1 

and Table 2 for the patterns considered in this 

study). Users can either specify their desired graph 

or use the sample graph we created, as shown in 

Figure 2.  

 

4.2. The selection method 

By increasing the WSC dimension and the number 

of candidates, the possible compositions (solution 

space) grow exponentially. Therefore, heuristic 

and metaheuristic optimization methods are 

required to search near-optimal WSCs. To this end, 

we propose and use DEGWO. However, the 

solution space in DEGWO is continuous and our 

solution space of WSCs is discrete. Therefore, we 

need a mapping between the two spaces where the 

optimal solutions generated in continuous space, 

should be discretized. Moreover, the fitness value 

of solutions in DEGWO should be determined. 

The selection of near-optimal WSCs is classified as 

an NP-hard problem, commonly referred to as the 

Web Service Composition Selection (WSCS) 

problem. This problem entails selecting an 

appropriate candidate (concrete) service for each 

abstract web service to construct a near-optimal 

WSC [8].  

4.2.1. Fitness value 

Each candidate service has a set of QAs (Section 

1). In this paper, three QAs values denoted by

( )i i i iQ q availability q response time q t= = = =1 2 3, , cos

are considered, where 1≤i≤n and n is the number of 

services/nodes of the composition.  

Before calculating the AQV for each SN, the QA 

value of each service is normalized to ensure they 

are on the same scale and direction. To this end, 

Negative QAs, like response time and cost, are 

normalized using Equation 1, while positive QAs, 

like availability, are normalized using Equation 2. 

After the normalization, the composition graph is 

summarized and the SN is calculated (see Section 

3.1), characterized by ( )AQV q q q= 1 2 3, , . In 

Equation 1, a lower value for negative QAs results 

in a higher normalized value while a higher value 

for positive QAs results in a higher normalized 

value (Equation 2). Consequently, the optimization 

problem becomes a maximization problem, to 

achieve a higher fitness value in the proposed 

algorithm. 
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We assume the three QAs have the same priority, 

indicated by equal weights w
æ ö÷ç= ÷ç ÷çè ø

1 1 1
, ,

3 3 3
. These weights 

are multiplied by the corresponding QA values in the 

AQV to compute the fitness value, which constitutes the 

final objective function (Equation 3). 

k k
k

FitnessValue w q q AQV
=

= ´ Îå
3

1

,  (3) 

 

4.2.2. The selection algorithm design 

We introduce DEGWO, an advanced variant of the 

standard GWO. It incorporates crossover and 

mutation operators derived from the GA and uses 

the SFLA strategy to enhance its exploratory 

capabilities. In DEGWO, each solution, referred to 

as a wolf (w), is represented by four components: 

(1) w.ca as an index array, (2) w.Q as QAs, (3) 

w.AQV, and (4) w.F as the fitness value where each 

array element denotes a service (dimension) in a 

composition.   

4.2.3. Discretization of the solution space 

GWO simulates the hunting mechanism of grey 

wolves, which typically live in groups of 5 to 12, 

classified into four hierarchical levels: α (Alpha), β 

(Beta), δ (Delta), and ω (Omega). The α wolves are 

the leaders at the top level, while the β and δ wolves 

obey the orders of the α wolves. Wolves at the β 

level are second in the hierarchy and assist the α 

wolves; they are also the primary candidates to 

replace the α wolves if they die. The δ wolves, at 

the third level, are required to follow both the α and 

β wolves. Finally, the ω wolves, situated at the 

lowest level, must adhere to all higher-level 

wolves. 

The hunting process of wolves is divided into three 

phases: exploring and surrounding the prey, 

harassing the prey to immobilize it, and ultimately 

attacking the prey. Initially, wolves spread out to 

explore the environment (divergence) and later 

gather again to attack prey (convergence). To 

model the divergence, a vector A⃗⃗  (Equation 4), 

consisting of random values between [-a, a], is 

defined. When A > 1 , the explorer agents move 

away from the prey, whereas when A £ 1 , they are 

directed to attack. The value of ∣A∣ is controlled by 
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the parameter "a" (Equation 4), which linearly 

decreases from 2 to 0 in the basic GWO. However, 

this linear decrease may not effectively facilitate 

the global search, leading to a lack of population 

diversity and causing the algorithm to get stuck in 

local optima [32]. To address this issue, we use a 

nonlinear decrease for "a" (Equation 5) [25]. In this 

modified version, parameter "a" decreases more 

gradually during the early iterations, promoting 

exploration, and then decreases more sharply in 

later iterations, enhancing the convergence rate. 

Our experiments show that the value of k=5 in 

Equation 5 yields the best results for our work. The 

vector C⃗  (Equation 6) aids in exploration by taking 

random values within the range of [0, 2]. This 

vector determines a random weight for the distance 

to the prey, improving the algorithm’s performance 

by enabling more suitable prey to be found and 

preventing the algorithm from falling into local 

optima. Unlike vector A⃗⃗ , vector C⃗  does not decrease 

linearly; instead, it helps to slow the wolves’ 

progress toward the prey [14]. 

After determining the vectors A⃗⃗  and C⃗ , the distance 

of each wolf from the prey is calculated. However, 

in optimization problems, the exact position of the 

prey is unknown. To model the hunting behavior, 

the distance of each omega wolf () to the α, β, and 

 wolves (the first, second, and third best solutions, 

respectively) is computed using Equation (7). 

Consequently, the hunting process is guided by α, 

β, and  wolves, and the remaining wolves () 

pursue the prey based on their guidance. 

The next position of wolves () is updated using 

Equation (8), and the average next position of each 

wolf is derived using Equation (9). In these 

equations, the position of each wolf is determined 

based on the QA of its selected candidate. 

A a r a= -12 .
ur r ur r
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- Discrete Space 

Equations (7–9) are used for searching in a 

continuous space, where the search agents in GWO 

update their position vectors based on the hunting 

process. However, in a discrete space, the position 

of the wolves cannot be updated in the same 

manner, as position vectors must be calculated 

using discrete values. To address this issue, several 

methods have been proposed [33]. Two of the most 

well-known approaches are the integer Particle 

Swarm Optimization (PSO) and binary PSO 

methods. 

In the integer PSO approach, the original 

continuous algorithms are adapted for problems 

with integer-valued solutions by rounding the 

position vectors at each iteration [15]. In the binary 

PSO method, transfer functions such as the 

Hyperbolic [22] or Sigmoid [34, 35] functions are 

used for discretization. However, these methods 

reduce the algorithm’s effectiveness in the 

exploration and exploitation phases. Consequently, 

these versions of the GWO algorithm are 

insufficient for solving the WSC problem, 

primarily because they lack sufficient explorative 

power for large-scale problems and tend to get 

stuck in local optima. To overcome these 

limitations, we propose the following 

improvements: 

1. A novel discretization algorithm to improve 

the exploitation phase. 

2. Integrating GA operators and shuffling 
optimization into the standard GWO structure 

to enhance the exploration phase. 

This approach aims to achieve a better balance 

between exploration and exploitation, improving 

the overall algorithm's performance. Algorithm 1 

outlines the proposed DEGWO, while Tables 4 and 

5 provide the parameter values and their 

descriptions, respectively. In Algorithm 1, the 

process begins with determining the three best 

wolves as the leading solutions (lines 7-9). A new 

generation of wolves is then created (lines 10-11), 

which is merged with the current omega wolf 

population (line 12). The combined population is 

sorted, and the top Npop wolves are retained (line 

13). The population is divided into multiple 

subsets, termed Wolfplexes (line 14), with each 

Wolfplex containing nPopWolfplex members. For 

each Wolfplex, several parent wolves are selected 

for crossover and mutation operations (line 16), 

leading to the generation of a new population (line 

17). The new population is merged with the 
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corresponding Wolfplex and sorted (line 18), and 

the top nPopWolfplex wolves are retained (line 

19). These updated Wolfplexes are then combined 

using a shuffling strategy (line 21) to form the 

initial population for the next iteration. This 

process is repeated until the predefined maximum 

number of iterations (MaxIteration=100) is 

reached. Finally, the best wolf is selected as the 

output solution. 

Algorithm 1  

The proposed DEGWO for the WSCS problem. 

 
1. Input: it = 0 /* The current number of iteration*/,  
    nWolfplex = 5; nPopWolfplex = 20 

    /* initial population is divided to nPopWolfplex sub-
populations where the number of members of each sub-

population is nWolfplex */,  

  MaxIteration=30 /* The Maximum number of algorithm 
iterations*/,  

  Pcrossover=0.7 /* probability of crossover*/,  

  Pmutation=0.3 /* probability of mutation */ 
2. Output: The best wolf 

3. Begin 

4. Generate Npop of wolves randomly as an initial population 

/* Npop nWolfplex nPopWolfplex= ´ */ 

5. While (it < MaxIteration) do 

6. Initialize vectors a, A and C (Equations 4-6) 
7. Calculate the fitness values of each wolf (w.F) using 

Equation 3 

8. Sort the population of wolves in descending order based on 
the fitness values (w.F) 

9. Consider the first three best wolves as Wα, Wβ and Wδ, 

             respectively and the other wolves as Wω 

10. Calculate the new wolves (wω-new.Q) using Equations 7-9 

11. Discretize the new wolves' vector using Algorithm 2 

12. Merge the population created in 11(wω-new) and population 

in (wω) 

13. Sort the population of wolves in descending order 
    based on the fitness values and keep the first Npop 

    individuals 
14. Divide the population of wolves into nWolfplex 

15. For each Wolfplex do 

16.       Select ( crossoverP nPopWolfplex´ ) and (

mutationP nPopWolfplex´ ) number of parents from each 

              Wolfplex for crossover and mutation operators, 
respectively 

17.      Perform the one-point crossover and one-point mutation 

on the selected parents 
18.       Merge the population created in Step 16 and 

corresponding Wolfplex  

19.     Sort the line 18’s population in descending order and 
only keep the first fittest nPopWolfplex wolves. 

20. End for 

21. Combine the upgraded Wolfplexes via shuffling strategy in 
SFLA     

22. Save the best wolf achieved so far 

23. Assign it=it+1 
24. End while 

25. Return the best wolf 

26. End 

 

- The proposed discretization method 

Since GWO is primarily designed for searching in 

continuous spaces, a discretization method is 

required to adapt it for discrete search spaces. To 

address this, we propose a novel discretization 

method (Algorithm 2), which is called in step 11 of 

Algorithm 1. In this method, a set of new wolves in 

the discrete space is generated. The inputs to this 

function are provided in step 10 of Algorithm 1, 

and its outputs consist of wolves (w-new), where the 

quality attribute (QA) values of each wolf are 

represented in w-new.Q. 

In Algorithm 2, for each dimension i of a new wolf 

(WSC), represented as w-new.cai  (see Section 

4.2.1), a candidate is selected. The sum of the 

quality attributes (QAs) for the ith dimension of all 

wolves is then computed to identify the best 

candidate for that dimension (service). 

 
Algorithm 2 

Proposed discretization function. 
Discretization-Function (w-new, w, w, w., w } 

1. for i=1 to n   // n denotes an n-dimensional composition (see 
                      Section 4.2.1);  

2.     Upperbound=3; Lowerbound=0  // each dimension of a  wolf 

(solution) has three QAs, each between zero and 1  

3.     if ( k
new ik

w Q Upperboundw-=
<å

3

1
. or  

k
new ik

w Q Lowerboundw-=
>å

3

1
.  

4.     select a iCa CCÎ randomly // iCa is a candidate for the ith 

        abstract service, Fi denotes the fitness value of ith   

        dimension of wolf and [ ]CC Î 1 2507 ;   

5.        new i iw ca caw- ¬.  

6.        new i i iw Q ca Qw- ¬. .  

7.         return w-new 

8.      else { 

9.         if ( )k k
i new ik k

w Q w Qd w-= =
>å å

3 3

1 1
. .  

10.           new i iw ca w caw- d¬. .  

11.                  new i iw Q w Qw- d¬. .    

12.            return newww-  

13.       if ( )k k
i new ik k

w Q w Qb w-= =
>å å

3 3

1 1
. .  

14.           new i iw ca w caw- b¬. .  

15.                 new i iw Q w Qw- b¬. .   

16.          return newww-  

17.       if ( )k k
i new ik k

w Q w Qa w-= =
>å å

3 3

1 1
. .  

18.           new i i iw Q ca Qw- ¬. .   

19.           new i iw Q w Qw- a¬. .  

20.            return newww-  

21.     if ( )k k
i new ik k

w Q w Qw w-= =
>å å

3 3

1 1
. .  

22.          new i iw ca w caw- w¬. .  

23.          new i iw Q w Qw- w¬. .  

24.          return newww-  

25.     find a iCa CCÎ so that i i new iCa F w Fw->. .  

26.     if found new i iw ca caw- ¬.  

                        new i i iw Q ca Qw- ¬. . } 

27.      return newww- }  

 

After determining an appropriate candidate for 

each dimension (cai) the corresponding QAs for 

that dimension are stored in w-new.Qi. Each 

dimension of the wolf has three QAs, normalized 

to lie between 0 and 1 (see Section 4.2). As a result, 

the total QA value for a dimension is constrained 
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between 0 and 3 (line 2). However, in some cases, 

the sum of QAs for a given dimension of w-new in 

the continuous space may exceed the defined upper 

or lower bounds. In such situations, a random cai  

is selected (denoted as CC), and its index and QAs 

are assigned to w-new.cai and w-new.Qi, respectively 

(lines 3-7). Otherwise, for the ith dimension, the 

sum of QAs for w-new is compared against the sum 

of the corresponding QAs of wolves , β, α and . 

Based on the algorithm, one of these indices and its 

associated Qi is chosen as the candidate for w-

new.cai  and its quality value for w-new.Qi while w-

new.Qi in the continuous space have been computed 

using Equations (7-9) by considering vector A; 

vector A depends on the critical parameter a. The 

value of this parameter influences the accurate 

selection of candidates (see Equation (5) in Section 

4.2.3).  

4.2.4. Time complexity 

Now, we deal with the time complexity in three 

phases of our proposed method. 

-Composition summarization. In this phase, the 

composition graph is scanned for the pattern 

recognition and summarization. The time 

complexity for this phase is O(n2) because we use 

two nested loops in our algorithm to recognize each 

pattern with n nodes.  

-Selection. The time complexity for the selection 

method in Algorithm 1 is 

m n Npop MaxIteration´ ´ ´ where MaxIteration is 

the number of the algorithm repetitions, Npop is the 

number of population members, and m×n is the 

time complexity Algorithm 2, which is called in 

Line 11 for each population member. Parameters m 

and n denote the number of candidates for each 

service and the number of services of the 

composition, respectively. Since for each graph 

summarization, the selection method is carried out, 

the total complexity of our proposed method is 

n m n Npop MaxIteration´ ´ ´ ´2 . 

5. Experimental results 

The DEGWO algorithm was executed 30 times, as 

it is common practice to perform 30 runs for 

nondeterministic algorithms, such as evolutionary 

algorithms, to facilitate robust statistical analysis 

and draw comprehensive inferences [36]. The 

number of iterations for each run is user-defined. 

Typically, DEGWO converges within 20 to 30 

iterations. 

In this section, we evaluate the results obtained by 

applying DEGWO and other methods to two types 

of web applications: (a) the travel agency graph 

shown in Figure 2 and (b) three additional web 

applications with 5, 10, 50, and 100 sequential 

services. Web service candidates were selected 

from the QWS dataset [31], which contains 2,507 

real candidates characterized by quality attributes 

(QAs) such as availability, response time, and cost. 

The target web application in Figure 2 represents a 

travel agency with 12 services, where each service 

(task) is randomly matched with a unique candidate 

from the 2,507 options. 

By applying DEGWO and other selection methods 

to the summarized nodes derived from web 

applications (a) and (b), we evaluated the 

performance based on two criteria: (1) the fitness 

value and its similarity, and (2) the QAs' values and 

their similarities. To demonstrate the generality 

and significance of the results, statistical analysis 

was performed. 

 
Table 4. Parameter values used in the algorithms. 

No. Parameter Value 

1 nPop  5, 10, 50, 100 

2 MaxIteration 100 

3 Max-Run  30 

4 Pmutation  0.3 

5 Pcrossover 0.7 

6 nPopWolfplex  1, 2, 5, 20 

7 nWolfplex  5, 5, 10, 5 

8 nPop=nPopWolfp
lex * nWolfplex  

 

 

5, 10, 50, 100 

9 nNode  5, 10, 50, 100 

10 m 2507 

11 C1=C2  2 

12 Sigma  100 

13 q  Max(round (0.3*nPopWolfplex) ,2)   

14 alpha  3 

15 beta  5     

 

The results of DEGWO are evaluated under the 

following configurations: (1) RDGWO+GA, 

which highlights the impact of the discretization 

method introduced in Algorithm 1 (RDGWO) and 

the use of GA to escape local optima in GWO; and 

(2) DEGWO (RDGWO+GA+SFLA), which 

incorporates SFLA-inspired mechanisms to further 

enhance performance. The outcomes of 

RDGWO+GA and DEGWO are compared with six 

other methods: (a) GA [1], (b) HGWO [15], (c) the 

binary version of GWO (BGWO) [22], (d) 

SFLAGA [2], (e) the integer version of PSO 

(IPSO) [1], and (f) SFLA [13]. 

The environment setting is a Corei5 processor with 

4 GB RAM, and Windows 10. MATLAB 2016 was 

used to implement the algorithms. Each algorithm 

was executed 30 times, with a maximum of 100 
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generations per run, which served as the 

termination condition. For the genetic algorithm 

(GA), the mutation and crossover probabilities 

were set to 0.3 and 0.7, respectively (see Table 4, 

rows 4 and 5). Tables 4 and 5 present the parameter 

values and notations used in the algorithms, 

respectively. 

 

Table 5. Symbols used in the algorithms. 
No

. 

Symbol Description 

1 nPop Initial population size for all algorithms except 
SFLA, SFLA+GA, Proposed Method 

2 MaxIterati
on 

Maximum number of generations for all algorithms 

3 Max-Run Maximum number of running for all algorithms 

4 Mutation 
probability 

for all algorithms except SFLA, IPSO and BGWO 

5 Crossover 

probability 

for all algorithms except SFLA, IPSO and BGWO 

6 nPopWolfp

lex 

Wolfplex population size for SFLA, SFLA+GA 

and Proposed Method algorithms 

7 nWolfplex Number of Wolfplexes for SFLA, SFLA+GA and 

Proposed Method algorithms 

8 nPop=nPo

pWolfplex 

* 
nWolfplex 

Initial population size for SFLA, SFLA+GA, 

Proposed Method 

9 nNode The number of nodes (web services or tasks) in the 
composition graph 

10 m The number of candidates for each web service, 

these Candidates Randomly selected from QWS 
dataset 11 C1=C2 The initial parameters for PSO algorithm 

12 Sigma Step size in IPSO, SFLA algorithms 

13 q The number of Parents in SFLA algorithm 

14 alpha The number of Offsprings in SFLA algorithm 

15 beta Maximum Number of Iterations in each Max-

Iteration in SFLA algorithm 

16 w The first leader of the wolves (Alpha wolf) 

17 w The second leader of the wolves (Beta wolf) 

18 w The third leader of the wolves (Delta wolf) 

19 w The current wolve(solution) (Omega wolf) 

20 w-new The new wolf (new solution) (Omega-new wolf) 

21 QA The quality attribute values of each candidate (each 
dimension of wolf) 

22 AQV The quality attribute values of summary node 

23 ca An array of selected candidates’ indices 

24 Q A set of quality attribute values 

25 F Fitness value of a wolf (solution) 

26 Abstract 

service 

A web service without non-functional attributes 

27 Concrete 

service 
A web service with non-functional attributes 

 

 

5.1. Experiment 1: Web application of type a 

Now, we deal with the results obtained by applying 

DEGWO and other selection methods to the 

summarized nodes obtained for web application of 

type a (Figure 2). Figures 4-7 show the fitness and 

QAs values DEGWO (black), its step 1 (purple), 

and other selection methods, and Figures 8-11 do 

the fitness and QAs similarities between DEGWO 

and other selection methods. In all Figures, 

DEGWO was stated as ProposedMethod. To 

compute the fitness value, Equation 3 was used. 

Moreover, all QA values were normalized based on 

Equations 1 and 2. The fitness value for all the 

methods was computed after 30 runs and the initial 

population size was 100. 

5.1.1. Discussion 

As shown in Figures 5–12, DEGWO (represented 

by the black line) outperforms the other algorithms 

in terms of fitness value, with improvements 

ranging from 1% to 3%, availability from 2% to 

6%, and response time and cost from 50% to 90%. 

Figure 4 illustrates that the rate of change in fitness 

value is significant during the first 20 iterations of 

each run, with the greatest increase occurring in 

this range (iterations 1 to 20). Additionally, 

availability follows a similar trend in this period. In 

contrast, the other two QAs (response time and 

cost), while initially smaller than those of the other 

algorithms, remain relatively constant during the 

early iterations. However, these two QAs exhibit a 

higher rate of change between iterations 20 and 35, 

when the fitness value shows only minor 

improvements, and its changes become negligible. 

-Interpretation using fitness and QAs 

Since the fitness value is based on considering the 

three QAVs, an improvement in these values leads 

to an improvement in the fitness value. There is a 

large increase in the fitness value until iteration 20 

because of increasing the availability value. For 

sequence and parallel patterns, Table 2 shows the 

multiplication of service availability values, along 

with the cost and response time values. 

DEGWO has the advantages of faster convergence 

(thanks to using GWO), the escape from local 

optima (thanks to using GA), and a wider space to 

select the solutions (thanks to using SFLA). This 

leads to selecting candidates with more 

availability. As Figures 4-7 show, DEGWO 

converges in the 35th iteration, and onwards the 

availability value does not change while two other 

QA values change in opposite, i.e., by increasing a 

QA value, another one decreases. Accordingly, the 

fitness value remains constant.  
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Figure 4. Fitness value of DEGWO (black) and 

RDGWO+GA (purple) and other selection methods in 

100 iterations for the web application in Figure 2. 

 

Figure 5. The SN’s (AQV) availability of DEGWO (black) 

and RDGWO+GA (purple) and other selection methods 

in 100 iterations for the web application in Figure 2. 

 

Figure 6. The SN’s (AQV) response time of DEGWO 

(black) and RDGWO+GA (purple) and other selection 

methods in 100 iterations for the web application in 

Figure 2. 

 

Figure 7. The SN’s (AQV) cost of DEGWO (black) and 

RDGWO+GA (purple) and other selection methods in 

100 iterations for the web application in Figure 2. 

As Figures 6-7 show, response time and cost values 

are unstable until iteration 30 but afterward, they 

are decreasing or increasing.  
 

- Interpretation using similarity 
Another known criterion that can be used to 

evaluate fitness and AQVs of the selected 

summarized nodes is similarity or the ratio of two 

values. (Equations 10 and 11). Value 1 for the ratio 

of the fitness or QAs values of AQV of method x 

to that of DEGWO denotes two methods have the 

same ability in selecting the summarized nodes in 

terms of fitness or AQV. The ratio for the fitness 

and availability with values <1 or >1 denotes 

method x selected weaker or stronger nodes against 

DEGWO, and it is vice versa for cost and response 

time.  

Methodx
Fitness

oposedMethod

Fitness
Similarity

Fitness
=

Pr

 (10) 

Methodx
AQV

oposedMethod

AQV
Similarity

AQV
=

Pr

 (11) 

 

Figures 8–11 show similar performance values 

between DEGWO and the other methods in terms 

of fitness value, availability, response time, and 

cost. As depicted in Figure 8, DEGWO 

consistently selected better summarized nodes 

compared to BGWO (cyan), SFLA (red), and IPSO 

(yellow) across almost all iterations, with a 

particularly notable advantage in iterations before 

70. This is attributed to DEGWO's faster 

convergence rate compared to the other methods. 

In general, the higher the similarity, the closer the 

graph value is to one, indicating that the accuracy 

of that method is closer to that of DEGWO. Among 

the methods compared, RDGWO+GA (the first 

step of DEGWO), HGWO, and SFLAGA exhibit 

the greatest similarity to DEGWO, while IPSO, 

SFLA, and BGWO show the least similarity in 

terms of fitness. 

The availability similarity analysis in Figure 9 is 

the same as the fitness as shown in Figure 8. 

Figures 10 and 11 show that the response time and 

cost similarity of almost all methods to DEGWO is 

greater than one. In other words, in terms of these 

two parameters, there is very little similarity 

between the x method and the DEGWO in almost 

any iteration. 

These Figures show that the most similar methods 

in terms of response time are SFLAGA, 

RDGWO+GA and in terms of cost are 

RDGWO+GA, HGWO and the least similar one in 

terms of response time is SFLA and in terms of cost 

is IPSO. 
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Figure 8. The fitness Similarity between DEGWO and 

others. 

 

Figure 9. The AQV’s availability similarity between 

DEGWO and others. 

Figure 10. The AQV’s response time similarity between 

DEGWO and others. 

Due to the high convergence speed of DEGWO, 

other methods have less similarity than DEGWO in 

terms of fitness value for 30 iterations. This 

behavior can also be seen in availability, but for 

two other QA of AQV, the similarity of other 

methods to DEGWO is more for 30 iterations, and 

gradually this similarity decreases. This issue can 

be seen in cost attribute too. 

To show the generality of comparing the solutions 

generated by the methods for the web application 

in Figure 2, statistical tests were applied by which 

the significance of differences between the 

solutions is evaluated. Table 6 shows results of 

statistical tests in terms of fitness, availability, 

response time, and cost.  

 

Figure 11. The AQV’s cost similarity between DEGWO 

and others. 

Column 1 of Table 6 shows the fitness or QAs 

values by which generality of results of the two 

methods are compared and Columns 2 and 3 show 

the two methods whose results are compared. A 

Sig.≤0.05 denotes a significant difference between 

the generality of results of the two methods. For the 

Sig.≤0.05, two positive values for a positive QA, 

like fitness and availability denote Method (I) 

outperforms Method (J) and two negative values 

for a positive QA in the columns denote Method (J) 

outperforms Method (I).  But, for negative QAs 

like response time and cost, Sig.≤0.05 denotes 

Method (I) outperforms Method (J) if two negative 

values exist in the two last columns. 

As the Best Fitness section of Table 6 shows, a 

significant difference exists between the generality 

of results of DEGWO and that of others (indicated 

by Sig.=0.000) and two positive values in the two 

last columns denote the DEGWO generally 

outperforms other ones. The rest of rows in Section 

Best Fitness of Table 6 show dominance for others. 

Similar results are seen for the DEGWO in Section 

Availability. 

According to Section Response time of Table 6, the 

significant difference exists between the generality 

of results of GEGWO and that of others but 

RDGWO+GA (the DEGWO presented in the first 

step) and SFLAGA. Finally, according to Section 

Cost of Table 6, among the seven methods there 

exists a significant difference between the 

generality of results of DEGWO and that of 

BGWO, IPSO, and SFLA but such difference is not 

seen between that of DEGWO and that of the other 

four methods.  



QoS-Aware Web Service Composition and Selection Based on Interacting Structural Patterns 

197 

 

- Execution time 

Now, for the web application in Figure 2, we 

consider the execution time of the selection 

methods (Figure 12) until they achieve their 

convergence. As Figure 12 shows, IPSO and 

BGWO have less execution time than others 

because their algorithms have less complexity and 

due to being stuck in the local optimum, they 

converge sooner, and that's why according to 

Figure 4, these methods also have a lower fitness 

value than the others. 

  
Table 6. Results of Statistical tests for selection of solutions (summarized nodes) for the web application in Figure 2. 

Multiple Comparisons 

Scheffe 

Dependent Variable (I) Method (J) Method Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 

Best Fitness 

GA 

HGWO .059 -.02686218282490 .000234821842 

RDGWO+GA .000 -.03994613698413 -.012849132316 

DEGWO .000 -.06242155654648 -.035324551878 

BGWO .000 .10766662048557 .134763625153 

IPSO .000 .12640753548144 .153504540148 
SFLAGA .000 -.03855795444755 -.011460949780 

SFLA .000 .11502392107234 .142120925739 

HGWO 

GA .059 -.00023482184261 .026862182824 
RDGWO+GA .069 -.02663245649299 .000464548174 

DEGWO .000 -.04910787605534 -.022010871387 

BGWO .000 .12098030097672 .148077305644 
IPSO .000 .13972121597258 .166818220640 

SFLAGA .159 -.02524427395641 .001852730711 

SFLA .000 .12833760156349 .155434606230 

RDGWO+GA 

GA .000 .01284913231663 .039946136984 

HGWO .069 -.00046454817451 .026632456492 

DEGWO .000 -.03602392189610 -.008926917228 
BGWO .000 .13406425513596 .161161259803 

IPSO .000 .15280517013182 .179902174799 

SFLAGA 1.000 -.01216031979717 .014936684870 
SFLA .000 .14142155572273 .168518560390 

DEGWO 

GA .000 .03532455187898 .062421556546 

HGWO .000 .02201087138783 .049107876055 
RDGWO+GA .000 .00892691722859 .036023921896 

BGWO .000 .15653967469830 .183636679365 

IPSO .000 .17528058969417 .202377594361 
SFLAGA .000 .01031509976518 .037412104432 

SFLA .000 .16389697528507 .190993979952 

BGWO 

GA .000 -.13476362515308 -.107666620485 
HGWO .000 -.14807730564422 -.120980300976 

RDGWO+GA .000 -.16116125980346 -.134064255135 

DEGWO .000 -.18363667936581 -.156539674698 
IPSO .000 .00519241266211 .0322894173296 

SFLAGA .000 -.15977307726688 -.132676072599 

SFLA .752 -.00619120174698 .0209058029205 

IPSO 

GA .000 -.15350454014894 -.1264075354814 

HGWO .000 -.16681822064009 -.1397212159725 
RDGWO+GA .000 -.17990217479932 -.1528051701318 

DEGWO .000 -.20237759436167 -.1752805896941 

BGWO .000 -.03228941732962 -.0051924126621 
SFLAGA .000 -.17851399226274 -.1514169875952 

SFLA .188 -.02493211674285 .00216488792466 

SFLAGA 

GA .000 .01146094978005 .03855795444755 
HGWO .159 -.00185273071110 .02524427395641 

RDGWO+GA 1.000 -.01493668487034 .01216031979717 

DEGWO .000 -.03741210443268 -.0103150997651 
BGWO .000 .13267607259937 .15977307726688 

IPSO .000 .15141698759524 .17851399226274 

SFLA .000 .14003337318614 .16713037785365 

SFLA 

GA .000 -.14212092573985 -.1150239210723 

HGWO .000 -.15543460623099 -.1283376015634 

RDGWO+GA .000 -.16851856039023 -.1414215557227 

DEGWO .000 -.19099397995258 -.1638969752850 

BGWO .752 -.02090580292052 .00619120174698 

IPSO .188 -.00216488792466 .02493211674285 
SFLAGA .000 -.16713037785365 -.1400333731861 

Availability GA 

HGWO .074 -.07902596174955 .00171004921470 

RDGWO+GA .000 -.11583065011806 -.0350946391538 

DEGWO .000 -.17186899660423 -.0911329856399 
BGWO .000 .31941006352140 .40014607448565 

IPSO .000 .37526722772176 .45600323868602 

SFLAGA .000 -.11126157354776 -.0305255625835 
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SFLA .000 .33995373824533 .42068974920958 

HGWO 

GA .074 -.00171004921470 .07902596174955 

RDGWO+GA .109 -.07717269385064 .00356331711362 

DEGWO .000 -.13321104033681 -.0524750293725 
BGWO .000 .35806801978882 .43880403075308 

IPSO .000 .41392518398919 .49466119495344 

SFLAGA .248 -.07260361728034 .00813239368391 
SFLA .000 .37861169451275 .45934770547700 

RDGWO+GA GA .000 .03509463915381 .11583065011806 

Multiple Comparisons 

Scheffe 

Dependent Variable (I) Method (J) Method Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 

 

 

HGWO .109 -.00356331711362 .07717269385064 

DEGWO .000 -.09640635196830 -.0156703410040 
BGWO .000 .39487270815733 .47560871912158 

IPSO .000 .45072987235770 .53146588332195 

SFLAGA 1.000 -.03579892891183 .04493708205242 
SFLA .000 .41541638288126 .49615239384551 

DEGWO 

GA .000 .09113298563998 .17186899660423 

HGWO .000 .05247502937255 .13321104033681 
RDGWO+GA .000 .01567034100404 .09640635196830 

BGWO .000 .45091105464350 .53164706560776 

IPSO .000 .50676821884387 .58750422980812 
SFLAGA .000 .02023941757434 .10097542853859 

SFLA .000 .47145472936743 .55219074033168 

BGWO 

GA .000 -.40014607448565 -.3194100635214 
HGWO .000 -.43880403075308 -.3580680197888 

RDGWO+GA .000 -.47560871912158 -.3948727081573 

DEGWO .000 -.53164706560776 -.4509110546435 
IPSO .000 .01548915871824 .09622516968249 

SFLAGA .000 -.47103964255129 -.3903036315870 

SFLA .811 -.01982433075820 .06091168020605 

IPSO 

GA .000 -.45600323868602 -.3752672277217 

HGWO .000 -.49466119495344 -.4139251839891 

RDGWO+GA .000 -.53146588332195 -.4507298723577 
DEGWO .000 -.58750422980812 -.5067682188438 

BGWO .000 -.09622516968249 -.0154891587182 

SFLAGA .000 -.52689680675165 -.4461607957874 

SFLA .146 -.07568149495856 .00505451600569 

SFLAGA 

GA .000 .03052556258351 .11126157354776 

HGWO .248 -.00813239368391 .07260361728034 
RDGWO+GA 1.000 -.04493708205242 .03579892891183 

DEGWO .000 -.10097542853859 -.0202394175743 

BGWO .000 .39030363158703 .47103964255129 
IPSO .000 .44616079578740 .52689680675165 

SFLA .000 .41084730631096 .49158331727522 

SFLA 

GA .000 -.42068974920958 -.3399537382453 
HGWO .000 -.45934770547700 -.3786116945127 

RDGWO+GA .000 -.49615239384551 -.4154163828812 

DEGWO .000 -.55219074033168 -.4714547293674 

BGWO .811 -.06091168020605 .01982433075820 

IPSO .146 -.00505451600569 .07568149495856 
SFLAGA .000 -.49158331727522 -.4108473063109 

Response Time 

GA 

HGWO 1.000 -.02037514856904 .01968170235590 

RDGWO+GA 1.000 -.01656621629304 .02349063463190 

DEGWO .032 .00090976519387 .04096661611881 

BGWO .980 -.02659564719363 .01346120373131 

IPSO 1.000 -.02315774503746 .01689910588747 

SFLAGA .962 -.01266344703824 .02739340388669 
SFLA .955 -.02765468227613 .01240216864880 

HGWO 

GA 1.000 -.01968170235590 .02037514856904 

RDGWO+GA .999 -.01621949318647 .02383735773847 

DEGWO .027 .00125648830044 .04131333922538 

BGWO .986 -.02624892408706 .01380792683787 

IPSO 1.000 -.02281102193090 .01724582899404 
SFLAGA .952 -.01231672393168 .02774012699326 

SFLA .965 -.02730795916957 .01274889175537 

RDGWO+GA 

GA 1.000 -.02349063463190 .01656621629304 
HGWO .999 -.02383735773847 .01621949318647 

DEGWO .148 -.00255244397556 .03750440694938 

BGWO .824 -.03005785636307 .00999899456187 
IPSO .980 -.02661995420690 .01343689671804 

SFLAGA .999 -.01612565620768 .02393119471726 

SFLA .732 -.03111689144557 .00893995947937 

DEGWO 
GA .032 -.04096661611881 -.0009097651938 

HGWO .027 -.04131333922538 -.0012564883004 



QoS-Aware Web Service Composition and Selection Based on Interacting Structural Patterns 

199 

 

RDGWO+GA .148 -.03750440694938 .00255244397556 
BGWO .001 -.04753383784998 -.0074769869250 

IPSO .005 -.04409593569381 -.0040390847688 

SFLAGA .475 -.03360163769459 .00645521323035 
SFLA .000 -.04859287293248 -.0085360220075 

BGWO 

GA .980 -.01346120373131 .02659564719363 

HGWO .986 -.01380792683787 .02624892408706 
RDGWO+GA .824 -.00999899456187 .03005785636307 

DEGWO .001 .00747698692504 .04753383784998 

Multiple Comparisons 

Scheffe 

Dependent Variable (I) Method (J) Method Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 

 

 

IPSO 1.000 -.01659052330630 .02346632761864 

SFLAGA .438 -.00609622530708 .03396062561786 
SFLA 1.000 -.02108746054497 .01896939037997 

IPSO 

GA 1.000 -.01689910588747 .02315774503746 

HGWO 1.000 -.01724582899404 .02281102193090 
RDGWO+GA .980 -.01343689671804 .02661995420690 

DEGWO .005 .00403908476887 .04409593569381 

BGWO 1.000 -.02346632761864 .01659052330630 

SFLAGA .786 -.00953412746325 .03052272346169 

SFLA .998 -.02452536270114 .01553148822380 

SFLAGA 

GA .962 -.02739340388669 .01266344703824 
HGWO .952 -.02774012699326 .01231672393168 

RDGWO+GA .999 -.02393119471726 .01612565620768 

DEGWO .475 -.00645521323035 .03360163769459 

BGWO .438 -.03396062561786 .00609622530708 

IPSO .786 -.03052272346169 .00953412746325 
SFLA .334 -.03501966070036 .00503719022458 

SFLA 

GA .955 -.01240216864880 .02765468227613 

HGWO .965 -.01274889175537 .02730795916957 
RDGWO+GA .732 -.00893995947937 .03111689144557 

DEGWO .000 .00853602200754 .04859287293248 

BGWO 1.000 -.01896939037997 .02108746054497 
IPSO .998 -.01553148822380 .02452536270114 

SFLAGA .334 -.00503719022458 .03501966070036 

Cost 

GA 

HGWO 1.000 -.00415074504136 .00402857531797 

RDGWO+GA .999 -.00327145871172 .00490786164761 

DEGWO .145 -.00050965251232 .00766966784702 

BGWO .964 -.00558188228009 .00259743807925 

IPSO .833 -.00611388974430 .00206543061504 
SFLAGA .993 -.00295188263311 .00522743772623 

SFLA .093 -.00789677124288 .00028254911645 

HGWO 

GA 1.000 -.00402857531797 .00415074504136 
RDGWO+GA .999 -.00321037385003 .00496894650931 

DEGWO .129 -.00044856765063 .00773075270871 

BGWO .972 -.00552079741839 .00265852294094 
IPSO .854 -.00605280488260 .00212651547673 

SFLAGA .990 -.00289079777142 .00528852258792 

SFLA .105 -.00783568638119 .00034363397815 

RDGWO+GA 

GA .999 -.00490786164761 .00327145871172 

HGWO .999 -.00496894650931 .00321037385003 

DEGWO .480 -.00132785398026 .00685146637907 

BGWO .711 -.00640008374803 .00177923661130 

IPSO .439 -.00693209121224 .00124722914710 
SFLAGA 1.000 -.00377008410105 .00440923625828 

SFLA .013 -.00871497271083 -.0005356523514 

DEGWO 

GA .145 -.00766966784702 .00050965251232 
HGWO .129 -.00773075270871 .00044856765063 

RDGWO+GA .480 -.00685146637907 .00132785398026 

BGWO .003 -.00916188994744 -.0009825695881 
IPSO .001 -.00969389741164 -.0015145770523 

SFLAGA .646 -.00653189030046 .00164743005888 

SFLA .000 -.01147677891023 -.0032974585509 

BGWO 

GA .964 -.00259743807925 .00558188228009 

HGWO .972 -.00265852294094 .00552079741839 

RDGWO+GA .711 -.00177923661130 .00640008374803 

DEGWO .003 .00098256958810 .00916188994744 

IPSO 1.000 -.00462166764388 .00355765271546 

SFLAGA .549 -.00145966053269 .00671965982665 
SFLA .709 -.00640454914246 .00177477121687 

IPSO 

GA .833 -.00206543061504 .00611388974430 

HGWO .854 -.00212651547673 .00605280488260 
RDGWO+GA .439 -.00124722914710 .00693209121224 

DEGWO .001 .00151457705231 .00969389741164 

BGWO 1.000 -.00355765271546 .00462166764388 
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SFLAGA .290 -.00092765306848 .00725166729086 
SFLA .908 -.00587254167826 .00230677868108 

SFLAGA 

GA .993 -.00522743772623 .00295188263311 

HGWO .990 -.00528852258792 .00289079777142 
RDGWO+GA 1.000 -.00440923625828 .00377008410105 

DEGWO .646 -.00164743005888 .00653189030046 

BGWO .549 -.00671965982665 .00145966053269 
IPSO .290 -.00725166729086 .00092765306848 

SFLA .005 -.00903454878944 -.0008552284301 

Multiple Comparisons 

Scheffe 

Dependent Variable (I) Method (J) Method Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 

 SFLA 

GA .093 -.00028254911645 .00789677124288 

HGWO .105 -.00034363397815 .00783568638119 
RDGWO+GA .013 .00053565235149 .00871497271083 

DEGWO .000 .00329745855090 .01147677891023 

BGWO .709 -.00177477121687 .00640454914246 
IPSO .908 -.00230677868108 .00587254167826 

SFLAGA .005 .00085522843011 .00903454878944 

*. The mean difference is significant at the 0.05 level 

Figure 12. The execution time of the selection methods in 

seconds. 

Method GA, having the least execution time after 

DEGWO, benefits from the proper fitness 

(according to Figure 4). The execution time of 

RDGWO+GA, HGWO, and SFLAGA are 54, 45, 

and 40 respectively, which converge in iterations 

82, 90, and 100, respectively (see Figure 4). 

 

5.2. Experiment 2. Web application of type b 

As stated in Section 5, our second evaluation was 

done on the web applications of type (b) through 

the three following scenarios where the number of 

members of the initial population and the number 

of web services may be fixed or vary. 

(1) The initial population is fixed and has five 

members, and the number of web services 

(tasks) is 5, 10, 50, and 100 with the sequential 

structure. 

(2) The number of web services is fixed and equal 

to 10 with a sequential structure and the initial 

population was considered 5, 10, 50, and 100. 

(3) The number of web services is fixed and 

equal to 100 with a sequential structure and 

the initial population was considered 5, 10, 

50, and 100. 

To enhance the clarity of the figures, the fitness and 

AQV values were scaled by factors of 1000, 1000, 

10,000, and 10,000, respectively. 

 

5.2.1. Scenario 1 

Figures 13-17 present the results of Scenario 1. 

Figure 13 illustrates the fitness values as a function 

of the number of web services (tasks) with a fixed 

initial population of 5. As shown, fitness values 

decrease sharply as the number of web services 

increases. Figure 14 demonstrates that, although 

availability decreases with an increasing number of 

web services, the availability of the SN selected by 

DEGWO remains above 900. As shown in Figure 

15, for all methods, the availability of the SN 

decreases with an increase in the number of 

services. However, this is compensated for by 

reductions in response time and cost as the number 

of services increases (see Figures 16 and 17). This 

explains why the overall fitness of DEGWO 

remains superior to that of the other methods. 

 

Figure 13. Best fitness of the SN (AQV) by the selection 

methods when the number of web services increases. 
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Figure 14. Availability of the SN (AQV) by selection 

methods when the number of web services increases. 

 

 

 
Figure 15. Availability of the SN (AQV) by selection 

methods when the number of web service increases. 

 

 

 

 
Figure 16. Response time of the SN (AQV) by the 

selection methods when the number of web service 

increases. 
 

 
Figure 17. Cost of the SN (AQV) by the selection methods 

when the number of web service increases. 

 

5.2.2. Scenario 2 

Figures 18-21 illustrate fitness and QA values of 

the SNs (AQV) by the methods for Senario2. As 

Figures 18 and 19 shows, the fitness and 

availability values by the methods increase when 

the number of initial population members 

increases, and DEGWO outperforms others.  

 
Figure 18. Best fitness of the SN (AQV) by the selection 

methods when the number of web services is 10 and initial 

population increases. 

 

 
Figure 19. Availability of the SN (AQV) by the selection 

methods when the number of web services is 10 and initial 

population increases. 
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Figure 20. Response time of the SN (AQV) by the 

selection methods when the number of web services is 10 

and initial population increases. 

Likewise, according to Figures 20 and 21, response 

time and cost values of the SN by the methods 

decrease when the number of initial population 

members increases, and DEGWO outperforms 

others. As Figure 21 shows, the SNs have a triangle 

behavior in the cost value; this is because of 

respecting the two other QAs of SN in the tradeoff 

between the QAs.  

 
Figure 21. Cost of the SN (AQV) by the selection methods 

when the number of web services is 10 and initial 

population increases. 

 

Figure 22. Best fitness of the SN (AQV) by the selection 

methods when the number of web services is 100 and 

initial population increases. 

 
Figure 23. Availability of the SN (AQV) by the selection 

methods when the number of web services is 100 and 

initial population increases. 

 
Figure 24. Response time of the SN (AQV) by the 

selection methods when the number of web services is 100 

and initial population increases. 
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Figure 25. Cost of the SN (AQV) by the selection methods 

when the number of web services is 100 and initial 

population increases. 

5.2.3. Scenario 3 

This scenario is similar to Scenario 2, where the 

number of initial population members increases 

from 5 to 100, while the number of web services 

remains fixed at 100. Figures 22-25 show best 

fitness, availability, response time, and cost values 

of SN, respectively. The behavior of fitness 

depicted in Figure 22 resembles that of Figure 18. 

Conversely, Figure 23 demonstrates a triangular 

pattern in SN availability. This behavior can be 

attributed to the trade-off between the two other 

quality attributes (QAs) involved in the 

optimization process. 

5.2.4. Result summaries of the scenarios 

Generally, for Scenario 1 with 5 initial members 

and different web services, DEGWO improves the 

average availability (for 5 and 10 service) by 12%, 

8%, 11%, 20%, 2%, 36%, 25%, the average 

response time by 93%, 31%, 51%, 78%, 14%, 

114%, 66% and the average cost by 119%, 80%, 

53%, 120%, 19%, 238%, 57% compared to the 

GA, RDGWO+GA, HGWO, BGWO, SFLA+GA, 

IPSO, SFLA. 

For Scenario 2 with 10 web services and the 

different number of initial members, DEGWO 

improves the average availability by 10%, 4%, 7%, 

27%, 2%, 42%, and 34%, and the average response 

time by 104%, 42%, 45%, 95%, 51%, 104%, 

106%, and the average cost by 220%, 70%, 70%, 

350%, 120%, 270%, 160% compared to the GA, 

RDGWO+GA, HGWO, BGWO, SFLA+GA, 

IPSO, SFLA. 

For Scenario 3 with 100 web services and the 

different number of initial members, DEGWO 

improves the average availability by 48%, 13%, 

99%, 37%, 10%, 99%, and 59%, and the average 

response time by 34%, 35%, 35%, 96%, 26%, 

110%, 95%, and the average cost by 46%, 46%, 

36%, 130%, 16%, 120%, 116% compared to the 

GA, RDGWO+GA, HGWO, BGWO, SFLA+GA, 

IPSO, SFLA. 

6. Threats to the proposed approach 

The proposed approach (DEGWO) was designed 

under several constraints, making it suitable for 

static environments rather than dynamic ones. 

These constraints are as follows: 1) the structure of 

the graph is static (predefined), 2) the number of 

available candidates remains fixed, with their QA 

values unchanged, 3) the candidates are always 

available, and it is assumed that no candidate fails. 

The selected candidates are managed and operated 

independently; however, there is potential for 

further improvement by considering correlations 

between them. DEGWO is not capable of 

responding to real-time requests immediately. This 

limitation can be addressed by parallelizing the 

algorithm and incorporating constraints to 

prioritize real-time requests. 

7. Conclusions and future work 
In this study, we addressed the quality-aware 

selection of candidate services for web service 

applications to obtain an optimal summarized node 

(SN). Due to the potentially large number of 

candidates for each web service, numerous 

concrete compositions are generated as solutions, 

each with varying qualities. Selecting the near-

optimal solutions is an NP-hard problem. In this 

study, three quality attributes "availability", 

"response time", and "cost" were considered for 

each candidate service, with the primary goal of 

maximizing the fitness value of the compositions. 

After applying the graph summarization method, 

we introduced an evolutionary optimization 

algorithm to select the optimal summarized nodes 

(SNs). 

To produce optimal summarized nodes, we 

introduced DEGWO based on the Gray Wolf 

Optimizer (GWO), Genetic Algorithm (GA), and 

Shuffled Frog Leaping Algorithm (SFLA). Since 

the basic GWO is suited for continuous spaces and 

our problem uses a discrete space, a novel function 

was proposed to convert the continuous space into 

a discrete one. DEGWO leverages strengths of all 

three algorithms including the high convergence 

speed of GWO, the local optima prevention using 

GA's mutation and crossover operators, and the 

broader solution space exploration afforded by 

SFLA. 

We compared the results of DEGWO with those 

from seven related works using statistical tests and 

graphical representations. These comparisons were 

made by applying the optimization algorithms to a 

real web application across three scenarios, with 
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the performance measured in terms of fitness value, 

availability, response time, cost of the summarized 

node (SN), and execution time. The experimental 

results demonstrated that DEGWO improved all 

quality attributes. Specifically, compared to the top 

three algorithms (RDGWO+GA, HGWO, and 

SFLAGA). The DEGWO algorithm showed the 

following improvements on average: (1) Scenario 

1: 39%, 38%, and 11%; (2) Scenario 2: 38%, 40%, 

57%; (3) Scenario 3: 31%, 56%, and 17%. 

Therefore, DEGWO outperformed the top three 

algorithms by 36%, 44%, and 28%, respectively. 

Additionally, the similarity values results showed 

that DEGWO achieved 100% efficiency compared 

to the other methods. 

In this study, the quality attribute (QA) values were 

weighted using the Simple Additive Weighting 

(SAW) approach, transforming the WSC problem 

into a single-objective optimization model. 

DEGWO can be extended as future work by 

incorporating Pareto-based optimizers to enhance 

results in dynamic environments. Additionally, 

solutions can be proposed to address the constraints 

outlined in Section 6, enabling the inclusion of 

dynamic environments in the optimization process. 

Availability of data and materials:  

The dataset used for selecting the candidates is 

available at https://zenodo.org/record/3557008. 

The interface input and output consoles, along with 

additional examples of WSC graph 

summarizations and the matrix representation of 

WSC, can be accessed in the files 

InputOutputConsole.docx, 

GraphSummarization.docx, and Guide_text.txt, 

respectively. These files are included in the Service 

Composition&Selection.zip archive, which can be 

found at 

https://github.com/NargessZahiri/Composition-

Selection. 
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Appendix 

This appendix addresses the links contain:  

(1) We provided the matrix representation for a few WSC graphs, including 

probabilistic edges, in file Guide_text.txt. This file is included in file 

Service Composition&Selection.zip at 

    https://github.com/NargessZahiri/Composition-Selection     

(2) A sample of the interface's input (Figure A-1) and output (Figure A-2)was 
shown in file InputOutputConsole.docx in the zip file.  The input demonstrates 

how users can specify the graph structure through an incidence matrix of 

vertices, while the output shows the initial randomly selected candidates' 

indices and their summarized node’s quality values,  

(3) Demonstration of the summarization of the graphs generated via our interface 
for loop, unstructured conditional, and structured conditional patterns, were 

shown in file GraphSummarization.docx in the zip file (Figures A-3 to A-5), 

https://github.com/NargessZahiri/Composition-Selection
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(4) A web service graph containing an unstructured (undefined) conditional 

pattern, which cannot be summarized into an summarized node was shown in 

Figure A-4. 

(5) An example of the discretization process (done by Algorithm 2), detailed in 
eight steps, is provided in Appendix 1 in file Appendix.pdf.  

(6) Results of the selection methods based on their fitness values and quality 
values of the summarized nodes are presented in Tables A-1 to A-4 in Appendix 

2 in file Appendix.pdf. In these tables, N denotes the number of runs and the 

best fitness value of the methods (Tabl A-1) and the quality values obtained 

by the methods (Tables A-2 to A-4)were shown in the other columns. The values 

shown in the same column are considered similar in terms of fitness or quality 

value. The values in the Tables support the findings in Table 6, where two 

methods (I) and (J) have no significant difference in fitness or quality 

values when their values are in the same column in the Tables. 



 .1404سال  ،دوره سیزدهم، شماره دوم ،کاویمجله هوش مصنوعی و داده                                                                                              ظهیری بابامیر و

 

 هایسیسرووب بیترک بهینه انتخاب ه منظورب یسازبر الگو و خلاصه یمبتن یسازنهیبه تمیالگوریک 

 های کیفی ویژگیبه آگاه 

 

  *سید مرتضی بابامیرو  نرجس ظهیری

 .رانینرم افزار، دانشگاه کاشان، کاشان، ا یگروه مهندس

 12/03/2025 پذیرش؛ 12/01/2025 بازنگری؛ 08/12/2024 ارسال

 چکیده:

شد و هستند در تعامل با یکدیگر ها کهسرویسوباز  گرافی ه صورتها بسرویسترکیب وب . شودمی مدله، برای برآورده کردن نیازهای کاربر طراحی 

ی مختلف ، چندین گزینهسرویساست. برای اجرای هر  سرویسی تعامل بین دو دهندهو هر یال نشان سرویسی یک دهندهدر این گراف، هر گره نشان

سان اما ویژگی های متعددی باهای کیفی متفاوت در وب وجود دارد. در نتیجه، ترکیببا ویژگی ستند که عملکرد یک شکیل ه های کیفی مختلف قابل ت

شئئده توسئئز ابزار را برای پشئئتییانی سئئازی تکاملیاین مقاله یک الگوریتم بهینه .کندسئئخت تیدیل میخیلی  یانتخاب ترکیب بهینه را به یک مسئئهله

سخهانتخاب ترکیب بهینه معرفی می شنهادی، ن ستریبهینهالگوریتم ی یافتهتوسعه ی گسسته وکند. الگوریتم پی ست.  (DEGWO) سازی گرگ خاک ا

ی بهینهنزدیک بههای حلدهد تا راهرا گسترش می GWO های الگوریتمسازی کرده و سپس قابلیترا گسسته هاحلراهی این روش ابتدا فضای پیوسته

سری سایی کرده  سرا شنا سایر روش DEGWO الگوریتم .دهدمیزایش افنیز سرعت همگرایی را  در حالیکه همزمانرا  سه با  های مرتیز بر در مقای

 ٪43 ،٪3۶ پذیری،دسترس در بهیود ٪5 و ٪3۹ ،٪8طور متوسز اساس معیارهای مختلف ارزیابی شده است. نتایج تجربی نشان داد که این الگوریتم به

سخ، زمان در بهیود ٪30 و سیت هزینه در بهیود ٪51 و ٪53 ،٪۶5 و پا شرو الگوریتم سه به ن شته  SFLAGA و  RDGWO+GA ،HGWO پی دا

 .است

سئئازی گرگ بهینهالگوریتم  ،هاسئئرویسارتیاطی بین وبی هاالگو ،های کیفیبر اسئئاس ویژگیانتخاب ترکیب  ،هاسئئرویسوبترکیب  :کلمات کلیدی

 .خاکستری

 


