
1

Journal of Artificial Intelligence and Data Mining (JAIDM), Vol. 13, No. 2, 2025, 183-206.

Shahrood University of

Technology

Journal of Artificial Intelligence and Data Mining (JAIDM)
Journal homepage: http://jad.shahroodut.ac.ir

 Research paper

A Pattern and Summarization Based Optimization Algorithm to QoS-

Aware Web Service Composition Selection

Seyed Morteza Babamir* and Narjes Zahiri
 Department of Software Engineering, University of Kashan, Kashan, Iran.

Article Info Abstract

Article History:
Received 08 December 2024

Revised 12 January 2025

Accepted 12 March 2025

DOI:10.22044/jadm.2025.15435.2654

 Web service composition represents a graph of interacting services

designed to fulfill user requirements, where each node denotes a

service, and each edge represents an interaction between two services.

A few candidates with different quality attributes exist on the web for

conducting each web service. Consequently, numerous compositions

with identical functionality but differing quality attributes can be

formed, making the near-optimal composition selection an NP-hard

problem. This paper proposes a tool-supported Evolutionary

Optimization Algorithm (EOA) for near-optimal composition

selection. The proposed EOA is a Discretized and Extended Gray

Wolf Optimization (DEGWO) algorithm. This approach first

discretizes the continuous solution space and then extends the

functionality of GWO to identify global near-optimal solutions while

accelerating solution convergence. DEGWO was evaluated in

comparison with other related methods in terms of metrics.

Experimental results showed DEGWO achieved average

improvements of 8%, 39%, and 5% in terms of availability, 36%,

43%, and 30% in terms of response time, and 65%, 53%, and 51% in

terms of cost compared to the three leading algorithms,

RDGWO+GA, HGWO, and SFLAGA, respectively.

Keywords:
Web Service Composition;

Quality-based Composition

Selection; Service Interaction

Patterns; Grey Wolf Optimization.

*Corresponding author:
babamir@kashanu.ac.ir (S. M.

Babamir).

1. Introduction

Web applications are presented as a set of related

services where each service specifies a specific

functionality. For each service, there exists a

collection of candidates across the Web that can

perform the functionality with different qualities.

Selecting the optimal candidate for each service to

ensure the near-optimal overall quality of the web

application is a challenging task. The candidates,

each of which is specified in terms of functionality

and some quality attributes (QAs), are accessible

online via Uniform Resource Identifiers (URIs)

[1].

Each service in a web application is called an

abstract service because it denotes just a

functionality, and each candidate is called a

concrete service because it can perform an abstract

service with some specific QAs. Therefore,

concrete services of an abstract service perform the

same functionality with different qualities. The

process of selecting a concrete service for each

abstract service results in a candidate composition,

forming a potential solution for a web application

[2]. A web application/composition with n services

is referred to as an n-dimensional composition.

Web Service Composition (WSC) satisfies

complex user requirements [3]. By leveraging

WSC, businesses can enable seamless Business-to-

Business Interoperability (B2BI) and support

various operational processes [4]. Travel planning

services, as highlighted in [5], exemplify practical

applications of WSC. Web applications are

modeled as graphs of abstract services, and their

corresponding compositions are represented by

https://doi.org/10.22044/jadm.2025.15435.2654
mailto:babamir@kashanu.ac.ir

Babamir & Zahiri/ Journal of AI and Data Mining, Vol. 13, No. 2, 2025

184

graphs of concrete services (candidates), each

characterized by specific QAs.

Each WSC, as a potential solution, is assessed

using a fitness value. To compute this fitness, the

WSC is abstracted into a single Summary Service

(SS), where each QA of the SS is derived by

aggregating the QA values of all WSC services.

The aggregated value is referred to as Aggregated

Quality Value (AQV). When the WSC is

represented as a graph, the SS is visualized as a

Summary Node (SN). To facilitate this process, we

develop an interface based on a graph

summarization technique to generate the SN.

After generating an SN for each WSC, a selection

method is required to identify near-optimal WSCs.

For a web application comprising n nodes and with

m candidates for each abstract service, the total

number of possible WSCs is 𝑚𝑛, resulting in 𝑚𝑛

SNs. To select near-optimal SNs, which is an NP-

hard problem [6, 7], an evolutionary algorithm is a

good candidate, where the fitness function is

determined based on AQV, as emphasized in

related studies [8]. To address this challenge, we

utilize our node-based graph summarization tool to

derive SNs efficiently.

A WSC contains some patterns in the form of

sequential, parallel, loop, or conditional structures

of nodes (Figures 1-a to 1-d, respectively). Each

pattern is summarized step by step until only one

node remains.

(a) (b) (c) (d)

Figure 1. The four structural patterns supported in the summarization graphs of WSC.

Figure 1 illustrates the patterns supported in this

paper where in Figures: (1) 1-a, Service vy must be

executed after service vx, (2) 1-b: Services vy1 to vyn

can be executed in parallel with equal probability

p, (3) 1-c: One of services vy1 to vyn is selected based

on its probability pi, and (4) 1-d: a sequence of

Services v1, v2, …, vn is executed with probability

pi(1≤i≤n).

Some studies have addressed the graph

summarization with limitations. In [9], for

instance, the authors have overlooked patterns with

probabilistic edges. Although the graph

summarization has been addressed in [10], but

integer programming has been used for the

selection method, which fails for large graphs

because of high time and memory consumption and

is just used for simplicity [10]. For large graphs,

metaheuristic algorithms are needed. To date, no

comprehensive tool for graph summarization has

been developed to address these challenges fully.

Near-optimal WSCs can be obtained using

methods of evolutionary optimization. Among

others, GA (Genetic Algorithm) [1, 11, 12], PSO

(Particle Swarm Optimization) [1, 13], SFLA

(Shuffled Frog-Leaping Algorithm) [14], and

GWO (Grey Wolf Optimizer) [15] were used.

Moreover, a few methods exploited the advantages

of two evolutionary algorithms leading to good

results like SFLA+GA [2], HGWO (Hybrid Grey

Wolf Optimization) [16], and others [17, 18].

Among others, GWO has been effectively used in

various problems such as shop scheduling [19] or

QA optimization [20]. These successful

applications are a result of important GWO

features, convergence performance, and simple

implementation, and these advantages are crucial

for WSC selection. In the traditional GWO, the

hunting strategy enables rapid convergence but

increases the risk of getting trapped in local optima.

To address this limitation, this study introduces a

Discretized and Extended Grey Wolf Optimizer

(DEGWO). The proposed extension incorporates

mutation and crossover operators from the GA and

adopts the subpopulation strategy inspired by the

SFLA. By partitioning the solution population into

subgroups, DEGWO effectively expands the

search space, enhancing the ability to discover the

global optimum while reducing the likelihood of

stagnation in local optima.

This study presents both theoretical and practical

contributions. From the theoretical aspect, a

method is presented to summarize composition

graphs (Section 4.1) including probabilistic

patterns, and a metaheuristic method, called

DEGWO, is used to search optimal compositions.

In DEGWO, a fitness function and a discretization

method are proposed. DEGWO uses mutation and

crossover operators from the Genetic Algorithm

(GA) to overcome local optima challenges and

expand the solution space, drawing inspiration

QoS-Aware Web Service Composition and Selection Based on Interacting Structural Patterns

185

from the Shuffled Frog-Leaping Algorithm

(SFLA).

From the practical aspect, (1) based on the

presented summarization method, a tool is

designed for automatic graph summarization, and

some well-known evolutionary algorithms are

implemented to apply to the selection method and

to compare with DEGWO.

The remainder of this paper is structured as

follows. Section 2 provides an overview of the two

evolutionary algorithms utilized in the

development of DEGWO. Section 3 reviews

related works. In Section 4, the proposed DEGWO

approach for selecting near-optimal WSCs is

presented. Section 5 discusses the experimental

results obtained by the proposed algorithm and

seven comparative algorithms, evaluated based on

AQVs, fitness metrics, similarity measures, and

execution times. Potential threats to the validity of

DEGWO are examined in Section 6. Finally,

Section 7 concludes the paper and outlines

directions for future research.

2. Background

Evolutionary algorithms are widely adopted for

identifying near-optimal solutions in vast solution

spaces. Given the immense number of possible

permutations in Web Service Composition (WSC),

these algorithms provide an effective approach for

selecting near-optimal compositions efficiently.

2.1. Evolutionary optimization for the WSCS

problem

Due to the NP-Hard nature of the WSCS problem

[6], evolutionary algorithms are frequently

employed for selecting the near-optimal WSCs

(solutions) at a reasonable time. Although these

algorithms under specific circumstances act very

well, several issues may arise when the algorithms

are unable to maintain the balance between the two

primary opposing criteria of exploration and

exploitation of solutions. Premature convergence is

one issue resulting from a lack of population

diversity, particularly when exploitation is local.

As a result, there will be a lower chance of

discovering a global optimal solution. On the other

hand, having global exploration and population

diversity reduces the rate of convergence.

Therefore, it is crucial to maintain the balance

between these two crucial aspects to produce

excellent results.

Exploration and exploitation are the two aspects

that highlight the use of the advantages of some

evolutionary algorithms to enhance the

effectiveness of a method in challenging situations

[2]. Considering these aspects, the following

describes two evolutionary algorithms that are used

in DEGWO.

2.1. Genetic algorithm

In a Genetic algorithm (GA), each chromosome,

consisting of a set of genes, is a solution. The initial

members of the population (chromosomes) are

randomly selected and called Pt. They are classified

based on the fitness value of a summarized node of

the composition graph. To create a new population,

called Qt, parents are selected from among the

chromosomes randomly, and a new chromosome is

created by applying mutation and crossover to the

parents. This algorithm explores a large space by

using these two operators. These new

chromosomes are merged with the previous

chromosomes and sorting is done based on their

fitness value of them. The first N members with the

biggest fitness value are stored and the rest of them

are discarded. This process continues until the

termination condition is not fulfilled [1].

2.3. Shuffled frog leaping algorithm (SFLA)

The shuffled frog-leaping algorithm (SFLA), a

memetic meta-heuristic, has been created to

address combinatorial optimization issues. In this

algorithm, virtual frogs act as a host or solution and

each host has a unique memotype that contains

memes. Memes and memotypes in SFLA are like

genes and chromosomes in GA. At the beginning

of the algorithm, hosts or solutions are created

randomly. These solutions are divided into a few

memplexes. In each memeplex, the algorithm

simultaneously runs a local independent search

which is very similar to particle swarm

optimization that has been modified for discrete

issues. The memes of different solutions could be

derived from the local memplex or the best overall

memplex of all the memplexes. The solution is

added to the population if there is an improvement

in fitness value. After a predetermined number of

iterations, the memplexes are mixed and new

memplexes are created by a shuffling process. This

process is done to ensure global exploration.

Therefore, local search and global information

exchange are both incorporated into the algorithm

[14].

3. Related work

In this section, we overview pure and combined

popular evolutionary algorithms for the WSCS

problem since 2016.

3.1. Evolutionary optimization for WSCS

The basic GWO was used by Karmi et al. [20] to

find optimal solutions where for each web service,

four QAs of response time, reliability, availability,

Babamir & Zahiri/ Journal of AI and Data Mining, Vol. 13, No. 2, 2025

186

and cost have been considered and each of them has

been weighted by the AHP (Analytical

Hierarchical Process) weighting method.

Therefore, the problem has been considered as a

single objective. It was compared with PSO

through the optimal rate. The optimal rate is the

result of dividing the best solution obtained after

convergence by the best solution obtained from the

first iteration of the algorithm. By running the

algorithm 40 times, it was concluded that the GWO

is better than the PSO in terms of optimal rate.

Elite-guided Artificial Bee Colony (ABC)

consisting of ABC and the non-dominated sorting

method, elite-guided discrete solutions generation,

and multi-objective fitness function calculation

method were used by Huo et al. [21]. They have

considered availability, response time, reliability,

and throughput as one objective and cost as another

objective and solved the problem with two

objectives. The results of the experiments show

that this algorithm is better than NSGAII, PSO, and

ABC algorithms in terms of quality indicators of

GD (Generational Distance), spread, and execution

time.

Multi-objective Discrete Elephants Herding

Optimization (MO-D-EHO) was used by Sadouki

and Tari [22] for the WSCS problem. The power of

this method is provided by the process of dividing

and combining the population with the

subpopulation (clan), which causes it not to get

stuck in the local optimal. By comparing this

algorithm with the PSO and SPEAII (Strength

Pareto Evolutionary Algorithm II), it was

concluded that it is significantly better in terms of

criteria such as coverage ratio, spread, and

hypervolume.

Kashyap et al. [1] have utilized GA and PSO to

manage the WSC problem in IoT. The purpose is

to minimize the fitness value consisting of

reliability, response time, and cost, which is

aggregated in a single objective. The experiment is

executed with the number of tasks and candidates

from 10 to 30, and 10 to 50, and the results have

demonstrated that GA can help in identifying the

optimal solution and also shows preferable

outcomes over PSO.

Yang et al. [23] have presented a modified multi-

objective GWO to find optimal solutions. In this

algorithm, execution time, cost, reliability, and

availability are considered the first objective, and

energy consumption is considered the second one.

This algorithm has evolved in three steps. In the

first step, the backward learning strategy is used to

increase the search efficiency in identifying the

initial population. In the second step, the strategy

of adjusting the algorithm parameters improves the

variety of solutions. In the third step, the search

space has been increased using the mutation

operator, which prevents getting stuck in the local

optimal. Finally, this algorithm has been compared

with basic GWO and PSO algorithms based on

standard deviation, spread, GD, and IGD (Inverted

GD), and its efficiency has been proven.

Sangaiah et al. [24] have used the Biogeography-

Based Optimization (BBO) method. This

algorithm uses the BBO immigration operator to

explore a new search space. The results of the

experiments show that BBO has superior search

capabilities versus GA and increases all qualitative

metrics for three scenarios, 7%, 23%, and 61%,

respectively.

3.2. Hybrid evolutionary optimization for the

WSCS problem

Chandra et al. [25] have introduced an improved

GWO algorithm to find optimal solutions for the

WSC problem. To improve the performance of this

algorithm, the crossover operator is used. This

algorithm is compared with GA and GWO

algorithms. By running this algorithm 20 times and

considering nine QAs as a single objective, it was

concluded that the average fitness value of the

improved GWO algorithm during its successive

iterations is always better than the other two

algorithms. Also, its convergence speed is much

better than the GA algorithm and is comparable to

GWO.

Gohain et al. [26] have exploited ACO and PSO

(Particle Swarm Optimization) by considering the

five QAs, reliability, availability, throughput, cost,

and response time as a single objective. This

algorithm has been compared with the PSO

algorithm during experiments in terms of execution

time and fitness value, which shows its better

performance.

Bouzary et al. [19] have suggested a novel method

where the GWO and GA operators are used.

During the hunting phase in GWO, the embedded

crossover and mutation operators of GA help to

prevent local optimal. The experimental findings

demonstrated that, despite a slight increase in

processing time, the suggested algorithm

outperforms GA and DGWO (Distributed GWO).

Asghari et al. [2] have proposed an IoT-based

cloud service composition conceptual model

regarding the privacy level computing model and a

novel evolutionary optimization using the Shuffled

Frog Leaping Algorithm (SFLA) and genetic

algorithm (GA), called SFLA-GA. The

experiments were conducted based on: (1) the

fitness of composite services and (2) the similarity

between the results of the method and those of three

QoS-Aware Web Service Composition and Selection Based on Interacting Structural Patterns

187

other meta-heuristic methods. This algorithm is

used to maximize the fitness value obtained by

aggregating nine QAs. The proposed approach

enhances fitness compared to the GA, Cultural, and

SFLA approaches.

Thangaraj et al. [27] introduced an algorithm using

GA and Tabu-search to find the best candidates. In

this method, the best candidates with maximum

reliability and throughput are suggested to the end

user by using Tabu-search. The experiments show

that the proposed method has improved 0.5% in

fitness value on average and about 0.25% in error

reduction.

Dahan et al. [28] have introduced an algorithm

exploiting ABC and GA. The ABC algorithm

adapts its performance based on the parameters that

have been set by the GA algorithm. The

experimental results show that the proposed

method compared to other methods is better in

terms of cost, response time, reliability, and

availability although it takes more time.

Azouz et al. [29] proposed a MO-MA (Multi-

Objective Memetic Algorithm) using MO-LS

(Multi-Objective Local Search) and GA (MO-GA).

The main objective is to minimize cost and time

and maximize availability and reputation. This

method is evaluated on some datasets generated

randomly and on the QWS dataset. The numerical

results demonstrate the effectiveness of the

proposed MO-MA for WSC.

Dahan et al. [30] have presented a method using

ABC and CS (Cuckoo Search) to resolve the

WSCS problem. CS uses Lévy Flight to improve

the convergence rate of the ABC algorithm. The

method is compared with ABC, CS, OABC

(Optimized ABC), and MOHABC (Multi-

Objective Hybrid ABC). They considered cost,

response time, reliability, and throughput as the

objectives. The main goal is to minimize the cost

and response time and maximize the reliability and

throughput. The results show that the algorithm is

better than the others in terms of best fitness value,

average fitness value, and average execution time.

Table 1 shows a summary of related studies.

Table 1. A summary of the related study.
Article

Year

Tool

Support

Used

Algorithm

Compared

Algorithm

Evaluation Metrics Probability

WSC
Dataset

Indicator Objective

[21] 2016 --- GWO+GA GA, GWO CS
Av, RT, Th,

FV
--- QWS

[22] 2016 ---- PSO+ACO PSO ET FV --- RV

[23] 2017 --- GWO PSO, IDPSO, QIPSO Optimally Rate --- --- QWS

[24] 2018 --- EMOABC
NSGAII, MOPSO,

MOABC

GD, ET, Error rate,

Spread,

Av, RT, Rl,

Th, Cst
--- QWS

[25] 2019 --- EHO SPEAII, MOPSO
CR, Spread,

Hypervolume
--- --- QWS

[16] 2019 --- HGWO GA, DGWO ET FV --- RV

[1] 2020 --- GA PSO ---
FV, RT,
Cst, Rl

--- RV

[26] 2020 --- EMOGWO MOGWO, MOPSO
ET, spread,

GD, IGD

Cst, Rl, Av,

EC
--- RV

[2] 2020 --- SLFAGA GA, Cultural, SFLA Similarity value FV -- QWS

[27] 2020 --- BBO GA ---
Rl, Ava,

ET, Cst
--- ---

[28] 2021 ---
GA+Tabu-

search
Worst-GA, Best-GA

Mean Absolute

Error, Coverage,

Recall, Precision

FV

--- RV

[29] 2021 --- ACO & GA
ACS, TACO, DAAGA,

SACO, MAACS

ET

Cst, RT,

Av, Rl
--- QWS

[30] 2022 --- MO-MA
NSGA2, MO-GA,

MO-LS (local search)
ET Av, Cst, RT ---

QWS,

RV

[31] 2023 ---
ABC+Cuckoo-

search

ABC, Cuckoo Search,

OABC, MOHABC,
SABC

Average ET
Best FV,

Average FV
--- RV

DEGWO 
RDGWO+
GA+SFLA

GA, HGWO, BGWO,

SFLAGA,
RDGWO+GA, IPSO,

SFLA

CS, ET

Av, RT,

Cst, Best

FV
 QWS

Abbreviations: Av.: availability, Rl.: Reliability, RT.: response time, EC.: Energy consumption, Cst.: cost, FV.: Fitness value, ET.: Execution time,
CS.: Convergence speed, CR.: Coverage ratio, Th.: Throughput, GD.: Generational distance, IGD.: Inverted generational distance, IDPSO: Improved

Discrete PSO, QIPSO: Quantum Improved PSO, NSGAII, MOPSO: Multi-Objective PSO, MOABC: Multi-Objective ACO, EHO: Elephants Herding

Optimization, BBO: Biogeography-Based Optimization, EMOABC: Elite-guided multi-objective artificial bee colony, RV: Random values

The related works mentioned in this section show

that the use of advantages of some evolutionary

optimizations for the WSCS problem has risen

significantly in recent years. The use of advantages

of more than one evolutionary optimization not

only removes shortcomings of pure ones but also

leads to an increase of the quality of solutions.

Accordingly, in this current paper, we extended

Babamir & Zahiri/ Journal of AI and Data Mining, Vol. 13, No. 2, 2025

188

one of the most popular evolutionary optimization

algorithms called the basic GWO by GA's cross-

over and mutation operators, and the SFLA

strategy where GWO helps high convergence and

SFLA helps us to escape from local optima.

4. Proposed method
This section contains subsections WSC

summarization (Subsection 3.1) and summarized

node selection (Subsection 3.2).

4.1. WSC summarization

A WSC contains a graph including the patterns

illustrated in Figure 1. First, each pattern is

summarized to a node (service) and finally, the

summarized patterns are summarized to a node.

To compute AQV (see Section 1) for each pattern,

we employ the formulas proposed in [10], as shown

in Table 2. Additionally, the formula provided in

Table 3 [10] is used to determine the transition

probability after summarizing each pattern and

computing the AQVs.

Based on the patterns illustrated in Figure 1 and the

aggregation formulas in Tables 1 and 2, we have

designed and implemented a WSC summarization

interface. To demonstrate the practical application

of this summarization process, we illustrate the use

of the interface for a web application. A WSC

graph is presented as a square matrix to the

interface.

As an example of summarizing patterns, consider

the travel agency web application shown in Figure

2, for instance. It contains 12 abstract services T1,

..., T12. These services are organized into several

sequential and parallel patterns. For instance, the

Flight, Hotel, and Car rental searches are parallel

services, while the Book up the flight and Ticket

confirmation services are sequential.

To select the candidates (concrete services) for the

abstract services in Figure 2, we utilized the QWS

dataset [31], which contains 2,507 candidate

services. These candidates were assigned to the

abstract web services, ensuring no duplicate

candidate appeared in the graph of abstract web

service. The summarization steps for Figure 2 are

illustrated in Figure 3, showing the sequential, and

parallel patterns being summarized. The node

labels in Figure 2 correspond to the numbered

nodes in Figure 3.

Figure 2. An example of a web application consisting of

web services for a travel agency

Table 2. Aggregation formula for calculation of AQVs of patterns [10]

Legends: ax and ay denote the service availabilities in nodes x and y; tx and ty do the service response times in nodes x and y; cx and cy do the service

costs in nodes x and y; notation ∏ 𝑎𝑦𝑖
𝑛
𝑖=1 shows the product of service availabilities in nodes 1 to n; pi indicates the probability of selecting the service

in node i.

Pattern

QA

For two

Sequential

services

For n Parallel

services

For n Conditional

services
For n Looped services

Availability x ya a´
n

yi
i

a
=

Õ
1

n

i yi
i

P a
=

´å
1

()()

()

k k
n i k ii i

n
k i ii

P P a

Pa

-

= =

=
=

-

-

Õ Õ
å

Õ

1

0 1

1
1

1

1

Response

Time
x yt t+

n
i yiMax t=1

n

i yi
i

P t
=

´å
1

()()

()

k nk n
n i k i i ii ii i k

n
k

ii

P P t P t

P

-

= == = +

=

=

- +

-

å åÕ Õ
å

Õ

1

0 11 1

2
1

1

1

1

Cost x yc c+
n

yi
i

c
=

å
1

n

i yi
i

P c
=

´å
1

()()()

()

k nk n
n i k i i ii ii i k

n
k

ii

P P c P c

P

-

= == = +

=

=

- +

-

å åÕ Õ
å

Õ

1

0 11 1

2
1

1

1

1

QoS-Aware Web Service Composition and Selection Based on Interacting Structural Patterns

189

Table 3. Probability of input and output transitions of patterns after summarization [10]

Legends: Pin and Pout denote probabilities of performing input and output services of the transition after summarization, POkj and POkj are the

probabilities of output transition j in service of the kth iteration of the loop before and after summarization respectively.

Figure 3 (a)-(c). The first three steps of the summary graph of the summarization of Figure 2.

Legends: Figure (a) corresponds to Figure 2 where each node number in (a) corresponds to the node number in Figure 2. Node numbers 1,2,3,4,5,12

in Figure (b) correspond to these nodes in Figure 2 and (6)S(9), (7)S(10), and (8)S(11) nodes (6 and 9), (7 and 10), and (8 and 11) each denotes
the two sequential nodes combined to one node. Node ((2)P(3))P(4) in Figure (c) denotes the sequential nodes 2 and 3 were combined into a

node. The combined node and node 4 were sequential and combined into a node. The numbers on vertical and horizontal axes just denote the

figure scale and have no specific meaning.

Figure 3 (d)-(f). Steps 4-6 of the summary graph of the summarization of Figure 2.

Legends: Node ((2)P(3))P(4) in Figure (d) denotes the parallel nodes (2 and 3) were combined and then the combined node and node 4 were parallel
and combined to one node. Figures (e) and (f) show the combination of parallel and sequential nodes where (n1)P(n2) and (n3)S(n4) denote the

summarization of two parallel nodes n1 and n2 and two sequential nodes n3 and n4, respectively. The sequence of numbers and notations P and S beside

the yellow node in Figure (e) shows how the initial 12 nodes in Figure 2 were summarized to one SN.

Pattern Sequence Parallel Conditional Loop

Transition

Probability

[]{ }in x xiP P P i m= = Î' | 1,

[]{ }out y yjP P P j n= = Î' | 1,

inP p='

outP =' 1

n

in i
i

P P
=

= å
'

1

outP =' 1

()
k

i okji

okj n

ii

P P
P

P

-

=

=

=
-

Õ

Õ

1

0'

1
1

Babamir & Zahiri/ Journal of AI and Data Mining, Vol. 13, No. 2, 2025

190

This process continues until only one node,

referred to as the SN, remains. If the graph contains

undefined patterns, such as unstructured

conditional ones, the summarization cannot

proceed further. These undefined patterns are

beyond the scope of this paper (refer to Figure 1

and Table 2 for the patterns considered in this

study). Users can either specify their desired graph

or use the sample graph we created, as shown in

Figure 2.

4.2. The selection method

By increasing the WSC dimension and the number

of candidates, the possible compositions (solution

space) grow exponentially. Therefore, heuristic

and metaheuristic optimization methods are

required to search near-optimal WSCs. To this end,

we propose and use DEGWO. However, the

solution space in DEGWO is continuous and our

solution space of WSCs is discrete. Therefore, we

need a mapping between the two spaces where the

optimal solutions generated in continuous space,

should be discretized. Moreover, the fitness value

of solutions in DEGWO should be determined.

The selection of near-optimal WSCs is classified as

an NP-hard problem, commonly referred to as the

Web Service Composition Selection (WSCS)

problem. This problem entails selecting an

appropriate candidate (concrete) service for each

abstract web service to construct a near-optimal

WSC [8].

4.2.1. Fitness value

Each candidate service has a set of QAs (Section

1). In this paper, three QAs values denoted by

()i i i iQ q availability q response time q t= = = =1 2 3, , cos

are considered, where 1≤i≤n and n is the number of

services/nodes of the composition.

Before calculating the AQV for each SN, the QA

value of each service is normalized to ensure they

are on the same scale and direction. To this end,

Negative QAs, like response time and cost, are

normalized using Equation 1, while positive QAs,

like availability, are normalized using Equation 2.

After the normalization, the composition graph is

summarized and the SN is calculated (see Section

3.1), characterized by ()AQV q q q= 1 2 3, , . In

Equation 1, a lower value for negative QAs results

in a higher normalized value while a higher value

for positive QAs results in a higher normalized

value (Equation 2). Consequently, the optimization

problem becomes a maximization problem, to

achieve a higher fitness value in the proposed

algorithm.

k k
k k

k k

q q
q q

q q

otherwise

ìï -ï - ¹ïï -í
ïïïïî

max
max min

max min
0

1

 (1)

k k
k k

k k

q q
q q

q q

otherwise

ìï -ï - ¹ïï -í
ïïïïî

min
max min

max min
0

1

 (2)

We assume the three QAs have the same priority,

indicated by equal weights w
æ ö÷ç= ÷ç ÷çè ø

1 1 1
, ,

3 3 3
. These weights

are multiplied by the corresponding QA values in the

AQV to compute the fitness value, which constitutes the

final objective function (Equation 3).

k k
k

FitnessValue w q q AQV
=

= ´ Îå
3

1

, (3)

4.2.2. The selection algorithm design

We introduce DEGWO, an advanced variant of the

standard GWO. It incorporates crossover and

mutation operators derived from the GA and uses

the SFLA strategy to enhance its exploratory

capabilities. In DEGWO, each solution, referred to

as a wolf (w), is represented by four components:

(1) w.ca as an index array, (2) w.Q as QAs, (3)

w.AQV, and (4) w.F as the fitness value where each

array element denotes a service (dimension) in a

composition.

4.2.3. Discretization of the solution space

GWO simulates the hunting mechanism of grey

wolves, which typically live in groups of 5 to 12,

classified into four hierarchical levels: α (Alpha), β

(Beta), δ (Delta), and ω (Omega). The α wolves are

the leaders at the top level, while the β and δ wolves

obey the orders of the α wolves. Wolves at the β

level are second in the hierarchy and assist the α

wolves; they are also the primary candidates to

replace the α wolves if they die. The δ wolves, at

the third level, are required to follow both the α and

β wolves. Finally, the ω wolves, situated at the

lowest level, must adhere to all higher-level

wolves.

The hunting process of wolves is divided into three

phases: exploring and surrounding the prey,

harassing the prey to immobilize it, and ultimately

attacking the prey. Initially, wolves spread out to

explore the environment (divergence) and later

gather again to attack prey (convergence). To

model the divergence, a vector A⃗⃗ (Equation 4),

consisting of random values between [-a, a], is

defined. When A > 1 , the explorer agents move

away from the prey, whereas when A £ 1 , they are

directed to attack. The value of ∣A∣ is controlled by

QoS-Aware Web Service Composition and Selection Based on Interacting Structural Patterns

191

the parameter "a" (Equation 4), which linearly

decreases from 2 to 0 in the basic GWO. However,

this linear decrease may not effectively facilitate

the global search, leading to a lack of population

diversity and causing the algorithm to get stuck in

local optima [32]. To address this issue, we use a

nonlinear decrease for "a" (Equation 5) [25]. In this

modified version, parameter "a" decreases more

gradually during the early iterations, promoting

exploration, and then decreases more sharply in

later iterations, enhancing the convergence rate.

Our experiments show that the value of k=5 in

Equation 5 yields the best results for our work. The

vector C⃗ (Equation 6) aids in exploration by taking

random values within the range of [0, 2]. This

vector determines a random weight for the distance

to the prey, improving the algorithm’s performance

by enabling more suitable prey to be found and

preventing the algorithm from falling into local

optima. Unlike vector A⃗⃗ , vector C⃗ does not decrease

linearly; instead, it helps to slow the wolves’

progress toward the prey [14].

After determining the vectors A⃗⃗ and C⃗ , the distance

of each wolf from the prey is calculated. However,

in optimization problems, the exact position of the

prey is unknown. To model the hunting behavior,

the distance of each omega wolf () to the α, β, and

 wolves (the first, second, and third best solutions,

respectively) is computed using Equation (7).

Consequently, the hunting process is guided by α,

β, and  wolves, and the remaining wolves ()

pursue the prey based on their guidance.

The next position of wolves () is updated using

Equation (8), and the average next position of each

wolf is derived using Equation (9). In these

equations, the position of each wolf is determined

based on the QA of its selected candidate.

A a r a= -12 .
ur r ur r

 (4)

k
it

a
MaxIteration

æ ö÷ç= - ´ ÷ç ÷çè ø
2 2

r
 (5)

C r= 22.
r ur

 (6)

D C w Q w Q

D C w Q w Q

D C w Q w Q

a a w

b b w

d d w

= ´ -

= ´ -

= ´ -

1

2

3

. . ,

. . ,

. .

ur r ur ur

ur r ur ur

ur r ur ur

 (7)

()

()

()

w w Q A D

w w Q A D

w w Q A D

a a

b b

d d

=

=

=

1 1

2 2

3 3

. - . ,

. - . ,

. - .

ur ur ur ur

ur ur ur ur

ur ur ur ur

 (8)

new
w w w

w Qw-

+ +
=

1 2 3
.

3

ur ur ur
ur

 (9)

- Discrete Space

Equations (7–9) are used for searching in a

continuous space, where the search agents in GWO

update their position vectors based on the hunting

process. However, in a discrete space, the position

of the wolves cannot be updated in the same

manner, as position vectors must be calculated

using discrete values. To address this issue, several

methods have been proposed [33]. Two of the most

well-known approaches are the integer Particle

Swarm Optimization (PSO) and binary PSO

methods.

In the integer PSO approach, the original

continuous algorithms are adapted for problems

with integer-valued solutions by rounding the

position vectors at each iteration [15]. In the binary

PSO method, transfer functions such as the

Hyperbolic [22] or Sigmoid [34, 35] functions are

used for discretization. However, these methods

reduce the algorithm’s effectiveness in the

exploration and exploitation phases. Consequently,

these versions of the GWO algorithm are

insufficient for solving the WSC problem,

primarily because they lack sufficient explorative

power for large-scale problems and tend to get

stuck in local optima. To overcome these

limitations, we propose the following

improvements:

1. A novel discretization algorithm to improve

the exploitation phase.

2. Integrating GA operators and shuffling
optimization into the standard GWO structure

to enhance the exploration phase.

This approach aims to achieve a better balance

between exploration and exploitation, improving

the overall algorithm's performance. Algorithm 1

outlines the proposed DEGWO, while Tables 4 and

5 provide the parameter values and their

descriptions, respectively. In Algorithm 1, the

process begins with determining the three best

wolves as the leading solutions (lines 7-9). A new

generation of wolves is then created (lines 10-11),

which is merged with the current omega wolf

population (line 12). The combined population is

sorted, and the top Npop wolves are retained (line

13). The population is divided into multiple

subsets, termed Wolfplexes (line 14), with each

Wolfplex containing nPopWolfplex members. For

each Wolfplex, several parent wolves are selected

for crossover and mutation operations (line 16),

leading to the generation of a new population (line

17). The new population is merged with the

Babamir & Zahiri/ Journal of AI and Data Mining, Vol. 13, No. 2, 2025

192

corresponding Wolfplex and sorted (line 18), and

the top nPopWolfplex wolves are retained (line

19). These updated Wolfplexes are then combined

using a shuffling strategy (line 21) to form the

initial population for the next iteration. This

process is repeated until the predefined maximum

number of iterations (MaxIteration=100) is

reached. Finally, the best wolf is selected as the

output solution.

Algorithm 1

The proposed DEGWO for the WSCS problem.

1. Input: it = 0 /* The current number of iteration*/,
 nWolfplex = 5; nPopWolfplex = 20

 /* initial population is divided to nPopWolfplex sub-
populations where the number of members of each sub-

population is nWolfplex */,

 MaxIteration=30 /* The Maximum number of algorithm
iterations*/,

 Pcrossover=0.7 /* probability of crossover*/,

 Pmutation=0.3 /* probability of mutation */
2. Output: The best wolf

3. Begin

4. Generate Npop of wolves randomly as an initial population

/* Npop nWolfplex nPopWolfplex= ´ */

5. While (it < MaxIteration) do

6. Initialize vectors a, A and C (Equations 4-6)
7. Calculate the fitness values of each wolf (w.F) using

Equation 3

8. Sort the population of wolves in descending order based on
the fitness values (w.F)

9. Consider the first three best wolves as Wα, Wβ and Wδ,

 respectively and the other wolves as Wω

10. Calculate the new wolves (wω-new.Q) using Equations 7-9

11. Discretize the new wolves' vector using Algorithm 2

12. Merge the population created in 11(wω-new) and population

in (wω)

13. Sort the population of wolves in descending order
 based on the fitness values and keep the first Npop

 individuals
14. Divide the population of wolves into nWolfplex

15. For each Wolfplex do

16. Select (crossoverP nPopWolfplex´) and (

mutationP nPopWolfplex´) number of parents from each

 Wolfplex for crossover and mutation operators,
respectively

17. Perform the one-point crossover and one-point mutation

on the selected parents
18. Merge the population created in Step 16 and

corresponding Wolfplex

19. Sort the line 18’s population in descending order and
only keep the first fittest nPopWolfplex wolves.

20. End for

21. Combine the upgraded Wolfplexes via shuffling strategy in
SFLA

22. Save the best wolf achieved so far

23. Assign it=it+1
24. End while

25. Return the best wolf

26. End

- The proposed discretization method

Since GWO is primarily designed for searching in

continuous spaces, a discretization method is

required to adapt it for discrete search spaces. To

address this, we propose a novel discretization

method (Algorithm 2), which is called in step 11 of

Algorithm 1. In this method, a set of new wolves in

the discrete space is generated. The inputs to this

function are provided in step 10 of Algorithm 1,

and its outputs consist of wolves (w-new), where the

quality attribute (QA) values of each wolf are

represented in w-new.Q.

In Algorithm 2, for each dimension i of a new wolf

(WSC), represented as w-new.cai (see Section

4.2.1), a candidate is selected. The sum of the

quality attributes (QAs) for the ith dimension of all

wolves is then computed to identify the best

candidate for that dimension (service).

Algorithm 2

Proposed discretization function.
Discretization-Function (w-new, w, w, w., w }

1. for i=1 to n // n denotes an n-dimensional composition (see
 Section 4.2.1);

2. Upperbound=3; Lowerbound=0 // each dimension of a wolf

(solution) has three QAs, each between zero and 1

3. if (k
new ik

w Q Upperboundw-=
<å

3

1
. or

k
new ik

w Q Lowerboundw-=
>å

3

1
.

4. select a iCa CCÎ randomly // iCa is a candidate for the ith

 abstract service, Fi denotes the fitness value of ith

 dimension of wolf and []CC Î 1 2507 ;

5. new i iw ca caw- ¬.

6. new i i iw Q ca Qw- ¬. .

7. return w-new

8. else {

9. if ()k k
i new ik k

w Q w Qd w-= =
>å å

3 3

1 1
. .

10. new i iw ca w caw- d¬. .

11. new i iw Q w Qw- d¬. .

12. return newww-

13. if ()k k
i new ik k

w Q w Qb w-= =
>å å

3 3

1 1
. .

14. new i iw ca w caw- b¬. .

15. new i iw Q w Qw- b¬. .

16. return newww-

17. if ()k k
i new ik k

w Q w Qa w-= =
>å å

3 3

1 1
. .

18. new i i iw Q ca Qw- ¬. .

19. new i iw Q w Qw- a¬. .

20. return newww-

21. if ()k k
i new ik k

w Q w Qw w-= =
>å å

3 3

1 1
. .

22. new i iw ca w caw- w¬. .

23. new i iw Q w Qw- w¬. .

24. return newww-

25. find a iCa CCÎ so that i i new iCa F w Fw->. .

26. if found new i iw ca caw- ¬.

 new i i iw Q ca Qw- ¬. . }

27. return newww- }

After determining an appropriate candidate for

each dimension (cai) the corresponding QAs for

that dimension are stored in w-new.Qi. Each

dimension of the wolf has three QAs, normalized

to lie between 0 and 1 (see Section 4.2). As a result,

the total QA value for a dimension is constrained

QoS-Aware Web Service Composition and Selection Based on Interacting Structural Patterns

193

between 0 and 3 (line 2). However, in some cases,

the sum of QAs for a given dimension of w-new in

the continuous space may exceed the defined upper

or lower bounds. In such situations, a random cai

is selected (denoted as CC), and its index and QAs

are assigned to w-new.cai and w-new.Qi, respectively

(lines 3-7). Otherwise, for the ith dimension, the

sum of QAs for w-new is compared against the sum

of the corresponding QAs of wolves , β, α and .

Based on the algorithm, one of these indices and its

associated Qi is chosen as the candidate for w-

new.cai and its quality value for w-new.Qi while w-

new.Qi in the continuous space have been computed

using Equations (7-9) by considering vector A;

vector A depends on the critical parameter a. The

value of this parameter influences the accurate

selection of candidates (see Equation (5) in Section

4.2.3).

4.2.4. Time complexity

Now, we deal with the time complexity in three

phases of our proposed method.

-Composition summarization. In this phase, the

composition graph is scanned for the pattern

recognition and summarization. The time

complexity for this phase is O(n2) because we use

two nested loops in our algorithm to recognize each

pattern with n nodes.

-Selection. The time complexity for the selection

method in Algorithm 1 is

m n Npop MaxIteration´ ´ ´ where MaxIteration is

the number of the algorithm repetitions, Npop is the

number of population members, and m×n is the

time complexity Algorithm 2, which is called in

Line 11 for each population member. Parameters m

and n denote the number of candidates for each

service and the number of services of the

composition, respectively. Since for each graph

summarization, the selection method is carried out,

the total complexity of our proposed method is

n m n Npop MaxIteration´ ´ ´ ´2 .

5. Experimental results

The DEGWO algorithm was executed 30 times, as

it is common practice to perform 30 runs for

nondeterministic algorithms, such as evolutionary

algorithms, to facilitate robust statistical analysis

and draw comprehensive inferences [36]. The

number of iterations for each run is user-defined.

Typically, DEGWO converges within 20 to 30

iterations.

In this section, we evaluate the results obtained by

applying DEGWO and other methods to two types

of web applications: (a) the travel agency graph

shown in Figure 2 and (b) three additional web

applications with 5, 10, 50, and 100 sequential

services. Web service candidates were selected

from the QWS dataset [31], which contains 2,507

real candidates characterized by quality attributes

(QAs) such as availability, response time, and cost.

The target web application in Figure 2 represents a

travel agency with 12 services, where each service

(task) is randomly matched with a unique candidate

from the 2,507 options.

By applying DEGWO and other selection methods

to the summarized nodes derived from web

applications (a) and (b), we evaluated the

performance based on two criteria: (1) the fitness

value and its similarity, and (2) the QAs' values and

their similarities. To demonstrate the generality

and significance of the results, statistical analysis

was performed.

Table 4. Parameter values used in the algorithms.

No. Parameter Value

1 nPop 5, 10, 50, 100

2 MaxIteration 100

3 Max-Run 30

4 Pmutation 0.3

5 Pcrossover 0.7

6 nPopWolfplex 1, 2, 5, 20

7 nWolfplex 5, 5, 10, 5

8 nPop=nPopWolfp
lex * nWolfplex

5, 10, 50, 100

9 nNode 5, 10, 50, 100

10 m 2507

11 C1=C2 2

12 Sigma 100

13 q Max(round (0.3*nPopWolfplex) ,2)

14 alpha 3

15 beta 5

The results of DEGWO are evaluated under the

following configurations: (1) RDGWO+GA,

which highlights the impact of the discretization

method introduced in Algorithm 1 (RDGWO) and

the use of GA to escape local optima in GWO; and

(2) DEGWO (RDGWO+GA+SFLA), which

incorporates SFLA-inspired mechanisms to further

enhance performance. The outcomes of

RDGWO+GA and DEGWO are compared with six

other methods: (a) GA [1], (b) HGWO [15], (c) the

binary version of GWO (BGWO) [22], (d)

SFLAGA [2], (e) the integer version of PSO

(IPSO) [1], and (f) SFLA [13].

The environment setting is a Corei5 processor with

4 GB RAM, and Windows 10. MATLAB 2016 was

used to implement the algorithms. Each algorithm

was executed 30 times, with a maximum of 100

Babamir & Zahiri/ Journal of AI and Data Mining, Vol. 13, No. 2, 2025

194

generations per run, which served as the

termination condition. For the genetic algorithm

(GA), the mutation and crossover probabilities

were set to 0.3 and 0.7, respectively (see Table 4,

rows 4 and 5). Tables 4 and 5 present the parameter

values and notations used in the algorithms,

respectively.

Table 5. Symbols used in the algorithms.
No

.

Symbol Description

1 nPop Initial population size for all algorithms except
SFLA, SFLA+GA, Proposed Method

2 MaxIterati
on

Maximum number of generations for all algorithms

3 Max-Run Maximum number of running for all algorithms

4 Mutation
probability

for all algorithms except SFLA, IPSO and BGWO

5 Crossover

probability

for all algorithms except SFLA, IPSO and BGWO

6 nPopWolfp

lex

Wolfplex population size for SFLA, SFLA+GA

and Proposed Method algorithms

7 nWolfplex Number of Wolfplexes for SFLA, SFLA+GA and

Proposed Method algorithms

8 nPop=nPo

pWolfplex

*
nWolfplex

Initial population size for SFLA, SFLA+GA,

Proposed Method

9 nNode The number of nodes (web services or tasks) in the
composition graph

10 m The number of candidates for each web service,

these Candidates Randomly selected from QWS
dataset 11 C1=C2 The initial parameters for PSO algorithm

12 Sigma Step size in IPSO, SFLA algorithms

13 q The number of Parents in SFLA algorithm

14 alpha The number of Offsprings in SFLA algorithm

15 beta Maximum Number of Iterations in each Max-

Iteration in SFLA algorithm

16 w The first leader of the wolves (Alpha wolf)

17 w The second leader of the wolves (Beta wolf)

18 w The third leader of the wolves (Delta wolf)

19 w The current wolve(solution) (Omega wolf)

20 w-new The new wolf (new solution) (Omega-new wolf)

21 QA The quality attribute values of each candidate (each
dimension of wolf)

22 AQV The quality attribute values of summary node

23 ca An array of selected candidates’ indices

24 Q A set of quality attribute values

25 F Fitness value of a wolf (solution)

26 Abstract

service

A web service without non-functional attributes

27 Concrete

service
A web service with non-functional attributes

5.1. Experiment 1: Web application of type a

Now, we deal with the results obtained by applying

DEGWO and other selection methods to the

summarized nodes obtained for web application of

type a (Figure 2). Figures 4-7 show the fitness and

QAs values DEGWO (black), its step 1 (purple),

and other selection methods, and Figures 8-11 do

the fitness and QAs similarities between DEGWO

and other selection methods. In all Figures,

DEGWO was stated as ProposedMethod. To

compute the fitness value, Equation 3 was used.

Moreover, all QA values were normalized based on

Equations 1 and 2. The fitness value for all the

methods was computed after 30 runs and the initial

population size was 100.

5.1.1. Discussion

As shown in Figures 5–12, DEGWO (represented

by the black line) outperforms the other algorithms

in terms of fitness value, with improvements

ranging from 1% to 3%, availability from 2% to

6%, and response time and cost from 50% to 90%.

Figure 4 illustrates that the rate of change in fitness

value is significant during the first 20 iterations of

each run, with the greatest increase occurring in

this range (iterations 1 to 20). Additionally,

availability follows a similar trend in this period. In

contrast, the other two QAs (response time and

cost), while initially smaller than those of the other

algorithms, remain relatively constant during the

early iterations. However, these two QAs exhibit a

higher rate of change between iterations 20 and 35,

when the fitness value shows only minor

improvements, and its changes become negligible.

-Interpretation using fitness and QAs

Since the fitness value is based on considering the

three QAVs, an improvement in these values leads

to an improvement in the fitness value. There is a

large increase in the fitness value until iteration 20

because of increasing the availability value. For

sequence and parallel patterns, Table 2 shows the

multiplication of service availability values, along

with the cost and response time values.

DEGWO has the advantages of faster convergence

(thanks to using GWO), the escape from local

optima (thanks to using GA), and a wider space to

select the solutions (thanks to using SFLA). This

leads to selecting candidates with more

availability. As Figures 4-7 show, DEGWO

converges in the 35th iteration, and onwards the

availability value does not change while two other

QA values change in opposite, i.e., by increasing a

QA value, another one decreases. Accordingly, the

fitness value remains constant.

QoS-Aware Web Service Composition and Selection Based on Interacting Structural Patterns

195

Figure 4. Fitness value of DEGWO (black) and

RDGWO+GA (purple) and other selection methods in

100 iterations for the web application in Figure 2.

Figure 5. The SN’s (AQV) availability of DEGWO (black)

and RDGWO+GA (purple) and other selection methods

in 100 iterations for the web application in Figure 2.

Figure 6. The SN’s (AQV) response time of DEGWO

(black) and RDGWO+GA (purple) and other selection

methods in 100 iterations for the web application in

Figure 2.

Figure 7. The SN’s (AQV) cost of DEGWO (black) and

RDGWO+GA (purple) and other selection methods in

100 iterations for the web application in Figure 2.

As Figures 6-7 show, response time and cost values

are unstable until iteration 30 but afterward, they

are decreasing or increasing.

- Interpretation using similarity
Another known criterion that can be used to

evaluate fitness and AQVs of the selected

summarized nodes is similarity or the ratio of two

values. (Equations 10 and 11). Value 1 for the ratio

of the fitness or QAs values of AQV of method x

to that of DEGWO denotes two methods have the

same ability in selecting the summarized nodes in

terms of fitness or AQV. The ratio for the fitness

and availability with values <1 or >1 denotes

method x selected weaker or stronger nodes against

DEGWO, and it is vice versa for cost and response

time.

Methodx
Fitness

oposedMethod

Fitness
Similarity

Fitness
=

Pr

 (10)

Methodx
AQV

oposedMethod

AQV
Similarity

AQV
=

Pr

 (11)

Figures 8–11 show similar performance values

between DEGWO and the other methods in terms

of fitness value, availability, response time, and

cost. As depicted in Figure 8, DEGWO

consistently selected better summarized nodes

compared to BGWO (cyan), SFLA (red), and IPSO

(yellow) across almost all iterations, with a

particularly notable advantage in iterations before

70. This is attributed to DEGWO's faster

convergence rate compared to the other methods.

In general, the higher the similarity, the closer the

graph value is to one, indicating that the accuracy

of that method is closer to that of DEGWO. Among

the methods compared, RDGWO+GA (the first

step of DEGWO), HGWO, and SFLAGA exhibit

the greatest similarity to DEGWO, while IPSO,

SFLA, and BGWO show the least similarity in

terms of fitness.

The availability similarity analysis in Figure 9 is

the same as the fitness as shown in Figure 8.

Figures 10 and 11 show that the response time and

cost similarity of almost all methods to DEGWO is

greater than one. In other words, in terms of these

two parameters, there is very little similarity

between the x method and the DEGWO in almost

any iteration.

These Figures show that the most similar methods

in terms of response time are SFLAGA,

RDGWO+GA and in terms of cost are

RDGWO+GA, HGWO and the least similar one in

terms of response time is SFLA and in terms of cost

is IPSO.

Babamir & Zahiri/ Journal of AI and Data Mining, Vol. 13, No. 2, 2025

196

Figure 8. The fitness Similarity between DEGWO and

others.

Figure 9. The AQV’s availability similarity between

DEGWO and others.

Figure 10. The AQV’s response time similarity between

DEGWO and others.

Due to the high convergence speed of DEGWO,

other methods have less similarity than DEGWO in

terms of fitness value for 30 iterations. This

behavior can also be seen in availability, but for

two other QA of AQV, the similarity of other

methods to DEGWO is more for 30 iterations, and

gradually this similarity decreases. This issue can

be seen in cost attribute too.

To show the generality of comparing the solutions

generated by the methods for the web application

in Figure 2, statistical tests were applied by which

the significance of differences between the

solutions is evaluated. Table 6 shows results of

statistical tests in terms of fitness, availability,

response time, and cost.

Figure 11. The AQV’s cost similarity between DEGWO

and others.

Column 1 of Table 6 shows the fitness or QAs

values by which generality of results of the two

methods are compared and Columns 2 and 3 show

the two methods whose results are compared. A

Sig.≤0.05 denotes a significant difference between

the generality of results of the two methods. For the

Sig.≤0.05, two positive values for a positive QA,

like fitness and availability denote Method (I)

outperforms Method (J) and two negative values

for a positive QA in the columns denote Method (J)

outperforms Method (I). But, for negative QAs

like response time and cost, Sig.≤0.05 denotes

Method (I) outperforms Method (J) if two negative

values exist in the two last columns.

As the Best Fitness section of Table 6 shows, a

significant difference exists between the generality

of results of DEGWO and that of others (indicated

by Sig.=0.000) and two positive values in the two

last columns denote the DEGWO generally

outperforms other ones. The rest of rows in Section

Best Fitness of Table 6 show dominance for others.

Similar results are seen for the DEGWO in Section

Availability.

According to Section Response time of Table 6, the

significant difference exists between the generality

of results of GEGWO and that of others but

RDGWO+GA (the DEGWO presented in the first

step) and SFLAGA. Finally, according to Section

Cost of Table 6, among the seven methods there

exists a significant difference between the

generality of results of DEGWO and that of

BGWO, IPSO, and SFLA but such difference is not

seen between that of DEGWO and that of the other

four methods.

QoS-Aware Web Service Composition and Selection Based on Interacting Structural Patterns

197

- Execution time

Now, for the web application in Figure 2, we

consider the execution time of the selection

methods (Figure 12) until they achieve their

convergence. As Figure 12 shows, IPSO and

BGWO have less execution time than others

because their algorithms have less complexity and

due to being stuck in the local optimum, they

converge sooner, and that's why according to

Figure 4, these methods also have a lower fitness

value than the others.

Table 6. Results of Statistical tests for selection of solutions (summarized nodes) for the web application in Figure 2.

Multiple Comparisons

Scheffe

Dependent Variable (I) Method (J) Method Sig.
95% Confidence Interval

Lower Bound Upper Bound

Best Fitness

GA

HGWO .059 -.02686218282490 .000234821842

RDGWO+GA .000 -.03994613698413 -.012849132316

DEGWO .000 -.06242155654648 -.035324551878

BGWO .000 .10766662048557 .134763625153

IPSO .000 .12640753548144 .153504540148
SFLAGA .000 -.03855795444755 -.011460949780

SFLA .000 .11502392107234 .142120925739

HGWO

GA .059 -.00023482184261 .026862182824
RDGWO+GA .069 -.02663245649299 .000464548174

DEGWO .000 -.04910787605534 -.022010871387

BGWO .000 .12098030097672 .148077305644
IPSO .000 .13972121597258 .166818220640

SFLAGA .159 -.02524427395641 .001852730711

SFLA .000 .12833760156349 .155434606230

RDGWO+GA

GA .000 .01284913231663 .039946136984

HGWO .069 -.00046454817451 .026632456492

DEGWO .000 -.03602392189610 -.008926917228
BGWO .000 .13406425513596 .161161259803

IPSO .000 .15280517013182 .179902174799

SFLAGA 1.000 -.01216031979717 .014936684870
SFLA .000 .14142155572273 .168518560390

DEGWO

GA .000 .03532455187898 .062421556546

HGWO .000 .02201087138783 .049107876055
RDGWO+GA .000 .00892691722859 .036023921896

BGWO .000 .15653967469830 .183636679365

IPSO .000 .17528058969417 .202377594361
SFLAGA .000 .01031509976518 .037412104432

SFLA .000 .16389697528507 .190993979952

BGWO

GA .000 -.13476362515308 -.107666620485
HGWO .000 -.14807730564422 -.120980300976

RDGWO+GA .000 -.16116125980346 -.134064255135

DEGWO .000 -.18363667936581 -.156539674698
IPSO .000 .00519241266211 .0322894173296

SFLAGA .000 -.15977307726688 -.132676072599

SFLA .752 -.00619120174698 .0209058029205

IPSO

GA .000 -.15350454014894 -.1264075354814

HGWO .000 -.16681822064009 -.1397212159725
RDGWO+GA .000 -.17990217479932 -.1528051701318

DEGWO .000 -.20237759436167 -.1752805896941

BGWO .000 -.03228941732962 -.0051924126621
SFLAGA .000 -.17851399226274 -.1514169875952

SFLA .188 -.02493211674285 .00216488792466

SFLAGA

GA .000 .01146094978005 .03855795444755
HGWO .159 -.00185273071110 .02524427395641

RDGWO+GA 1.000 -.01493668487034 .01216031979717

DEGWO .000 -.03741210443268 -.0103150997651
BGWO .000 .13267607259937 .15977307726688

IPSO .000 .15141698759524 .17851399226274

SFLA .000 .14003337318614 .16713037785365

SFLA

GA .000 -.14212092573985 -.1150239210723

HGWO .000 -.15543460623099 -.1283376015634

RDGWO+GA .000 -.16851856039023 -.1414215557227

DEGWO .000 -.19099397995258 -.1638969752850

BGWO .752 -.02090580292052 .00619120174698

IPSO .188 -.00216488792466 .02493211674285
SFLAGA .000 -.16713037785365 -.1400333731861

Availability GA

HGWO .074 -.07902596174955 .00171004921470

RDGWO+GA .000 -.11583065011806 -.0350946391538

DEGWO .000 -.17186899660423 -.0911329856399
BGWO .000 .31941006352140 .40014607448565

IPSO .000 .37526722772176 .45600323868602

SFLAGA .000 -.11126157354776 -.0305255625835

Babamir & Zahiri/ Journal of AI and Data Mining, Vol. 13, No. 2, 2025

198

SFLA .000 .33995373824533 .42068974920958

HGWO

GA .074 -.00171004921470 .07902596174955

RDGWO+GA .109 -.07717269385064 .00356331711362

DEGWO .000 -.13321104033681 -.0524750293725
BGWO .000 .35806801978882 .43880403075308

IPSO .000 .41392518398919 .49466119495344

SFLAGA .248 -.07260361728034 .00813239368391
SFLA .000 .37861169451275 .45934770547700

RDGWO+GA GA .000 .03509463915381 .11583065011806

Multiple Comparisons

Scheffe

Dependent Variable (I) Method (J) Method Sig.
95% Confidence Interval

Lower Bound Upper Bound

HGWO .109 -.00356331711362 .07717269385064

DEGWO .000 -.09640635196830 -.0156703410040
BGWO .000 .39487270815733 .47560871912158

IPSO .000 .45072987235770 .53146588332195

SFLAGA 1.000 -.03579892891183 .04493708205242
SFLA .000 .41541638288126 .49615239384551

DEGWO

GA .000 .09113298563998 .17186899660423

HGWO .000 .05247502937255 .13321104033681
RDGWO+GA .000 .01567034100404 .09640635196830

BGWO .000 .45091105464350 .53164706560776

IPSO .000 .50676821884387 .58750422980812
SFLAGA .000 .02023941757434 .10097542853859

SFLA .000 .47145472936743 .55219074033168

BGWO

GA .000 -.40014607448565 -.3194100635214
HGWO .000 -.43880403075308 -.3580680197888

RDGWO+GA .000 -.47560871912158 -.3948727081573

DEGWO .000 -.53164706560776 -.4509110546435
IPSO .000 .01548915871824 .09622516968249

SFLAGA .000 -.47103964255129 -.3903036315870

SFLA .811 -.01982433075820 .06091168020605

IPSO

GA .000 -.45600323868602 -.3752672277217

HGWO .000 -.49466119495344 -.4139251839891

RDGWO+GA .000 -.53146588332195 -.4507298723577
DEGWO .000 -.58750422980812 -.5067682188438

BGWO .000 -.09622516968249 -.0154891587182

SFLAGA .000 -.52689680675165 -.4461607957874

SFLA .146 -.07568149495856 .00505451600569

SFLAGA

GA .000 .03052556258351 .11126157354776

HGWO .248 -.00813239368391 .07260361728034
RDGWO+GA 1.000 -.04493708205242 .03579892891183

DEGWO .000 -.10097542853859 -.0202394175743

BGWO .000 .39030363158703 .47103964255129
IPSO .000 .44616079578740 .52689680675165

SFLA .000 .41084730631096 .49158331727522

SFLA

GA .000 -.42068974920958 -.3399537382453
HGWO .000 -.45934770547700 -.3786116945127

RDGWO+GA .000 -.49615239384551 -.4154163828812

DEGWO .000 -.55219074033168 -.4714547293674

BGWO .811 -.06091168020605 .01982433075820

IPSO .146 -.00505451600569 .07568149495856
SFLAGA .000 -.49158331727522 -.4108473063109

Response Time

GA

HGWO 1.000 -.02037514856904 .01968170235590

RDGWO+GA 1.000 -.01656621629304 .02349063463190

DEGWO .032 .00090976519387 .04096661611881

BGWO .980 -.02659564719363 .01346120373131

IPSO 1.000 -.02315774503746 .01689910588747

SFLAGA .962 -.01266344703824 .02739340388669
SFLA .955 -.02765468227613 .01240216864880

HGWO

GA 1.000 -.01968170235590 .02037514856904

RDGWO+GA .999 -.01621949318647 .02383735773847

DEGWO .027 .00125648830044 .04131333922538

BGWO .986 -.02624892408706 .01380792683787

IPSO 1.000 -.02281102193090 .01724582899404
SFLAGA .952 -.01231672393168 .02774012699326

SFLA .965 -.02730795916957 .01274889175537

RDGWO+GA

GA 1.000 -.02349063463190 .01656621629304
HGWO .999 -.02383735773847 .01621949318647

DEGWO .148 -.00255244397556 .03750440694938

BGWO .824 -.03005785636307 .00999899456187
IPSO .980 -.02661995420690 .01343689671804

SFLAGA .999 -.01612565620768 .02393119471726

SFLA .732 -.03111689144557 .00893995947937

DEGWO
GA .032 -.04096661611881 -.0009097651938

HGWO .027 -.04131333922538 -.0012564883004

QoS-Aware Web Service Composition and Selection Based on Interacting Structural Patterns

199

RDGWO+GA .148 -.03750440694938 .00255244397556
BGWO .001 -.04753383784998 -.0074769869250

IPSO .005 -.04409593569381 -.0040390847688

SFLAGA .475 -.03360163769459 .00645521323035
SFLA .000 -.04859287293248 -.0085360220075

BGWO

GA .980 -.01346120373131 .02659564719363

HGWO .986 -.01380792683787 .02624892408706
RDGWO+GA .824 -.00999899456187 .03005785636307

DEGWO .001 .00747698692504 .04753383784998

Multiple Comparisons

Scheffe

Dependent Variable (I) Method (J) Method Sig.
95% Confidence Interval

Lower Bound Upper Bound

IPSO 1.000 -.01659052330630 .02346632761864

SFLAGA .438 -.00609622530708 .03396062561786
SFLA 1.000 -.02108746054497 .01896939037997

IPSO

GA 1.000 -.01689910588747 .02315774503746

HGWO 1.000 -.01724582899404 .02281102193090
RDGWO+GA .980 -.01343689671804 .02661995420690

DEGWO .005 .00403908476887 .04409593569381

BGWO 1.000 -.02346632761864 .01659052330630

SFLAGA .786 -.00953412746325 .03052272346169

SFLA .998 -.02452536270114 .01553148822380

SFLAGA

GA .962 -.02739340388669 .01266344703824
HGWO .952 -.02774012699326 .01231672393168

RDGWO+GA .999 -.02393119471726 .01612565620768

DEGWO .475 -.00645521323035 .03360163769459

BGWO .438 -.03396062561786 .00609622530708

IPSO .786 -.03052272346169 .00953412746325
SFLA .334 -.03501966070036 .00503719022458

SFLA

GA .955 -.01240216864880 .02765468227613

HGWO .965 -.01274889175537 .02730795916957
RDGWO+GA .732 -.00893995947937 .03111689144557

DEGWO .000 .00853602200754 .04859287293248

BGWO 1.000 -.01896939037997 .02108746054497
IPSO .998 -.01553148822380 .02452536270114

SFLAGA .334 -.00503719022458 .03501966070036

Cost

GA

HGWO 1.000 -.00415074504136 .00402857531797

RDGWO+GA .999 -.00327145871172 .00490786164761

DEGWO .145 -.00050965251232 .00766966784702

BGWO .964 -.00558188228009 .00259743807925

IPSO .833 -.00611388974430 .00206543061504
SFLAGA .993 -.00295188263311 .00522743772623

SFLA .093 -.00789677124288 .00028254911645

HGWO

GA 1.000 -.00402857531797 .00415074504136
RDGWO+GA .999 -.00321037385003 .00496894650931

DEGWO .129 -.00044856765063 .00773075270871

BGWO .972 -.00552079741839 .00265852294094
IPSO .854 -.00605280488260 .00212651547673

SFLAGA .990 -.00289079777142 .00528852258792

SFLA .105 -.00783568638119 .00034363397815

RDGWO+GA

GA .999 -.00490786164761 .00327145871172

HGWO .999 -.00496894650931 .00321037385003

DEGWO .480 -.00132785398026 .00685146637907

BGWO .711 -.00640008374803 .00177923661130

IPSO .439 -.00693209121224 .00124722914710
SFLAGA 1.000 -.00377008410105 .00440923625828

SFLA .013 -.00871497271083 -.0005356523514

DEGWO

GA .145 -.00766966784702 .00050965251232
HGWO .129 -.00773075270871 .00044856765063

RDGWO+GA .480 -.00685146637907 .00132785398026

BGWO .003 -.00916188994744 -.0009825695881
IPSO .001 -.00969389741164 -.0015145770523

SFLAGA .646 -.00653189030046 .00164743005888

SFLA .000 -.01147677891023 -.0032974585509

BGWO

GA .964 -.00259743807925 .00558188228009

HGWO .972 -.00265852294094 .00552079741839

RDGWO+GA .711 -.00177923661130 .00640008374803

DEGWO .003 .00098256958810 .00916188994744

IPSO 1.000 -.00462166764388 .00355765271546

SFLAGA .549 -.00145966053269 .00671965982665
SFLA .709 -.00640454914246 .00177477121687

IPSO

GA .833 -.00206543061504 .00611388974430

HGWO .854 -.00212651547673 .00605280488260
RDGWO+GA .439 -.00124722914710 .00693209121224

DEGWO .001 .00151457705231 .00969389741164

BGWO 1.000 -.00355765271546 .00462166764388

Babamir & Zahiri/ Journal of AI and Data Mining, Vol. 13, No. 2, 2025

200

SFLAGA .290 -.00092765306848 .00725166729086
SFLA .908 -.00587254167826 .00230677868108

SFLAGA

GA .993 -.00522743772623 .00295188263311

HGWO .990 -.00528852258792 .00289079777142
RDGWO+GA 1.000 -.00440923625828 .00377008410105

DEGWO .646 -.00164743005888 .00653189030046

BGWO .549 -.00671965982665 .00145966053269
IPSO .290 -.00725166729086 .00092765306848

SFLA .005 -.00903454878944 -.0008552284301

Multiple Comparisons

Scheffe

Dependent Variable (I) Method (J) Method Sig.
95% Confidence Interval

Lower Bound Upper Bound

 SFLA

GA .093 -.00028254911645 .00789677124288

HGWO .105 -.00034363397815 .00783568638119
RDGWO+GA .013 .00053565235149 .00871497271083

DEGWO .000 .00329745855090 .01147677891023

BGWO .709 -.00177477121687 .00640454914246
IPSO .908 -.00230677868108 .00587254167826

SFLAGA .005 .00085522843011 .00903454878944

*. The mean difference is significant at the 0.05 level

Figure 12. The execution time of the selection methods in

seconds.

Method GA, having the least execution time after

DEGWO, benefits from the proper fitness

(according to Figure 4). The execution time of

RDGWO+GA, HGWO, and SFLAGA are 54, 45,

and 40 respectively, which converge in iterations

82, 90, and 100, respectively (see Figure 4).

5.2. Experiment 2. Web application of type b

As stated in Section 5, our second evaluation was

done on the web applications of type (b) through

the three following scenarios where the number of

members of the initial population and the number

of web services may be fixed or vary.

(1) The initial population is fixed and has five

members, and the number of web services

(tasks) is 5, 10, 50, and 100 with the sequential

structure.

(2) The number of web services is fixed and equal

to 10 with a sequential structure and the initial

population was considered 5, 10, 50, and 100.

(3) The number of web services is fixed and

equal to 100 with a sequential structure and

the initial population was considered 5, 10,

50, and 100.

To enhance the clarity of the figures, the fitness and

AQV values were scaled by factors of 1000, 1000,

10,000, and 10,000, respectively.

5.2.1. Scenario 1

Figures 13-17 present the results of Scenario 1.

Figure 13 illustrates the fitness values as a function

of the number of web services (tasks) with a fixed

initial population of 5. As shown, fitness values

decrease sharply as the number of web services

increases. Figure 14 demonstrates that, although

availability decreases with an increasing number of

web services, the availability of the SN selected by

DEGWO remains above 900. As shown in Figure

15, for all methods, the availability of the SN

decreases with an increase in the number of

services. However, this is compensated for by

reductions in response time and cost as the number

of services increases (see Figures 16 and 17). This

explains why the overall fitness of DEGWO

remains superior to that of the other methods.

Figure 13. Best fitness of the SN (AQV) by the selection

methods when the number of web services increases.

24
27.9

54

45

17.1

40

14

45.2

0

10

20

30

40

50

60

Algorithms

Ex
ec

u
ti

o
n

 T
im

e
(s

)

ProposedMethod

GA

RDGWO+GA

HGWO

BGWO

SFLA+GA

IPSO

SFLA

600

650

700

750

800

850

900

950

1000

10050105

B
es

t
Fi

tn
es

s

The number of web services

ProposedMeth
od
GA

RDGWO+GA

HGWO

BGWO

SFLA+GA

IPSO

SFLA

QoS-Aware Web Service Composition and Selection Based on Interacting Structural Patterns

201

Figure 14. Availability of the SN (AQV) by selection

methods when the number of web services increases.

Figure 15. Availability of the SN (AQV) by selection

methods when the number of web service increases.

Figure 16. Response time of the SN (AQV) by the

selection methods when the number of web service

increases.

Figure 17. Cost of the SN (AQV) by the selection methods

when the number of web service increases.

5.2.2. Scenario 2

Figures 18-21 illustrate fitness and QA values of

the SNs (AQV) by the methods for Senario2. As

Figures 18 and 19 shows, the fitness and

availability values by the methods increase when

the number of initial population members

increases, and DEGWO outperforms others.

Figure 18. Best fitness of the SN (AQV) by the selection

methods when the number of web services is 10 and initial

population increases.

Figure 19. Availability of the SN (AQV) by the selection

methods when the number of web services is 10 and initial

population increases.

400

500

600

700

800

900

1000

105

A
va

ila
b

ili
ty

The number of web services

ProposedMethod

GA

RDGWO+GA

HGWO

BGWO

SFLA+GA

IPSO

SFLA

0

1E+10

2E+10

3E+10

4E+10

10050

A
va

ila
b

ili
ty

The number of web services

ProposedMethod

GA

RDGWO+GA

HGWO

BGWO

SFLA+GA

IPSO

SFLA

100

200

300

400

500

600

700

10050105

R
es

p
o

n
se

 T
im

e

The number of web services

ProposedMethod

GA

RDGWO+GA

HGWO

BGWO

SFLA+GA

IPSO

SFLA

0

20

40

60

80

100

120

140

160

180

200

10050105

C
o

st

The number of web services

ProposedMethod

GA

RDGWO+GA

HGWO

BGWO

SFLA+GA

IPSO

SFLA

750

850

950

10050105

B
es

t
Fi

tn
es

s

The number of population member

ProposedMethod

GA

RDGWO+GA

HGWO

BGWO

SFLA+GA

IPSO

SFLA

400

600

800

1000

10050105

A
va

ila
b

ili
ty

The number of population member

ProposedMethod

GA

RDGWO+GA

HGWO

BGWO

SFLA+GA

IPSO

SFLA

Babamir & Zahiri/ Journal of AI and Data Mining, Vol. 13, No. 2, 2025

202

Figure 20. Response time of the SN (AQV) by the

selection methods when the number of web services is 10

and initial population increases.

Likewise, according to Figures 20 and 21, response

time and cost values of the SN by the methods

decrease when the number of initial population

members increases, and DEGWO outperforms

others. As Figure 21 shows, the SNs have a triangle

behavior in the cost value; this is because of

respecting the two other QAs of SN in the tradeoff

between the QAs.

Figure 21. Cost of the SN (AQV) by the selection methods

when the number of web services is 10 and initial

population increases.

Figure 22. Best fitness of the SN (AQV) by the selection

methods when the number of web services is 100 and

initial population increases.

Figure 23. Availability of the SN (AQV) by the selection

methods when the number of web services is 100 and

initial population increases.

Figure 24. Response time of the SN (AQV) by the

selection methods when the number of web services is 100

and initial population increases.

100

200

300

400

500

600

700

10050105

R
es

p
o

n
se

 T
im

e

The number of population member

ProposedMethod

GA

RDGWO+GA

HGWO

BGWO

SFLA+GA

IPSO

SFLA

0

20

40

60

80

100

120

140

10050105

C
o

st

The number of population member

ProposedMethod

GA

RDGWO+GA

HGWO

BGWO

SFLA+GA

IPSO

SFLA

640

645

650

655

660

665

10050105

B
es

t
Fi

tn
es

s

The number of population member

ProposedMetho
d

GA

RDGWO+GA

HGWO

BGWO

SFLA+GA

IPSO

SFLA

0

10000

20000

30000

40000

50000

60000

10050105

A
va

ila
b

ili
ty

The number of population member

ProposedMethod

GA

RDGWO+GA

HGWO

BGWO

SFLA+GA

IPSO

SFLA

100

200

300

400

500

10050105

R
es

p
o

n
se

 T
im

e

The number of population member

ProposedMethod

GA

RDGWO+GA

HGWO

BGWO

SFLA+GA

IPSO

SFLA

QoS-Aware Web Service Composition and Selection Based on Interacting Structural Patterns

203

Figure 25. Cost of the SN (AQV) by the selection methods

when the number of web services is 100 and initial

population increases.

5.2.3. Scenario 3

This scenario is similar to Scenario 2, where the

number of initial population members increases

from 5 to 100, while the number of web services

remains fixed at 100. Figures 22-25 show best

fitness, availability, response time, and cost values

of SN, respectively. The behavior of fitness

depicted in Figure 22 resembles that of Figure 18.

Conversely, Figure 23 demonstrates a triangular

pattern in SN availability. This behavior can be

attributed to the trade-off between the two other

quality attributes (QAs) involved in the

optimization process.

5.2.4. Result summaries of the scenarios

Generally, for Scenario 1 with 5 initial members

and different web services, DEGWO improves the

average availability (for 5 and 10 service) by 12%,

8%, 11%, 20%, 2%, 36%, 25%, the average

response time by 93%, 31%, 51%, 78%, 14%,

114%, 66% and the average cost by 119%, 80%,

53%, 120%, 19%, 238%, 57% compared to the

GA, RDGWO+GA, HGWO, BGWO, SFLA+GA,

IPSO, SFLA.

For Scenario 2 with 10 web services and the

different number of initial members, DEGWO

improves the average availability by 10%, 4%, 7%,

27%, 2%, 42%, and 34%, and the average response

time by 104%, 42%, 45%, 95%, 51%, 104%,

106%, and the average cost by 220%, 70%, 70%,

350%, 120%, 270%, 160% compared to the GA,

RDGWO+GA, HGWO, BGWO, SFLA+GA,

IPSO, SFLA.

For Scenario 3 with 100 web services and the

different number of initial members, DEGWO

improves the average availability by 48%, 13%,

99%, 37%, 10%, 99%, and 59%, and the average

response time by 34%, 35%, 35%, 96%, 26%,

110%, 95%, and the average cost by 46%, 46%,

36%, 130%, 16%, 120%, 116% compared to the

GA, RDGWO+GA, HGWO, BGWO, SFLA+GA,

IPSO, SFLA.

6. Threats to the proposed approach

The proposed approach (DEGWO) was designed

under several constraints, making it suitable for

static environments rather than dynamic ones.

These constraints are as follows: 1) the structure of

the graph is static (predefined), 2) the number of

available candidates remains fixed, with their QA

values unchanged, 3) the candidates are always

available, and it is assumed that no candidate fails.

The selected candidates are managed and operated

independently; however, there is potential for

further improvement by considering correlations

between them. DEGWO is not capable of

responding to real-time requests immediately. This

limitation can be addressed by parallelizing the

algorithm and incorporating constraints to

prioritize real-time requests.

7. Conclusions and future work
In this study, we addressed the quality-aware

selection of candidate services for web service

applications to obtain an optimal summarized node

(SN). Due to the potentially large number of

candidates for each web service, numerous

concrete compositions are generated as solutions,

each with varying qualities. Selecting the near-

optimal solutions is an NP-hard problem. In this

study, three quality attributes "availability",

"response time", and "cost" were considered for

each candidate service, with the primary goal of

maximizing the fitness value of the compositions.

After applying the graph summarization method,

we introduced an evolutionary optimization

algorithm to select the optimal summarized nodes

(SNs).

To produce optimal summarized nodes, we

introduced DEGWO based on the Gray Wolf

Optimizer (GWO), Genetic Algorithm (GA), and

Shuffled Frog Leaping Algorithm (SFLA). Since

the basic GWO is suited for continuous spaces and

our problem uses a discrete space, a novel function

was proposed to convert the continuous space into

a discrete one. DEGWO leverages strengths of all

three algorithms including the high convergence

speed of GWO, the local optima prevention using

GA's mutation and crossover operators, and the

broader solution space exploration afforded by

SFLA.

We compared the results of DEGWO with those

from seven related works using statistical tests and

graphical representations. These comparisons were

made by applying the optimization algorithms to a

real web application across three scenarios, with

0

20

40

60

80

100

10050105

C
o

st

The number of population member

ProposedMethod

GA

RDGWO+GA

HGWO

BGWO

SFLA+GA

IPSO

SFLA

Babamir & Zahiri/ Journal of AI and Data Mining, Vol. 13, No. 2, 2025

204

the performance measured in terms of fitness value,

availability, response time, cost of the summarized

node (SN), and execution time. The experimental

results demonstrated that DEGWO improved all

quality attributes. Specifically, compared to the top

three algorithms (RDGWO+GA, HGWO, and

SFLAGA). The DEGWO algorithm showed the

following improvements on average: (1) Scenario

1: 39%, 38%, and 11%; (2) Scenario 2: 38%, 40%,

57%; (3) Scenario 3: 31%, 56%, and 17%.

Therefore, DEGWO outperformed the top three

algorithms by 36%, 44%, and 28%, respectively.

Additionally, the similarity values results showed

that DEGWO achieved 100% efficiency compared

to the other methods.

In this study, the quality attribute (QA) values were

weighted using the Simple Additive Weighting

(SAW) approach, transforming the WSC problem

into a single-objective optimization model.

DEGWO can be extended as future work by

incorporating Pareto-based optimizers to enhance

results in dynamic environments. Additionally,

solutions can be proposed to address the constraints

outlined in Section 6, enabling the inclusion of

dynamic environments in the optimization process.

Availability of data and materials:

The dataset used for selecting the candidates is

available at https://zenodo.org/record/3557008.

The interface input and output consoles, along with

additional examples of WSC graph

summarizations and the matrix representation of

WSC, can be accessed in the files

InputOutputConsole.docx,

GraphSummarization.docx, and Guide_text.txt,

respectively. These files are included in the Service

Composition&Selection.zip archive, which can be

found at

https://github.com/NargessZahiri/Composition-

Selection.

References

[1] N. Kashyap, A. C. Kumari, and R. Chhikara,

“Service Composition in IoT using Genetic algorithm

and Particle swarm optimization,” Open Computer

Science, vol. 10, no. 1, pp. 56–64, 2020.

 [2] P. Asghari, A. M. Rahmani, and H. H. S. Javadi,

“Privacy-aware cloud service composition based on

QoS optimization in Internet of Things,” Journal of

Ambient Intelligence and Humanized Computing, pp. 1–

26, 2020.

[3] S. Chattopadhyay, A. Banerjee, and N. Banerjee, “A

fast and scalable mechanism for web service

composition,” ACM Transactions on the Web (TWEB),

vol. 11, no. 4, pp. 1–36, 2017.

[4] F. B. Vernadat, "Interoperability and Standards for

Automation," in Springer Handbook of Automation,

Springer, 2023, pp. 729–752.

[5] N. Antonyuk, M. Medykovskyy, L. Chyrun, M.

Dverii, O. Oborska, M. Krylyshyn, A. Vysotsky, N.

Tsiura, and O. Naum, "Online tourism system

development for searching and planning trips with

user’s requirements," in Proc. of the 2020 International

Conference on Information Technology and Tourism

Development (ICITD 2020), Lviv, Ukraine, 2020, pp.

831–863.

[6] V. Gabrel, M. Manouvrier, K. Moreau, and C.

Murat, “QoS-aware automatic syntactic service

composition problem: Complexity and

resolution,” Future Generation Computer Systems, vol.

80, pp. 311–321, 2018.

[7] P. Asghari, A. M. Rahmani, and H. H. S. Javadi,

“Service composition approaches in IoT: A systematic

review,” Journal of Network and Computer

Applications, vol. 120, pp. 61–77, 2018.

[8] A. Ramírez, J. A. Parejo, J. R. Romero, S. Segura,

and A. Ruiz-Cortés, “Evolutionary composition of QoS-

aware web services: a many-objective

perspective,” Expert Systems with Applications, vol. 72,

pp. 357–370, 2017.

[9] M. Dumas, L. García-Bañuelos, A. Polyvyanyy, Y.

Yang, and L. Zhang, "Aggregate quality of service

computation for composite services," in Proc. of the

2017 International Conference on Service-Oriented

Computing (ICSOC 2017), Malaga, Spain, 2017, pp.

213–227.

[10] H. Zheng, W. Zhao, J. Yang, and A. Bouguettaya,

“QoS Analysis for Web Service Compositions with

Complex Structures,” IEEE Transactions on Services

Computing, vol. 6, no. 3, pp. 373–386, 2013.

[11] S. Asghari and N. J. Navimipour, “Nature inspired

meta-heuristic algorithms for solving the service

composition problem in the cloud

environments,” International Journal of

Communication Systems, vol. 31, no. 12, Art. no. e3708,

2018.

[12] M. AllamehAmiri, V. Derhami, and M.

Ghasemzadeh, "QoS-based web service composition

based on genetic algorithm," J. AI Data Min., vol. 1, no.

2, pp. 63–73, 2013.

[13] H.-F. Li, L. Zhao, B.-H. Zhang, and J.-Q. Li,

"Service matching and composition considering

correlations among cloud services," in Proc. of the 2018

IEEE International Conference on Web Services (ICWS

2018), San Francisco, CA, USA, 2018, pp. 509–514.

[14] M. Eusuff, K. Lansey, and F. Pasha, “Shuffled frog-

leaping algorithm: a memetic meta-heuristic for discrete

optimization,” Engineering Optimization, vol. 38, no. 2,

pp. 129–154, 2006.

https://zenodo.org/record/3557008
https://github.com/NargessZahiri/Composition-Selection
https://github.com/NargessZahiri/Composition-Selection

QoS-Aware Web Service Composition and Selection Based on Interacting Structural Patterns

205

[15] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey

wolf optimizer,” Advances in Engineering Software,

vol. 69, pp. 46–61, 2014.

[16] H. Bouzary and F. Frank Chen, “A hybrid grey wolf

optimizer algorithm with evolutionary operators for

optimal QoS-aware service composition and optimal

selection in cloud manufacturing,” The International

Journal of Advanced Manufacturing Technology, vol.

101, pp. 2771–2784, 2019.

[17] J. Zhou and X. Yao, “A hybrid approach combining

modified artificial bee colony and cuckoo search

algorithms for multi-objective cloud manufacturing

service composition,” International Journal of

Production Research, vol. 55, no. 16, pp. 4765–4784,

2017.

[18] F. Seghir and A. Khababa, “A hybrid approach

using genetic and fruit fly optimization algorithms for

QoS-aware cloud service composition,” Journal of

Intelligent Manufacturing, vol. 29, pp. 1773–1792,

2018.

[19] G. Komaki and V. Kayvanfar, “Grey Wolf

Optimizer algorithm for the two-stage assembly flow

shop scheduling problem with release time,” Journal of

Computational Science, vol. 8, pp. 109–120, 2015.

[20] X. Song, L. Tang, S. Zhao, X. Zhang, L. Li, J.

Huang, and W. Cai, “Grey Wolf Optimizer for

parameter estimation in surface waves,” Soil Dynamics

and Earthquake Engineering, vol. 75, pp. 147–157,

2015.

[21] M. Chandra, A. Agrawal, A. Kishor, and R. Niyogi,

"Web service selection with global constraints using

modified gray wolf optimizer," in Proc. of the 2019

IEEE International Conference on Web Services (ICWS

2019), Milan, Italy, 2019, pp. 1989–1994.

[22] S. Gohain and A. Paul, "Web service composition

using PSO—ACO," in Proc. of the 2016 International

Conference on Advances in Computing,

Communications and Informatics (ICACCI 2016),

Jaipur, India, 2016, pp. 1–5.

[23] M. Karimi and S. M. Babamir, “QoS-aware web

service composition using Gray Wolf

Optimizer,” International Journal of Information and

Communication Technology Research, vol. 9, no. 1, pp.

9–16, 2017.

[24] Y. Huo, P. Qiu, J. Zhai, D. Fan, and H. Peng,

“Multi-objective service composition model based on

cost-effective optimization,” Applied Intelligence, vol.

48, pp. 651–669, 2018.

[25] S. C. Sadouki and A. Tari, “Multi-objective and

discrete elephants herding optimization algorithm for

QoS aware web service composition,” RAIRO-

Operations Research, vol. 53, no. 2, pp. 445–459, 2019.

[26] Y. Yang, B. Yang, S. Wang, T. Jin, and S. Li, “An

enhanced multi-objective grey wolf optimizer for

service composition in cloud manufacturing,” Applied

Soft Computing, vol. 87, Art. no. 106003, 2020.

[27] A. K. Sangaiah, G.-B. Bian, S. M. Bozorgi, M. Y.

Suraki, A. A. R. Hosseinabadi, and M. B. Shareh, “A

novel quality-of-service-aware web services

composition using biogeography-based optimization

algorithm,” Soft Computing, vol. 24, pp. 8125–8137,

2020.

[28] P. Thangaraj and P. Balasubramanie, “Meta

heuristic QoS based service composition for service

computing,” Journal of Ambient Intelligence and

Humanized Computing, vol. 12, pp. 5619–5625, 2021.

[29] F. Dahan, W. Binsaeedan, M. Altaf, M. S. Al-

Asaly, and M. M. Hassan, “An efficient hybrid

evolutionary algorithm for QoS-Aware cloud service

composition problem,” IEEE Access, vol. 9, pp. 95208–

95217, 2021.

[30] Y. Azouz and D. Boughaci, “Multi-objective

memetic approach for the optimal web services

composition,” Expert Systems, Art. no. e13084, 2022.

[31] F. Dahan and A. Alwabel, “Artificial Bee Colony

with Cuckoo Search for Solving Service

Composition,” Intelligent Automation & Soft

Computing, vol. 35, no. 3, 2023.

Appendix

This appendix addresses the links contain:

(1) We provided the matrix representation for a few WSC graphs, including

probabilistic edges, in file Guide_text.txt. This file is included in file

Service Composition&Selection.zip at

 https://github.com/NargessZahiri/Composition-Selection

(2) A sample of the interface's input (Figure A-1) and output (Figure A-2)was
shown in file InputOutputConsole.docx in the zip file. The input demonstrates

how users can specify the graph structure through an incidence matrix of

vertices, while the output shows the initial randomly selected candidates'

indices and their summarized node’s quality values,

(3) Demonstration of the summarization of the graphs generated via our interface
for loop, unstructured conditional, and structured conditional patterns, were

shown in file GraphSummarization.docx in the zip file (Figures A-3 to A-5),

https://github.com/NargessZahiri/Composition-Selection

Babamir & Zahiri/ Journal of AI and Data Mining, Vol. 13, No. 2, 2025

206

(4) A web service graph containing an unstructured (undefined) conditional

pattern, which cannot be summarized into an summarized node was shown in

Figure A-4.

(5) An example of the discretization process (done by Algorithm 2), detailed in
eight steps, is provided in Appendix 1 in file Appendix.pdf.

(6) Results of the selection methods based on their fitness values and quality
values of the summarized nodes are presented in Tables A-1 to A-4 in Appendix

2 in file Appendix.pdf. In these tables, N denotes the number of runs and the

best fitness value of the methods (Tabl A-1) and the quality values obtained

by the methods (Tables A-2 to A-4)were shown in the other columns. The values

shown in the same column are considered similar in terms of fitness or quality

value. The values in the Tables support the findings in Table 6, where two

methods (I) and (J) have no significant difference in fitness or quality

values when their values are in the same column in the Tables.

 .1404سال ،دوره سیزدهم، شماره دوم ،کاویمجله هوش مصنوعی و داده ظهیری بابامیر و

 هایسیسرووب بیترک بهینه انتخاب ه منظورب یسازبر الگو و خلاصه یمبتن یسازنهیبه تمیالگوریک

 های کیفی ویژگیبه آگاه

 *سید مرتضی بابامیرو نرجس ظهیری

 .رانینرم افزار، دانشگاه کاشان، کاشان، ا یگروه مهندس

 12/03/2025 پذیرش؛ 12/01/2025 بازنگری؛ 08/12/2024 ارسال

 چکیده:

شد و هستند در تعامل با یکدیگر ها کهسرویسوباز گرافی ه صورتها بسرویسترکیب وب . شودمی مدله، برای برآورده کردن نیازهای کاربر طراحی

ی مختلف ، چندین گزینهسرویساست. برای اجرای هر سرویسی تعامل بین دو دهندهو هر یال نشان سرویسی یک دهندهدر این گراف، هر گره نشان

سان اما ویژگی های متعددی باهای کیفی متفاوت در وب وجود دارد. در نتیجه، ترکیببا ویژگی ستند که عملکرد یک شکیل ه های کیفی مختلف قابل ت

شئئده توسئئز ابزار را برای پشئئتییانی سئئازی تکاملیاین مقاله یک الگوریتم بهینه .کندسئئخت تیدیل میخیلی یانتخاب ترکیب بهینه را به یک مسئئهله

سخهانتخاب ترکیب بهینه معرفی می شنهادی، ن ستریبهینهالگوریتم ی یافتهتوسعه ی گسسته وکند. الگوریتم پی ست. (DEGWO) سازی گرگ خاک ا

ی بهینهنزدیک بههای حلدهد تا راهرا گسترش می GWO های الگوریتمسازی کرده و سپس قابلیترا گسسته هاحلراهی این روش ابتدا فضای پیوسته

سری سایی کرده سرا شنا سایر روش DEGWO الگوریتم .دهدمیزایش افنیز سرعت همگرایی را در حالیکه همزمانرا سه با های مرتیز بر در مقای

 ٪43 ،٪3۶ پذیری،دسترس در بهیود ٪5 و ٪3۹ ،٪8طور متوسز اساس معیارهای مختلف ارزیابی شده است. نتایج تجربی نشان داد که این الگوریتم به

سخ، زمان در بهیود ٪30 و سیت هزینه در بهیود ٪51 و ٪53 ،٪۶5 و پا شرو الگوریتم سه به ن شته SFLAGA و RDGWO+GA ،HGWO پی دا

 .است

سئئازی گرگ بهینهالگوریتم ،هاسئئرویسارتیاطی بین وبی هاالگو ،های کیفیبر اسئئاس ویژگیانتخاب ترکیب ،هاسئئرویسوبترکیب :کلمات کلیدی

 .خاکستری

