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 Web service composition represents a graph of interacting services 
designed to fulfill user requirements, where each node denotes a 
service, and each edge represents an interaction between two services. 
A few candidates with different quality attributes exist on the web for 
conducting each web service. Consequently, numerous compositions 
with identical functionality but differing quality attributes can be 
formed, making the near-optimal composition selection an NP-hard 
problem. This paper proposes a tool-supported Evolutionary 
Optimization Algorithm (EOA) for near-optimal composition 
selection. The proposed EOA is a Discretized and Extended Gray 
Wolf Optimization (DEGWO) algorithm. This approach first 
discretizes the continuous solution space and then extends the 
functionality of GWO to identify global near-optimal solutions while 
accelerating solution convergence. DEGWO was evaluated in 
comparison with other related methods in terms of metrics. 
Experimental results showed DEGWO achieved average 
improvements of 8%, 39%, and 5% in terms of availability, 36%, 
43%, and 30% in terms of response time, and 65%, 53%, and 51% in 
terms of cost compared to the three leading algorithms, 
RDGWO+GA, HGWO, and SFLAGA, respectively. 
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1. Introduction 
Web applications are presented as a set of related 
services where each service specifies a specific 
functionality. For each service, there exists a 
collection of candidates across the Web that can 
perform the functionality with different qualities. 
Selecting the optimal candidate for each service to 
ensure the near-optimal overall quality of the web 
application is a challenging task. The candidates, 
each of which is specified in terms of functionality 
and some quality attributes (QAs), are accessible 
online via Uniform Resource Identifiers (URIs) 
[1].  
Each service in a web application is called an 
abstract service because it denotes just a 
functionality, and each candidate is called a 
concrete service because it can perform an abstract 

service with some specific QAs. Therefore, 
concrete services of an abstract service perform the 
same functionality with different qualities. The 
process of selecting a concrete service for each 
abstract service results in a candidate composition, 
forming a potential solution for a web application 
[2]. A web application/composition with n services 
is referred to as an n-dimensional composition. 
Web Service Composition (WSC) satisfies 
complex user requirements [3]. By leveraging 
WSC, businesses can enable seamless Business-to-
Business Interoperability (B2BI) and support 
various operational processes [4]. Travel planning 
services, as highlighted in [5], exemplify practical 
applications of WSC. Web applications are 
modeled as graphs of abstract services, and their 
corresponding compositions are represented by 
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graphs of concrete services (candidates), each 
characterized by specific QAs.  
Each WSC, as a potential solution, is assessed 
using a fitness value. To compute this fitness, the 
WSC is abstracted into a single Summary Service 
(SS), where each QA of the SS is derived by 
aggregating the QA values of all WSC services. 
The aggregated value is referred to as Aggregated 
Quality Value (AQV). When the WSC is 
represented as a graph, the SS is visualized as a 
Summary Node (SN). To facilitate this process, we 
develop an interface based on a graph 
summarization technique to generate the SN. 
After generating an SN for each WSC, a selection 
method is required to identify near-optimal WSCs. 
For a web application comprising n nodes and with 

m candidates for each abstract service, the total 
number of possible WSCs is 𝑚𝑚𝑛𝑛, resulting in 𝑚𝑚𝑛𝑛 
SNs. To select near-optimal SNs, which is an NP-
hard problem [6, 7], an evolutionary algorithm is a 
good candidate, where the fitness function is 
determined based on AQV, as emphasized in 
related studies [8]. To address this challenge, we 
utilize our node-based graph summarization tool to 
derive SNs efficiently. 
A WSC contains some patterns in the form of 
sequential, parallel, loop, or conditional structures 
of nodes (Figures 1-a to 1-d, respectively). Each 
pattern is summarized step by step until only one 
node remains.  
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Figure 1. The four structural patterns supported in the summarization graphs of WSC.

Figure 1 illustrates the patterns supported in this 
paper where in Figures: (1) 1-a, Service vy must be 
executed after service vx, (2) 1-b: Services vy1 to vyn 
can be executed in parallel with equal probability 
p, (3) 1-c: One of services vy1 to vyn is selected based 
on its probability pi, and (4) 1-d: a sequence of 
Services v1, v2, …, vn is executed with probability 
pi(1≤i≤n). 
Some studies have addressed the graph 
summarization with limitations. In [9], for 
instance, the authors have overlooked patterns with 
probabilistic edges. Although the graph 
summarization has been addressed in [10], but 
integer programming has been used for the 
selection method, which fails for large graphs 
because of high time and memory consumption and 
is just used for simplicity [10]. For large graphs, 
metaheuristic algorithms are needed. To date, no 
comprehensive tool for graph summarization has 
been developed to address these challenges fully. 
Near-optimal WSCs can be obtained using 
methods of evolutionary optimization. Among 
others, GA (Genetic Algorithm) [1, 11, 12], PSO 
(Particle Swarm Optimization) [1, 13], SFLA 
(Shuffled Frog-Leaping Algorithm) [14], and 
GWO (Grey Wolf Optimizer) [15] were used. 
Moreover, a few methods exploited the advantages 
of two evolutionary algorithms leading to good 
results like SFLA+GA [2], HGWO (Hybrid Grey 
Wolf Optimization) [16], and others [17, 18].  

Among others, GWO has been effectively used in 
various problems such as shop scheduling [19] or 
QA optimization [20]. These successful 
applications are a result of important GWO 
features, convergence performance, and simple 
implementation, and these advantages are crucial 
for WSC selection. In the traditional GWO, the 
hunting strategy enables rapid convergence but 
increases the risk of getting trapped in local optima. 
To address this limitation, this study introduces a 
Discretized and Extended Grey Wolf Optimizer 
(DEGWO). The proposed extension incorporates 
mutation and crossover operators from the GA and 
adopts the subpopulation strategy inspired by the 
SFLA. By partitioning the solution population into 
subgroups, DEGWO effectively expands the 
search space, enhancing the ability to discover the 
global optimum while reducing the likelihood of 
stagnation in local optima. 
This study presents both theoretical and practical 
contributions. From the theoretical aspect, a 
method is presented to summarize composition 
graphs (Section 4.1) including probabilistic 
patterns, and a metaheuristic method, called 
DEGWO, is used to search optimal compositions. 
In DEGWO, a fitness function and a discretization 
method are proposed. DEGWO uses mutation and 
crossover operators from the Genetic Algorithm 
(GA) to overcome local optima challenges and 
expand the solution space, drawing inspiration 
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from the Shuffled Frog-Leaping Algorithm 
(SFLA). 
From the practical aspect, (1) based on the 
presented summarization method, a tool is 
designed for automatic graph summarization, and 
some well-known evolutionary algorithms are 
implemented to apply to the selection method and 
to compare with DEGWO. 
The remainder of this paper is structured as 
follows. Section 2 provides an overview of the two 
evolutionary algorithms utilized in the 
development of DEGWO. Section 3 reviews 
related works. In Section 4, the proposed DEGWO 
approach for selecting near-optimal WSCs is 
presented. Section 5 discusses the experimental 
results obtained by the proposed algorithm and 
seven comparative algorithms, evaluated based on 
AQVs, fitness metrics, similarity measures, and 
execution times. Potential threats to the validity of 
DEGWO are examined in Section 6. Finally, 
Section 7 concludes the paper and outlines 
directions for future research. 

2. Background 
Evolutionary algorithms are widely adopted for 
identifying near-optimal solutions in vast solution 
spaces. Given the immense number of possible 
permutations in Web Service Composition (WSC), 
these algorithms provide an effective approach for 
selecting near-optimal compositions efficiently. 
 
2.1. Evolutionary optimization for the WSCS 
problem 
Due to the NP-Hard nature of the WSCS problem 
[6], evolutionary algorithms are frequently 
employed for selecting the near-optimal WSCs 
(solutions) at a reasonable time. Although these 
algorithms under specific circumstances act very 
well, several issues may arise when the algorithms 
are unable to maintain the balance between the two 
primary opposing criteria of exploration and 
exploitation of solutions. Premature convergence is 
one issue resulting from a lack of population 
diversity, particularly when exploitation is local. 
As a result, there will be a lower chance of 
discovering a global optimal solution. On the other 
hand, having global exploration and population 
diversity reduces the rate of convergence. 
Therefore, it is crucial to maintain the balance 
between these two crucial aspects to produce 
excellent results. 
Exploration and exploitation are the two aspects 
that highlight the use of the advantages of some 
evolutionary algorithms to enhance the 
effectiveness of a method in challenging situations 
[2]. Considering these aspects, the following 

describes two evolutionary algorithms that are used 
in DEGWO. 
 
2.1. Genetic algorithm 
In a Genetic algorithm (GA), each chromosome, 
consisting of a set of genes, is a solution. The initial 
members of the population (chromosomes) are 
randomly selected and called Pt. They are classified 
based on the fitness value of a summarized node of 
the composition graph. To create a new population, 
called Qt, parents are selected from among the 
chromosomes randomly, and a new chromosome is 
created by applying mutation and crossover to the 
parents. This algorithm explores a large space by 
using these two operators. These new 
chromosomes are merged with the previous 
chromosomes and sorting is done based on their 
fitness value of them. The first N members with the 
biggest fitness value are stored and the rest of them 
are discarded. This process continues until the 
termination condition is not fulfilled [1]. 
 
2.3. Shuffled frog leaping algorithm (SFLA) 
The shuffled frog-leaping algorithm (SFLA), a 
memetic meta-heuristic, has been created to 
address combinatorial optimization issues. In this 
algorithm, virtual frogs act as a host or solution and 
each host has a unique memotype that contains 
memes. Memes and memotypes in SFLA are like 
genes and chromosomes in GA. At the beginning 
of the algorithm, hosts or solutions are created 
randomly. These solutions are divided into a few 
memplexes. In each memeplex, the algorithm 
simultaneously runs a local independent search 
which is very similar to particle swarm 
optimization that has been modified for discrete 
issues. The memes of different solutions could be 
derived from the local memplex or the best overall 
memplex of all the memplexes. The solution is 
added to the population if there is an improvement 
in fitness value. After a predetermined number of 
iterations, the memplexes are mixed and new 
memplexes are created by a shuffling process. This 
process is done to ensure global exploration. 
Therefore, local search and global information 
exchange are both incorporated into the algorithm 
[14]. 
 
3. Related work 
In this section, we overview pure and combined 
popular evolutionary algorithms for the WSCS 
problem since 2016. 

3.1. Evolutionary optimization for WSCS 
The basic GWO was used by Karmi et al. [20] to 
find optimal solutions where for each web service, 
four QAs of response time, reliability, availability, 
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and cost have been considered and each of them has 
been weighted by the AHP (Analytical 
Hierarchical Process) weighting method. 
Therefore, the problem has been considered as a 
single objective. It was compared with PSO 
through the optimal rate. The optimal rate is the 
result of dividing the best solution obtained after 
convergence by the best solution obtained from the 
first iteration of the algorithm. By running the 
algorithm 40 times, it was concluded that the GWO 
is better than the PSO in terms of optimal rate.  
Elite-guided Artificial Bee Colony (ABC) 
consisting of ABC and the non-dominated sorting 
method, elite-guided discrete solutions generation, 
and multi-objective fitness function calculation 
method were used by Huo et al. [21]. They have 
considered availability, response time, reliability, 
and throughput as one objective and cost as another 
objective and solved the problem with two 
objectives. The results of the experiments show 
that this algorithm is better than NSGAII, PSO, and 
ABC algorithms in terms of quality indicators of 
GD (Generational Distance), spread, and execution 
time.  
Multi-objective Discrete Elephants Herding 
Optimization (MO-D-EHO) was used by Sadouki 
and Tari [22] for the WSCS problem. The power of 
this method is provided by the process of dividing 
and combining the population with the 
subpopulation (clan), which causes it not to get 
stuck in the local optimal. By comparing this 
algorithm with the PSO and SPEAII (Strength 
Pareto Evolutionary Algorithm II), it was 
concluded that it is significantly better in terms of 
criteria such as coverage ratio, spread, and 
hypervolume. 
Kashyap et al. [1] have utilized GA and PSO to 
manage the WSC problem in IoT. The purpose is 
to minimize the fitness value consisting of 
reliability, response time, and cost, which is 
aggregated in a single objective. The experiment is 
executed with the number of tasks and candidates 
from 10 to 30, and 10 to 50, and the results have 
demonstrated that GA can help in identifying the 
optimal solution and also shows preferable 
outcomes over PSO.  
Yang et al. [23] have presented a modified multi-
objective GWO to find optimal solutions. In this 
algorithm, execution time, cost, reliability, and 
availability are considered the first objective, and 
energy consumption is considered the second one. 
This algorithm has evolved in three steps. In the 
first step, the backward learning strategy is used to 
increase the search efficiency in identifying the 
initial population. In the second step, the strategy 
of adjusting the algorithm parameters improves the 

variety of solutions. In the third step, the search 
space has been increased using the mutation 
operator, which prevents getting stuck in the local 
optimal. Finally, this algorithm has been compared 
with basic GWO and PSO algorithms based on 
standard deviation, spread, GD, and IGD (Inverted 
GD), and its efficiency has been proven.  
Sangaiah et al. [24] have used the Biogeography-
Based Optimization (BBO) method. This 
algorithm uses the BBO immigration operator to 
explore a new search space. The results of the 
experiments show that BBO has superior search 
capabilities versus GA and increases all qualitative 
metrics for three scenarios, 7%, 23%, and 61%, 
respectively.  
 
3.2. Hybrid evolutionary optimization for the 
WSCS problem 
Chandra et al. [25] have introduced an improved 
GWO algorithm to find optimal solutions for the 
WSC problem. To improve the performance of this 
algorithm, the crossover operator is used. This 
algorithm is compared with GA and GWO 
algorithms. By running this algorithm 20 times and 
considering nine QAs as a single objective, it was 
concluded that the average fitness value of the 
improved GWO algorithm during its successive 
iterations is always better than the other two 
algorithms. Also, its convergence speed is much 
better than the GA algorithm and is comparable to 
GWO.  
Gohain et al. [26] have exploited ACO and PSO 
(Particle Swarm Optimization) by considering the 
five QAs, reliability, availability, throughput, cost, 
and response time as a single objective. This 
algorithm has been compared with the PSO 
algorithm during experiments in terms of execution 
time and fitness value, which shows its better 
performance.  
Bouzary et al. [19] have suggested a novel method 
where the GWO and GA operators are used. 
During the hunting phase in GWO, the embedded 
crossover and mutation operators of GA help to 
prevent local optimal. The experimental findings 
demonstrated that, despite a slight increase in 
processing time, the suggested algorithm 
outperforms GA and DGWO (Distributed GWO).  
Asghari et al. [2] have proposed an IoT-based 
cloud service composition conceptual model 
regarding the privacy level computing model and a 
novel evolutionary optimization using the Shuffled 
Frog Leaping Algorithm (SFLA) and genetic 
algorithm (GA), called SFLA-GA. The 
experiments were conducted based on: (1) the 
fitness of composite services and (2) the similarity 
between the results of the method and those of three 



QoS-Aware Web Service Composition and Selection Based on Interacting Structural Patterns 

187 
 

other meta-heuristic methods. This algorithm is 
used to maximize the fitness value obtained by 
aggregating nine QAs. The proposed approach 
enhances fitness compared to the GA, Cultural, and 
SFLA approaches.  
Thangaraj et al. [27] introduced an algorithm using 
GA and Tabu-search to find the best candidates. In 
this method, the best candidates with maximum 
reliability and throughput are suggested to the end 
user by using Tabu-search. The experiments show 
that the proposed method has improved 0.5% in 
fitness value on average and about 0.25% in error 
reduction.  
Dahan et al. [28] have introduced an algorithm 
exploiting ABC and GA. The ABC algorithm 
adapts its performance based on the parameters that 
have been set by the GA algorithm. The 
experimental results show that the proposed 
method compared to other methods is better in 
terms of cost, response time, reliability, and 
availability although it takes more time.  
Azouz et al. [29] proposed a MO-MA (Multi-
Objective Memetic Algorithm) using MO-LS 

(Multi-Objective Local Search) and GA (MO-GA). 
The main objective is to minimize cost and time 
and maximize availability and reputation. This  
method is evaluated on some datasets generated 
randomly and on the QWS dataset. The numerical 
results demonstrate the effectiveness of the 
proposed MO-MA for WSC. 
Dahan et al. [30] have presented a method using 
ABC and CS (Cuckoo Search) to resolve the 
WSCS problem. CS uses Lévy Flight to improve 
the convergence rate of the ABC algorithm. The 
method is compared with ABC, CS, OABC 
(Optimized ABC), and MOHABC (Multi-
Objective Hybrid ABC). They considered cost, 
response time, reliability, and throughput as the 
objectives. The main goal is to minimize the cost 
and response time and maximize the reliability and 
throughput. The results show that the algorithm is 
better than the others in terms of best fitness value, 
average fitness value, and average execution time. 
Table 1 shows a summary of related studies. 

Table 1. A summary of the related study. 
Article 

 Year Tool 
Support 

Used 
Algorithm 

Compared 
Algorithm 

Evaluation Metrics Probability 
WSC Dataset Indicator Objective 

[21] 2016 --- GWO+GA GA, GWO CS Av, RT, Th, 
FV --- QWS 

[22] 2016 ---- PSO+ACO PSO ET FV --- RV 
[23] 2017 --- GWO PSO, IDPSO, QIPSO Optimally Rate --- --- QWS 

[24] 2018 --- EMOABC NSGAII, MOPSO, 
MOABC 

GD, ET, Error rate, 
Spread, 

Av, RT, Rl, 
Th, Cst  --- QWS 

[25] 2019 --- EHO SPEAII, MOPSO CR, Spread, 
Hypervolume --- --- QWS 

[16] 2019 --- HGWO GA, DGWO ET FV --- RV 

[1] 2020 --- GA PSO --- FV, RT, 
Cst, Rl --- RV 

[26] 2020 --- EMOGWO MOGWO, MOPSO ET, spread, 
GD, IGD 

Cst, Rl, Av, 
EC --- RV 

[2] 2020 --- SLFAGA GA, Cultural, SFLA Similarity value FV -- QWS 

[27] 2020 --- BBO GA --- Rl, Ava, 
ET, Cst --- --- 

[28] 2021 --- GA+Tabu-
search 

Worst-GA, Best-GA 
 

Mean Absolute 
Error, Coverage, 
Recall, Precision 

FV 
 --- RV 

[29] 2021 --- ACO & GA ACS, TACO, DAAGA, 
SACO, MAACS 

ET 
 

Cst, RT, 
Av, Rl --- QWS 

[30] 2022 --- MO-MA NSGA2, MO-GA, 
MO-LS (local search) ET Av, Cst, RT --- QWS, 

RV 

[31] 2023 --- ABC+Cuckoo-
search 

ABC, Cuckoo Search, 
OABC, MOHABC, 

SABC 
Average ET Best FV, 

Average FV --- RV 

DEGWO  √ RDGWO+ 
GA+SFLA 

GA, HGWO, BGWO, 
SFLAGA, 

RDGWO+GA, IPSO, 
SFLA 

CS, ET 
Av, RT, 
Cst, Best 

FV 
√ QWS 

Abbreviations: Av.: availability, Rl.: Reliability, RT.: response time, EC.: Energy consumption, Cst.: cost, FV.: Fitness value, ET.: Execution time, 
CS.: Convergence speed, CR.: Coverage ratio, Th.: Throughput, GD.: Generational distance, IGD.: Inverted generational distance, IDPSO: Improved 
Discrete PSO, QIPSO: Quantum Improved PSO, NSGAII, MOPSO: Multi-Objective PSO, MOABC: Multi-Objective ACO, EHO: Elephants Herding 
Optimization, BBO: Biogeography-Based Optimization, EMOABC: Elite-guided multi-objective artificial bee colony, RV: Random values 
 

The related works mentioned in this section show 
that the use of advantages of some evolutionary 
optimizations for the WSCS problem has risen 
significantly in recent years. The use of advantages 

of more than one evolutionary optimization not 
only removes shortcomings of pure ones but also 
leads to an increase of the quality of solutions. 
Accordingly, in this current paper, we extended  
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one of the most popular evolutionary optimization 
algorithms called the basic GWO by GA's cross-
over and mutation operators, and the SFLA 
strategy where GWO helps high convergence and 
SFLA helps us to escape from local optima. 

4. Proposed method 
This section contains subsections WSC 
summarization (Subsection 3.1) and summarized 
node selection (Subsection 3.2). 
 
4.1. WSC summarization 
A WSC contains a graph including the patterns 
illustrated in Figure 1. First, each pattern is 
summarized to a node (service) and finally, the 
summarized patterns are summarized to a node. 
To compute AQV (see Section 1) for each pattern, 
we employ the formulas proposed in [10], as shown 
in Table 2. Additionally, the formula provided in 
Table 3 [10] is used to determine the transition 
probability after summarizing each pattern and 
computing the AQVs. 
Based on the patterns illustrated in Figure 1 and the 
aggregation formulas in Tables 1 and 2, we have 
designed and implemented a WSC summarization 
interface. To demonstrate the practical application 
of this summarization process, we illustrate the use 
of the interface for a web application. A WSC 
graph is presented as a square matrix to the 
interface. 
As an example of summarizing patterns, consider 
the travel agency web application shown in Figure 
2, for instance. It contains 12 abstract services T1, 
..., T12. These services are organized into several 
sequential and parallel patterns. For instance, the 
Flight, Hotel, and Car rental searches are parallel 
services, while the Book up the flight and Ticket 
confirmation services are sequential. 

To select the candidates (concrete services) for the 
abstract services in Figure 2, we utilized the QWS 
dataset [31], which contains 2,507 candidate 
services. These candidates were assigned to the 
abstract web services, ensuring no duplicate  
candidate appeared in the graph of abstract web 
service. The summarization steps for Figure 2 are  
illustrated in Figure 3, showing the sequential, and 
parallel patterns being summarized. The node 
labels in Figure 2 correspond to the numbered 
nodes in Figure 3. 
 

T1.User 
request

T2.Car rental
search

T3.Hotel
search

T4.Flight
search

T5
.

User register
and login

T6.Rent car T7.Reserve
hotel

T8.Book up
flight

T10.Hotel
confirm

T11.Ticket
confirmation

T9.Rent Car
confirm

T12.Online
payment

 
Figure 2. An example of a web application consisting of 

web services for a travel agency 
 

                                        
Table 2. Aggregation formula for calculation of AQVs of patterns [10] 

Legends: ax and ay denote the service availabilities in nodes x and y; tx and ty do the service response times in nodes x and y; cx and cy do the service 
costs in nodes x and y; notation ∏ 𝑎𝑎𝑦𝑦𝑦𝑦𝑛𝑛

𝑦𝑦=1  shows the product of service availabilities in nodes 1 to n; pi indicates the probability of selecting the service 
in node i. 
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Table 3. Probability of input and output transitions of patterns after summarization [10] 

Legends: P′in and P′out denote probabilities of performing input and output services of the transition after summarization, POkj and P′Okj are the 
probabilities of output transition j in service of the kth iteration of the loop before and after summarization respectively.
 
 

 
Figure 3 (a)-(c). The first three steps of the summary graph of the summarization of Figure 2. 

Legends: Figure (a) corresponds to Figure 2 where each node number in (a) corresponds to the node number in Figure 2. Node numbers 1,2,3,4,5,12 
in Figure (b) correspond to these nodes in Figure 2 and (6)S(9), (7)S(10), and (8)S(11) nodes (6 and 9), (7 and 10), and (8 and 11) each denotes 
the two sequential nodes combined to one node. Node ((2)P(3))P(4) in Figure (c) denotes the sequential nodes 2 and 3 were combined into a 
node. The combined node and node 4 were sequential and combined into a node. The numbers on vertical and horizontal axes just denote the 
figure scale and have no specific meaning. 

 

 
Figure 3 (d)-(f). Steps 4-6 of the summary graph of the summarization of Figure 2. 

Legends: Node ((2)P(3))P(4) in Figure (d) denotes the parallel nodes (2 and 3) were combined and then the combined node and node 4 were parallel 
and combined to one node. Figures (e) and (f) show the combination of parallel and sequential nodes where (n1)P(n2) and (n3)S(n4) denote the 
summarization of two parallel nodes n1 and n2 and two sequential nodes n3 and n4, respectively. The sequence of numbers and notations P and S beside 
the yellow node in Figure (e) shows how the initial 12 nodes in Figure 2 were summarized to one SN. 
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This process continues until only one node, 
referred to as the SN, remains. If the graph contains 
undefined patterns, such as unstructured 
conditional ones, the summarization cannot 
proceed further. These undefined patterns are 
beyond the scope of this paper (refer to Figure 1 
and Table 2 for the patterns considered in this 
study). Users can either specify their desired graph 
or use the sample graph we created, as shown in 
Figure 2.  
 
4.2. The selection method 
By increasing the WSC dimension and the number 
of candidates, the possible compositions (solution 
space) grow exponentially. Therefore, heuristic 
and metaheuristic optimization methods are 
required to search near-optimal WSCs. To this end, 
we propose and use DEGWO. However, the 
solution space in DEGWO is continuous and our 
solution space of WSCs is discrete. Therefore, we 
need a mapping between the two spaces where the 
optimal solutions generated in continuous space, 
should be discretized. Moreover, the fitness value 
of solutions in DEGWO should be determined. 

The selection of near-optimal WSCs is classified as 
an NP-hard problem, commonly referred to as the 
Web Service Composition Selection (WSCS) 
problem. This problem entails selecting an 
appropriate candidate (concrete) service for each 
abstract web service to construct a near-optimal 
WSC [8].  

4.2.1. Fitness value 
Each candidate service has a set of QAs (Section 
1). In this paper, three QAs values denoted  by

 i i i iQ q availability q response time q t   1 2 3, , cos

are considered, where 1≤i≤n and n is the number of 
services/nodes of the composition.  
Before calculating the AQV for each SN, the QA 
value of each service is normalized to ensure they 
are on the same scale and direction. To this end, 
Negative QAs, like response time and cost, are 
normalized using Equation 1, while positive QAs, 
like availability, are normalized using Equation 2. 
After the normalization, the composition graph is 
summarized and the SN is calculated (see Section 
3.1), characterized by  AQV q q q 1 2 3, , . In 
Equation 1, a lower value for negative QAs results 
in a higher normalized value while a higher value 
for positive QAs results in a higher normalized 
value (Equation 2). Consequently, the optimization 
problem becomes a maximization problem, to 
achieve a higher fitness value in the proposed 
algorithm. 
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We assume the three QAs have the same priority, 

indicated by equal weights w
    
1 1 1

, ,
3 3 3

. These weights 

are multiplied by the corresponding QA values in the 
AQV to compute the fitness value, which constitutes the 
final objective function (Equation 3). 
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1
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4.2.2. The selection algorithm design 
We introduce DEGWO, an advanced variant of the 
standard GWO. It incorporates crossover and 
mutation operators derived from the GA and uses 
the SFLA strategy to enhance its exploratory 
capabilities. In DEGWO, each solution, referred to 
as a wolf (w), is represented by four components: 
(1) w.ca as an index array, (2) w.Q as QAs, (3) 
w.AQV, and (4) w.F as the fitness value where each 
array element denotes a service (dimension) in a 
composition.   

4.2.3. Discretization of the solution space 
GWO simulates the hunting mechanism of grey 
wolves, which typically live in groups of 5 to 12, 
classified into four hierarchical levels: α (Alpha), β 
(Beta), δ (Delta), and ω (Omega). The α wolves are 
the leaders at the top level, while the β and δ wolves 
obey the orders of the α wolves. Wolves at the β 
level are second in the hierarchy and assist the α 
wolves; they are also the primary candidates to 
replace the α wolves if they die. The δ wolves, at 
the third level, are required to follow both the α and 
β wolves. Finally, the ω wolves, situated at the 
lowest level, must adhere to all higher-level 
wolves. 
The hunting process of wolves is divided into three 
phases: exploring and surrounding the prey, 
harassing the prey to immobilize it, and ultimately 
attacking the prey. Initially, wolves spread out to 
explore the environment (divergence) and later 
gather again to attack prey (convergence). To 
model the divergence, a vector A��⃗  (Equation 4), 
consisting of random values between [-a, a], is 
defined. When A 1 , the explorer agents move 
away from the prey, whereas when A 1 , they are 
directed to attack. The value of ∣A∣ is controlled by 
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the parameter "a" (Equation 4), which linearly 
decreases from 2 to 0 in the basic GWO. However, 
this linear decrease may not effectively facilitate 
the global search, leading to a lack of population 
diversity and causing the algorithm to get stuck in 
local optima [32]. To address this issue, we use a 
nonlinear decrease for "a" (Equation 5) [25]. In this 
modified version, parameter "a" decreases more 
gradually during the early iterations, promoting 
exploration, and then decreases more sharply in 
later iterations, enhancing the convergence rate. 
Our experiments show that the value of k=5 in 
Equation 5 yields the best results for our work. The 
vector C�⃗  (Equation 6) aids in exploration by taking 
random values within the range of [0, 2]. This 
vector determines a random weight for the distance 
to the prey, improving the algorithm’s performance 
by enabling more suitable prey to be found and 
preventing the algorithm from falling into local 
optima. Unlike vector A��⃗ , vector C�⃗  does not decrease 
linearly; instead, it helps to slow the wolves’ 
progress toward the prey [14]. 

After determining the vectors A��⃗  and C�⃗ , the distance 
of each wolf from the prey is calculated. However, 
in optimization problems, the exact position of the 
prey is unknown. To model the hunting behavior, 
the distance of each omega wolf (ω) to the α, β, and 
δ wolves (the first, second, and third best solutions, 
respectively) is computed using Equation (7). 
Consequently, the hunting process is guided by α, 
β, and δ wolves, and the remaining wolves (ω) 
pursue the prey based on their guidance. 
The next position of wolves (ω) is updated using 
Equation (8), and the average next position of each 
wolf is derived using Equation (9). In these 
equations, the position of each wolf is determined 
based on the QA of its selected candidate. 

A a r a 12 .
   

 (4) 
kit

a
MaxIteration
      

2 2
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- Discrete Space 
Equations (7–9) are used for searching in a 
continuous space, where the search agents in GWO 
update their position vectors based on the hunting 
process. However, in a discrete space, the position 
of the wolves cannot be updated in the same 
manner, as position vectors must be calculated 
using discrete values. To address this issue, several 
methods have been proposed [33]. Two of the most 
well-known approaches are the integer Particle 
Swarm Optimization (PSO) and binary PSO 
methods. 
In the integer PSO approach, the original 
continuous algorithms are adapted for problems 
with integer-valued solutions by rounding the 
position vectors at each iteration [15]. In the binary 
PSO method, transfer functions such as the 
Hyperbolic [22] or Sigmoid [34, 35] functions are 
used for discretization. However, these methods 
reduce the algorithm’s effectiveness in the 
exploration and exploitation phases. Consequently, 
these versions of the GWO algorithm are 
insufficient for solving the WSC problem, 
primarily because they lack sufficient explorative 
power for large-scale problems and tend to get 
stuck in local optima. To overcome these 
limitations, we propose the following 
improvements: 

1. A novel discretization algorithm to improve 
the exploitation phase. 

2. Integrating GA operators and shuffling 
optimization into the standard GWO structure 
to enhance the exploration phase. 

This approach aims to achieve a better balance 
between exploration and exploitation, improving 
the overall algorithm's performance. Algorithm 1 
outlines the proposed DEGWO, while Tables 4 and 
5 provide the parameter values and their 
descriptions, respectively. In Algorithm 1, the 
process begins with determining the three best 
wolves as the leading solutions (lines 7-9). A new 
generation of wolves is then created (lines 10-11), 
which is merged with the current omega wolf 
population (line 12). The combined population is 
sorted, and the top Npop wolves are retained (line 
13). The population is divided into multiple 
subsets, termed Wolfplexes (line 14), with each 
Wolfplex containing nPopWolfplex members. For 
each Wolfplex, several parent wolves are selected 
for crossover and mutation operations (line 16), 
leading to the generation of a new population (line 
17). The new population is merged with the 
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corresponding Wolfplex and sorted (line 18), and 
the top nPopWolfplex wolves are retained (line 
19). These updated Wolfplexes are then combined 
using a shuffling strategy (line 21) to form the 
initial population for the next iteration. This 
process is repeated until the predefined maximum 
number of iterations (MaxIteration=100) is 
reached. Finally, the best wolf is selected as the 
output solution. 

Algorithm 1  
The proposed DEGWO for the WSCS problem. 
 
1. Input: it = 0 /* The current number of iteration*/,  
    nWolfplex = 5; nPopWolfplex = 20 
    /* initial population is divided to nPopWolfplex sub-

populations where the number of members of each sub-
population is nWolfplex */,  

  MaxIteration=30 /* The Maximum number of algorithm 
iterations*/,  

  Pcrossover=0.7 /* probability of crossover*/,  
  Pmutation=0.3 /* probability of mutation */ 
2. Output: The best wolf 
3. Begin 
4. Generate Npop of wolves randomly as an initial population 

/* Npop nWolfplex nPopWolfplex  */ 
5. While (it < MaxIteration) do 
6. Initialize vectors a, A and C (Equations 4-6) 
7. Calculate the fitness values of each wolf (w.F) using 

Equation 3 
8. Sort the population of wolves in descending order based on 

the fitness values (w.F) 
9. Consider the first three best wolves as Wα, Wβ and Wδ, 
             respectively and the other wolves as Wω 
10. Calculate the new wolves (wω-new.Q) using Equations 7-9 
11. Discretize the new wolves' vector using Algorithm 2 
12. Merge the population created in 11(wω-new) and population 

in (wω) 
13. Sort the population of wolves in descending order 
    based on the fitness values and keep the first Npop 
    individuals 
14. Divide the population of wolves into nWolfplex 
15. For each Wolfplex do 
16.       Select ( crossoverP nPopWolfplex ) and (

mutationP nPopWolfplex ) number of parents from each 
              Wolfplex for crossover and mutation operators, 

respectively 
17.      Perform the one-point crossover and one-point mutation 

on the selected parents 
18.       Merge the population created in Step 16 and 

corresponding Wolfplex  
19.     Sort the line 18’s population in descending order and 

only keep the first fittest nPopWolfplex wolves. 
20. End for 
21. Combine the upgraded Wolfplexes via shuffling strategy in 

SFLA     
22. Save the best wolf achieved so far 
23. Assign it=it+1 
24. End while 
25. Return the best wolf 
26. End 

 
- The proposed discretization method 
Since GWO is primarily designed for searching in 
continuous spaces, a discretization method is 
required to adapt it for discrete search spaces. To 
address this, we propose a novel discretization 
method (Algorithm 2), which is called in step 11 of 
Algorithm 1. In this method, a set of new wolves in 

the discrete space is generated. The inputs to this 
function are provided in step 10 of Algorithm 1, 
and its outputs consist of wolves (wω-new), where the 
quality attribute (QA) values of each wolf are 
represented in wω-new.Q. 
In Algorithm 2, for each dimension i of a new wolf 
(WSC), represented as wω-new.cai  (see Section 
4.2.1), a candidate is selected. The sum of the 
quality attributes (QAs) for the ith dimension of all 
wolves is then computed to identify the best 
candidate for that dimension (service). 
 

Algorithm 2 
Proposed discretization function. 
Discretization-Function (wω-new, wω, wα, wβ., wδ } 
1. for i=1 to n   // n denotes an n-dimensional composition (see 

                      Section 4.2.1);  
2.     Upperbound=3; Lowerbound=0  // each dimension of a  wolf 

(solution) has three QAs, each between zero and 1  
3.     if ( k

new ik w Q Upperbound 3
1 . or  

k
new ik w Q Lowerbound 3

1 .  

4.     select a iCa CC randomly // iCa is a candidate for the ith 
        abstract service, Fi denotes the fitness value of ith   
        dimension of wolf and  CC  1 2507 ;   
5.        new i iw ca ca .  
6.        new i i iw Q ca Q . .  

7.         return wω-new 
8.      else { 

9.         if  k k
i new ik kw Q w Q   3 3

1 1. .  

10.           new i iw ca w ca . .  

11.                  new i iw Q w Q . .     

12.            return neww  

13.       if  k k
i new ik kw Q w Q   3 3

1 1. .  

14.           new i iw ca w ca . .  

15.                 new i iw Q w Q . .    

16.          return neww  

17.       if  k k
i new ik kw Q w Q   3 3

1 1. .  

18.           new i i iw Q ca Q . .    

19.           new i iw Q w Q . .  
20.            return neww  

21.     if  k k
i new ik kw Q w Q   3 3

1 1. .  

22.          new i iw ca w ca . .  

23.          new i iw Q w Q . .  

24.          return neww  

25.     find a iCa CC so that i i new iCa F w F. .  
26.     if found new i iw ca ca .  
                        new i i iw Q ca Q . . } 
27.      return neww }  

 
After determining an appropriate candidate for 
each dimension (cai) the corresponding QAs for 
that dimension are stored in wω-new.Qi. Each 
dimension of the wolf has three QAs, normalized 
to lie between 0 and 1 (see Section 4.2). As a result, 
the total QA value for a dimension is constrained 
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between 0 and 3 (line 2). However, in some cases, 
the sum of QAs for a given dimension of wω-new in 
the continuous space may exceed the defined upper 
or lower bounds. In such situations, a random cai  
is selected (denoted as CC), and its index and QAs 
are assigned to wω-new.cai and wω-new.Qi, respectively 
(lines 3-7). Otherwise, for the ith dimension, the 
sum of QAs for wω-new is compared against the sum 
of the corresponding QAs of wolves  δ, β, α and ω. 
Based on the algorithm, one of these indices and its 
associated Qi is chosen as the candidate for wω-

new.cai  and its quality value for wω-new.Qi while wω-

new.Qi in the continuous space have been computed 
using Equations (7-9) by considering vector A; 
vector A depends on the critical parameter a. The 
value of this parameter influences the accurate 
selection of candidates (see Equation (5) in Section 
4.2.3).  

4.2.4. Time complexity 
Now, we deal with the time complexity in three 
phases of our proposed method. 

-Composition summarization. In this phase, the 
composition graph is scanned for the pattern 
recognition and summarization. The time 
complexity for this phase is O(n2) because we use 
two nested loops in our algorithm to recognize each 
pattern with n nodes.  
-Selection. The time complexity for the selection 
method in Algorithm 1 is 
m n Npop MaxIteration   where MaxIteration is 
the number of the algorithm repetitions, Npop is the 
number of population members, and m×n is the 
time complexity Algorithm 2, which is called in 
Line 11 for each population member. Parameters m 
and n denote the number of candidates for each 
service and the number of services of the 
composition, respectively. Since for each graph 
summarization, the selection method is carried out, 
the total complexity of our proposed method is 
n m n Npop MaxIteration   2 . 

5. Experimental results 
The DEGWO algorithm was executed 30 times, as 
it is common practice to perform 30 runs for 
nondeterministic algorithms, such as evolutionary 
algorithms, to facilitate robust statistical analysis 
and draw comprehensive inferences [36]. The 
number of iterations for each run is user-defined. 
Typically, DEGWO converges within 20 to 30 
iterations. 

In this section, we evaluate the results obtained by 
applying DEGWO and other methods to two types 
of web applications: (a) the travel agency graph 
shown in Figure 2 and (b) three additional web 

applications with 5, 10, 50, and 100 sequential 
services. Web service candidates were selected 
from the QWS dataset [31], which contains 2,507 
real candidates characterized by quality attributes 
(QAs) such as availability, response time, and cost. 
The target web application in Figure 2 represents a 
travel agency with 12 services, where each service 
(task) is randomly matched with a unique candidate 
from the 2,507 options. 
By applying DEGWO and other selection methods 
to the summarized nodes derived from web 
applications (a) and (b), we evaluated the 
performance based on two criteria: (1) the fitness 
value and its similarity, and (2) the QAs' values and 
their similarities. To demonstrate the generality 
and significance of the results, statistical analysis 
was performed. 
 

Table 4. Parameter values used in the algorithms. 
No. Parameter Value 
1 nPop  5, 10, 50, 100 

2 MaxIteration 100 

3 Max-Run  30 

4 Pmutation  0.3 

5 Pcrossover 0.7 

6 nPopWolfplex  1, 2, 5, 20 

7 nWolfplex  5, 5, 10, 5 

8 nPop=nPopWolfp
lex * nWolfplex  
 

 

5, 10, 50, 100 

9 nNode  5, 10, 50, 100 

10 m 2507 

11 C1=C2  2 

12 Sigma  100 

13 q  Max(round (0.3*nPopWolfplex) ,2)   

14 alpha  3 

15 beta  5     

 
The results of DEGWO are evaluated under the 
following configurations: (1) RDGWO+GA, 
which highlights the impact of the discretization 
method introduced in Algorithm 1 (RDGWO) and 
the use of GA to escape local optima in GWO; and 
(2) DEGWO (RDGWO+GA+SFLA), which 
incorporates SFLA-inspired mechanisms to further 
enhance performance. The outcomes of 
RDGWO+GA and DEGWO are compared with six 
other methods: (a) GA [1], (b) HGWO [15], (c) the 
binary version of GWO (BGWO) [22], (d) 
SFLAGA [2], (e) the integer version of PSO 
(IPSO) [1], and (f) SFLA [13]. 
The environment setting is a Corei5 processor with 
4 GB RAM, and Windows 10. MATLAB 2016 was 
used to implement the algorithms. Each algorithm 
was executed 30 times, with a maximum of 100 
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generations per run, which served as the 
termination condition. For the genetic algorithm 
(GA), the mutation and crossover probabilities 
were set to 0.3 and 0.7, respectively (see Table 4, 
rows 4 and 5). Tables 4 and 5 present the parameter 
values and notations used in the algorithms, 
respectively. 

 
Table 5. Symbols used in the algorithms. 

No
 

Symbol Description 
1 nPop Initial population size for all algorithms except 

SFLA, SFLA+GA, Proposed Method 
2 MaxIterati

on 
Maximum number of generations for all algorithms 

3 Max-Run Maximum number of running for all algorithms 

4 Mutation 
probability 

for all algorithms except SFLA, IPSO and BGWO 

5 Crossover 
probability 

for all algorithms except SFLA, IPSO and BGWO 

6 nPopWolfp
lex 

Wolfplex population size for SFLA, SFLA+GA 
and Proposed Method algorithms 

7 nWolfplex Number of Wolfplexes for SFLA, SFLA+GA and 
Proposed Method algorithms 

8 nPop=nPo
pWolfplex 

 
 

Initial population size for SFLA, SFLA+GA, 
Proposed Method 

9 nNode The number of nodes (web services or tasks) in the 
composition graph 

10 m The number of candidates for each web service, 
these Candidates Randomly selected from QWS 

 11 C1=C2 The initial parameters for PSO algorithm 

12 Sigma Step size in IPSO, SFLA algorithms 

13 q The number of Parents in SFLA algorithm 

14 alpha The number of Offsprings in SFLA algorithm 

15 beta Maximum Number of Iterations in each Max-
Iteration in SFLA algorithm 

16 wα The first leader of the wolves (Alpha wolf) 

17 wβ The second leader of the wolves (Beta wolf) 

18 wδ The third leader of the wolves (Delta wolf) 

19 wω The current wolve(solution) (Omega wolf) 

20 wω-new The new wolf (new solution) (Omega-new wolf) 

21 QA The quality attribute values of each candidate (each 
dimension of wolf) 

22 AQV The quality attribute values of summary node 

23 ca An array of selected candidates’ indices 

24 Q A set of quality attribute values 

25 F Fitness value of a wolf (solution) 

26 Abstract 
service 

A web service without non-functional attributes 

27 Concrete 
service 

A web service with non-functional attributes 

 

 

5.1. Experiment 1: Web application of type a 
Now, we deal with the results obtained by applying 
DEGWO and other selection methods to the 
summarized nodes obtained for web application of 
type a (Figure 2). Figures 4-7 show the fitness and 
QAs values DEGWO (black), its step 1 (purple), 
and other selection methods, and Figures 8-11 do 
the fitness and QAs similarities between DEGWO 
and other selection methods. In all Figures, 
DEGWO was stated as ProposedMethod. To 
compute the fitness value, Equation 3 was used. 
Moreover, all QA values were normalized based on 
Equations 1 and 2. The fitness value for all the 
methods was computed after 30 runs and the initial 
population size was 100. 

5.1.1. Discussion 
As shown in Figures 5–12, DEGWO (represented 
by the black line) outperforms the other algorithms 
in terms of fitness value, with improvements 
ranging from 1% to 3%, availability from 2% to 
6%, and response time and cost from 50% to 90%. 
Figure 4 illustrates that the rate of change in fitness 
value is significant during the first 20 iterations of 
each run, with the greatest increase occurring in 
this range (iterations 1 to 20). Additionally, 
availability follows a similar trend in this period. In 
contrast, the other two QAs (response time and 
cost), while initially smaller than those of the other 
algorithms, remain relatively constant during the 
early iterations. However, these two QAs exhibit a 
higher rate of change between iterations 20 and 35, 
when the fitness value shows only minor 
improvements, and its changes become negligible. 

-Interpretation using fitness and QAs 
Since the fitness value is based on considering the 
three QAVs, an improvement in these values leads 
to an improvement in the fitness value. There is a 
large increase in the fitness value until iteration 20 
because of increasing the availability value. For 
sequence and parallel patterns, Table 2 shows the 
multiplication of service availability values, along 
with the cost and response time values. 
DEGWO has the advantages of faster convergence 
(thanks to using GWO), the escape from local 
optima (thanks to using GA), and a wider space to 
select the solutions (thanks to using SFLA). This 
leads to selecting candidates with more 
availability. As Figures 4-7 show, DEGWO 
converges in the 35th iteration, and onwards the 
availability value does not change while two other 
QA values change in opposite, i.e., by increasing a 
QA value, another one decreases. Accordingly, the 
fitness value remains constant.  
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Figure 4. Fitness value of DEGWO (black) and 

RDGWO+GA (purple) and other selection methods in 
100 iterations for the web application in Figure 2. 

 
Figure 5. The SN’s (AQV) availability of DEGWO (black) 
and RDGWO+GA (purple) and other selection methods 

in 100 iterations for the web application in Figure 2. 

 
Figure 6. The SN’s (AQV) response time of DEGWO 

(black) and RDGWO+GA (purple) and other selection 
methods in 100 iterations for the web application in 

Figure 2. 

 
Figure 7. The SN’s (AQV) cost of DEGWO (black) and 
RDGWO+GA (purple) and other selection methods in 

100 iterations for the web application in Figure 2. 

As Figures 6-7 show, response time and cost values 
are unstable until iteration 30 but afterward, they 
are decreasing or increasing.  
 
- Interpretation using similarity 
Another known criterion that can be used to 
evaluate fitness and AQVs of the selected 
summarized nodes is similarity or the ratio of two 
values. (Equations 10 and 11). Value 1 for the ratio 
of the fitness or QAs values of AQV of method x 
to that of DEGWO denotes two methods have the 
same ability in selecting the summarized nodes in 
terms of fitness or AQV. The ratio for the fitness 
and availability with values <1 or >1 denotes 
method x selected weaker or stronger nodes against 
DEGWO, and it is vice versa for cost and response 
time.  

Methodx
Fitness

oposedMethod

Fitness
Similarity

Fitness


Pr

 (10) 

Methodx
AQV

oposedMethod

AQV
Similarity

AQV


Pr

 (11) 

 
Figures 8–11 show similar performance values 
between DEGWO and the other methods in terms 
of fitness value, availability, response time, and 
cost. As depicted in Figure 8, DEGWO 
consistently selected better summarized nodes 
compared to BGWO (cyan), SFLA (red), and IPSO 
(yellow) across almost all iterations, with a 
particularly notable advantage in iterations before 
70. This is attributed to DEGWO's faster 
convergence rate compared to the other methods. 
In general, the higher the similarity, the closer the 
graph value is to one, indicating that the accuracy 
of that method is closer to that of DEGWO. Among 
the methods compared, RDGWO+GA (the first 
step of DEGWO), HGWO, and SFLAGA exhibit 
the greatest similarity to DEGWO, while IPSO, 
SFLA, and BGWO show the least similarity in 
terms of fitness. 
The availability similarity analysis in Figure 9 is 
the same as the fitness as shown in Figure 8. 
Figures 10 and 11 show that the response time and 
cost similarity of almost all methods to DEGWO is 
greater than one. In other words, in terms of these 
two parameters, there is very little similarity 
between the x method and the DEGWO in almost 
any iteration. 
These Figures show that the most similar methods 
in terms of response time are SFLAGA, 
RDGWO+GA and in terms of cost are 
RDGWO+GA, HGWO and the least similar one in 
terms of response time is SFLA and in terms of cost 
is IPSO. 
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Figure 8. The fitness Similarity between DEGWO and 
others. 

 
Figure 9. The AQV’s availability similarity between 

DEGWO and others. 

Figure 10. The AQV’s response time similarity between 
DEGWO and others. 

Due to the high convergence speed of DEGWO, 
other methods have less similarity than DEGWO in 
terms of fitness value for 30 iterations. This 
behavior can also be seen in availability, but for 
two other QA of AQV, the similarity of other 
methods to DEGWO is more for 30 iterations, and 
gradually this similarity decreases. This issue can 
be seen in cost attribute too. 
To show the generality of comparing the solutions 
generated by the methods for the web application 
in Figure 2, statistical tests were applied by which 

the significance of differences between the 
solutions is evaluated. Table 6 shows results of 
statistical tests in terms of fitness, availability, 
response time, and cost.  

 
Figure 11. The AQV’s cost similarity between DEGWO 

and others. 

Column 1 of Table 6 shows the fitness or QAs 
values by which generality of results of the two 
methods are compared and Columns 2 and 3 show 
the two methods whose results are compared. A 
Sig.≤0.05 denotes a significant difference between 
the generality of results of the two methods. For the 
Sig.≤0.05, two positive values for a positive QA, 
like fitness and availability denote Method (I) 
outperforms Method (J) and two negative values 
for a positive QA in the columns denote Method (J) 
outperforms Method (I).  But, for negative QAs 
like response time and cost, Sig.≤0.05 denotes 
Method (I) outperforms Method (J) if two negative 
values exist in the two last columns. 
As the Best Fitness section of Table 6 shows, a 
significant difference exists between the generality 
of results of DEGWO and that of others (indicated 
by Sig.=0.000) and two positive values in the two 
last columns denote the DEGWO generally 
outperforms other ones. The rest of rows in Section 
Best Fitness of Table 6 show dominance for others. 
Similar results are seen for the DEGWO in Section 
Availability. 
According to Section Response time of Table 6, the 
significant difference exists between the generality 
of results of GEGWO and that of others but 
RDGWO+GA (the DEGWO presented in the first 
step) and SFLAGA. Finally, according to Section 
Cost of Table 6, among the seven methods there 
exists a significant difference between the 
generality of results of DEGWO and that of 
BGWO, IPSO, and SFLA but such difference is not 
seen between that of DEGWO and that of the other 
four methods.  
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- Execution time 
Now, for the web application in Figure 2, we 
consider the execution time of the selection 
methods (Figure 12) until they achieve their 
convergence. As Figure 12 shows, IPSO and 
BGWO have less execution time than others 

because their algorithms have less complexity and 
due to being stuck in the local optimum, they 
converge sooner, and that's why according to 
Figure 4, these methods also have a lower fitness 
value than the others. 

  
Table 6. Results of Statistical tests for selection of solutions (summarized nodes) for the web application in Figure 2. 

Multiple Comparisons 
Scheffe 

Dependent Variable (I) Method (J) Method Sig. 95% Confidence Interval 
Lower Bound Upper Bound 

Best Fitness 

GA 

HGWO .059 -.02686218282490 .000234821842 
RDGWO+GA .000 -.03994613698413 -.012849132316 

DEGWO .000 -.06242155654648 -.035324551878 
BGWO .000 .10766662048557 .134763625153 
IPSO .000 .12640753548144 .153504540148 

SFLAGA .000 -.03855795444755 -.011460949780 
SFLA .000 .11502392107234 .142120925739 

HGWO 

GA .059 -.00023482184261 .026862182824 
RDGWO+GA .069 -.02663245649299 .000464548174 

DEGWO .000 -.04910787605534 -.022010871387 
BGWO .000 .12098030097672 .148077305644 
IPSO .000 .13972121597258 .166818220640 

SFLAGA .159 -.02524427395641 .001852730711 
SFLA .000 .12833760156349 .155434606230 

RDGWO+GA 

GA .000 .01284913231663 .039946136984 
HGWO .069 -.00046454817451 .026632456492 

DEGWO .000 -.03602392189610 -.008926917228 
BGWO .000 .13406425513596 .161161259803 
IPSO .000 .15280517013182 .179902174799 

SFLAGA 1.000 -.01216031979717 .014936684870 
SFLA .000 .14142155572273 .168518560390 

DEGWO 

GA .000 .03532455187898 .062421556546 
HGWO .000 .02201087138783 .049107876055 

RDGWO+GA .000 .00892691722859 .036023921896 
BGWO .000 .15653967469830 .183636679365 
IPSO .000 .17528058969417 .202377594361 

SFLAGA .000 .01031509976518 .037412104432 
SFLA .000 .16389697528507 .190993979952 

BGWO 

GA .000 -.13476362515308 -.107666620485 
HGWO .000 -.14807730564422 -.120980300976 

RDGWO+GA .000 -.16116125980346 -.134064255135 
DEGWO .000 -.18363667936581 -.156539674698 

IPSO .000 .00519241266211 .0322894173296 
SFLAGA .000 -.15977307726688 -.132676072599 

SFLA .752 -.00619120174698 .0209058029205 

IPSO 

GA .000 -.15350454014894 -.1264075354814 
HGWO .000 -.16681822064009 -.1397212159725 

RDGWO+GA .000 -.17990217479932 -.1528051701318 
DEGWO .000 -.20237759436167 -.1752805896941 
BGWO .000 -.03228941732962 -.0051924126621 

SFLAGA .000 -.17851399226274 -.1514169875952 
SFLA .188 -.02493211674285 .00216488792466 

SFLAGA 

GA .000 .01146094978005 .03855795444755 
HGWO .159 -.00185273071110 .02524427395641 

RDGWO+GA 1.000 -.01493668487034 .01216031979717 
DEGWO .000 -.03741210443268 -.0103150997651 
BGWO .000 .13267607259937 .15977307726688 
IPSO .000 .15141698759524 .17851399226274 
SFLA .000 .14003337318614 .16713037785365 

SFLA 

GA .000 -.14212092573985 -.1150239210723 
HGWO .000 -.15543460623099 -.1283376015634 

RDGWO+GA .000 -.16851856039023 -.1414215557227 
DEGWO .000 -.19099397995258 -.1638969752850 
BGWO .752 -.02090580292052 .00619120174698 
IPSO .188 -.00216488792466 .02493211674285 

SFLAGA .000 -.16713037785365 -.1400333731861 

Availability GA 

HGWO .074 -.07902596174955 .00171004921470 
RDGWO+GA .000 -.11583065011806 -.0350946391538 

DEGWO .000 -.17186899660423 -.0911329856399 
BGWO .000 .31941006352140 .40014607448565 
IPSO .000 .37526722772176 .45600323868602 

SFLAGA .000 -.11126157354776 -.0305255625835 
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SFLA .000 .33995373824533 .42068974920958 

HGWO 

GA .074 -.00171004921470 .07902596174955 
RDGWO+GA .109 -.07717269385064 .00356331711362 

DEGWO .000 -.13321104033681 -.0524750293725 
BGWO .000 .35806801978882 .43880403075308 
IPSO .000 .41392518398919 .49466119495344 

SFLAGA .248 -.07260361728034 .00813239368391 
SFLA .000 .37861169451275 .45934770547700 

RDGWO+GA GA .000 .03509463915381 .11583065011806 
Multiple Comparisons 

Scheffe 

Dependent Variable (I) Method (J) Method Sig. 95% Confidence Interval 
Lower Bound Upper Bound 

 

 

HGWO .109 -.00356331711362 .07717269385064 
DEGWO .000 -.09640635196830 -.0156703410040 
BGWO .000 .39487270815733 .47560871912158 
IPSO .000 .45072987235770 .53146588332195 

SFLAGA 1.000 -.03579892891183 .04493708205242 
SFLA .000 .41541638288126 .49615239384551 

DEGWO 

GA .000 .09113298563998 .17186899660423 
HGWO .000 .05247502937255 .13321104033681 

RDGWO+GA .000 .01567034100404 .09640635196830 
BGWO .000 .45091105464350 .53164706560776 
IPSO .000 .50676821884387 .58750422980812 

SFLAGA .000 .02023941757434 .10097542853859 
SFLA .000 .47145472936743 .55219074033168 

BGWO 

GA .000 -.40014607448565 -.3194100635214 
HGWO .000 -.43880403075308 -.3580680197888 

RDGWO+GA .000 -.47560871912158 -.3948727081573 
DEGWO .000 -.53164706560776 -.4509110546435 

IPSO .000 .01548915871824 .09622516968249 
SFLAGA .000 -.47103964255129 -.3903036315870 

SFLA .811 -.01982433075820 .06091168020605 

IPSO 

GA .000 -.45600323868602 -.3752672277217 
HGWO .000 -.49466119495344 -.4139251839891 

RDGWO+GA .000 -.53146588332195 -.4507298723577 
DEGWO .000 -.58750422980812 -.5067682188438 
BGWO .000 -.09622516968249 -.0154891587182 

SFLAGA .000 -.52689680675165 -.4461607957874 
SFLA .146 -.07568149495856 .00505451600569 

SFLAGA 

GA .000 .03052556258351 .11126157354776 
HGWO .248 -.00813239368391 .07260361728034 

RDGWO+GA 1.000 -.04493708205242 .03579892891183 
DEGWO .000 -.10097542853859 -.0202394175743 
BGWO .000 .39030363158703 .47103964255129 
IPSO .000 .44616079578740 .52689680675165 
SFLA .000 .41084730631096 .49158331727522 

SFLA 

GA .000 -.42068974920958 -.3399537382453 
HGWO .000 -.45934770547700 -.3786116945127 

RDGWO+GA .000 -.49615239384551 -.4154163828812 
DEGWO .000 -.55219074033168 -.4714547293674 
BGWO .811 -.06091168020605 .01982433075820 
IPSO .146 -.00505451600569 .07568149495856 

SFLAGA .000 -.49158331727522 -.4108473063109 

Response Time 

GA 

HGWO 1.000 -.02037514856904 .01968170235590 
RDGWO+GA 1.000 -.01656621629304 .02349063463190 

DEGWO .032 .00090976519387 .04096661611881 
BGWO .980 -.02659564719363 .01346120373131 
IPSO 1.000 -.02315774503746 .01689910588747 

SFLAGA .962 -.01266344703824 .02739340388669 
SFLA .955 -.02765468227613 .01240216864880 

HGWO 

GA 1.000 -.01968170235590 .02037514856904 
RDGWO+GA .999 -.01621949318647 .02383735773847 

DEGWO .027 .00125648830044 .04131333922538 
BGWO .986 -.02624892408706 .01380792683787 
IPSO 1.000 -.02281102193090 .01724582899404 

SFLAGA .952 -.01231672393168 .02774012699326 
SFLA .965 -.02730795916957 .01274889175537 

RDGWO+GA 

GA 1.000 -.02349063463190 .01656621629304 
HGWO .999 -.02383735773847 .01621949318647 

DEGWO .148 -.00255244397556 .03750440694938 
BGWO .824 -.03005785636307 .00999899456187 
IPSO .980 -.02661995420690 .01343689671804 

SFLAGA .999 -.01612565620768 .02393119471726 
SFLA .732 -.03111689144557 .00893995947937 

DEGWO GA .032 -.04096661611881 -.0009097651938 
HGWO .027 -.04131333922538 -.0012564883004 
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RDGWO+GA .148 -.03750440694938 .00255244397556 
BGWO .001 -.04753383784998 -.0074769869250 
IPSO .005 -.04409593569381 -.0040390847688 

SFLAGA .475 -.03360163769459 .00645521323035 
SFLA .000 -.04859287293248 -.0085360220075 

BGWO 

GA .980 -.01346120373131 .02659564719363 
HGWO .986 -.01380792683787 .02624892408706 

RDGWO+GA .824 -.00999899456187 .03005785636307 
DEGWO .001 .00747698692504 .04753383784998 

Multiple Comparisons 
Scheffe 

Dependent Variable (I) Method (J) Method Sig. 95% Confidence Interval 
Lower Bound Upper Bound 

 

 
IPSO 1.000 -.01659052330630 .02346632761864 

SFLAGA .438 -.00609622530708 .03396062561786 
SFLA 1.000 -.02108746054497 .01896939037997 

IPSO 

GA 1.000 -.01689910588747 .02315774503746 
HGWO 1.000 -.01724582899404 .02281102193090 

RDGWO+GA .980 -.01343689671804 .02661995420690 
DEGWO .005 .00403908476887 .04409593569381 
BGWO 1.000 -.02346632761864 .01659052330630 

SFLAGA .786 -.00953412746325 .03052272346169 
SFLA .998 -.02452536270114 .01553148822380 

SFLAGA 

GA .962 -.02739340388669 .01266344703824 
HGWO .952 -.02774012699326 .01231672393168 

RDGWO+GA .999 -.02393119471726 .01612565620768 
DEGWO .475 -.00645521323035 .03360163769459 
BGWO .438 -.03396062561786 .00609622530708 
IPSO .786 -.03052272346169 .00953412746325 
SFLA .334 -.03501966070036 .00503719022458 

SFLA 

GA .955 -.01240216864880 .02765468227613 
HGWO .965 -.01274889175537 .02730795916957 

RDGWO+GA .732 -.00893995947937 .03111689144557 
DEGWO .000 .00853602200754 .04859287293248 
BGWO 1.000 -.01896939037997 .02108746054497 
IPSO .998 -.01553148822380 .02452536270114 

SFLAGA .334 -.00503719022458 .03501966070036 

Cost 

GA 

HGWO 1.000 -.00415074504136 .00402857531797 
RDGWO+GA .999 -.00327145871172 .00490786164761 

DEGWO .145 -.00050965251232 .00766966784702 
BGWO .964 -.00558188228009 .00259743807925 
IPSO .833 -.00611388974430 .00206543061504 

SFLAGA .993 -.00295188263311 .00522743772623 
SFLA .093 -.00789677124288 .00028254911645 

HGWO 

GA 1.000 -.00402857531797 .00415074504136 
RDGWO+GA .999 -.00321037385003 .00496894650931 

DEGWO .129 -.00044856765063 .00773075270871 
BGWO .972 -.00552079741839 .00265852294094 
IPSO .854 -.00605280488260 .00212651547673 

SFLAGA .990 -.00289079777142 .00528852258792 
SFLA .105 -.00783568638119 .00034363397815 

RDGWO+GA 

GA .999 -.00490786164761 .00327145871172 
HGWO .999 -.00496894650931 .00321037385003 

DEGWO .480 -.00132785398026 .00685146637907 
BGWO .711 -.00640008374803 .00177923661130 
IPSO .439 -.00693209121224 .00124722914710 

SFLAGA 1.000 -.00377008410105 .00440923625828 
SFLA .013 -.00871497271083 -.0005356523514 

DEGWO 

GA .145 -.00766966784702 .00050965251232 
HGWO .129 -.00773075270871 .00044856765063 

RDGWO+GA .480 -.00685146637907 .00132785398026 
BGWO .003 -.00916188994744 -.0009825695881 
IPSO .001 -.00969389741164 -.0015145770523 

SFLAGA .646 -.00653189030046 .00164743005888 
SFLA .000 -.01147677891023 -.0032974585509 

BGWO 

GA .964 -.00259743807925 .00558188228009 
HGWO .972 -.00265852294094 .00552079741839 

RDGWO+GA .711 -.00177923661130 .00640008374803 
DEGWO .003 .00098256958810 .00916188994744 

IPSO 1.000 -.00462166764388 .00355765271546 
SFLAGA .549 -.00145966053269 .00671965982665 

SFLA .709 -.00640454914246 .00177477121687 

IPSO 

GA .833 -.00206543061504 .00611388974430 
HGWO .854 -.00212651547673 .00605280488260 

RDGWO+GA .439 -.00124722914710 .00693209121224 
DEGWO .001 .00151457705231 .00969389741164 
BGWO 1.000 -.00355765271546 .00462166764388 
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SFLAGA .290 -.00092765306848 .00725166729086 
SFLA .908 -.00587254167826 .00230677868108 

SFLAGA 

GA .993 -.00522743772623 .00295188263311 
HGWO .990 -.00528852258792 .00289079777142 

RDGWO+GA 1.000 -.00440923625828 .00377008410105 
DEGWO .646 -.00164743005888 .00653189030046 
BGWO .549 -.00671965982665 .00145966053269 
IPSO .290 -.00725166729086 .00092765306848 
SFLA .005 -.00903454878944 -.0008552284301 
Multiple Comparisons 

Scheffe 

Dependent Variable (I) Method (J) Method Sig. 95% Confidence Interval 
Lower Bound Upper Bound 

 SFLA 

GA .093 -.00028254911645 .00789677124288 
HGWO .105 -.00034363397815 .00783568638119 

RDGWO+GA .013 .00053565235149 .00871497271083 
DEGWO .000 .00329745855090 .01147677891023 
BGWO .709 -.00177477121687 .00640454914246 
IPSO .908 -.00230677868108 .00587254167826 

SFLAGA .005 .00085522843011 .00903454878944 
*. The mean difference is significant at the 0.05 level 

Figure 12. The execution time of the selection methods in 
seconds. 

Method GA, having the least execution time after 
DEGWO, benefits from the proper fitness 
(according to Figure 4). The execution time of 
RDGWO+GA, HGWO, and SFLAGA are 54, 45, 
and 40 respectively, which converge in iterations 
82, 90, and 100, respectively (see Figure 4). 
 
5.2. Experiment 2. Web application of type b 
As stated in Section 5, our second evaluation was 
done on the web applications of type (b) through 
the three following scenarios where the number of 
members of the initial population and the number 
of web services may be fixed or vary. 
(1) The initial population is fixed and has five 

members, and the number of web services 
(tasks) is 5, 10, 50, and 100 with the sequential 
structure. 

(2) The number of web services is fixed and equal 
to 10 with a sequential structure and the initial 
population was considered 5, 10, 50, and 100. 

(3) The number of web services is fixed and 
equal to 100 with a sequential structure and 
the initial population was considered 5, 10, 
50, and 100. 

To enhance the clarity of the figures, the fitness and 
AQV values were scaled by factors of 1000, 1000, 
10,000, and 10,000, respectively. 
 

5.2.1. Scenario 1 
Figures 13-17 present the results of Scenario 1. 
Figure 13 illustrates the fitness values as a function 
of the number of web services (tasks) with a fixed 
initial population of 5. As shown, fitness values 
decrease sharply as the number of web services 
increases. Figure 14 demonstrates that, although 
availability decreases with an increasing number of 
web services, the availability of the SN selected by 
DEGWO remains above 900. As shown in Figure 
15, for all methods, the availability of the SN 
decreases with an increase in the number of 
services. However, this is compensated for by 
reductions in response time and cost as the number 
of services increases (see Figures 16 and 17). This 
explains why the overall fitness of DEGWO 
remains superior to that of the other methods. 

 
Figure 13. Best fitness of the SN (AQV) by the selection 

methods when the number of web services increases. 
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Figure 14. Availability of the SN (AQV) by selection 
methods when the number of web services increases. 

 

 

 
Figure 15. Availability of the SN (AQV) by selection 
methods when the number of web service increases. 

 
 
 

 
Figure 16. Response time of the SN (AQV) by the 

selection methods when the number of web service 
increases. 

 

 
Figure 17. Cost of the SN (AQV) by the selection methods 

when the number of web service increases. 
 

5.2.2. Scenario 2 
Figures 18-21 illustrate fitness and QA values of 
the SNs (AQV) by the methods for Senario2. As 
Figures 18 and 19 shows, the fitness and 
availability values by the methods increase when 
the number of initial population members 
increases, and DEGWO outperforms others.  

 
Figure 18. Best fitness of the SN (AQV) by the selection 

methods when the number of web services is 10 and initial 
population increases. 

 

 
Figure 19. Availability of the SN (AQV) by the selection 

methods when the number of web services is 10 and initial 
population increases. 

400

500

600

700

800

900

1000

105

Av
ai

la
bi

lit
y

The number of web services

ProposedMethod

GA

RDGWO+GA

HGWO

BGWO

SFLA+GA

IPSO

SFLA

0

1E+10

2E+10

3E+10

4E+10

10050

Av
ai

la
bi

lit
y

The number of web services

ProposedMethod

GA

RDGWO+GA

HGWO

BGWO

SFLA+GA

IPSO

SFLA

100

200

300

400

500

600

700

10050105

Re
sp

on
se

 T
im

e

The number of web services

ProposedMethod

GA

RDGWO+GA

HGWO

BGWO

SFLA+GA

IPSO

SFLA

0

20

40

60

80

100

120

140

160

180

200

10050105

Co
st

The number of web services

ProposedMethod

GA

RDGWO+GA

HGWO

BGWO

SFLA+GA

IPSO

SFLA

750

850

950

10050105

Be
st

 F
itn

es
s

The number of population member

ProposedMethod

GA

RDGWO+GA

HGWO

BGWO

SFLA+GA

IPSO

SFLA

400

600

800

1000

10050105

Av
ai

la
bi

lit
y

The number of population member

ProposedMethod

GA

RDGWO+GA

HGWO

BGWO

SFLA+GA

IPSO

SFLA



Babamir & Zahiri/ Journal of AI and Data Mining, Vol. 13, No. 2, 2025 
 

202 
 

 
Figure 20. Response time of the SN (AQV) by the 

selection methods when the number of web services is 10 
and initial population increases. 

Likewise, according to Figures 20 and 21, response 
time and cost values of the SN by the methods 
decrease when the number of initial population 
members increases, and DEGWO outperforms 
others. As Figure 21 shows, the SNs have a triangle 
behavior in the cost value; this is because of 
respecting the two other QAs of SN  in the tradeoff 
between the QAs.  

 
Figure 21. Cost of the SN (AQV) by the selection methods 

when the number of web services is 10 and initial 
population increases. 

 
Figure 22. Best fitness of the SN (AQV) by the selection 

methods when the number of web services is 100 and 
initial population increases. 

 
Figure 23. Availability of the SN (AQV) by the selection 

methods when the number of web services is 100 and 
initial population increases. 

 
Figure 24. Response time of the SN (AQV) by the 

selection methods when the number of web services is 100 
and initial population increases. 
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Figure 25. Cost of the SN (AQV) by the selection methods 

when the number of web services is 100 and initial 
population increases. 

5.2.3. Scenario 3 
This scenario is similar to Scenario 2, where the 
number of initial population members increases 
from 5 to 100, while the number of web services 
remains fixed at 100. Figures 22-25 show best 
fitness, availability, response time, and cost values 
of SN, respectively. The behavior of fitness 
depicted in Figure 22 resembles that of Figure 18. 
Conversely, Figure 23 demonstrates a triangular 
pattern in SN availability. This behavior can be 
attributed to the trade-off between the two other 
quality attributes (QAs) involved in the 
optimization process. 

5.2.4. Result summaries of the scenarios 
Generally, for Scenario 1 with 5 initial members 
and different web services, DEGWO improves the 
average availability (for 5 and 10 service) by 12%, 
8%, 11%, 20%, 2%, 36%, 25%, the average 
response time by 93%, 31%, 51%, 78%, 14%, 
114%, 66% and the average cost by 119%, 80%, 
53%, 120%, 19%, 238%, 57% compared to the 
GA, RDGWO+GA, HGWO, BGWO, SFLA+GA, 
IPSO, SFLA. 
For Scenario 2 with 10 web services and the 
different number of initial members, DEGWO 
improves the average availability by 10%, 4%, 7%, 
27%, 2%, 42%, and 34%, and the average response 
time by 104%, 42%, 45%, 95%, 51%, 104%, 
106%, and the average cost by 220%, 70%, 70%, 
350%, 120%, 270%, 160% compared to the GA, 
RDGWO+GA, HGWO, BGWO, SFLA+GA, 
IPSO, SFLA. 
For Scenario 3 with 100 web services and the 
different number of initial members, DEGWO 
improves the average availability by 48%, 13%, 
99%, 37%, 10%, 99%, and 59%, and the average 
response time by 34%, 35%, 35%, 96%, 26%, 
110%, 95%, and the average cost by 46%, 46%, 

36%, 130%, 16%, 120%, 116% compared to the 
GA, RDGWO+GA, HGWO, BGWO, SFLA+GA, 
IPSO, SFLA. 

6. Threats to the proposed approach 
The proposed approach (DEGWO) was designed 
under several constraints, making it suitable for 
static environments rather than dynamic ones. 
These constraints are as follows: 1) the structure of 
the graph is static (predefined), 2) the number of 
available candidates remains fixed, with their QA 
values unchanged, 3) the candidates are always 
available, and it is assumed that no candidate fails. 
The selected candidates are managed and operated 
independently; however, there is potential for 
further improvement by considering correlations 
between them. DEGWO is not capable of 
responding to real-time requests immediately. This 
limitation can be addressed by parallelizing the 
algorithm and incorporating constraints to 
prioritize real-time requests. 

7. Conclusions and future work 
In this study, we addressed the quality-aware 
selection of candidate services for web service 
applications to obtain an optimal summarized node 
(SN). Due to the potentially large number of 
candidates for each web service, numerous 
concrete compositions are generated as solutions, 
each with varying qualities. Selecting the near-
optimal solutions is an NP-hard problem. In this 
study, three quality attributes "availability", 
"response time", and "cost" were considered for 
each candidate service, with the primary goal of 
maximizing the fitness value of the compositions. 
After applying the graph summarization method, 
we introduced an evolutionary optimization 
algorithm to select the optimal summarized nodes 
(SNs). 
To produce optimal summarized nodes, we 
introduced DEGWO based on the Gray Wolf 
Optimizer (GWO), Genetic Algorithm (GA), and 
Shuffled Frog Leaping Algorithm (SFLA). Since 
the basic GWO is suited for continuous spaces and 
our problem uses a discrete space, a novel function 
was proposed to convert the continuous space into 
a discrete one. DEGWO leverages strengths of all 
three algorithms including the high convergence 
speed of GWO, the local optima prevention using 
GA's mutation and crossover operators, and the 
broader solution space exploration afforded by 
SFLA. 
We compared the results of DEGWO with those 
from seven related works using statistical tests and 
graphical representations. These comparisons were 
made by applying the optimization algorithms to a 
real web application across three scenarios, with 
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the performance measured in terms of fitness value, 
availability, response time, cost of the summarized 
node (SN), and execution time. The experimental 
results demonstrated that DEGWO improved all 
quality attributes. Specifically, compared to the top 
three algorithms (RDGWO+GA, HGWO, and 
SFLAGA). The DEGWO algorithm showed the 
following improvements on average: (1) Scenario 
1: 39%, 38%, and 11%; (2) Scenario 2: 38%, 40%, 
57%; (3) Scenario 3: 31%, 56%, and 17%. 
Therefore, DEGWO outperformed the top three 
algorithms by 36%, 44%, and 28%, respectively. 
Additionally, the similarity values results showed 
that DEGWO achieved 100% efficiency compared 
to the other methods. 
In this study, the quality attribute (QA) values were 
weighted using the Simple Additive Weighting 
(SAW) approach, transforming the WSC problem 
into a single-objective optimization model. 
DEGWO can be extended as future work by 
incorporating Pareto-based optimizers to enhance 
results in dynamic environments. Additionally, 
solutions can be proposed to address the constraints 
outlined in Section 6, enabling the inclusion of 
dynamic environments in the optimization process. 

Availability of data and materials:  
The dataset used for selecting the candidates is 
available at https://zenodo.org/record/3557008. 
The interface input and output consoles, along with 
additional examples of WSC graph 
summarizations and the matrix representation of 
WSC, can be accessed in the files 
InputOutputConsole.docx, 
GraphSummarization.docx, and Guide_text.txt, 
respectively. These files are included in the Service 
Composition&Selection.zip archive, which can be 
found at 
https://github.com/NargessZahiri/Composition-
Selection. 
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Appendix 

This appendix addresses the links contain:  
(1) We provided the matrix representation for a few WSC graphs, including 

probabilistic edges, in file Guide_text.txt. This file is included in file 
Service Composition&Selection.zip at 

    https://github.com/NargessZahiri/Composition-Selection     
(2) A sample of the interface's input (Figure A-1) and output (Figure A-2)was 

shown in file InputOutputConsole.docx in the zip file.  The input demonstrates 
how users can specify the graph structure through an incidence matrix of 
vertices, while the output shows the initial randomly selected candidates' 
indices and their summarized node’s quality values,  

(3) Demonstration of the summarization of the graphs generated via our interface 
for loop, unstructured conditional, and structured conditional patterns, were 
shown in file GraphSummarization.docx in the zip file (Figures A-3 to A-5), 

https://github.com/NargessZahiri/Composition-Selection
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(4) A web service graph containing an unstructured (undefined) conditional 
pattern, which cannot be summarized into an summarized node was shown in 
Figure A-4. 

(5) An example of the discretization process (done by Algorithm 2), detailed in 
eight steps, is provided in Appendix 1 in file Appendix.pdf.  

(6) Results of the selection methods based on their fitness values and quality 
values of the summarized nodes are presented in Tables A-1 to A-4 in Appendix 
2 in file Appendix.pdf. In these tables, N denotes the number of runs and the 
best fitness value of the methods (Tabl A-1) and the quality values obtained 
by the methods (Tables A-2 to A-4)were shown in the other columns. The values 
shown in the same column are considered similar in terms of fitness or quality 
value. The values in the Tables support the findings in Table 6, where two 
methods (I) and (J) have no significant difference in fitness or quality 
values when their values are in the same column in the Tables. 
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 چکیده:

شد و هستند در تعامل با یکدیگر ها کهسرویسوباز  گرافی ه صورتها بسرویسترکیب وب . شودمی مدله، برای برآورده کردن نیازهای کاربر طراحی 

ی مختلف ، چندین گزینهسرویساست. برای اجرای هر  سرویسی تعامل بین دو دهندهو هر یال نشان سرویسی یک دهندهدر این گراف، هر گره نشان

سان اما ویژگی های متعددی باهای کیفی متفاوت در وب وجود دارد. در نتیجه، ترکیببا ویژگی ستند که عملکرد یک شکیل ه های کیفی مختلف قابل ت

شئئده توسئئز ابزار را برای پشئئتییانی سئئازی تکاملیاین مقاله یک الگوریتم بهینه .کندسئئخت تیدیل میخیلی  یانتخاب ترکیب بهینه را به یک مسئئهله

سخهانتخاب ترکیب بهینه معرفی می شنهادی، ن ستریبهینهالگوریتم ی یافتهتوسعه ی گسسته وکند. الگوریتم پی ست.  (DEGWO) سازی گرگ خاک ا

ی بهینهنزدیک بههای حلدهد تا راهرا گسترش می GWO های الگوریتمسازی کرده و سپس قابلیترا گسسته هاحلراهی این روش ابتدا فضای پیوسته

سری سایی کرده  سرا شنا سایر روش DEGWO الگوریتم .دهدمیزایش افنیز سرعت همگرایی را  در حالیکه همزمانرا  سه با  های مرتیز بر در مقای

 ٪43 ،٪3۶ پذیری،دسترس در بهیود ٪5 و ٪3۹ ،٪8طور متوسز اساس معیارهای مختلف ارزیابی شده است. نتایج تجربی نشان داد که این الگوریتم به

سخ، زمان در بهیود ٪30 و سیت هزینه در بهیود ٪51 و ٪53 ،٪۶5 و پا شرو الگوریتم سه به ن شته  SFLAGA و  RDGWO+GA ،HGWO پی دا

 .است

سئئازی گرگ بهینهالگوریتم  ،هاسئئرویسارتیاطی بین وبی هاالگو ،های کیفیبر اسئئاس ویژگیانتخاب ترکیب  ،هاسئئرویسوبترکیب  :کلمات کلیدی

 .خاکستری
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