[1] H. Gholamalinejad and H. Khosravi, “Whitened gradient descent, a new updating method for optimizers in deep neural networks,” Technol. J. Artif. Intell. Data Min., vol. 10, no. 4, pp. 467–477, 2022, doi: 10.22044/jadm.2022.11325.2291.
[2] Q. Sun, C. Bai, H. Geng, and B. Yu, “Deep Neural Network Hardware Deployment Optimization via Advanced Active Learning,” in Proceedings -Design, Automation and Test in Europe, DATE, 2021. doi: 10.23919/DATE51398.2021.9474100.
[3] L. Deng et al., “Rethinking the performance comparison between SNNS and ANNS,” Neural Networks, vol. 121, 2020, doi: 10.1016/j.neunet.2019.09.005.
[4] Y. Kim, J. Chough, and P. Panda, “Beyond classification: directly training spiking neural networks for semantic segmentation,” Neuromorphic Comput. Eng., vol. 2, no. 4, 2022, doi: 10.1088/2634-4386/ac9b86.
[5] Y. Guo
et al., “RMP-Loss: Regularizing Membrane Potential Distribution for Spiking Neural Networks,” pp. 17391–17401, 2023, [Online]. Available:
http://arxiv.org/abs/2308.06787.
[6] I. Ulku and E. Akagündüz, “A Survey on Deep Learning-based Architectures for Semantic Segmentation on 2D Images,” Applied Artificial Intelligence, vol. 36, no. 1. Taylor and Francis Ltd., 2022. doi: 10.1080/08839514.2022.2032924.
[7] M. Tang, F. Perazzi, A. Djelouah, I. Ben Ayed, C. Schroers, and Y. Boykov, “On Regularized Losses for Weakly-supervised CNN Segmentation,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018. doi: 10.1007/978-3-030-01270-0_31.
[8] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2015. doi: 10.1007/978-3-319-24574-4_28.
[9] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 12, 2017, doi: 10.1109/TPAMI.2016.2644615.
[10] L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4, 2018, doi: 10.1109/TPAMI.2017.2699184.
[11] S. Bukhori, M. Almas Bariiqy, W. Eka, and J. A. Putra, “Segmentation of Breast Cancer using Convolutional Neural Network and U-Net Architecture,” Technol. J. Artif. Intell. Data Min., vol. 11, no. 3, pp. 477–485, 2023, doi: 10.22044/jadm.2023.12676.2419.
[12] L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Rethinking Atrous Convolution for Semantic Image Segmentation Liang-Chieh,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4, 2018.
[13] N. H. Thinh, T. Hoang Tung, and L. V. Ha, “Depth-aware salient object segmentation,” VNU J. Sci. Comput. Sci. Commun. Eng., vol. 36, no. 2, 2020, doi: 10.25073/2588-1086/vnucsce.217.
[14] J. K. Eshraghian et al., “Training Spiking Neural Networks Using Lessons from Deep Learning,” Proc. IEEE, vol. 111, no. 9, 2023, doi: 10.1109/JPROC.2023.3308088.
[15] W. Maass, “Networks of spiking neurons: The third generation of neural network models,” Neural Networks, vol. 10, no. 9, 1997, doi: 10.1016/S0893-6080(97)00011-7.
[16] H. Aghabarar, K. Kiani, and P. Keshavarzi, “Digit Recognition in Spiking Neural Networks using Wavelet Transform,” Technol. J. Artif. Intell. Data Min., vol. 11, no. 2, pp. 247–257, 2023, doi: 10.22044/jadm.2023.12613.2415.
[17] S. Schmidgall, J. Ashkanazy, W. Lawson, and J. Hays, “SpikePropamine: Differentiable Plasticity in Spiking Neural Networks,” Front. Neurorobot., vol. 15, 2021, doi: 10.3389/fnbot.2021.629210.
[18] S. A. Lobov, A. N. Mikhaylov, M. Shamshin, V. A. Makarov, and V. B. Kazantsev, “Spatial Properties of STDP in a Self-Learning Spiking Neural Network Enable Controlling a Mobile Robot,” Front. Neurosci., vol. 14, 2020, doi: 10.3389/fnins.2020.00088.
[19] E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate Gradient Learning in Spiking Neural Networks: Bringing the Power of Gradient-based optimization to spiking neural networks,” IEEE Signal Process. Mag., vol. 36, no. 6, 2019, doi: 10.1109/MSP.2019.2931595.
[20] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and A. Maida, “Deep learning in spiking neural networks,” Neural Networks, vol. 111. 2019. doi: 10.1016/j.neunet.2018.12.002.
[21] T. Zhang, S. Xiang, W. Liu, Y. Han, X. Guo, and Y. Hao, “Hybrid Spiking Fully Convolutional Neural Network for Semantic Segmentation,” Electron., vol. 12, no. 17, 2023, doi: 10.3390/electronics12173565.
[22] C. Zhou, L. Ye, H. Peng, Z. Liu, J. Wang, and A. Ramírez-De-Arellano, “A Parallel Convolutional Network Based on Spiking Neural Systems,” Int. J. Neural Syst., vol. 34, no. 5, 2024, doi: 10.1142/S0129065724500229.
[23] D. Zipser, B. Kehoe, G. Littlewort, and J. Fuster, “A spiking network model of short-term active memory,” J. Neurosci., vol. 13, no. 8, 1993, doi: 10.1523/jneurosci.13-08-03406.1993.
[24] B. Quan, B. Liu, D. Fu, H. Chen, and X. Liu, “Improved deeplabv3 for better road segmentation in remote sensing images,” in Proceedings - 2021 International Conference on Computer Engineering and Artificial Intelligence, ICCEAI 2021, 2021. doi: 10.1109/ICCEAI52939.2021.00066.
[25] P. Y. Simard, D. Steinkraus, and J. C. Platt, “Best practices for convolutional neural networks applied to visual document analysis,” in Proceedings of the International Conference on Document Analysis and Recognition, ICDAR, 2003. doi: 10.1109/ICDAR.2003.1227801.
[26] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny Images,” … Sci. Dep. Univ. Toronto, Tech. …, 2009, doi: 10.1.1.222.9220.
[27] B. Zhou et al., “Semantic Understanding of Scenes Through the ADE20K Dataset,” Int. J. Comput. Vis., vol. 127, no. 3, 2019, doi: 10.1007/s11263-018-1140-0.
[29] Y.Liu, C. Liu, K. Han, Q. Tang, and Z. Qin, “Boostin Semantic Segmentation from the Perspective of Explicit Class Embeddings,” in Proceedings of the IEEE International Conference on Computer Vision, 2023. doi: 10.1109/ICCV51070.2023.00082.
[30] “Nisy images edge detection: Ant colony optimizaion algorithm,” J. Artif. Intell. Data Min., vol. 4, no. 1, 016, doi: 10.5829/idosi.jaidm.2016.04.01.09.
[31] A. . Boyat and B. K. Joshi, “A Review Paper : Noise Models in Digital Image Processing,” Signal Image Process. An Int. J., vol. 6, no. 2, 2015, doi: 10.5121/sipij.2015.6206.