
1

Journal of Artificial Intelligence and Data Mining (JAIDM), Vol. 13, No. 2, 2025, 183-206.

Shahrood University of

Technology

Journal of Artificial Intelligence and Data Mining (JAIDM)

Journal homepage: http://jad.shahroodut.ac.ir

 Research paper

A Pattern and Summarization Based Optimization Algorithm to QoS-
Aware Web Service Composition Selection

Seyed Morteza Babamir* and Narjes Zahiri
 Department of Software Engineering, University of Kashan, Kashan, Iran.

Article Info Abstract

Article History:
Received 08 December 2024
Revised 12 January 2025
Accepted 12 March 2025

DOI:10.22044/jadm.2025.15435.2654

 Web service composition represents a graph of interacting services
designed to fulfill user requirements, where each node denotes a
service, and each edge represents an interaction between two services.
A few candidates with different quality attributes exist on the web for
conducting each web service. Consequently, numerous compositions
with identical functionality but differing quality attributes can be
formed, making the near-optimal composition selection an NP-hard
problem. This paper proposes a tool-supported Evolutionary
Optimization Algorithm (EOA) for near-optimal composition
selection. The proposed EOA is a Discretized and Extended Gray
Wolf Optimization (DEGWO) algorithm. This approach first
discretizes the continuous solution space and then extends the
functionality of GWO to identify global near-optimal solutions while
accelerating solution convergence. DEGWO was evaluated in
comparison with other related methods in terms of metrics.
Experimental results showed DEGWO achieved average
improvements of 8%, 39%, and 5% in terms of availability, 36%,
43%, and 30% in terms of response time, and 65%, 53%, and 51% in
terms of cost compared to the three leading algorithms,
RDGWO+GA, HGWO, and SFLAGA, respectively.

Keywords:
Web Service Composition;
Quality-based Composition
Selection; Service Interaction
Patterns; Grey Wolf Optimization.

*Corresponding author:
babamir@kashanu.ac.ir (S. M.
Babamir).

1. Introduction
Web applications are presented as a set of related
services where each service specifies a specific
functionality. For each service, there exists a
collection of candidates across the Web that can
perform the functionality with different qualities.
Selecting the optimal candidate for each service to
ensure the near-optimal overall quality of the web
application is a challenging task. The candidates,
each of which is specified in terms of functionality
and some quality attributes (QAs), are accessible
online via Uniform Resource Identifiers (URIs)
[1].
Each service in a web application is called an
abstract service because it denotes just a
functionality, and each candidate is called a
concrete service because it can perform an abstract

service with some specific QAs. Therefore,
concrete services of an abstract service perform the
same functionality with different qualities. The
process of selecting a concrete service for each
abstract service results in a candidate composition,
forming a potential solution for a web application
[2]. A web application/composition with n services
is referred to as an n-dimensional composition.
Web Service Composition (WSC) satisfies
complex user requirements [3]. By leveraging
WSC, businesses can enable seamless Business-to-
Business Interoperability (B2BI) and support
various operational processes [4]. Travel planning
services, as highlighted in [5], exemplify practical
applications of WSC. Web applications are
modeled as graphs of abstract services, and their
corresponding compositions are represented by

https://doi.org/10.22044/jadm.2025.15435.2654
mailto:babamir@kashanu.ac.ir

Babamir & Zahiri/ Journal of AI and Data Mining, Vol. 13, No. 2, 2025

184

graphs of concrete services (candidates), each
characterized by specific QAs.
Each WSC, as a potential solution, is assessed
using a fitness value. To compute this fitness, the
WSC is abstracted into a single Summary Service
(SS), where each QA of the SS is derived by
aggregating the QA values of all WSC services.
The aggregated value is referred to as Aggregated
Quality Value (AQV). When the WSC is
represented as a graph, the SS is visualized as a
Summary Node (SN). To facilitate this process, we
develop an interface based on a graph
summarization technique to generate the SN.
After generating an SN for each WSC, a selection
method is required to identify near-optimal WSCs.
For a web application comprising n nodes and with

m candidates for each abstract service, the total
number of possible WSCs is 𝑚𝑚𝑛𝑛, resulting in 𝑚𝑚𝑛𝑛
SNs. To select near-optimal SNs, which is an NP-
hard problem [6, 7], an evolutionary algorithm is a
good candidate, where the fitness function is
determined based on AQV, as emphasized in
related studies [8]. To address this challenge, we
utilize our node-based graph summarization tool to
derive SNs efficiently.
A WSC contains some patterns in the form of
sequential, parallel, loop, or conditional structures
of nodes (Figures 1-a to 1-d, respectively). Each
pattern is summarized step by step until only one
node remains.

Vx Vy

Py1

PynPxm

Px1

1

Vx

Vy1

Vz

Vyn

P

P

Vx

Vy1

Vz

Vyn

P1

Pn

V2

Pi1

V3 Vn

V1

P1

Ponmn

Pon1

P2

...
Pn-1P3

Pn

(a) (b) (c) (d)

Figure 1. The four structural patterns supported in the summarization graphs of WSC.

Figure 1 illustrates the patterns supported in this
paper where in Figures: (1) 1-a, Service vy must be
executed after service vx, (2) 1-b: Services vy1 to vyn
can be executed in parallel with equal probability
p, (3) 1-c: One of services vy1 to vyn is selected based
on its probability pi, and (4) 1-d: a sequence of
Services v1, v2, …, vn is executed with probability
pi(1≤i≤n).
Some studies have addressed the graph
summarization with limitations. In [9], for
instance, the authors have overlooked patterns with
probabilistic edges. Although the graph
summarization has been addressed in [10], but
integer programming has been used for the
selection method, which fails for large graphs
because of high time and memory consumption and
is just used for simplicity [10]. For large graphs,
metaheuristic algorithms are needed. To date, no
comprehensive tool for graph summarization has
been developed to address these challenges fully.
Near-optimal WSCs can be obtained using
methods of evolutionary optimization. Among
others, GA (Genetic Algorithm) [1, 11, 12], PSO
(Particle Swarm Optimization) [1, 13], SFLA
(Shuffled Frog-Leaping Algorithm) [14], and
GWO (Grey Wolf Optimizer) [15] were used.
Moreover, a few methods exploited the advantages
of two evolutionary algorithms leading to good
results like SFLA+GA [2], HGWO (Hybrid Grey
Wolf Optimization) [16], and others [17, 18].

Among others, GWO has been effectively used in
various problems such as shop scheduling [19] or
QA optimization [20]. These successful
applications are a result of important GWO
features, convergence performance, and simple
implementation, and these advantages are crucial
for WSC selection. In the traditional GWO, the
hunting strategy enables rapid convergence but
increases the risk of getting trapped in local optima.
To address this limitation, this study introduces a
Discretized and Extended Grey Wolf Optimizer
(DEGWO). The proposed extension incorporates
mutation and crossover operators from the GA and
adopts the subpopulation strategy inspired by the
SFLA. By partitioning the solution population into
subgroups, DEGWO effectively expands the
search space, enhancing the ability to discover the
global optimum while reducing the likelihood of
stagnation in local optima.
This study presents both theoretical and practical
contributions. From the theoretical aspect, a
method is presented to summarize composition
graphs (Section 4.1) including probabilistic
patterns, and a metaheuristic method, called
DEGWO, is used to search optimal compositions.
In DEGWO, a fitness function and a discretization
method are proposed. DEGWO uses mutation and
crossover operators from the Genetic Algorithm
(GA) to overcome local optima challenges and
expand the solution space, drawing inspiration

QoS-Aware Web Service Composition and Selection Based on Interacting Structural Patterns

185

from the Shuffled Frog-Leaping Algorithm
(SFLA).
From the practical aspect, (1) based on the
presented summarization method, a tool is
designed for automatic graph summarization, and
some well-known evolutionary algorithms are
implemented to apply to the selection method and
to compare with DEGWO.
The remainder of this paper is structured as
follows. Section 2 provides an overview of the two
evolutionary algorithms utilized in the
development of DEGWO. Section 3 reviews
related works. In Section 4, the proposed DEGWO
approach for selecting near-optimal WSCs is
presented. Section 5 discusses the experimental
results obtained by the proposed algorithm and
seven comparative algorithms, evaluated based on
AQVs, fitness metrics, similarity measures, and
execution times. Potential threats to the validity of
DEGWO are examined in Section 6. Finally,
Section 7 concludes the paper and outlines
directions for future research.

2. Background
Evolutionary algorithms are widely adopted for
identifying near-optimal solutions in vast solution
spaces. Given the immense number of possible
permutations in Web Service Composition (WSC),
these algorithms provide an effective approach for
selecting near-optimal compositions efficiently.

2.1. Evolutionary optimization for the WSCS
problem
Due to the NP-Hard nature of the WSCS problem
[6], evolutionary algorithms are frequently
employed for selecting the near-optimal WSCs
(solutions) at a reasonable time. Although these
algorithms under specific circumstances act very
well, several issues may arise when the algorithms
are unable to maintain the balance between the two
primary opposing criteria of exploration and
exploitation of solutions. Premature convergence is
one issue resulting from a lack of population
diversity, particularly when exploitation is local.
As a result, there will be a lower chance of
discovering a global optimal solution. On the other
hand, having global exploration and population
diversity reduces the rate of convergence.
Therefore, it is crucial to maintain the balance
between these two crucial aspects to produce
excellent results.
Exploration and exploitation are the two aspects
that highlight the use of the advantages of some
evolutionary algorithms to enhance the
effectiveness of a method in challenging situations
[2]. Considering these aspects, the following

describes two evolutionary algorithms that are used
in DEGWO.

2.1. Genetic algorithm
In a Genetic algorithm (GA), each chromosome,
consisting of a set of genes, is a solution. The initial
members of the population (chromosomes) are
randomly selected and called Pt. They are classified
based on the fitness value of a summarized node of
the composition graph. To create a new population,
called Qt, parents are selected from among the
chromosomes randomly, and a new chromosome is
created by applying mutation and crossover to the
parents. This algorithm explores a large space by
using these two operators. These new
chromosomes are merged with the previous
chromosomes and sorting is done based on their
fitness value of them. The first N members with the
biggest fitness value are stored and the rest of them
are discarded. This process continues until the
termination condition is not fulfilled [1].

2.3. Shuffled frog leaping algorithm (SFLA)
The shuffled frog-leaping algorithm (SFLA), a
memetic meta-heuristic, has been created to
address combinatorial optimization issues. In this
algorithm, virtual frogs act as a host or solution and
each host has a unique memotype that contains
memes. Memes and memotypes in SFLA are like
genes and chromosomes in GA. At the beginning
of the algorithm, hosts or solutions are created
randomly. These solutions are divided into a few
memplexes. In each memeplex, the algorithm
simultaneously runs a local independent search
which is very similar to particle swarm
optimization that has been modified for discrete
issues. The memes of different solutions could be
derived from the local memplex or the best overall
memplex of all the memplexes. The solution is
added to the population if there is an improvement
in fitness value. After a predetermined number of
iterations, the memplexes are mixed and new
memplexes are created by a shuffling process. This
process is done to ensure global exploration.
Therefore, local search and global information
exchange are both incorporated into the algorithm
[14].

3. Related work
In this section, we overview pure and combined
popular evolutionary algorithms for the WSCS
problem since 2016.

3.1. Evolutionary optimization for WSCS
The basic GWO was used by Karmi et al. [20] to
find optimal solutions where for each web service,
four QAs of response time, reliability, availability,

Babamir & Zahiri/ Journal of AI and Data Mining, Vol. 13, No. 2, 2025

186

and cost have been considered and each of them has
been weighted by the AHP (Analytical
Hierarchical Process) weighting method.
Therefore, the problem has been considered as a
single objective. It was compared with PSO
through the optimal rate. The optimal rate is the
result of dividing the best solution obtained after
convergence by the best solution obtained from the
first iteration of the algorithm. By running the
algorithm 40 times, it was concluded that the GWO
is better than the PSO in terms of optimal rate.
Elite-guided Artificial Bee Colony (ABC)
consisting of ABC and the non-dominated sorting
method, elite-guided discrete solutions generation,
and multi-objective fitness function calculation
method were used by Huo et al. [21]. They have
considered availability, response time, reliability,
and throughput as one objective and cost as another
objective and solved the problem with two
objectives. The results of the experiments show
that this algorithm is better than NSGAII, PSO, and
ABC algorithms in terms of quality indicators of
GD (Generational Distance), spread, and execution
time.
Multi-objective Discrete Elephants Herding
Optimization (MO-D-EHO) was used by Sadouki
and Tari [22] for the WSCS problem. The power of
this method is provided by the process of dividing
and combining the population with the
subpopulation (clan), which causes it not to get
stuck in the local optimal. By comparing this
algorithm with the PSO and SPEAII (Strength
Pareto Evolutionary Algorithm II), it was
concluded that it is significantly better in terms of
criteria such as coverage ratio, spread, and
hypervolume.
Kashyap et al. [1] have utilized GA and PSO to
manage the WSC problem in IoT. The purpose is
to minimize the fitness value consisting of
reliability, response time, and cost, which is
aggregated in a single objective. The experiment is
executed with the number of tasks and candidates
from 10 to 30, and 10 to 50, and the results have
demonstrated that GA can help in identifying the
optimal solution and also shows preferable
outcomes over PSO.
Yang et al. [23] have presented a modified multi-
objective GWO to find optimal solutions. In this
algorithm, execution time, cost, reliability, and
availability are considered the first objective, and
energy consumption is considered the second one.
This algorithm has evolved in three steps. In the
first step, the backward learning strategy is used to
increase the search efficiency in identifying the
initial population. In the second step, the strategy
of adjusting the algorithm parameters improves the

variety of solutions. In the third step, the search
space has been increased using the mutation
operator, which prevents getting stuck in the local
optimal. Finally, this algorithm has been compared
with basic GWO and PSO algorithms based on
standard deviation, spread, GD, and IGD (Inverted
GD), and its efficiency has been proven.
Sangaiah et al. [24] have used the Biogeography-
Based Optimization (BBO) method. This
algorithm uses the BBO immigration operator to
explore a new search space. The results of the
experiments show that BBO has superior search
capabilities versus GA and increases all qualitative
metrics for three scenarios, 7%, 23%, and 61%,
respectively.

3.2. Hybrid evolutionary optimization for the
WSCS problem
Chandra et al. [25] have introduced an improved
GWO algorithm to find optimal solutions for the
WSC problem. To improve the performance of this
algorithm, the crossover operator is used. This
algorithm is compared with GA and GWO
algorithms. By running this algorithm 20 times and
considering nine QAs as a single objective, it was
concluded that the average fitness value of the
improved GWO algorithm during its successive
iterations is always better than the other two
algorithms. Also, its convergence speed is much
better than the GA algorithm and is comparable to
GWO.
Gohain et al. [26] have exploited ACO and PSO
(Particle Swarm Optimization) by considering the
five QAs, reliability, availability, throughput, cost,
and response time as a single objective. This
algorithm has been compared with the PSO
algorithm during experiments in terms of execution
time and fitness value, which shows its better
performance.
Bouzary et al. [19] have suggested a novel method
where the GWO and GA operators are used.
During the hunting phase in GWO, the embedded
crossover and mutation operators of GA help to
prevent local optimal. The experimental findings
demonstrated that, despite a slight increase in
processing time, the suggested algorithm
outperforms GA and DGWO (Distributed GWO).
Asghari et al. [2] have proposed an IoT-based
cloud service composition conceptual model
regarding the privacy level computing model and a
novel evolutionary optimization using the Shuffled
Frog Leaping Algorithm (SFLA) and genetic
algorithm (GA), called SFLA-GA. The
experiments were conducted based on: (1) the
fitness of composite services and (2) the similarity
between the results of the method and those of three

QoS-Aware Web Service Composition and Selection Based on Interacting Structural Patterns

187

other meta-heuristic methods. This algorithm is
used to maximize the fitness value obtained by
aggregating nine QAs. The proposed approach
enhances fitness compared to the GA, Cultural, and
SFLA approaches.
Thangaraj et al. [27] introduced an algorithm using
GA and Tabu-search to find the best candidates. In
this method, the best candidates with maximum
reliability and throughput are suggested to the end
user by using Tabu-search. The experiments show
that the proposed method has improved 0.5% in
fitness value on average and about 0.25% in error
reduction.
Dahan et al. [28] have introduced an algorithm
exploiting ABC and GA. The ABC algorithm
adapts its performance based on the parameters that
have been set by the GA algorithm. The
experimental results show that the proposed
method compared to other methods is better in
terms of cost, response time, reliability, and
availability although it takes more time.
Azouz et al. [29] proposed a MO-MA (Multi-
Objective Memetic Algorithm) using MO-LS

(Multi-Objective Local Search) and GA (MO-GA).
The main objective is to minimize cost and time
and maximize availability and reputation. This
method is evaluated on some datasets generated
randomly and on the QWS dataset. The numerical
results demonstrate the effectiveness of the
proposed MO-MA for WSC.
Dahan et al. [30] have presented a method using
ABC and CS (Cuckoo Search) to resolve the
WSCS problem. CS uses Lévy Flight to improve
the convergence rate of the ABC algorithm. The
method is compared with ABC, CS, OABC
(Optimized ABC), and MOHABC (Multi-
Objective Hybrid ABC). They considered cost,
response time, reliability, and throughput as the
objectives. The main goal is to minimize the cost
and response time and maximize the reliability and
throughput. The results show that the algorithm is
better than the others in terms of best fitness value,
average fitness value, and average execution time.
Table 1 shows a summary of related studies.

Table 1. A summary of the related study.
Article

 Year Tool
Support

Used
Algorithm

Compared
Algorithm

Evaluation Metrics Probability
WSC Dataset Indicator Objective

[21] 2016 --- GWO+GA GA, GWO CS Av, RT, Th,
FV --- QWS

[22] 2016 ---- PSO+ACO PSO ET FV --- RV
[23] 2017 --- GWO PSO, IDPSO, QIPSO Optimally Rate --- --- QWS

[24] 2018 --- EMOABC NSGAII, MOPSO,
MOABC

GD, ET, Error rate,
Spread,

Av, RT, Rl,
Th, Cst --- QWS

[25] 2019 --- EHO SPEAII, MOPSO CR, Spread,
Hypervolume --- --- QWS

[16] 2019 --- HGWO GA, DGWO ET FV --- RV

[1] 2020 --- GA PSO --- FV, RT,
Cst, Rl --- RV

[26] 2020 --- EMOGWO MOGWO, MOPSO ET, spread,
GD, IGD

Cst, Rl, Av,
EC --- RV

[2] 2020 --- SLFAGA GA, Cultural, SFLA Similarity value FV -- QWS

[27] 2020 --- BBO GA --- Rl, Ava,
ET, Cst --- ---

[28] 2021 --- GA+Tabu-
search

Worst-GA, Best-GA

Mean Absolute
Error, Coverage,
Recall, Precision

FV
 --- RV

[29] 2021 --- ACO & GA ACS, TACO, DAAGA,
SACO, MAACS

ET

Cst, RT,
Av, Rl --- QWS

[30] 2022 --- MO-MA NSGA2, MO-GA,
MO-LS (local search) ET Av, Cst, RT --- QWS,

RV

[31] 2023 --- ABC+Cuckoo-
search

ABC, Cuckoo Search,
OABC, MOHABC,

SABC
Average ET Best FV,

Average FV --- RV

DEGWO √ RDGWO+
GA+SFLA

GA, HGWO, BGWO,
SFLAGA,

RDGWO+GA, IPSO,
SFLA

CS, ET
Av, RT,
Cst, Best

FV
√ QWS

Abbreviations: Av.: availability, Rl.: Reliability, RT.: response time, EC.: Energy consumption, Cst.: cost, FV.: Fitness value, ET.: Execution time,
CS.: Convergence speed, CR.: Coverage ratio, Th.: Throughput, GD.: Generational distance, IGD.: Inverted generational distance, IDPSO: Improved
Discrete PSO, QIPSO: Quantum Improved PSO, NSGAII, MOPSO: Multi-Objective PSO, MOABC: Multi-Objective ACO, EHO: Elephants Herding
Optimization, BBO: Biogeography-Based Optimization, EMOABC: Elite-guided multi-objective artificial bee colony, RV: Random values

The related works mentioned in this section show
that the use of advantages of some evolutionary
optimizations for the WSCS problem has risen
significantly in recent years. The use of advantages

of more than one evolutionary optimization not
only removes shortcomings of pure ones but also
leads to an increase of the quality of solutions.
Accordingly, in this current paper, we extended

Babamir & Zahiri/ Journal of AI and Data Mining, Vol. 13, No. 2, 2025

188

one of the most popular evolutionary optimization
algorithms called the basic GWO by GA's cross-
over and mutation operators, and the SFLA
strategy where GWO helps high convergence and
SFLA helps us to escape from local optima.

4. Proposed method
This section contains subsections WSC
summarization (Subsection 3.1) and summarized
node selection (Subsection 3.2).

4.1. WSC summarization
A WSC contains a graph including the patterns
illustrated in Figure 1. First, each pattern is
summarized to a node (service) and finally, the
summarized patterns are summarized to a node.
To compute AQV (see Section 1) for each pattern,
we employ the formulas proposed in [10], as shown
in Table 2. Additionally, the formula provided in
Table 3 [10] is used to determine the transition
probability after summarizing each pattern and
computing the AQVs.
Based on the patterns illustrated in Figure 1 and the
aggregation formulas in Tables 1 and 2, we have
designed and implemented a WSC summarization
interface. To demonstrate the practical application
of this summarization process, we illustrate the use
of the interface for a web application. A WSC
graph is presented as a square matrix to the
interface.
As an example of summarizing patterns, consider
the travel agency web application shown in Figure
2, for instance. It contains 12 abstract services T1,
..., T12. These services are organized into several
sequential and parallel patterns. For instance, the
Flight, Hotel, and Car rental searches are parallel
services, while the Book up the flight and Ticket
confirmation services are sequential.

To select the candidates (concrete services) for the
abstract services in Figure 2, we utilized the QWS
dataset [31], which contains 2,507 candidate
services. These candidates were assigned to the
abstract web services, ensuring no duplicate
candidate appeared in the graph of abstract web
service. The summarization steps for Figure 2 are
illustrated in Figure 3, showing the sequential, and
parallel patterns being summarized. The node
labels in Figure 2 correspond to the numbered
nodes in Figure 3.

T1.User
request

T2.Car rental
search

T3.Hotel
search

T4.Flight
search

T5
.

User register
and login

T6.Rent car T7.Reserve
hotel

T8.Book up
flight

T10.Hotel
confirm

T11.Ticket
confirmation

T9.Rent Car
confirm

T12.Online
payment

Figure 2. An example of a web application consisting of

web services for a travel agency

Table 2. Aggregation formula for calculation of AQVs of patterns [10]

Legends: ax and ay denote the service availabilities in nodes x and y; tx and ty do the service response times in nodes x and y; cx and cy do the service
costs in nodes x and y; notation ∏ 𝑎𝑎𝑦𝑦𝑦𝑦𝑛𝑛

𝑦𝑦=1 shows the product of service availabilities in nodes 1 to n; pi indicates the probability of selecting the service
in node i.

Pattern

QA

For two
Sequential

services

For n Parallel
services

For n Conditional
services For n Looped services

Availability x ya a

n

yi
i

a

1

n

i yi
i

P a

1

k k
n i k ii i

n
k i ii

P P a

Pa

1

0 1

1
1

1

1

Response

Time
x yt t

n
i yiMax t1

n

i yi
i

P t

1

k nk n
n i k i i ii ii i k

nk
ii

P P t P t

P

1

0 11 1

2
1

1

1

1

Cost x yc c

n

yi
i

c

1

n

i yi
i

P c

1

k nk n
n i k i i ii ii i k

nk
ii

P P c P c

P

1

0 11 1

2
1

1

1

1

QoS-Aware Web Service Composition and Selection Based on Interacting Structural Patterns

189

Table 3. Probability of input and output transitions of patterns after summarization [10]

Legends: P′in and P′out denote probabilities of performing input and output services of the transition after summarization, POkj and P′Okj are the
probabilities of output transition j in service of the kth iteration of the loop before and after summarization respectively.

Figure 3 (a)-(c). The first three steps of the summary graph of the summarization of Figure 2.

Legends: Figure (a) corresponds to Figure 2 where each node number in (a) corresponds to the node number in Figure 2. Node numbers 1,2,3,4,5,12
in Figure (b) correspond to these nodes in Figure 2 and (6)S(9), (7)S(10), and (8)S(11) nodes (6 and 9), (7 and 10), and (8 and 11) each denotes
the two sequential nodes combined to one node. Node ((2)P(3))P(4) in Figure (c) denotes the sequential nodes 2 and 3 were combined into a
node. The combined node and node 4 were sequential and combined into a node. The numbers on vertical and horizontal axes just denote the
figure scale and have no specific meaning.

Figure 3 (d)-(f). Steps 4-6 of the summary graph of the summarization of Figure 2.

Legends: Node ((2)P(3))P(4) in Figure (d) denotes the parallel nodes (2 and 3) were combined and then the combined node and node 4 were parallel
and combined to one node. Figures (e) and (f) show the combination of parallel and sequential nodes where (n1)P(n2) and (n3)S(n4) denote the
summarization of two parallel nodes n1 and n2 and two sequential nodes n3 and n4, respectively. The sequence of numbers and notations P and S beside
the yellow node in Figure (e) shows how the initial 12 nodes in Figure 2 were summarized to one SN.

Pattern Sequence Parallel Conditional Loop

Transition
Probability

 in x xiP P P i m ' | 1,

 out y yjP P P j n ' | 1,

inP p'

outP ' 1

n

in i
i

P P

'

1

outP ' 1

 k
i okji

okj n
ii

P P
P

P

1

0'

1
1

Babamir & Zahiri/ Journal of AI and Data Mining, Vol. 13, No. 2, 2025

190

This process continues until only one node,
referred to as the SN, remains. If the graph contains
undefined patterns, such as unstructured
conditional ones, the summarization cannot
proceed further. These undefined patterns are
beyond the scope of this paper (refer to Figure 1
and Table 2 for the patterns considered in this
study). Users can either specify their desired graph
or use the sample graph we created, as shown in
Figure 2.

4.2. The selection method
By increasing the WSC dimension and the number
of candidates, the possible compositions (solution
space) grow exponentially. Therefore, heuristic
and metaheuristic optimization methods are
required to search near-optimal WSCs. To this end,
we propose and use DEGWO. However, the
solution space in DEGWO is continuous and our
solution space of WSCs is discrete. Therefore, we
need a mapping between the two spaces where the
optimal solutions generated in continuous space,
should be discretized. Moreover, the fitness value
of solutions in DEGWO should be determined.

The selection of near-optimal WSCs is classified as
an NP-hard problem, commonly referred to as the
Web Service Composition Selection (WSCS)
problem. This problem entails selecting an
appropriate candidate (concrete) service for each
abstract web service to construct a near-optimal
WSC [8].

4.2.1. Fitness value
Each candidate service has a set of QAs (Section
1). In this paper, three QAs values denoted by

 i i i iQ q availability q response time q t 1 2 3, , cos

are considered, where 1≤i≤n and n is the number of
services/nodes of the composition.
Before calculating the AQV for each SN, the QA
value of each service is normalized to ensure they
are on the same scale and direction. To this end,
Negative QAs, like response time and cost, are
normalized using Equation 1, while positive QAs,
like availability, are normalized using Equation 2.
After the normalization, the composition graph is
summarized and the SN is calculated (see Section
3.1), characterized by AQV q q q 1 2 3, , . In
Equation 1, a lower value for negative QAs results
in a higher normalized value while a higher value
for positive QAs results in a higher normalized
value (Equation 2). Consequently, the optimization
problem becomes a maximization problem, to
achieve a higher fitness value in the proposed
algorithm.

k k
k k

k k

q q
q q

q q
otherwise

max
max min

max min 0

1
 (1)

k k
k k

k k

q q
q q

q q
otherwise

min
max min

max min 0

1
 (2)

We assume the three QAs have the same priority,

indicated by equal weights w

1 1 1

, ,
3 3 3

. These weights

are multiplied by the corresponding QA values in the
AQV to compute the fitness value, which constitutes the
final objective function (Equation 3).

k k
k

FitnessValue w q q AQV

3

1

, (3)

4.2.2. The selection algorithm design
We introduce DEGWO, an advanced variant of the
standard GWO. It incorporates crossover and
mutation operators derived from the GA and uses
the SFLA strategy to enhance its exploratory
capabilities. In DEGWO, each solution, referred to
as a wolf (w), is represented by four components:
(1) w.ca as an index array, (2) w.Q as QAs, (3)
w.AQV, and (4) w.F as the fitness value where each
array element denotes a service (dimension) in a
composition.

4.2.3. Discretization of the solution space
GWO simulates the hunting mechanism of grey
wolves, which typically live in groups of 5 to 12,
classified into four hierarchical levels: α (Alpha), β
(Beta), δ (Delta), and ω (Omega). The α wolves are
the leaders at the top level, while the β and δ wolves
obey the orders of the α wolves. Wolves at the β
level are second in the hierarchy and assist the α
wolves; they are also the primary candidates to
replace the α wolves if they die. The δ wolves, at
the third level, are required to follow both the α and
β wolves. Finally, the ω wolves, situated at the
lowest level, must adhere to all higher-level
wolves.
The hunting process of wolves is divided into three
phases: exploring and surrounding the prey,
harassing the prey to immobilize it, and ultimately
attacking the prey. Initially, wolves spread out to
explore the environment (divergence) and later
gather again to attack prey (convergence). To
model the divergence, a vector A��⃗ (Equation 4),
consisting of random values between [-a, a], is
defined. When A 1 , the explorer agents move
away from the prey, whereas when A 1 , they are
directed to attack. The value of ∣A∣ is controlled by

QoS-Aware Web Service Composition and Selection Based on Interacting Structural Patterns

191

the parameter "a" (Equation 4), which linearly
decreases from 2 to 0 in the basic GWO. However,
this linear decrease may not effectively facilitate
the global search, leading to a lack of population
diversity and causing the algorithm to get stuck in
local optima [32]. To address this issue, we use a
nonlinear decrease for "a" (Equation 5) [25]. In this
modified version, parameter "a" decreases more
gradually during the early iterations, promoting
exploration, and then decreases more sharply in
later iterations, enhancing the convergence rate.
Our experiments show that the value of k=5 in
Equation 5 yields the best results for our work. The
vector C�⃗ (Equation 6) aids in exploration by taking
random values within the range of [0, 2]. This
vector determines a random weight for the distance
to the prey, improving the algorithm’s performance
by enabling more suitable prey to be found and
preventing the algorithm from falling into local
optima. Unlike vector A��⃗ , vector C�⃗ does not decrease
linearly; instead, it helps to slow the wolves’
progress toward the prey [14].

After determining the vectors A��⃗ and C�⃗ , the distance
of each wolf from the prey is calculated. However,
in optimization problems, the exact position of the
prey is unknown. To model the hunting behavior,
the distance of each omega wolf (ω) to the α, β, and
δ wolves (the first, second, and third best solutions,
respectively) is computed using Equation (7).
Consequently, the hunting process is guided by α,
β, and δ wolves, and the remaining wolves (ω)
pursue the prey based on their guidance.
The next position of wolves (ω) is updated using
Equation (8), and the average next position of each
wolf is derived using Equation (9). In these
equations, the position of each wolf is determined
based on the QA of its selected candidate.

A a r a 12 .

 (4)
kit

a
MaxIteration

2 2

 (5)

C r 22.

 (6)

D C w Q w Q

D C w Q w Q

D C w Q w Q

1

2

3

. . ,

. . ,

. .

 (7)

w w Q A D

w w Q A D

w w Q A D

1 1

2 2

3 3

. - . ,

. - . ,

. - .

 (8)

new
w w w

w Q

 1 2 3.
3

 (9)

- Discrete Space
Equations (7–9) are used for searching in a
continuous space, where the search agents in GWO
update their position vectors based on the hunting
process. However, in a discrete space, the position
of the wolves cannot be updated in the same
manner, as position vectors must be calculated
using discrete values. To address this issue, several
methods have been proposed [33]. Two of the most
well-known approaches are the integer Particle
Swarm Optimization (PSO) and binary PSO
methods.
In the integer PSO approach, the original
continuous algorithms are adapted for problems
with integer-valued solutions by rounding the
position vectors at each iteration [15]. In the binary
PSO method, transfer functions such as the
Hyperbolic [22] or Sigmoid [34, 35] functions are
used for discretization. However, these methods
reduce the algorithm’s effectiveness in the
exploration and exploitation phases. Consequently,
these versions of the GWO algorithm are
insufficient for solving the WSC problem,
primarily because they lack sufficient explorative
power for large-scale problems and tend to get
stuck in local optima. To overcome these
limitations, we propose the following
improvements:

1. A novel discretization algorithm to improve
the exploitation phase.

2. Integrating GA operators and shuffling
optimization into the standard GWO structure
to enhance the exploration phase.

This approach aims to achieve a better balance
between exploration and exploitation, improving
the overall algorithm's performance. Algorithm 1
outlines the proposed DEGWO, while Tables 4 and
5 provide the parameter values and their
descriptions, respectively. In Algorithm 1, the
process begins with determining the three best
wolves as the leading solutions (lines 7-9). A new
generation of wolves is then created (lines 10-11),
which is merged with the current omega wolf
population (line 12). The combined population is
sorted, and the top Npop wolves are retained (line
13). The population is divided into multiple
subsets, termed Wolfplexes (line 14), with each
Wolfplex containing nPopWolfplex members. For
each Wolfplex, several parent wolves are selected
for crossover and mutation operations (line 16),
leading to the generation of a new population (line
17). The new population is merged with the

Babamir & Zahiri/ Journal of AI and Data Mining, Vol. 13, No. 2, 2025

192

corresponding Wolfplex and sorted (line 18), and
the top nPopWolfplex wolves are retained (line
19). These updated Wolfplexes are then combined
using a shuffling strategy (line 21) to form the
initial population for the next iteration. This
process is repeated until the predefined maximum
number of iterations (MaxIteration=100) is
reached. Finally, the best wolf is selected as the
output solution.

Algorithm 1
The proposed DEGWO for the WSCS problem.

1. Input: it = 0 /* The current number of iteration*/,
 nWolfplex = 5; nPopWolfplex = 20
 /* initial population is divided to nPopWolfplex sub-

populations where the number of members of each sub-
population is nWolfplex */,

 MaxIteration=30 /* The Maximum number of algorithm
iterations*/,

 Pcrossover=0.7 /* probability of crossover*/,
 Pmutation=0.3 /* probability of mutation */
2. Output: The best wolf
3. Begin
4. Generate Npop of wolves randomly as an initial population

/* Npop nWolfplex nPopWolfplex */
5. While (it < MaxIteration) do
6. Initialize vectors a, A and C (Equations 4-6)
7. Calculate the fitness values of each wolf (w.F) using

Equation 3
8. Sort the population of wolves in descending order based on

the fitness values (w.F)
9. Consider the first three best wolves as Wα, Wβ and Wδ,
 respectively and the other wolves as Wω
10. Calculate the new wolves (wω-new.Q) using Equations 7-9
11. Discretize the new wolves' vector using Algorithm 2
12. Merge the population created in 11(wω-new) and population

in (wω)
13. Sort the population of wolves in descending order
 based on the fitness values and keep the first Npop
 individuals
14. Divide the population of wolves into nWolfplex
15. For each Wolfplex do
16. Select (crossoverP nPopWolfplex) and (

mutationP nPopWolfplex) number of parents from each
 Wolfplex for crossover and mutation operators,

respectively
17. Perform the one-point crossover and one-point mutation

on the selected parents
18. Merge the population created in Step 16 and

corresponding Wolfplex
19. Sort the line 18’s population in descending order and

only keep the first fittest nPopWolfplex wolves.
20. End for
21. Combine the upgraded Wolfplexes via shuffling strategy in

SFLA
22. Save the best wolf achieved so far
23. Assign it=it+1
24. End while
25. Return the best wolf
26. End

- The proposed discretization method
Since GWO is primarily designed for searching in
continuous spaces, a discretization method is
required to adapt it for discrete search spaces. To
address this, we propose a novel discretization
method (Algorithm 2), which is called in step 11 of
Algorithm 1. In this method, a set of new wolves in

the discrete space is generated. The inputs to this
function are provided in step 10 of Algorithm 1,
and its outputs consist of wolves (wω-new), where the
quality attribute (QA) values of each wolf are
represented in wω-new.Q.
In Algorithm 2, for each dimension i of a new wolf
(WSC), represented as wω-new.cai (see Section
4.2.1), a candidate is selected. The sum of the
quality attributes (QAs) for the ith dimension of all
wolves is then computed to identify the best
candidate for that dimension (service).

Algorithm 2
Proposed discretization function.
Discretization-Function (wω-new, wω, wα, wβ., wδ }
1. for i=1 to n // n denotes an n-dimensional composition (see

 Section 4.2.1);
2. Upperbound=3; Lowerbound=0 // each dimension of a wolf

(solution) has three QAs, each between zero and 1
3. if (k

new ik w Q Upperbound 3
1 . or

k
new ik w Q Lowerbound 3

1 .

4. select a iCa CC randomly // iCa is a candidate for the ith
 abstract service, Fi denotes the fitness value of ith
 dimension of wolf and CC 1 2507 ;
5. new i iw ca ca .
6. new i i iw Q ca Q . .

7. return wω-new
8. else {

9. if k k
i new ik kw Q w Q 3 3

1 1. .

10. new i iw ca w ca . .

11. new i iw Q w Q . .

12. return neww

13. if k k
i new ik kw Q w Q 3 3

1 1. .

14. new i iw ca w ca . .

15. new i iw Q w Q . .

16. return neww

17. if k k
i new ik kw Q w Q 3 3

1 1. .

18. new i i iw Q ca Q . .

19. new i iw Q w Q . .
20. return neww

21. if k k
i new ik kw Q w Q 3 3

1 1. .

22. new i iw ca w ca . .

23. new i iw Q w Q . .

24. return neww

25. find a iCa CC so that i i new iCa F w F. .
26. if found new i iw ca ca .
 new i i iw Q ca Q . . }
27. return neww }

After determining an appropriate candidate for
each dimension (cai) the corresponding QAs for
that dimension are stored in wω-new.Qi. Each
dimension of the wolf has three QAs, normalized
to lie between 0 and 1 (see Section 4.2). As a result,
the total QA value for a dimension is constrained

QoS-Aware Web Service Composition and Selection Based on Interacting Structural Patterns

193

between 0 and 3 (line 2). However, in some cases,
the sum of QAs for a given dimension of wω-new in
the continuous space may exceed the defined upper
or lower bounds. In such situations, a random cai
is selected (denoted as CC), and its index and QAs
are assigned to wω-new.cai and wω-new.Qi, respectively
(lines 3-7). Otherwise, for the ith dimension, the
sum of QAs for wω-new is compared against the sum
of the corresponding QAs of wolves δ, β, α and ω.
Based on the algorithm, one of these indices and its
associated Qi is chosen as the candidate for wω-

new.cai and its quality value for wω-new.Qi while wω-

new.Qi in the continuous space have been computed
using Equations (7-9) by considering vector A;
vector A depends on the critical parameter a. The
value of this parameter influences the accurate
selection of candidates (see Equation (5) in Section
4.2.3).

4.2.4. Time complexity
Now, we deal with the time complexity in three
phases of our proposed method.

-Composition summarization. In this phase, the
composition graph is scanned for the pattern
recognition and summarization. The time
complexity for this phase is O(n2) because we use
two nested loops in our algorithm to recognize each
pattern with n nodes.
-Selection. The time complexity for the selection
method in Algorithm 1 is
m n Npop MaxIteration where MaxIteration is
the number of the algorithm repetitions, Npop is the
number of population members, and m×n is the
time complexity Algorithm 2, which is called in
Line 11 for each population member. Parameters m
and n denote the number of candidates for each
service and the number of services of the
composition, respectively. Since for each graph
summarization, the selection method is carried out,
the total complexity of our proposed method is
n m n Npop MaxIteration 2 .

5. Experimental results
The DEGWO algorithm was executed 30 times, as
it is common practice to perform 30 runs for
nondeterministic algorithms, such as evolutionary
algorithms, to facilitate robust statistical analysis
and draw comprehensive inferences [36]. The
number of iterations for each run is user-defined.
Typically, DEGWO converges within 20 to 30
iterations.

In this section, we evaluate the results obtained by
applying DEGWO and other methods to two types
of web applications: (a) the travel agency graph
shown in Figure 2 and (b) three additional web

applications with 5, 10, 50, and 100 sequential
services. Web service candidates were selected
from the QWS dataset [31], which contains 2,507
real candidates characterized by quality attributes
(QAs) such as availability, response time, and cost.
The target web application in Figure 2 represents a
travel agency with 12 services, where each service
(task) is randomly matched with a unique candidate
from the 2,507 options.
By applying DEGWO and other selection methods
to the summarized nodes derived from web
applications (a) and (b), we evaluated the
performance based on two criteria: (1) the fitness
value and its similarity, and (2) the QAs' values and
their similarities. To demonstrate the generality
and significance of the results, statistical analysis
was performed.

Table 4. Parameter values used in the algorithms.
No. Parameter Value
1 nPop 5, 10, 50, 100

2 MaxIteration 100

3 Max-Run 30

4 Pmutation 0.3

5 Pcrossover 0.7

6 nPopWolfplex 1, 2, 5, 20

7 nWolfplex 5, 5, 10, 5

8 nPop=nPopWolfp
lex * nWolfplex

5, 10, 50, 100

9 nNode 5, 10, 50, 100

10 m 2507

11 C1=C2 2

12 Sigma 100

13 q Max(round (0.3*nPopWolfplex) ,2)

14 alpha 3

15 beta 5

The results of DEGWO are evaluated under the
following configurations: (1) RDGWO+GA,
which highlights the impact of the discretization
method introduced in Algorithm 1 (RDGWO) and
the use of GA to escape local optima in GWO; and
(2) DEGWO (RDGWO+GA+SFLA), which
incorporates SFLA-inspired mechanisms to further
enhance performance. The outcomes of
RDGWO+GA and DEGWO are compared with six
other methods: (a) GA [1], (b) HGWO [15], (c) the
binary version of GWO (BGWO) [22], (d)
SFLAGA [2], (e) the integer version of PSO
(IPSO) [1], and (f) SFLA [13].
The environment setting is a Corei5 processor with
4 GB RAM, and Windows 10. MATLAB 2016 was
used to implement the algorithms. Each algorithm
was executed 30 times, with a maximum of 100

Babamir & Zahiri/ Journal of AI and Data Mining, Vol. 13, No. 2, 2025

194

generations per run, which served as the
termination condition. For the genetic algorithm
(GA), the mutation and crossover probabilities
were set to 0.3 and 0.7, respectively (see Table 4,
rows 4 and 5). Tables 4 and 5 present the parameter
values and notations used in the algorithms,
respectively.

Table 5. Symbols used in the algorithms.

No

Symbol Description
1 nPop Initial population size for all algorithms except

SFLA, SFLA+GA, Proposed Method
2 MaxIterati

on
Maximum number of generations for all algorithms

3 Max-Run Maximum number of running for all algorithms

4 Mutation
probability

for all algorithms except SFLA, IPSO and BGWO

5 Crossover
probability

for all algorithms except SFLA, IPSO and BGWO

6 nPopWolfp
lex

Wolfplex population size for SFLA, SFLA+GA
and Proposed Method algorithms

7 nWolfplex Number of Wolfplexes for SFLA, SFLA+GA and
Proposed Method algorithms

8 nPop=nPo
pWolfplex

Initial population size for SFLA, SFLA+GA,
Proposed Method

9 nNode The number of nodes (web services or tasks) in the
composition graph

10 m The number of candidates for each web service,
these Candidates Randomly selected from QWS

 11 C1=C2 The initial parameters for PSO algorithm

12 Sigma Step size in IPSO, SFLA algorithms

13 q The number of Parents in SFLA algorithm

14 alpha The number of Offsprings in SFLA algorithm

15 beta Maximum Number of Iterations in each Max-
Iteration in SFLA algorithm

16 wα The first leader of the wolves (Alpha wolf)

17 wβ The second leader of the wolves (Beta wolf)

18 wδ The third leader of the wolves (Delta wolf)

19 wω The current wolve(solution) (Omega wolf)

20 wω-new The new wolf (new solution) (Omega-new wolf)

21 QA The quality attribute values of each candidate (each
dimension of wolf)

22 AQV The quality attribute values of summary node

23 ca An array of selected candidates’ indices

24 Q A set of quality attribute values

25 F Fitness value of a wolf (solution)

26 Abstract
service

A web service without non-functional attributes

27 Concrete
service

A web service with non-functional attributes

5.1. Experiment 1: Web application of type a
Now, we deal with the results obtained by applying
DEGWO and other selection methods to the
summarized nodes obtained for web application of
type a (Figure 2). Figures 4-7 show the fitness and
QAs values DEGWO (black), its step 1 (purple),
and other selection methods, and Figures 8-11 do
the fitness and QAs similarities between DEGWO
and other selection methods. In all Figures,
DEGWO was stated as ProposedMethod. To
compute the fitness value, Equation 3 was used.
Moreover, all QA values were normalized based on
Equations 1 and 2. The fitness value for all the
methods was computed after 30 runs and the initial
population size was 100.

5.1.1. Discussion
As shown in Figures 5–12, DEGWO (represented
by the black line) outperforms the other algorithms
in terms of fitness value, with improvements
ranging from 1% to 3%, availability from 2% to
6%, and response time and cost from 50% to 90%.
Figure 4 illustrates that the rate of change in fitness
value is significant during the first 20 iterations of
each run, with the greatest increase occurring in
this range (iterations 1 to 20). Additionally,
availability follows a similar trend in this period. In
contrast, the other two QAs (response time and
cost), while initially smaller than those of the other
algorithms, remain relatively constant during the
early iterations. However, these two QAs exhibit a
higher rate of change between iterations 20 and 35,
when the fitness value shows only minor
improvements, and its changes become negligible.

-Interpretation using fitness and QAs
Since the fitness value is based on considering the
three QAVs, an improvement in these values leads
to an improvement in the fitness value. There is a
large increase in the fitness value until iteration 20
because of increasing the availability value. For
sequence and parallel patterns, Table 2 shows the
multiplication of service availability values, along
with the cost and response time values.
DEGWO has the advantages of faster convergence
(thanks to using GWO), the escape from local
optima (thanks to using GA), and a wider space to
select the solutions (thanks to using SFLA). This
leads to selecting candidates with more
availability. As Figures 4-7 show, DEGWO
converges in the 35th iteration, and onwards the
availability value does not change while two other
QA values change in opposite, i.e., by increasing a
QA value, another one decreases. Accordingly, the
fitness value remains constant.

QoS-Aware Web Service Composition and Selection Based on Interacting Structural Patterns

195

Figure 4. Fitness value of DEGWO (black) and

RDGWO+GA (purple) and other selection methods in
100 iterations for the web application in Figure 2.

Figure 5. The SN’s (AQV) availability of DEGWO (black)
and RDGWO+GA (purple) and other selection methods

in 100 iterations for the web application in Figure 2.

Figure 6. The SN’s (AQV) response time of DEGWO

(black) and RDGWO+GA (purple) and other selection
methods in 100 iterations for the web application in

Figure 2.

Figure 7. The SN’s (AQV) cost of DEGWO (black) and
RDGWO+GA (purple) and other selection methods in

100 iterations for the web application in Figure 2.

As Figures 6-7 show, response time and cost values
are unstable until iteration 30 but afterward, they
are decreasing or increasing.

- Interpretation using similarity
Another known criterion that can be used to
evaluate fitness and AQVs of the selected
summarized nodes is similarity or the ratio of two
values. (Equations 10 and 11). Value 1 for the ratio
of the fitness or QAs values of AQV of method x
to that of DEGWO denotes two methods have the
same ability in selecting the summarized nodes in
terms of fitness or AQV. The ratio for the fitness
and availability with values <1 or >1 denotes
method x selected weaker or stronger nodes against
DEGWO, and it is vice versa for cost and response
time.

Methodx
Fitness

oposedMethod

Fitness
Similarity

Fitness

Pr

 (10)

Methodx
AQV

oposedMethod

AQV
Similarity

AQV

Pr

 (11)

Figures 8–11 show similar performance values
between DEGWO and the other methods in terms
of fitness value, availability, response time, and
cost. As depicted in Figure 8, DEGWO
consistently selected better summarized nodes
compared to BGWO (cyan), SFLA (red), and IPSO
(yellow) across almost all iterations, with a
particularly notable advantage in iterations before
70. This is attributed to DEGWO's faster
convergence rate compared to the other methods.
In general, the higher the similarity, the closer the
graph value is to one, indicating that the accuracy
of that method is closer to that of DEGWO. Among
the methods compared, RDGWO+GA (the first
step of DEGWO), HGWO, and SFLAGA exhibit
the greatest similarity to DEGWO, while IPSO,
SFLA, and BGWO show the least similarity in
terms of fitness.
The availability similarity analysis in Figure 9 is
the same as the fitness as shown in Figure 8.
Figures 10 and 11 show that the response time and
cost similarity of almost all methods to DEGWO is
greater than one. In other words, in terms of these
two parameters, there is very little similarity
between the x method and the DEGWO in almost
any iteration.
These Figures show that the most similar methods
in terms of response time are SFLAGA,
RDGWO+GA and in terms of cost are
RDGWO+GA, HGWO and the least similar one in
terms of response time is SFLA and in terms of cost
is IPSO.

Babamir & Zahiri/ Journal of AI and Data Mining, Vol. 13, No. 2, 2025

196

Figure 8. The fitness Similarity between DEGWO and
others.

Figure 9. The AQV’s availability similarity between

DEGWO and others.

Figure 10. The AQV’s response time similarity between
DEGWO and others.

Due to the high convergence speed of DEGWO,
other methods have less similarity than DEGWO in
terms of fitness value for 30 iterations. This
behavior can also be seen in availability, but for
two other QA of AQV, the similarity of other
methods to DEGWO is more for 30 iterations, and
gradually this similarity decreases. This issue can
be seen in cost attribute too.
To show the generality of comparing the solutions
generated by the methods for the web application
in Figure 2, statistical tests were applied by which

the significance of differences between the
solutions is evaluated. Table 6 shows results of
statistical tests in terms of fitness, availability,
response time, and cost.

Figure 11. The AQV’s cost similarity between DEGWO

and others.

Column 1 of Table 6 shows the fitness or QAs
values by which generality of results of the two
methods are compared and Columns 2 and 3 show
the two methods whose results are compared. A
Sig.≤0.05 denotes a significant difference between
the generality of results of the two methods. For the
Sig.≤0.05, two positive values for a positive QA,
like fitness and availability denote Method (I)
outperforms Method (J) and two negative values
for a positive QA in the columns denote Method (J)
outperforms Method (I). But, for negative QAs
like response time and cost, Sig.≤0.05 denotes
Method (I) outperforms Method (J) if two negative
values exist in the two last columns.
As the Best Fitness section of Table 6 shows, a
significant difference exists between the generality
of results of DEGWO and that of others (indicated
by Sig.=0.000) and two positive values in the two
last columns denote the DEGWO generally
outperforms other ones. The rest of rows in Section
Best Fitness of Table 6 show dominance for others.
Similar results are seen for the DEGWO in Section
Availability.
According to Section Response time of Table 6, the
significant difference exists between the generality
of results of GEGWO and that of others but
RDGWO+GA (the DEGWO presented in the first
step) and SFLAGA. Finally, according to Section
Cost of Table 6, among the seven methods there
exists a significant difference between the
generality of results of DEGWO and that of
BGWO, IPSO, and SFLA but such difference is not
seen between that of DEGWO and that of the other
four methods.

QoS-Aware Web Service Composition and Selection Based on Interacting Structural Patterns

197

- Execution time
Now, for the web application in Figure 2, we
consider the execution time of the selection
methods (Figure 12) until they achieve their
convergence. As Figure 12 shows, IPSO and
BGWO have less execution time than others

because their algorithms have less complexity and
due to being stuck in the local optimum, they
converge sooner, and that's why according to
Figure 4, these methods also have a lower fitness
value than the others.

Table 6. Results of Statistical tests for selection of solutions (summarized nodes) for the web application in Figure 2.

Multiple Comparisons
Scheffe

Dependent Variable (I) Method (J) Method Sig. 95% Confidence Interval
Lower Bound Upper Bound

Best Fitness

GA

HGWO .059 -.02686218282490 .000234821842
RDGWO+GA .000 -.03994613698413 -.012849132316

DEGWO .000 -.06242155654648 -.035324551878
BGWO .000 .10766662048557 .134763625153
IPSO .000 .12640753548144 .153504540148

SFLAGA .000 -.03855795444755 -.011460949780
SFLA .000 .11502392107234 .142120925739

HGWO

GA .059 -.00023482184261 .026862182824
RDGWO+GA .069 -.02663245649299 .000464548174

DEGWO .000 -.04910787605534 -.022010871387
BGWO .000 .12098030097672 .148077305644
IPSO .000 .13972121597258 .166818220640

SFLAGA .159 -.02524427395641 .001852730711
SFLA .000 .12833760156349 .155434606230

RDGWO+GA

GA .000 .01284913231663 .039946136984
HGWO .069 -.00046454817451 .026632456492

DEGWO .000 -.03602392189610 -.008926917228
BGWO .000 .13406425513596 .161161259803
IPSO .000 .15280517013182 .179902174799

SFLAGA 1.000 -.01216031979717 .014936684870
SFLA .000 .14142155572273 .168518560390

DEGWO

GA .000 .03532455187898 .062421556546
HGWO .000 .02201087138783 .049107876055

RDGWO+GA .000 .00892691722859 .036023921896
BGWO .000 .15653967469830 .183636679365
IPSO .000 .17528058969417 .202377594361

SFLAGA .000 .01031509976518 .037412104432
SFLA .000 .16389697528507 .190993979952

BGWO

GA .000 -.13476362515308 -.107666620485
HGWO .000 -.14807730564422 -.120980300976

RDGWO+GA .000 -.16116125980346 -.134064255135
DEGWO .000 -.18363667936581 -.156539674698

IPSO .000 .00519241266211 .0322894173296
SFLAGA .000 -.15977307726688 -.132676072599

SFLA .752 -.00619120174698 .0209058029205

IPSO

GA .000 -.15350454014894 -.1264075354814
HGWO .000 -.16681822064009 -.1397212159725

RDGWO+GA .000 -.17990217479932 -.1528051701318
DEGWO .000 -.20237759436167 -.1752805896941
BGWO .000 -.03228941732962 -.0051924126621

SFLAGA .000 -.17851399226274 -.1514169875952
SFLA .188 -.02493211674285 .00216488792466

SFLAGA

GA .000 .01146094978005 .03855795444755
HGWO .159 -.00185273071110 .02524427395641

RDGWO+GA 1.000 -.01493668487034 .01216031979717
DEGWO .000 -.03741210443268 -.0103150997651
BGWO .000 .13267607259937 .15977307726688
IPSO .000 .15141698759524 .17851399226274
SFLA .000 .14003337318614 .16713037785365

SFLA

GA .000 -.14212092573985 -.1150239210723
HGWO .000 -.15543460623099 -.1283376015634

RDGWO+GA .000 -.16851856039023 -.1414215557227
DEGWO .000 -.19099397995258 -.1638969752850
BGWO .752 -.02090580292052 .00619120174698
IPSO .188 -.00216488792466 .02493211674285

SFLAGA .000 -.16713037785365 -.1400333731861

Availability GA

HGWO .074 -.07902596174955 .00171004921470
RDGWO+GA .000 -.11583065011806 -.0350946391538

DEGWO .000 -.17186899660423 -.0911329856399
BGWO .000 .31941006352140 .40014607448565
IPSO .000 .37526722772176 .45600323868602

SFLAGA .000 -.11126157354776 -.0305255625835

Babamir & Zahiri/ Journal of AI and Data Mining, Vol. 13, No. 2, 2025

198

SFLA .000 .33995373824533 .42068974920958

HGWO

GA .074 -.00171004921470 .07902596174955
RDGWO+GA .109 -.07717269385064 .00356331711362

DEGWO .000 -.13321104033681 -.0524750293725
BGWO .000 .35806801978882 .43880403075308
IPSO .000 .41392518398919 .49466119495344

SFLAGA .248 -.07260361728034 .00813239368391
SFLA .000 .37861169451275 .45934770547700

RDGWO+GA GA .000 .03509463915381 .11583065011806
Multiple Comparisons

Scheffe

Dependent Variable (I) Method (J) Method Sig. 95% Confidence Interval
Lower Bound Upper Bound

HGWO .109 -.00356331711362 .07717269385064
DEGWO .000 -.09640635196830 -.0156703410040
BGWO .000 .39487270815733 .47560871912158
IPSO .000 .45072987235770 .53146588332195

SFLAGA 1.000 -.03579892891183 .04493708205242
SFLA .000 .41541638288126 .49615239384551

DEGWO

GA .000 .09113298563998 .17186899660423
HGWO .000 .05247502937255 .13321104033681

RDGWO+GA .000 .01567034100404 .09640635196830
BGWO .000 .45091105464350 .53164706560776
IPSO .000 .50676821884387 .58750422980812

SFLAGA .000 .02023941757434 .10097542853859
SFLA .000 .47145472936743 .55219074033168

BGWO

GA .000 -.40014607448565 -.3194100635214
HGWO .000 -.43880403075308 -.3580680197888

RDGWO+GA .000 -.47560871912158 -.3948727081573
DEGWO .000 -.53164706560776 -.4509110546435

IPSO .000 .01548915871824 .09622516968249
SFLAGA .000 -.47103964255129 -.3903036315870

SFLA .811 -.01982433075820 .06091168020605

IPSO

GA .000 -.45600323868602 -.3752672277217
HGWO .000 -.49466119495344 -.4139251839891

RDGWO+GA .000 -.53146588332195 -.4507298723577
DEGWO .000 -.58750422980812 -.5067682188438
BGWO .000 -.09622516968249 -.0154891587182

SFLAGA .000 -.52689680675165 -.4461607957874
SFLA .146 -.07568149495856 .00505451600569

SFLAGA

GA .000 .03052556258351 .11126157354776
HGWO .248 -.00813239368391 .07260361728034

RDGWO+GA 1.000 -.04493708205242 .03579892891183
DEGWO .000 -.10097542853859 -.0202394175743
BGWO .000 .39030363158703 .47103964255129
IPSO .000 .44616079578740 .52689680675165
SFLA .000 .41084730631096 .49158331727522

SFLA

GA .000 -.42068974920958 -.3399537382453
HGWO .000 -.45934770547700 -.3786116945127

RDGWO+GA .000 -.49615239384551 -.4154163828812
DEGWO .000 -.55219074033168 -.4714547293674
BGWO .811 -.06091168020605 .01982433075820
IPSO .146 -.00505451600569 .07568149495856

SFLAGA .000 -.49158331727522 -.4108473063109

Response Time

GA

HGWO 1.000 -.02037514856904 .01968170235590
RDGWO+GA 1.000 -.01656621629304 .02349063463190

DEGWO .032 .00090976519387 .04096661611881
BGWO .980 -.02659564719363 .01346120373131
IPSO 1.000 -.02315774503746 .01689910588747

SFLAGA .962 -.01266344703824 .02739340388669
SFLA .955 -.02765468227613 .01240216864880

HGWO

GA 1.000 -.01968170235590 .02037514856904
RDGWO+GA .999 -.01621949318647 .02383735773847

DEGWO .027 .00125648830044 .04131333922538
BGWO .986 -.02624892408706 .01380792683787
IPSO 1.000 -.02281102193090 .01724582899404

SFLAGA .952 -.01231672393168 .02774012699326
SFLA .965 -.02730795916957 .01274889175537

RDGWO+GA

GA 1.000 -.02349063463190 .01656621629304
HGWO .999 -.02383735773847 .01621949318647

DEGWO .148 -.00255244397556 .03750440694938
BGWO .824 -.03005785636307 .00999899456187
IPSO .980 -.02661995420690 .01343689671804

SFLAGA .999 -.01612565620768 .02393119471726
SFLA .732 -.03111689144557 .00893995947937

DEGWO GA .032 -.04096661611881 -.0009097651938
HGWO .027 -.04131333922538 -.0012564883004

QoS-Aware Web Service Composition and Selection Based on Interacting Structural Patterns

199

RDGWO+GA .148 -.03750440694938 .00255244397556
BGWO .001 -.04753383784998 -.0074769869250
IPSO .005 -.04409593569381 -.0040390847688

SFLAGA .475 -.03360163769459 .00645521323035
SFLA .000 -.04859287293248 -.0085360220075

BGWO

GA .980 -.01346120373131 .02659564719363
HGWO .986 -.01380792683787 .02624892408706

RDGWO+GA .824 -.00999899456187 .03005785636307
DEGWO .001 .00747698692504 .04753383784998

Multiple Comparisons
Scheffe

Dependent Variable (I) Method (J) Method Sig. 95% Confidence Interval
Lower Bound Upper Bound

IPSO 1.000 -.01659052330630 .02346632761864

SFLAGA .438 -.00609622530708 .03396062561786
SFLA 1.000 -.02108746054497 .01896939037997

IPSO

GA 1.000 -.01689910588747 .02315774503746
HGWO 1.000 -.01724582899404 .02281102193090

RDGWO+GA .980 -.01343689671804 .02661995420690
DEGWO .005 .00403908476887 .04409593569381
BGWO 1.000 -.02346632761864 .01659052330630

SFLAGA .786 -.00953412746325 .03052272346169
SFLA .998 -.02452536270114 .01553148822380

SFLAGA

GA .962 -.02739340388669 .01266344703824
HGWO .952 -.02774012699326 .01231672393168

RDGWO+GA .999 -.02393119471726 .01612565620768
DEGWO .475 -.00645521323035 .03360163769459
BGWO .438 -.03396062561786 .00609622530708
IPSO .786 -.03052272346169 .00953412746325
SFLA .334 -.03501966070036 .00503719022458

SFLA

GA .955 -.01240216864880 .02765468227613
HGWO .965 -.01274889175537 .02730795916957

RDGWO+GA .732 -.00893995947937 .03111689144557
DEGWO .000 .00853602200754 .04859287293248
BGWO 1.000 -.01896939037997 .02108746054497
IPSO .998 -.01553148822380 .02452536270114

SFLAGA .334 -.00503719022458 .03501966070036

Cost

GA

HGWO 1.000 -.00415074504136 .00402857531797
RDGWO+GA .999 -.00327145871172 .00490786164761

DEGWO .145 -.00050965251232 .00766966784702
BGWO .964 -.00558188228009 .00259743807925
IPSO .833 -.00611388974430 .00206543061504

SFLAGA .993 -.00295188263311 .00522743772623
SFLA .093 -.00789677124288 .00028254911645

HGWO

GA 1.000 -.00402857531797 .00415074504136
RDGWO+GA .999 -.00321037385003 .00496894650931

DEGWO .129 -.00044856765063 .00773075270871
BGWO .972 -.00552079741839 .00265852294094
IPSO .854 -.00605280488260 .00212651547673

SFLAGA .990 -.00289079777142 .00528852258792
SFLA .105 -.00783568638119 .00034363397815

RDGWO+GA

GA .999 -.00490786164761 .00327145871172
HGWO .999 -.00496894650931 .00321037385003

DEGWO .480 -.00132785398026 .00685146637907
BGWO .711 -.00640008374803 .00177923661130
IPSO .439 -.00693209121224 .00124722914710

SFLAGA 1.000 -.00377008410105 .00440923625828
SFLA .013 -.00871497271083 -.0005356523514

DEGWO

GA .145 -.00766966784702 .00050965251232
HGWO .129 -.00773075270871 .00044856765063

RDGWO+GA .480 -.00685146637907 .00132785398026
BGWO .003 -.00916188994744 -.0009825695881
IPSO .001 -.00969389741164 -.0015145770523

SFLAGA .646 -.00653189030046 .00164743005888
SFLA .000 -.01147677891023 -.0032974585509

BGWO

GA .964 -.00259743807925 .00558188228009
HGWO .972 -.00265852294094 .00552079741839

RDGWO+GA .711 -.00177923661130 .00640008374803
DEGWO .003 .00098256958810 .00916188994744

IPSO 1.000 -.00462166764388 .00355765271546
SFLAGA .549 -.00145966053269 .00671965982665

SFLA .709 -.00640454914246 .00177477121687

IPSO

GA .833 -.00206543061504 .00611388974430
HGWO .854 -.00212651547673 .00605280488260

RDGWO+GA .439 -.00124722914710 .00693209121224
DEGWO .001 .00151457705231 .00969389741164
BGWO 1.000 -.00355765271546 .00462166764388

Babamir & Zahiri/ Journal of AI and Data Mining, Vol. 13, No. 2, 2025

200

SFLAGA .290 -.00092765306848 .00725166729086
SFLA .908 -.00587254167826 .00230677868108

SFLAGA

GA .993 -.00522743772623 .00295188263311
HGWO .990 -.00528852258792 .00289079777142

RDGWO+GA 1.000 -.00440923625828 .00377008410105
DEGWO .646 -.00164743005888 .00653189030046
BGWO .549 -.00671965982665 .00145966053269
IPSO .290 -.00725166729086 .00092765306848
SFLA .005 -.00903454878944 -.0008552284301
Multiple Comparisons

Scheffe

Dependent Variable (I) Method (J) Method Sig. 95% Confidence Interval
Lower Bound Upper Bound

 SFLA

GA .093 -.00028254911645 .00789677124288
HGWO .105 -.00034363397815 .00783568638119

RDGWO+GA .013 .00053565235149 .00871497271083
DEGWO .000 .00329745855090 .01147677891023
BGWO .709 -.00177477121687 .00640454914246
IPSO .908 -.00230677868108 .00587254167826

SFLAGA .005 .00085522843011 .00903454878944
*. The mean difference is significant at the 0.05 level

Figure 12. The execution time of the selection methods in
seconds.

Method GA, having the least execution time after
DEGWO, benefits from the proper fitness
(according to Figure 4). The execution time of
RDGWO+GA, HGWO, and SFLAGA are 54, 45,
and 40 respectively, which converge in iterations
82, 90, and 100, respectively (see Figure 4).

5.2. Experiment 2. Web application of type b
As stated in Section 5, our second evaluation was
done on the web applications of type (b) through
the three following scenarios where the number of
members of the initial population and the number
of web services may be fixed or vary.
(1) The initial population is fixed and has five

members, and the number of web services
(tasks) is 5, 10, 50, and 100 with the sequential
structure.

(2) The number of web services is fixed and equal
to 10 with a sequential structure and the initial
population was considered 5, 10, 50, and 100.

(3) The number of web services is fixed and
equal to 100 with a sequential structure and
the initial population was considered 5, 10,
50, and 100.

To enhance the clarity of the figures, the fitness and
AQV values were scaled by factors of 1000, 1000,
10,000, and 10,000, respectively.

5.2.1. Scenario 1
Figures 13-17 present the results of Scenario 1.
Figure 13 illustrates the fitness values as a function
of the number of web services (tasks) with a fixed
initial population of 5. As shown, fitness values
decrease sharply as the number of web services
increases. Figure 14 demonstrates that, although
availability decreases with an increasing number of
web services, the availability of the SN selected by
DEGWO remains above 900. As shown in Figure
15, for all methods, the availability of the SN
decreases with an increase in the number of
services. However, this is compensated for by
reductions in response time and cost as the number
of services increases (see Figures 16 and 17). This
explains why the overall fitness of DEGWO
remains superior to that of the other methods.

Figure 13. Best fitness of the SN (AQV) by the selection

methods when the number of web services increases.

24
27/9

54

45

17/1

40

14

45/2

0

10

20

30

40

50

60

Algorithms

Ex
ec

ut
io

n
Ti

m
e

(s
)

ProposedMethod

GA

RDGWO+GA

HGWO

BGWO

SFLA+GA

IPSO

SFLA

600

650

700

750

800

850

900

950

1000

10050105

Be
st

 F
itn

es
s

The number of web services

ProposedMeth
od
GA

RDGWO+GA

HGWO

BGWO

SFLA+GA

IPSO

SFLA

QoS-Aware Web Service Composition and Selection Based on Interacting Structural Patterns

201

Figure 14. Availability of the SN (AQV) by selection
methods when the number of web services increases.

Figure 15. Availability of the SN (AQV) by selection
methods when the number of web service increases.

Figure 16. Response time of the SN (AQV) by the

selection methods when the number of web service
increases.

Figure 17. Cost of the SN (AQV) by the selection methods

when the number of web service increases.

5.2.2. Scenario 2
Figures 18-21 illustrate fitness and QA values of
the SNs (AQV) by the methods for Senario2. As
Figures 18 and 19 shows, the fitness and
availability values by the methods increase when
the number of initial population members
increases, and DEGWO outperforms others.

Figure 18. Best fitness of the SN (AQV) by the selection

methods when the number of web services is 10 and initial
population increases.

Figure 19. Availability of the SN (AQV) by the selection

methods when the number of web services is 10 and initial
population increases.

400

500

600

700

800

900

1000

105

Av
ai

la
bi

lit
y

The number of web services

ProposedMethod

GA

RDGWO+GA

HGWO

BGWO

SFLA+GA

IPSO

SFLA

0

1E+10

2E+10

3E+10

4E+10

10050

Av
ai

la
bi

lit
y

The number of web services

ProposedMethod

GA

RDGWO+GA

HGWO

BGWO

SFLA+GA

IPSO

SFLA

100

200

300

400

500

600

700

10050105

Re
sp

on
se

 T
im

e

The number of web services

ProposedMethod

GA

RDGWO+GA

HGWO

BGWO

SFLA+GA

IPSO

SFLA

0

20

40

60

80

100

120

140

160

180

200

10050105

Co
st

The number of web services

ProposedMethod

GA

RDGWO+GA

HGWO

BGWO

SFLA+GA

IPSO

SFLA

750

850

950

10050105

Be
st

 F
itn

es
s

The number of population member

ProposedMethod

GA

RDGWO+GA

HGWO

BGWO

SFLA+GA

IPSO

SFLA

400

600

800

1000

10050105

Av
ai

la
bi

lit
y

The number of population member

ProposedMethod

GA

RDGWO+GA

HGWO

BGWO

SFLA+GA

IPSO

SFLA

Babamir & Zahiri/ Journal of AI and Data Mining, Vol. 13, No. 2, 2025

202

Figure 20. Response time of the SN (AQV) by the

selection methods when the number of web services is 10
and initial population increases.

Likewise, according to Figures 20 and 21, response
time and cost values of the SN by the methods
decrease when the number of initial population
members increases, and DEGWO outperforms
others. As Figure 21 shows, the SNs have a triangle
behavior in the cost value; this is because of
respecting the two other QAs of SN in the tradeoff
between the QAs.

Figure 21. Cost of the SN (AQV) by the selection methods

when the number of web services is 10 and initial
population increases.

Figure 22. Best fitness of the SN (AQV) by the selection

methods when the number of web services is 100 and
initial population increases.

Figure 23. Availability of the SN (AQV) by the selection

methods when the number of web services is 100 and
initial population increases.

Figure 24. Response time of the SN (AQV) by the

selection methods when the number of web services is 100
and initial population increases.

100

200

300

400

500

600

700

10050105

Re
sp

on
se

 T
im

e

The number of population member

ProposedMethod

GA

RDGWO+GA

HGWO

BGWO

SFLA+GA

IPSO

SFLA

0

20

40

60

80

100

120

140

10050105

Co
st

The number of population member

ProposedMethod

GA

RDGWO+GA

HGWO

BGWO

SFLA+GA

IPSO

SFLA

640

645

650

655

660

665

10050105

Be
st

 F
itn

es
s

The number of population member

ProposedMetho
d
GA

RDGWO+GA

HGWO

BGWO

SFLA+GA

IPSO

SFLA

0

10000

20000

30000

40000

50000

60000

10050105

Av
ai

la
bi

lit
y

The number of population member

ProposedMethod

GA

RDGWO+GA

HGWO

BGWO

SFLA+GA

IPSO

SFLA

100

200

300

400

500

10050105

Re
sp

on
se

 T
im

e

The number of population member

ProposedMethod

GA

RDGWO+GA

HGWO

BGWO

SFLA+GA

IPSO

SFLA

QoS-Aware Web Service Composition and Selection Based on Interacting Structural Patterns

203

Figure 25. Cost of the SN (AQV) by the selection methods

when the number of web services is 100 and initial
population increases.

5.2.3. Scenario 3
This scenario is similar to Scenario 2, where the
number of initial population members increases
from 5 to 100, while the number of web services
remains fixed at 100. Figures 22-25 show best
fitness, availability, response time, and cost values
of SN, respectively. The behavior of fitness
depicted in Figure 22 resembles that of Figure 18.
Conversely, Figure 23 demonstrates a triangular
pattern in SN availability. This behavior can be
attributed to the trade-off between the two other
quality attributes (QAs) involved in the
optimization process.

5.2.4. Result summaries of the scenarios
Generally, for Scenario 1 with 5 initial members
and different web services, DEGWO improves the
average availability (for 5 and 10 service) by 12%,
8%, 11%, 20%, 2%, 36%, 25%, the average
response time by 93%, 31%, 51%, 78%, 14%,
114%, 66% and the average cost by 119%, 80%,
53%, 120%, 19%, 238%, 57% compared to the
GA, RDGWO+GA, HGWO, BGWO, SFLA+GA,
IPSO, SFLA.
For Scenario 2 with 10 web services and the
different number of initial members, DEGWO
improves the average availability by 10%, 4%, 7%,
27%, 2%, 42%, and 34%, and the average response
time by 104%, 42%, 45%, 95%, 51%, 104%,
106%, and the average cost by 220%, 70%, 70%,
350%, 120%, 270%, 160% compared to the GA,
RDGWO+GA, HGWO, BGWO, SFLA+GA,
IPSO, SFLA.
For Scenario 3 with 100 web services and the
different number of initial members, DEGWO
improves the average availability by 48%, 13%,
99%, 37%, 10%, 99%, and 59%, and the average
response time by 34%, 35%, 35%, 96%, 26%,
110%, 95%, and the average cost by 46%, 46%,

36%, 130%, 16%, 120%, 116% compared to the
GA, RDGWO+GA, HGWO, BGWO, SFLA+GA,
IPSO, SFLA.

6. Threats to the proposed approach
The proposed approach (DEGWO) was designed
under several constraints, making it suitable for
static environments rather than dynamic ones.
These constraints are as follows: 1) the structure of
the graph is static (predefined), 2) the number of
available candidates remains fixed, with their QA
values unchanged, 3) the candidates are always
available, and it is assumed that no candidate fails.
The selected candidates are managed and operated
independently; however, there is potential for
further improvement by considering correlations
between them. DEGWO is not capable of
responding to real-time requests immediately. This
limitation can be addressed by parallelizing the
algorithm and incorporating constraints to
prioritize real-time requests.

7. Conclusions and future work
In this study, we addressed the quality-aware
selection of candidate services for web service
applications to obtain an optimal summarized node
(SN). Due to the potentially large number of
candidates for each web service, numerous
concrete compositions are generated as solutions,
each with varying qualities. Selecting the near-
optimal solutions is an NP-hard problem. In this
study, three quality attributes "availability",
"response time", and "cost" were considered for
each candidate service, with the primary goal of
maximizing the fitness value of the compositions.
After applying the graph summarization method,
we introduced an evolutionary optimization
algorithm to select the optimal summarized nodes
(SNs).
To produce optimal summarized nodes, we
introduced DEGWO based on the Gray Wolf
Optimizer (GWO), Genetic Algorithm (GA), and
Shuffled Frog Leaping Algorithm (SFLA). Since
the basic GWO is suited for continuous spaces and
our problem uses a discrete space, a novel function
was proposed to convert the continuous space into
a discrete one. DEGWO leverages strengths of all
three algorithms including the high convergence
speed of GWO, the local optima prevention using
GA's mutation and crossover operators, and the
broader solution space exploration afforded by
SFLA.
We compared the results of DEGWO with those
from seven related works using statistical tests and
graphical representations. These comparisons were
made by applying the optimization algorithms to a
real web application across three scenarios, with

0

20

40

60

80

100

10050105

Co
st

The number of population member

ProposedMethod

GA

RDGWO+GA

HGWO

BGWO

SFLA+GA

IPSO

SFLA

Babamir & Zahiri/ Journal of AI and Data Mining, Vol. 13, No. 2, 2025

204

the performance measured in terms of fitness value,
availability, response time, cost of the summarized
node (SN), and execution time. The experimental
results demonstrated that DEGWO improved all
quality attributes. Specifically, compared to the top
three algorithms (RDGWO+GA, HGWO, and
SFLAGA). The DEGWO algorithm showed the
following improvements on average: (1) Scenario
1: 39%, 38%, and 11%; (2) Scenario 2: 38%, 40%,
57%; (3) Scenario 3: 31%, 56%, and 17%.
Therefore, DEGWO outperformed the top three
algorithms by 36%, 44%, and 28%, respectively.
Additionally, the similarity values results showed
that DEGWO achieved 100% efficiency compared
to the other methods.
In this study, the quality attribute (QA) values were
weighted using the Simple Additive Weighting
(SAW) approach, transforming the WSC problem
into a single-objective optimization model.
DEGWO can be extended as future work by
incorporating Pareto-based optimizers to enhance
results in dynamic environments. Additionally,
solutions can be proposed to address the constraints
outlined in Section 6, enabling the inclusion of
dynamic environments in the optimization process.

Availability of data and materials:
The dataset used for selecting the candidates is
available at https://zenodo.org/record/3557008.
The interface input and output consoles, along with
additional examples of WSC graph
summarizations and the matrix representation of
WSC, can be accessed in the files
InputOutputConsole.docx,
GraphSummarization.docx, and Guide_text.txt,
respectively. These files are included in the Service
Composition&Selection.zip archive, which can be
found at
https://github.com/NargessZahiri/Composition-
Selection.

References
[1] N. Kashyap, A. C. Kumari, and R. Chhikara,
“Service Composition in IoT using Genetic algorithm
and Particle swarm optimization,” Open Computer
Science, vol. 10, no. 1, pp. 56–64, 2020.

 [2] P. Asghari, A. M. Rahmani, and H. H. S. Javadi,
“Privacy-aware cloud service composition based on
QoS optimization in Internet of Things,” Journal of
Ambient Intelligence and Humanized Computing, pp. 1–
26, 2020.

[3] S. Chattopadhyay, A. Banerjee, and N. Banerjee, “A
fast and scalable mechanism for web service
composition,” ACM Transactions on the Web (TWEB),
vol. 11, no. 4, pp. 1–36, 2017.

[4] F. B. Vernadat, "Interoperability and Standards for
Automation," in Springer Handbook of Automation,
Springer, 2023, pp. 729–752.

[5] N. Antonyuk, M. Medykovskyy, L. Chyrun, M.
Dverii, O. Oborska, M. Krylyshyn, A. Vysotsky, N.
Tsiura, and O. Naum, "Online tourism system
development for searching and planning trips with
user’s requirements," in Proc. of the 2020 International
Conference on Information Technology and Tourism
Development (ICITD 2020), Lviv, Ukraine, 2020, pp.
831–863.

[6] V. Gabrel, M. Manouvrier, K. Moreau, and C.
Murat, “QoS-aware automatic syntactic service
composition problem: Complexity and
resolution,” Future Generation Computer Systems, vol.
80, pp. 311–321, 2018.

[7] P. Asghari, A. M. Rahmani, and H. H. S. Javadi,
“Service composition approaches in IoT: A systematic
review,” Journal of Network and Computer
Applications, vol. 120, pp. 61–77, 2018.

[8] A. Ramírez, J. A. Parejo, J. R. Romero, S. Segura,
and A. Ruiz-Cortés, “Evolutionary composition of QoS-
aware web services: a many-objective
perspective,” Expert Systems with Applications, vol. 72,
pp. 357–370, 2017.

[9] M. Dumas, L. García-Bañuelos, A. Polyvyanyy, Y.
Yang, and L. Zhang, "Aggregate quality of service
computation for composite services," in Proc. of the
2017 International Conference on Service-Oriented
Computing (ICSOC 2017), Malaga, Spain, 2017, pp.
213–227.

[10] H. Zheng, W. Zhao, J. Yang, and A. Bouguettaya,
“QoS Analysis for Web Service Compositions with
Complex Structures,” IEEE Transactions on Services
Computing, vol. 6, no. 3, pp. 373–386, 2013.

[11] S. Asghari and N. J. Navimipour, “Nature inspired
meta-heuristic algorithms for solving the service
composition problem in the cloud
environments,” International Journal of
Communication Systems, vol. 31, no. 12, Art. no. e3708,
2018.

[12] M. AllamehAmiri, V. Derhami, and M.
Ghasemzadeh, "QoS-based web service composition
based on genetic algorithm," J. AI Data Min., vol. 1, no.
2, pp. 63–73, 2013.

[13] H.-F. Li, L. Zhao, B.-H. Zhang, and J.-Q. Li,
"Service matching and composition considering
correlations among cloud services," in Proc. of the 2018
IEEE International Conference on Web Services (ICWS
2018), San Francisco, CA, USA, 2018, pp. 509–514.

[14] M. Eusuff, K. Lansey, and F. Pasha, “Shuffled frog-
leaping algorithm: a memetic meta-heuristic for discrete
optimization,” Engineering Optimization, vol. 38, no. 2,
pp. 129–154, 2006.

https://zenodo.org/record/3557008
https://github.com/NargessZahiri/Composition-Selection
https://github.com/NargessZahiri/Composition-Selection

QoS-Aware Web Service Composition and Selection Based on Interacting Structural Patterns

205

[15] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey
wolf optimizer,” Advances in Engineering Software,
vol. 69, pp. 46–61, 2014.

[16] H. Bouzary and F. Frank Chen, “A hybrid grey wolf
optimizer algorithm with evolutionary operators for
optimal QoS-aware service composition and optimal
selection in cloud manufacturing,” The International
Journal of Advanced Manufacturing Technology, vol.
101, pp. 2771–2784, 2019.

[17] J. Zhou and X. Yao, “A hybrid approach combining
modified artificial bee colony and cuckoo search
algorithms for multi-objective cloud manufacturing
service composition,” International Journal of
Production Research, vol. 55, no. 16, pp. 4765–4784,
2017.

[18] F. Seghir and A. Khababa, “A hybrid approach
using genetic and fruit fly optimization algorithms for
QoS-aware cloud service composition,” Journal of
Intelligent Manufacturing, vol. 29, pp. 1773–1792,
2018.

[19] G. Komaki and V. Kayvanfar, “Grey Wolf
Optimizer algorithm for the two-stage assembly flow
shop scheduling problem with release time,” Journal of
Computational Science, vol. 8, pp. 109–120, 2015.

[20] X. Song, L. Tang, S. Zhao, X. Zhang, L. Li, J.
Huang, and W. Cai, “Grey Wolf Optimizer for
parameter estimation in surface waves,” Soil Dynamics
and Earthquake Engineering, vol. 75, pp. 147–157,
2015.

[21] M. Chandra, A. Agrawal, A. Kishor, and R. Niyogi,
"Web service selection with global constraints using
modified gray wolf optimizer," in Proc. of the 2019
IEEE International Conference on Web Services (ICWS
2019), Milan, Italy, 2019, pp. 1989–1994.

[22] S. Gohain and A. Paul, "Web service composition
using PSO—ACO," in Proc. of the 2016 International
Conference on Advances in Computing,
Communications and Informatics (ICACCI 2016),
Jaipur, India, 2016, pp. 1–5.

[23] M. Karimi and S. M. Babamir, “QoS-aware web
service composition using Gray Wolf
Optimizer,” International Journal of Information and
Communication Technology Research, vol. 9, no. 1, pp.
9–16, 2017.

[24] Y. Huo, P. Qiu, J. Zhai, D. Fan, and H. Peng,
“Multi-objective service composition model based on
cost-effective optimization,” Applied Intelligence, vol.
48, pp. 651–669, 2018.

[25] S. C. Sadouki and A. Tari, “Multi-objective and
discrete elephants herding optimization algorithm for
QoS aware web service composition,” RAIRO-
Operations Research, vol. 53, no. 2, pp. 445–459, 2019.

[26] Y. Yang, B. Yang, S. Wang, T. Jin, and S. Li, “An
enhanced multi-objective grey wolf optimizer for
service composition in cloud manufacturing,” Applied
Soft Computing, vol. 87, Art. no. 106003, 2020.

[27] A. K. Sangaiah, G.-B. Bian, S. M. Bozorgi, M. Y.
Suraki, A. A. R. Hosseinabadi, and M. B. Shareh, “A
novel quality-of-service-aware web services
composition using biogeography-based optimization
algorithm,” Soft Computing, vol. 24, pp. 8125–8137,
2020.

[28] P. Thangaraj and P. Balasubramanie, “Meta
heuristic QoS based service composition for service
computing,” Journal of Ambient Intelligence and
Humanized Computing, vol. 12, pp. 5619–5625, 2021.

[29] F. Dahan, W. Binsaeedan, M. Altaf, M. S. Al-
Asaly, and M. M. Hassan, “An efficient hybrid
evolutionary algorithm for QoS-Aware cloud service
composition problem,” IEEE Access, vol. 9, pp. 95208–
95217, 2021.

[30] Y. Azouz and D. Boughaci, “Multi-objective
memetic approach for the optimal web services
composition,” Expert Systems, Art. no. e13084, 2022.

[31] F. Dahan and A. Alwabel, “Artificial Bee Colony
with Cuckoo Search for Solving Service
Composition,” Intelligent Automation & Soft
Computing, vol. 35, no. 3, 2023.

Appendix

This appendix addresses the links contain:
(1) We provided the matrix representation for a few WSC graphs, including

probabilistic edges, in file Guide_text.txt. This file is included in file
Service Composition&Selection.zip at

 https://github.com/NargessZahiri/Composition-Selection
(2) A sample of the interface's input (Figure A-1) and output (Figure A-2)was

shown in file InputOutputConsole.docx in the zip file. The input demonstrates
how users can specify the graph structure through an incidence matrix of
vertices, while the output shows the initial randomly selected candidates'
indices and their summarized node’s quality values,

(3) Demonstration of the summarization of the graphs generated via our interface
for loop, unstructured conditional, and structured conditional patterns, were
shown in file GraphSummarization.docx in the zip file (Figures A-3 to A-5),

https://github.com/NargessZahiri/Composition-Selection

Babamir & Zahiri/ Journal of AI and Data Mining, Vol. 13, No. 2, 2025

206

(4) A web service graph containing an unstructured (undefined) conditional
pattern, which cannot be summarized into an summarized node was shown in
Figure A-4.

(5) An example of the discretization process (done by Algorithm 2), detailed in
eight steps, is provided in Appendix 1 in file Appendix.pdf.

(6) Results of the selection methods based on their fitness values and quality
values of the summarized nodes are presented in Tables A-1 to A-4 in Appendix
2 in file Appendix.pdf. In these tables, N denotes the number of runs and the
best fitness value of the methods (Tabl A-1) and the quality values obtained
by the methods (Tables A-2 to A-4)were shown in the other columns. The values
shown in the same column are considered similar in terms of fitness or quality
value. The values in the Tables support the findings in Table 6, where two
methods (I) and (J) have no significant difference in fitness or quality
values when their values are in the same column in the Tables.

 .1404سال ،دوره سیزدهم، شماره دوم ،کاویمجله هوش مصنوعی و داده ظهیری بابامیر و

 هایسیسرووب بیترک بهینه انتخاب ه منظورب یسازبر الگو و خلاصه یمبتن یسازنهیبه تمیالگوریک

 های کیفی ویژگیبه آگاه

 *سید مرتضی بابامیرو نرجس ظهیری

 .رانینرم افزار، دانشگاه کاشان، کاشان، ا یگروه مهندس

 12/03/2025 پذیرش؛ 12/01/2025 بازنگری؛ 08/12/2024 ارسال

 چکیده:

شد و هستند در تعامل با یکدیگر ها کهسرویسوباز گرافی ه صورتها بسرویسترکیب وب . شودمی مدله، برای برآورده کردن نیازهای کاربر طراحی

ی مختلف ، چندین گزینهسرویساست. برای اجرای هر سرویسی تعامل بین دو دهندهو هر یال نشان سرویسی یک دهندهدر این گراف، هر گره نشان

سان اما ویژگی های متعددی باهای کیفی متفاوت در وب وجود دارد. در نتیجه، ترکیببا ویژگی ستند که عملکرد یک شکیل ه های کیفی مختلف قابل ت

شئئده توسئئز ابزار را برای پشئئتییانی سئئازی تکاملیاین مقاله یک الگوریتم بهینه .کندسئئخت تیدیل میخیلی یانتخاب ترکیب بهینه را به یک مسئئهله

سخهانتخاب ترکیب بهینه معرفی می شنهادی، ن ستریبهینهالگوریتم ی یافتهتوسعه ی گسسته وکند. الگوریتم پی ست. (DEGWO) سازی گرگ خاک ا

ی بهینهنزدیک بههای حلدهد تا راهرا گسترش می GWO های الگوریتمسازی کرده و سپس قابلیترا گسسته هاحلراهی این روش ابتدا فضای پیوسته

سری سایی کرده سرا شنا سایر روش DEGWO الگوریتم .دهدمیزایش افنیز سرعت همگرایی را در حالیکه همزمانرا سه با های مرتیز بر در مقای

 ٪43 ،٪3۶ پذیری،دسترس در بهیود ٪5 و ٪3۹ ،٪8طور متوسز اساس معیارهای مختلف ارزیابی شده است. نتایج تجربی نشان داد که این الگوریتم به

سخ، زمان در بهیود ٪30 و سیت هزینه در بهیود ٪51 و ٪53 ،٪۶5 و پا شرو الگوریتم سه به ن شته SFLAGA و RDGWO+GA ،HGWO پی دا

 .است

سئئازی گرگ بهینهالگوریتم ،هاسئئرویسارتیاطی بین وبی هاالگو ،های کیفیبر اسئئاس ویژگیانتخاب ترکیب ،هاسئئرویسوبترکیب :کلمات کلیدی

 .خاکستری

	4.1. WSC summarization

