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 This paper explores fixed-time synchronization for discontinuous 

fuzzy delay recurrent neural networks (DFRNNs) with time-varying 

delays. Based on a generalized variable transformation, the error 

system has been developed to effectively manage discontinuities in 

neural systems. This research addresses the fixed-time stability 

problem using a novel discontinuous state-feedback control input and 

a simple switching adaptive control scheme. The proposed method 

ensures robust synchronization of the drive and response neural 

systems within a fixed time. Practical applications of this work 

include improvements in protocols for secure communications, 

robotic control systems, and intelligent control frameworks over 

dynamic systems. A numerical example substantiates the theoretical 

claims, demonstrating the strengths of the proposed approach. The 

results show fixed-time convergence of error margins to zero, 

ensuring unbiased performance within a predefined timeframe, 

independent of initial conditions. 
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1. Introduction 

Synchronization of two or more coupled systems is 

the phenomenon of showing an identical behavior 

in time. If the initial condition is quite large, then it 

results in an undesirable time for convergence. A 

continuous-time ordinary differential equation is 

commonly used to model synchronization, which is 

expressed as follows: 

( ) ( )( ) ( )( )),     1, ,i i ix t f x t g x t i n= + =             (1) 

In this equation,       n

ix R  denotes the status of the 

i th node, ( )( )if x t  signifies the inherent 

behavior or natural tendencies of the i th node, and 

in the case where      0f = , the synchronization 

model transforms into the consensus model. The 

variable ( ) ( ) ( )( )1 , , nx t x t x t=   and ig  

denotes the diffusion-based interconnection or 

coupling from the neighboring nodes of node i . 

Despite each node only needing local information 

from its neighbors, the entire network can display 

collective behavior, specifically synchronization, 

such that  𝑙𝑖𝑚𝑡→∞ ∥ 𝑥𝑖(𝑡) − 𝑥𝑗(𝑡) ∥= 0, where ∥. ∥ 

represents some norm. The synchronization model 

commonly used in literature is as follows:  

  ( ) ( )( ) ( ) i i ijx t f x t c a A t= +                          (2) 

where ( ) ( ) ( )( )j iA t x t x t= − .  

This is a common problem in system theory, 

especially in robotic systems: the design of 

controllers that drive a system to a desired position 

in finite time. Finite-time synchronization is 

particularly important in many applications 

because only exponential synchronization may 

require the existence of coupling mechanisms or 

external control systems for an infinite period of 

time. The attainment of finite-time synchronization 

can enhance the performance of a system by aiding 

in the rejection of disturbances and improving its 

ability to withstand uncertainties. The exploration 

of novel coupling protocols for achieving finite-

time synchronization holds significance for both 

theoretical scrutiny and practical implementation. 

However, the settling time depends on the initial 

conditions of the system, which in turn limits the 
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practical applicability of finite-time 

synchronization since it may not be possible to 

know the initial conditions in advance. Besides, 

discontinuities in systems and NNs result in 

instability. To that end, Polyakov proposed fixed-

time stability (FTS) to overcome the shortcomings 

of settling time in analyzing the stability of linear 

systems over a finite time [1]. FTS has found 

popularity in power systems, space technology, and 

many other fields. Works have been conducted on 

FTS of nonlinear systems, including discontinuous 

systems which are very common in neuroscience 

and engineering applications. In such systems, 

Lyapunov function techniques have emerged as an 

important approach to investigate FTS. Compared 

to that, the FTS has a strictly limited constraint on 

the settling time and guarantees convergence 

within the pre-defined limit of a settling time for 

any system initial conditions. The FTS has been 

actively investigated within the stochastic [1] and 

deterministic continuous-time systems [2], design 

of a fixed-time control [3]–[9], design of the fixed-

time observers [10]–[14], and design of a fixed-

time identification [15]–[19]. The scholars have 

also developed several approaches to address FTS 

in discontinuous systems using methods of 

Lyapunov function, such as the unified theorem 

proposed by Ji et al. to address the finite-time 

stability and FTS in networks that exhibit 

discontinuous activations [20], and studies on 

fixed-time stability of discontinuous NNs [21]. 

Several synchronization control techniques for 

fuzzy NNs have been suggested in the literature 

over these years. In [22], the paper has established 

new criteria on global exponential stability of 

equilibrium points and globally exponential lag 

synchronization in memristor-based FNNs, by 

using different mathematical techniques and 

numerical simulations.   

It is worth pointing out that the existing methods 

indeed try to handle discontinuities with smooth 

approximations, yet they usually lack robustness 

against real-world time-varying delays. For the 

alternative approaches concerning this context, 

sliding mode control and adaptive control can be 

mentioned. In this sense, although the sliding mode 

control and adaptive techniques may work for 

some scenarios, they usually cannot resolve the 

challenges brought about by discontinuities and 

time-varying delays in neural systems. Our 

approach avoids these deficiencies by ensuring 

fixed-time convergence through a robust control 

design. 

Recurrent neural networks are a class of NNs with 

feedback connections such that the network may 

keep past inputs in memory. The network output is 

influenced jointly by the current input and the past 

state of the network. Fixed time synchronization 

control for RNNs involves adjusting the weights of 

the connections between nodes to achieve a desired 

synchronization behavior while in view of the 

recurrent dynamics of the network. The updates in 

the hidden state, for every step in an RNN, are a 

function of the present input and previous hidden 

state; then the output is produced by an activation 

function such as sigmoid or softmax from the 

current hidden state.  

DRNN is also a kind of NN, and it integrates the 

principle of fixed-length delay lines for processing 

the input data in a time-delayed manner. The input 

data is allowed to be stored in the delay line for a 

certain number of time steps before being relayed 

to the hidden layer of the network. Then, by using 

the time-delayed input data, the network produces 

the desired output. The advantage of the DRNN is 

that it is able to show dependencies within the input 

data concerning a standard RNN. While the DRNN 

is delaying the input data, then it can process 

information from earlier time steps, which may be 

useful in tasks like time series prediction. 

However, a DRNN is also more complex than the 

standard RNN since an extra part needs to be added 

to its architecture: the delay-line component. 

Moreover, a fixed-length delay may impose some 

limitation, because in most applications, not all 

relevant information of interest is really contained 

in the fixed length of the delay line of the input 

data.  

The key differences between DRNN and delayed 

fuzzy RNN are how these two process inputs and 

what kind of activation functions are applied. A 

DRNN processes its input in a delayed manner 

using a fixed-length delay line. First, the input is 

fed through a delay line, which holds the input for 

a fixed number of time steps before feeding it to the 

network's hidden layer.  It is in this hidden layer 

that the actual processing of the delayed input data 

computes the output. The activation function in 

DRNNs can be either linear or nonlinear, which 

can be sigmoid or ReLU. The delay dependent 

RNN dynamic equation is generally defined as: 

( ) ( )( )i i iy t f x t=                       

 ( ) ( )( )
1

 
n

i ij ij j ij ij

j

x t a w x t  
=

= − − −  

( )
1

 
n

ij j ij

j

b y t 
=

+ −

 

(3) 
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where ( )ix t  represents the statue of node i  at t

, ( )iy t  is the node-output of i  at t , 
ija  and 

ijb  

are weighting coefficients, 
ijw  is the connection 

strength between node i  and j , 
ij  is the 

threshold value, ( )if   is the discontinuous 

activation function of node i , 
ij  is the time delay 

between node i  and j .  

By integrating fuzzy logic into both the 

architecture and the form of RNN’s activation 

function, we achieve DFRNN. Neurons in DFRNN 

bear a more complicated architecture due to the 

addition of such elements as self-feedback terms, 

fuzzy weights, fuzzy operators, and external inputs. 

The activation function of DFRNN is more 

complex by combining nonlinear functions and 

fuzzy operators.  The most significant benefit of a 

DFRNN is that it possesses an elaborate 

architecture and an activation function which may 

be more appropriate to capture the complicated 

patterns and relationships present in the input data 

than a DRNN. On the other hand, the DFRNN is 

computational and challenging with respect to the 

DRNN. Another difference between the DRNN 

and DFRNN lies in dealing with the input data and 

the applied activation functions.  

While DRNN uses a fixed-length delay line to 

process the input data and can have a linear or 

nonlinear activation function, DFRNN 

incorporates the fuzzy logics in architecture and 

activation function for capturing complex pattern 

and relationship in input data.  Due to the 

discontinuous activation function in DFRNN, the 

network becomes unstable. Thus, stability and 

synchronization issues are an important field of 

study in discontinuous dynamical networks. The 

paper deals with discontinuities in neural systems. 

In this regard, we use a generalized variable 

transformation to circumvent the discontinuity but 

obtain an error system. In this paper, the FTS issue 

of the error system generated in the drive and 

response systems is investigated. To be specific, a 

new form of discontinuous control input is 

introduced for the response neural system. A 

switching state-feedback control law is designed. 

The proposed approach ensures stable 

synchronization and allows one to easily estimate 

the settling time. 

It should be noted that while generalized variable 

transformations and discontinuous state-feedback 

control have been explored in related works, their 

application in addressing the challenges of fixed-

time synchronization for discontinuous systems 

with time-varying delays is unique to this study. In 
this context, FRNN refers to discontinuous fuzzy 

recurrent neural networks with time-varying 

delays. These networks encompass fuzzy logic in 

their architecture. 

The proposed approach offers a robust and 

innovative approach to synchronization, 

addressing several key challenges in neural 

networks. Unlike many of the existing methods, 

which emphasize asymptotic or exponential 

convergence, the proposed approach guarantees 

synchronization within a predefined fixed time, 

irrespective of the initial conditions. This allows 

for strong guarantees on settling time, which is 

quite critical for applications that are time-

sensitive. In addition, through a generalized 

variable transformation, the approach provides a 

generalized treatment of system discontinuities and 

develops an effective continuous Lyapunov-based 

framework which is hard for traditional methods to 

achieve, such as sliding mode control or adaptive 

control. Due to the inclusion of an adaptive 

switching control scheme in this paper, the 

designed controller handles time-varying delays' 

uncertainties and nonlinearity, assuring 

synchronization performance without asking for an 

exact delay compensation–  a limitation required by 

most of the existing literature. The discontinuous 

state-feedback control and the adaptive switching 

mechanism are easy to implement, hence less 

computation-intensive with respect to methods in 

adaptive or observer-based controls. Another key 

feature of the proposed approach is that it is not 

constrained on a particular class of networks but, as 

a matter of fact, fits a wide class of discontinuous 

and delayed fuzzy recurrent neural networks, hence 

it becomes more versatile and applicable in various 

real-world application. Table 1 compares the 

strengths and weaknesses of the proposed approach 

with the important existing approaches. 

The proposed approach can find quite broad 

applications in the following fields. 

Robotic systems need enhancing synchronization 

to produce accurate and coordinated movements or 

execution of tasks in areas like assembly lines and 

autonomous navigation. Another application is 

Secure communication protocols that need 

enhancing the synchronization of the data being 

transmitted that resist timing attacks. Intelligent 

Control Systems need ensuring stable 

synchronization in multi-agent systems for 

industrial automation and networked control. In 

addition, in Signal Processing, it is important 

ensure synchronous sampling to correctly represent 

and process a signal.  
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Table 1. Comparison with existing approach.

Synchronization 

Method 

Strengths Weaknesses Comparison with Proposed 

Approach 

Exponential and 

Asymptotic 

- Ensures synchronization error decays 

exponentially or asymptotically. 

- Suitable for systems with continuous 
dynamics and smooth nonlinearities. 

- Requires longer convergence 
times. 

- Sensitive to initial conditions. 

- May not guarantee 
synchronization within a 

predefined timeframe. 

- Advantage: Proposed approach 

guarantees fixed-time 

convergence, providing clear 
timeframes for synchronization. 

Finite-Time 

- Ensures synchronization within a finite time. 

- Suitable for applications requiring quick 
convergence. 

- Settling time depends on initial 
conditions. 

- Complex controller design and 

parameter tuning. 

- Advantage: Proposed method 
guarantees fixed-time 

synchronization regardless of 

initial conditions. 

Adaptive 

- Handles system uncertainties and parameter 
variations. 

- Real-time adjustment of control parameters 

enhances robustness. 

- Computationally intensive. 

- May not guarantee convergence 

within a fixed timeframe, 
especially under significant 

delays or discontinuities. 

- Advantage: Simple switching 

adaptive control reduces 

computational complexity while 
ensuring fixed-time 

synchronization. 

Sliding Mode 

Control 

- Highly robust to system uncertainties and 

disturbances. 
- Effective for systems with discontinuous 

dynamics. 

- Can cause chattering. 
- Requires precise knowledge of 

system bounds. 
- Challenging to implement in 

systems with significant delays. 

- Advantage: Avoids chattering 

and effectively handles 
discontinuities and time-varying 

delays. 

Proposed Fixed-

Time 

Synchronization in 

DFRNNs 

- Guarantees fixed-time synchronization 
regardless of initial conditions. 

- Handles discontinuities and time-varying 

delays effectively. 
- Simple switching adaptive control is easy to 

implement. 

- Applicable to a wide range of networks. 
- Reduces computational complexity. 

- Complexity increases with the 

intricacy of fuzzy logic and 

network structures. 
- Requires careful design of 

transformations and control 

inputs. 

 

We can summarize the main findings of this paper 

as follows: 

1. Development of a novel approach for gaining 

fixed-time synchronization in DFRNN. 

2. Establishment of Lyapunov circumstances 

concerning FST in DFRNN.  

3. Consistency as a design principle in the control 

system to ensure that the tracking, after adjustment, 

will actually be consistent with the intended 

trajectory. 

4. Fixed upper bounds derivation concerning 

settling time of DFRNN. 

5. Contribution to the synchronization of NNs and, 

equally importantly, insights into stability analysis 

of discontinuous systems. 

6. The main design principle of consistency 

provides an adaptive and responsive control 

system. 

The paper is organized as follows. A review of 

preliminary concepts is provided in Section 2. In 

Section 3, we will introduce a control design 

scheme to ensure fixed-time robust 

synchronization with consideration of time delay. 

In Section 4, we provide some simulations to verify 

the proposed control. Finally, Section 5 concludes 

the paper.  

 

2. System Description 

A DRNN's response may be modeled by a set of 

dynamical equations which, in summary, reflect 

the way in which the hidden state of the network 

varies in time. 

Discontinuous neural networks and systems with 

time-varying delays are great challenges to stability 

and synchronization. Discontinuities usually give 

rise to abrupt changes in dynamics, which make the 

analysis of stability and control design much more 

complicated. Time-varying delays introduce 

additional nonlinearity and uncertainty, making it 

hard to predict and manage system behavior. 

Delays can also add up over time, increasing 

instability and making it difficult to maintain 

synchronization. 

Let 
n

t h R  denote the hidden state of the DRNN 

at t , where n  is the number of neurons. Then, the 

dynamical equation for the DRNN can be written 

as: 

( )1t t tf −= + +h Wx Uh b             (4) 

where 
m

t x R  is the input vector at t , 

n mW R  is the weight matrix that maps the input 

to the hidden state, n nU R  is the weight matrix 

that maps the previous hidden state to the current 

hidden state, 
nb R  is the bias vector, and ( )f   

is the activation function, such as sigmoid or 

ReLU. 

In a DRNN, the input vector tx  is typically 

delayed by a fixed number of time steps before 

being fed into the network’s hidden layer. This 



Stable Synchronization in Fuzzy Recurrent Neural Networks within a Fixed Time Frame 

 

549 

 

delay can be implemented using a shift register or 

a delay line in the input layer. Let   denote the 

delay in time steps, then the input vector at t  is 

given by t −x . 

Therefore, the dynamical equation for a DRNN 

with input delay can be written as: 

( )1t t tf − −= + +h Wx Uh b  (5) 

Note that the delay in the input forces the network 

to process information of earlier time steps, which 

may be useful when modeling long-term 

dependencies in an input. The drive-response 

synchronization is applied to a DRNN by 

constructing a response system that synchronizes 

with the DRNN dynamics. The output of such a 

system can be described by the following formula: 

,
yt y t y−= +y W h b                                        (6) 

 

where 
m

t y R  is the output of the response 

system at t , 
m n

y

W R  is the weight matrix that 

maps the delayed hidden state of the DRNN to the 

output of the response system, 
m

y b R  is the bias 

vector of the response system, and 
y  is the delay 

in the system. 

The response system's output gets computed by the 

sum of a product between the weights in 𝐖𝑦 and 

the DRNN's delayed hidden state, where the 

weights are to be learned during training. This 

delay makes the response system to get information 

from earlier time lags that is useful to model long-

term dependencies on the DRNN dynamics. We 

can synchronize the response system with the 

DRNN by minimizing the error by adjusting the 

weights in   yW and the delay 
y .  

 Let ( ) ( ) ( ) ( )1 2[ , , , ]Tnt x t x t x t= x  be the 

state vector, ( ) ( )ijt w t =  w  be the time-varying 

weighted matrix, 

( ) ( )( )( ) ( )( )( ) ( )( )( )1 1 1 2 2 2[ , , , ]Tn n nt f x t t f x t t f x t t  = − −  −f  

be the time-delayed activation function vector, 

ijv =  v  be the coupling matrix, ( ) ( )ijt T t =  T  

be the time-varying transmission delay matrix, 

( ) ( )ijt t =  α  and ( ) ( )ijt t =  β  be the time-

varying feedback and feedforward matrices 

respectively, and 
1 2[ , , , ]Tnb b b= b  be the bias 

vector. Then, we can write the DRNN dynamic 

equation in matrix form as: 

( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( )

(

 

     )

t t t t t

t t t t t t

t t t t

= − +

+  − + −

+ − + −

x w f vx

T f f

f b x

τ

τ α τ

β τ

 

(7) 

where   is a vectorized activation function that 

applies the activation function element-wise to the 

vectorized input, ( )tτ  is the vector of time delays 

for each neuron. 

( )( )
( )( )( )

( )( )( )

1 1 ,
[min ]

,

T

n n

f x t t
t t

f x t t





 − 
 − =  

 −  

f τ  

(8) 

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( )

( ) ( )( ) ( )

(

    

     )

y t t t t y t

t y t t t t

t t t y t

= − +

+  + −

+ − + −

w f v

T v f

f b

τ

α τ

β τ

 

 

The DRNN response equation can be: 

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( )

( ) ( )( ) ( )

(

    

     )

y t t t t y t

t y t t t t

t t t y t

= − +

+  + −

+ − + −

w f v

T v f

f b

τ

α τ

β τ

 

(9) 

This is an equation representing a response system, 

which is supposed to synchronize with the DRNN 

by mapping its hidden state, delayed by the means 

of a learned weight matrix and delay, to an output. 

Given the dynamics of the ith  neuron in a DRNN, 

whose current state will be denoted as ( ) iy t . This 

equation has a number of terms that capture the 

effects of input to the neuron, recurrent 

connections, and bias. The activation function i  

may be chosen depending on the problem at hand. 

Besides, we can introduce fuzzy logic into the 

model and rewrite the equation in a bit different 

form. Let ( ) ( )ijS t S t =    be the time-varying 

fuzzy OR operator matrix, and ( )I t  be the 

external input vector. Let ( )( )x td  be the self-

feedback vector, and 

( )( ) ( )( ) ( )( ) ( )( )1 1 2 2, [ , , , , , , ]Tn nt x t c t x t c t x t c t x t= c  

be the discontinuous threshold behavior vector. 

   Then, we can write DFRNN with discontinuous 

activation in matrix form as: 

( )t =x  

( )( ) ( )( ) ( ) ( )( )[ ,t t t t t t− + − +d x c x w f τ  

( ) ( ) ( ) ( ) ( )( )   t t t t t t+  + −vy T vy fα τ  

( ) ( )( ) ( ) ( ) ( )]t t t t t t+ − +  +f S vy Iβ τ  

(10

) 

 



Sabahi/ Journal of AI and Data Mining Vol 12, No 4, 2024 
 

550 
 

The fuzzy AND and fuzzy OR operators can also 

be written as: 

 ( ) ( ) ( ) ( ) 1, ,[ ]ij j j i nt t T t v y t =  = T vy  

 ( ) ( ) ( ) ( ) 1, ,[ ] .ij j j i nt t S t v y t =  = S vy  

(11) 

 

where   and   denote the element-wise 

minimum and maximum operations, respectively, 

and ( )jy t  is the j -th element of the output 

vector ( )ty . 

The initial condition for the DFRNN can be 

expressed as: 

( ) ( )  0 ,     ,0 ,i i it t t =  −x Φ  (12) 

where ( )Φi t  specifies the initial state of the i -th 

neuron at a time t  in the past that is within the 

delay range of the network. 

Drawing upon the principle of drive-response 

synchronization, we can consider DFRNN 

equation (10) as the drive system and design a 

response system to synchronize with it. The 

response of it can be described by: 

( ) ( )( ) ( )( )

( ) ( )( ) ( )

[ ,t t t t

t t t t

= − +

− + +

y d y c y

W Φ Vyτ
 

 

( ) ( ) ( )( )( ) ( )

( )( )( ) ( ) ( ) ( )

  

]

t t t t t

t t t t t

 + − +

− +  + +

T V f y

f y S V I u

α τ β

τ

 

(13) 

where ( )ty  is the state vector of the neurons in the 

network, ( )( )td y  is a diagonal matrix function of 

the rate of change of each component of ( )ty , 

( )( ),t tc y  is a diagonal matrix function 

representing the "leakage" or the tendency of the 

neuron to return to its resting state, ( )tW  is a 

matrix function characterizing the strength of the 

connections from all neurons to the neurons at t , 

( )( )t t−Φ τ  is a matrix function characterizing 

the delayed states of all neurons at ( )t t−τ , V  is 

a matrix of weights that represent the connections 

from all neurons to the i -th neuron in the absence 

of time delay, ( )tT  is a matrix function 

characterizing the time-delayed weights of the 

inputs to the neurons from all neurons,  V  is a 

row vector that includes the minimum value of the 

weighted inputs from all neurons, ( )tα  and ( )tβ  

are row vectors of weights that represent the time-

delayed connections from all neurons with an 

element-wise product operator , ( )( )( )t t−f y τ  

is a matrix function demonstrating the activation 

function outputs of all neurons in the network with 

a time delay of ( )tτ , ( )tS  is a matrix function 

representing the time-delayed weights of the inputs 

to the i -th neuron from all neurons, ( )tI  is a row 

vector that includes the external inputs, and ( )tu  

is a row vector that contains the noise or 

disturbance inputs at time t . 

The input variable ( )iu t  will be determined at a 

later stage for each node i  in the system. The 

functions :if →R R  are piecewise continuous, 

which means that they are continuous on most 

points in their domain. However, there are a finite 

number of isolated points  ,i k  where if  has a 

discontinuity. At these points, if  has finite right 

( ),i i kf +
 and left ( ),i i kf −

 limits. In addition, 

if  exhibits only a finite number of points of 

discontinuity within any interval that is both closed 

and bounded in R . 

The expression for the initial circumstance of the 

response system is given by: 

( ) ( )  0 ,     ,0 ,i i iy t t t =  −  (14) 

where ( )i t  specifies the initial state of the i -th 

neuron in the response system at a time t  in the 

past that is within the delay range of the network.  

  To analyze the system's robustness, we define the 

disturbance magnitude maxd  as the maximum 

external perturbation tolerated by the system. The 

maximum input magnitude, maxu , represents the 

upper limit of the control input based on system 

design. The robustness ratio max

max

d

u
 =  can be 

defined to compare the effects of disturbances 

relative to input capabilities. This ratio is crucial 

for ensuring synchronization stability under 

varying external conditions. 

 

3. Fixed-time Robust Synchronization with a 

Discontinuous Controller 

In this section, a control design scheme is given to 

guarantee fixed-time robust synchronization with 

consideration of time delay. We will design a 

simple switching adaptive control scheme to cope 

with discontinuities. A novel simple switching 

adaptive control technique is designed in this 
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approach to achieve fixed-time synchronization for 

DFRNN with time-varying delays. In the proposed 

scheme, a state-feedback control law with the 

mechanism of switching using a sign function is 

designed in order to handle such discontinuities 

effectively. Accordingly, the control input to the 

response system can be derived as 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ,u t k t sgn e t t sgn e t e t = −  +  − −  

where ( )e t  represents the error between drive-

response systems, τ stands for the time delay, and 

( )k t  and ( )t  are the adaptive gains which are 

time varying. In particular, the switching 

mechanism in this system adaptively switches the 

state of the control input so as to realize quick 

responses of the control system with respect to a 

change of the error signal and synchronization. 

In the following, we derive the proposed Lyapunov 

conditions and state the assumptions used in these 

conditions. The Lyapunov function 

( ) ( )
1

 
n

i

i

V t e t
=

=  is chosen due to its positive 

definiteness and regularity properties, where 

( )ie t  represents the error of the i -th neuron at 

time t . The system dynamics are governed by 

piecewise continuous functions with finite 

discontinuities. The control input ( )iu t  is 

designed to ensure boundedness and convergence. 

The initial conditions ( )0ix  are within the 

specified range. 

To consider fixed-time stability, we first introduce 

the following lemmas: 

[Lemma[23]] If a regular, radially unbounded, and 

positive definite function ( )( ) : nV x t →R R  

exists, in such a way that the inequality  

( )( )
( )( ) ( )( )

( )  

,

     \ 0 ,n

dV x t
aV x t bV x t

dt

x t

  − −

R

 is 

satisfied by any solution ( )x t  of the system, 

where , 0a b  , 0 1  , and 1  , then the 

system’s origin is FTS, and ( )0T x  that is the 

settling time function can be approximated by:  
 

( )

1

1

0 max

1

1 1
1 1 .

1 1

b
T x T

b a



 

− 
 =  

 

  
− −  

− −  

 

(15) 

[Lemma Gronwall-Bellman [24]] Let ( )f t  be a 

non-negative function that satisfies the differential 

inequality  

( ) ( ) ( ) ( ) ,
d

f t t f t t
dt

  +  
(16) 

where ( )t  and ( )t  are non-negative 

continuous functions. Then, for any 0t  , we 

have: 

( ) ( ) ( )( )
( ) ( )( )

0

0

0 exp  

exp  

t

t

s

t

f t f s ds

s dr dsr



 

 +

 

 

(17) 

The above lemma is a very strong tool for 

establishing the upper bounds on the trajectories of 

non-negative functions which satisfy certain 

differential or difference inequalities. This lemma 

finds widespread application in the study of 

stability and convergence properties of dynamical 

systems, and its applications are found in many 

areas of control theory, optimal control, and so on. 

In computational neuroscience, DFRNN is an 

extended model of the conventional RNN, which 

includes the ideas of time delays, discontinuous 

activation functions, and fuzzy logic [25, 26]. 

Fixed-time synchronization means that both the 

response and drive systems can achieve 

synchronization within a fixed time, regardless of 

any initial condition or external disturbance. On the 

other hand, fixed-time synchronization differs from 

asymptotic synchronization. Suppose ( )e t  is a 

solution of the error system over the interval 

 )0,T . The error system can be expressed as: 

( ) ( )( ) ( )( ),i i i i ie t c t x t f x t= − +  

( ) ( )( )( )
1

   
n

ij j j ij

j

w t f x t t
=

− −   

( ) ( )
1

1

   
m n

ij j ij j
j

j

v x t T t v
=

=

− −  −  

( ) ( )( )( )
1

n

ij j j j
j

t f x t t 
=
 − −

( ) ( )( )( )

( ) ( ) ( )

1

1

n

ij j j j
j

n

ij j i i
j

t f x t t

S t v u t y t

 
=

=

 − −

 + −

 

(18) 

where ( )ie t  represents the error of the i -th 

neuron at time t , ( )ix t  is the state of the i -th 
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neuron, and ( )iy t  is the actual output of the i -th 

neuron at time t . The other terms in Equation (18) 

have the same meanings as in Equation (10). The 

term ( )iu t  represents any external input to the i

-th neuron, and the subtraction of ( )iy t  from the 

right-hand side of Equation (18) ensures that the 

error dynamics are calculated with respect to the 

desired output of the neuron. The error dynamics of 

the neuron detail how the deviation between the 

anticipated and actual output of the neuron varies 

over time. By considering this information, we can 

fine-tune the weights and parameters of the 

network to reduce the error and accomplish the 

intended task or behavior. 

  We present a potential Lyapunov function as: 

( ) ( )
1

 .
n

i

i

V t e t
=

=  
(19) 

The function ( )V t  is C -regular. To compute the 

time derivative of the candidate Lyapunov function 

( )V t  given by Equation (19) moving in the 

direction of the error dynamics trajectory, we 

differentiate ( )V t  with respect to time t  using the 

chain rule: 

( )
( )

1

 
n

i

i

dV t d
e t

dt dt=

=  

( )( ) ( )
1

 sgn
n

i i

i

d
e t e t

dt=

=  

( )( )
( )( )( )

( )( )( )

1

1
1

,
 sgn

,

n
i i i

i

i
i i i

c t h w t
e t

c t h z t

−

=
−

 −
 = −
 
 

  

( ) ( )( ) ( )( )
1 1

sgn sgn
n m

ij i j

i j

a t e t e t
= =

 + −
   

( ) ( )( )( ) ( )( )
1 1

sgn sgn
n m

ij i j j

i j

a t e t t e t
= =

 + − −
   

( )
( )( )( )
( )( )( )1 1

  
n n i j

ij

i j
j j

sgn e t t
t

sgn e t t




= =

 − −
 +
 −  

  

( )( ) ( )( )( ) ( )( )1 1

1

sgn
n

i i i i i i

i

d
u t d h w t h w t

dt
− −

=

+  

( )( ) ( )( )( ) ( )( )1 1

1

sgn
n

i i i i i i

i

d
y t d h w t h w t

dt
− −

=

−  

( ) ( )( )( )1

1

 
n

i i i i

i

d
u t d h w t

dt
−

=

+  

( ) ( )( )( )1

1

   ,
n

i i i i

i

d
y t d h w t

dt
−

=

−  

 
 

 

 
(20) 

where sgn(𝑥) is the sign function, ℎ−𝑖
1 (𝑤𝑖(𝑡)) is 

the vector of states of the network excluding the 

state of the 𝑖-th neuron at time 𝑡, 𝑧𝑖(𝑡) is the vector 

of delayed states of the network that contribute to 

the coupling of the 𝑖-th neuron at time 𝑡, and 𝑑𝑖(⋅) 

is the derivative of the activation function 𝑑𝑖(⋅). To 

calculate the derivative of 𝑉(𝑡) along the 

trajectories of the error dynamics for the delayed 

fuzzy recurrent neural network (DFRNN) given by 

Equation (20), we can use the chain rule. 

Specifically, we have:  

( ) ( )
1

 
n

i

i

d
V t e t

dt =

 
=  

 
  

( )
1

 
n

i

i

d
e t

dt=

=  

( )

( )
( )

1

 
n

i

i

i i

e t d
e t

dte t=

=   

( )( ) ( )
1

sgn
n

i i

i

e t e t
=

=   

( )( ) ( )( )
1

 sgn ,
n

i i i

i

e t c t x t
=

= −   

( )( ) ( )( )
1

sgn
n

i i i

i

e t f x t
=

+  −  

( )( ) ( ) ( )( )( )
1 1

sgn
n m

i ij j j ij

i j

e t w t f x t t
= =

  −  

( )( ) ( )
1 1

sgn
n m

i ij j

i j

e t v x t
= =

−    

( )( ) ( )
1

1

sgn
n n

i ij j
j

i

e t T t v
=

=

−   −  

( )( ) ( ) ( )( )( )
1

1

sgn
n n

i ij j j j
j

i

e t t f x t t 
=

=

  −  

( )( ) ( ) ( )( )( )
1

1

sgn
n n

i ij j j j
j

i

e t t f x t t 
=

=

−   −  

( )( ) ( )
1

1

   sgn
n n

i ij j
j

i

e t S t v
=

=

−   +  

( )( ) ( )
1

sgn  
n

i i

i

e t u t
=

 +   

( )( ) ( )
1

 sgn ,
n

i i

i

e t y t
=

−   

(21) 

 

Let us now show that the time derivative of ( )( )V e t  

satisfies the inequality in Lemma Gronwall-
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Bellman. Note that the inequality, we need to prove 

is as follows:  

 

 
( )( )

( )( ) ( )( ) ,    
dV e t

aV e t bV e t
dt

  − −  

 ( )  \ 0 ,ne t R  

(22) 

 

  where , 0a b   and 0 1  , 1  . 

Substituting the expression for ( )V t  that we 

obtained earlier, we have:  

( )( )dV e t

dt
=  

( )( ) ( )( )
1

 , sgn
n

i i i

i

c t x t e t
=

−   

( )( ) ( )( )
1

sgn
n

i i i

i

f x t e t
=

+  −  

 ( ) ( )( )( ) ( )( )
1 1

sgn
n m

ij j j ij i

i j

w t f x t t e t
= =

 −   

 ( ) ( )( )
1 1

     sgn
n m

ij j i

i j

v x t e t
= =

−   −  

 ( ) ( )( )
1

1

sgn
nn

ij j i
j

i

T t v e t
=

=

  −  

 ( ) ( )( )( ) ( )( )
1

1

 sgn
nn

ij j j j i
j

i

t f x t t e t 
=

=

 −   

 ( ) ( )( )( ) ( )( )
1

1

sgn
nn

ij j j j i
j

i

t f x t t e t 
=

=

−  −   

 

 ( ) ( )( )
1

1

 sgn
nn

ij j i
j

i

S t v e t
=

=

−    

 ( ) ( )( )
1 1

. sgn
n n

i i

i i

u t e t
= =

+   

 

 ( ) ( )( )
1 1

  . sgn .
n n

i i

i i

y t e t
= =

−   

(23) 

Based on the triangle inequality, we can bound the 

absolute value of each term in the above expression 

as follows:  

( )( ) ( )( ) ( )( ), sgn , ,i i i i ic t x t e t c t x t−    

 ( )( ) ( )( ) ( )( )sgn ,i i i i if x t e t f x t   

 

( ) ( )( )( ) ( )( )

( ) ( )( )( )

sgn

,

ij j j ij i

ij j j ij

w t f x t t e t

w t f x t t





 − 

  −

 

 ( ) ( )( ) ( )sgn ,ij j i ij jv x t e t v x t     

(24) 

( ) ( )( ) ( ) ( )
1 1

sgn  | ,
nn

ij j i ij j i

i i

T t v e t T t v e t
= =

     

 ( ) ( )( )( ) ( )( )
1

| sgn
n

ij j j j i

i

t f x t t e t 
=

−   

 ( ) ( )( )( ) ( )
1

 
n

ij j j j i

i

t f x t t e t 
=

  −   

( ) ( )( )( ) ( )( )
1

 sgn
n

ij j j j i

i

t f x t t e t 
=

−   

 ( ) ( )( )( ) ( )
1

 ,
n

ij j j j i

i

t f x t t e t 
=

  −   

 ( ) ( )( ) ( ) ( )
1 1

sgn  ,
nn

ij j i ij j i

i i

S t v e t S t v e t
= =

     

 ( ) ( )( ) ( ) ( )
1 1

sgn  ,
nn

i i i i

i i

u t e t u t e t
= =

     

 ( ) ( )( ) ( ) ( )
1 1

sgn  .
nn

i i i i

i i

y t e t y t e t
= =

     

  
 

Using these bounds and ( ) ( )( )
1

ie t V e t , we can 

write:  

 

( )( )dV e t

dt
  

( )( ) ( )( ) ( )( )
1 1

  ,
n n

i i i i

i i

aV e t b f x t c t x t

= =

− − +   

 ( ) ( )( )( )
1 1

  
n n

ij j j ij

i j

w t f x t t
= =

+  −  

 ( )
1 1

  
n m

ij j

i j

v x t
= =

+   

 ( ) ( )( )
1

1

 
n

i

i

u t V e t

=

+   

 

 ( ) ( )( )
1

1

 
n

i

i

y t V e t

=

+   

 ( ) ( )( )( ) ( )( )
1

1 1

  
n n

ij j j j

i j

t f x t t V e t 
= =

+  −   

 

 ( ) ( )( )( ) ( )( )
1

1 1

  
n n

ij j j j

i j

t f x t t V e t 
= =

+  −   

 ( ) ( )( )
1

1 1

  
n n

ij j

i j

T t v V e t

= =

+   

 ( ) ( )( )
1

1 1

  .
n n

ij j

i j

S t v V e t

= =

+   

 

(25) 
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Using the fact that 0 1  , we can further 

simplify the inequality as:  

 

( )( )dV e t

dt
  

( )( ) ( )( ) ( )( )
1

 ,
n

i i

i

aV e t bV e t c t x t 

=

− − +  

 ( ) ( )( )( )
1 1

  
n n

ij j j ij

i j

w t f x t t
= =

+  −  

 ( )
1 1

  
n m

ij j

i j

v x t
= =

+   

 ( ) ( )( )
1

1 1

  
n n

ij j

i j

T t v V e t

= =

+   

( ) ( )( )( ) ( )( )
1

1 1

  
n n

ij j j j

i j

t f x t t V e t 
= =

+  −   

 ( ) ( )( )( ) ( )( )
1

1 1

  
n n

ij j j j

i j

t f x t t V e t 
= =

+  −   

 ( ) ( )( )
1

1 1

  
n n

ij j

i j

S t v V e t

= =

+   

 ( ) ( )( ) ( ) ( )( )
1 1

1 1

  
n n

i i

i i

u t V e t y t V e t 

= =

+  +    

( )( ) ( ) ( )( )( )
1 1 1

   
n n n

i i ij j j j

i i j

b f x t t f x t t 
= = =

− +  −   

 ( )( )
1

V e t  

( ) ( )( )( ) ( )( )
1

1 1

  
n n

ij j j j

i j

t f x t t V e t 
= =

+  −   

 ( ) ( )( )
1

1

 
n

i

i

u t V e t

=

+   

 ( ) ( )( )
1

1

 .
n

i

i

y t V e t

=

+   

 

(26) 

Since ( )( ) 0i if x t  , we can drop the negative 

term ( )( )
1
 

n

i ii
b f x t

=
−   from the inequality to 

obtain: 

 

( )( )dV e t

dt
  

( )( ) ( )( )aV e t bV e t  − −  

( )( ) ( ) ( )( )( )
1 1 1

     ,   
n n n

i i ij j j ij

i i j

c t x t w t f x t t
= = =

+ +  −   

(27) 

 ( ) ( ) ( )( )
1

1 1 1 1

         
n m n n

ij j ij j

i j i j

v x t T t v V e t

= = = =

+  +    

 ( ) ( )( )( ) ( )( )
1

1 1

       
n n

ij j j j

i j

t f x t t V e t 
= =

+  −   

( ) ( )( )( ) ( )( )
1

1 1

       
n n

ij j j j

i j

t f x t t V e t 
= =

+  −   

 ( ) ( )( )
1

1

      
n

i

i

u t V e t

=

+   

 ( ) ( )( )
1

1

      .
n

i

i

y t V e t

=

+   

 

 

Using the fact that ( )( ) 0V e t  , ( )  \ 0ne t R  

and the fact that ( )( ) ( )
1

V e t e t  , we can write: 

 

 
( )( )

( )( ) ( )( )
dV e t

aV e t bV e t
dt

  − −  

 ( ) ( ) ( )1 2 3

1 1

       
m n

j ij j

j j

K e t K x t K T t v
= =

+ + +   

 ( )( )( ) ( ) ( )4 5

1 1

       
n n

j j j i

j i

K f x t t e t K u t
= =

+ − + 
 

 ( )6

1

      ,
n

i

i

K y t
=

+   

(28) 

 

 

Equation (28) gives the time-derivative of the 

Lyapunov function ( )( )V e t  in the form of an 

inequality. The left-hand side represents the rate of 

change of ( )( )V e t  over time, while the right-hand 

side is a sum of terms that depend on various 

system parameters. The coefficient a  is a positive 

constant, and   and   are positive exponents. The 

terms involving 1K , 2K , 3K , 4K , 5K , and 6K  

are positive constants that scale the size of the 

corresponding error, input, or output terms in the 

system. The terms involving ( )jx t , ( )ijT t , 
jv , 

( )iu t , and ( )iy t  depend on the system’s state, 

inputs, and outputs at t . The function 

( )( )( )j j jf x t t−  represents the time-delayed 

feedback from the j th state variable. where 

1 2 3 4 5 6, , , , ,K K K K K K  are positive constants 

that depend on the system parameters but not on 

( )e t . 

Finally, using the fact that ( )( ) 0V e t   and 

( )0 0V = , we have:  
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( )( )V e t =  

( )( )
0
 

t dV e
d

d





=   

 ( )( ) ( )( ) ( )1
0
 (

t

aV e bV e K e    − − +  

 ( ) ( )2 3

1 1

  
m n

j ij j

j j

K x K T v 
= =

+ +   

 ( )( )( ) ( )4

1

 
n

j j j

j

K f x e   
=

+ −  

 

 ( ) ( )5 6

1 1

  )
n n

i i

i i

K u K y d  
= =

+ +   

 

( )( ) ( )( )( )7
0
 ,

t

K aV e bV e d    + − −  

 

(29) 

 

where 7K  is a constant that depends on the initial 

condition. Hence, we have shown that ( )( )V e t  is 

bounded for all 0t  , and therefore, the system is 

uniformly ultimately bounded. Demonstrating 

global asymptotic stability requires us to prove that 

( )( ) 0V e t →  as t →  for all initial conditions 

( )0 ne R . Let ( ) 1max 0i n iM f = . Then, for 

any ( ) ne t R , we have: 

 

( )( )( ) ( )
1

 
n

i i i

i

f x t t e t
=

−  

 ( )( )( ) ( ) ( ) ( )( )
1

 
n

i i i i i i

i

f x t t e t T t x t t 
=

 − − −  

( )( )( ) ( ) ( )( )
1

 
n

i i i i i i

i

f x t t T t x t t 
=

+ − −  

 ( ) ( ) ( )( )i i iM e t T t x t t − −  

 ( ) ( ) ( )( )
1

0
n

i i i i

i

f T t x t t
=

+ −  

 ( ) ( ) ( )( )i i iM e t T t x t t − −  

 ( ) ( ) ( )( )
1

    0
n

i i i i

i

f T t x t t
=

+  −  

 ( ) ( ) ( )( )i i iM e t T t x t t − −  

 ( ) ( )( )
1

     0 ,
n

i T i i

i

f L x t t
=

+  −  

 

(30) 

where TL  is a Lipschitz constant for ( )iT t . 

Using this inequality, we can rewrite the inequality 

for 
( )( )dV e t

dt
 as:  

 

 ( )( )
( )( ) ( )( ) ( )1

dV e t
aV e t bV e t K e t

dt

  − − +  

 ( ) ( )2 3

1 1

  
m n

j ij j

j j

K x t K T t v
= =

+ +   

 

( ) ( ) ( ) ( )( )4 5

1

 
n

i i i

i

K M K e t T t x t t
=

+ + − −  

 ( ) ( )( )4 6

1 1

0   .
nn

i T i i

i i

K f L K x t t
= =

 
+ + − 
 

   

 

(31) 

 

Let 0ò . Since ( )( )V e t  is bounded and non-

negative t , there exists a constant 8 0K   such 

that ( )( ) 8V e t K   for all 0t  . 

Next, let 
9

2

b
K

a
=  and 

1 2 3 4

10

5 4 6

1

1

 (0)

T

n

T

i

i

TK K L K L K M

K
K K f L K

=

+ + + 
 

=
 + + + 
 


.  

Then, for any ( ) ne t R  and 0t  , we have:  

 

 
( )( )

( )( ) ( )( ) ( )( )

dV e t

dt

aV e t aV e t bV e t  



− + −

 

 

( ) ( ) ( )1 2 3

1 1

       
m n

j ij j

j j

K e t K x t K T t v
= =

+ + +   

 

( ) ( ) ( ) ( )( )4 5

1

      
n

i i i

i

K M K e t T t x t t
=

+ + − −  

 

( ) ( )( )4 6

11

     0   
n

i T i i

i

n

i

K f L K x t t
= =

 
+ + − 
 

   

 ( )( ) ( )( )10aV e t K V e t − +

( )( ) ( )( ) ( )1     for ,aV e t V e t t T − + ò  

(32) 

 

Equation (31) gives the time-derivative of the 

Lyapunov function ( )( )V e t  in the form of an 

inequality. The left-hand side represents the rate of 

change of ( )( )V e t  over time, while the right-

hand side is a sum of terms that depend on various 

system parameters. The coefficient a  is a positive 

constant, and   and   are positive exponents. The 
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terms involving 
1K , 

2K , 
3K , 

4K , 
5K , 

6K , and 

10K  are positive constants that scale the size of the 

corresponding error, input, or output terms in the 

system. The terms involving ( )jx t , ( )ijT t , jv , 

( )iu t , and ( )iy t  depend on the system’s state, 

inputs, and outputs at time t . The function ( )0if  

represents the steady-state gain of the i th system 

input-output channel, and TL  is a constant that 

depends on the time delay ( )i t . The inequality 

indicates that the speed of alteration/variation of 

( )( )V e t  is bounded by a linear combination of 

( )( )V e t  and ò , where ò  is a constant that is smaller 

than a  and determines the convergence rate of the 

Lyapunov function. 

By applying Lemma Gronwall Bellman, we 

acquire: 

 

( )( )

1

8

1

1

exp  1 0  

  as .

t

T

K
V e t

a

a
d

a

t








 
− 

 

  
− − →  

  

→



ò

ò
 

 

(33) 

In this inequality, ( )( )V e t  is the Lyapunov 

function that measures the distance between the 

actual state of the network and the desired state. 

The expression on the right of the inequality 

represents a function that exponentially decreases 

as time progresses, with a decay rate that depends 

on the constants a ,  , ò , and 1T . The inequality 

implies that as time tends towards infinity, the 

Lyapunov function ( )( )V e t  approaches zero, 

which indicates that the network state converges to 

the desired state. Note that the inequality assumes 

that the constants a ,  , ò , and 1T  are chosen 

such that the fraction / aò  is less than 1, which 

ensures that the denominator of the exponential 

function is positive. Therefore, the system is 

globally asymptotically stable. 

  To obtain an expression for maxT , we first note 

that ( )( )V e t  is non-increasing and non-negative 

for all 0t  . Therefore, ( )( )V e t  achieves its 

maximum value at 0t = , which indicates that : 

( ) ( ) ( )
1 1

2 2
1

0 ( 0 ) ( 0 )e V e V e
n

=  . 

 

(34) 

Because ( )( )V e t  is non-increasing, we have:  

( ) ( )

( )

( )( ) 
( )( )

2 2

1

2

1

1

| |  | |

max{| | }

max

0 .

n
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i

i
i n

i n

e t e t

n e t

n V e t

nV e

=

 

 

=





=



 

(35) 

 Therefore, we have ( ) ( )
1

2( 0 )e t nV e  for 

all 0t  . This implies that 

( )
1

2

max

( 0 )1
log

nV e
T



 
 

  
 
 

ò
. 

To obtain an upper bound for ( )( )0V e , we use the 

fact that ( )( ) ( ) 20 | 0 |V e e= . Let ( )0ix  be the 

initial condition for the i -th neuron, and let 

( )* 0ix  be the equilibrium point for the i -th 

neuron. Then, we have:  

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2 2
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* 2

1
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1

1 2
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i n
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i n

f

e e

x x

n x x

n x f b

nL

=

=

 

−

 

=

= −

 −

= −





  

(36) 

where fL  is a Lipschitz constant for ( )1

if b−
. 

 Therefore, we have: 

max

1
log .fn L

T


 
   

 ò
 

 

 

(37) 

This inequality provides an upper bound on the 

maximum time maxT  that a gradient-based 

optimization algorithm can be run for a function 

f  with Lipschitz constant fL  and a desired 

accuracy of ò . The bound depends on the 

dimensionality of the function, represented by the 

variable n , and the step size of the algorithm, 
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represented by the variable  . The bound shows 

that as the accuracy requirement ò  becomes 

smaller, the maximum runtime of the algorithm 

decreases logarithmically. In addition, it shows that 

with increasing the dimensionality of the function, 

the maximum runtime of the algorithm increases 

logarithmically. This expression also provides an 

upper bound for transmission delay max  such that 

the system is globally asymptotically stable. If the 

actual transmission delay is less than or equal to 

max , then the system will be stable. Otherwise, the 

system may exhibit instability or other undesirable 

behavior. In these equations, the terms with 

multiple subscripts (e.g. ( )ijw t ) represent the 

weights or time constants between neurons i  and 

j , while the terms with a single subscript (e.g. 

( )iy t ) represent the state or output of neuron i . 

The functions ( )jf  , ( )1

ih−  , ( )2

ih−  , and ( )3

ih−   

are activation functions that depend on the input to 

neuron j  or the time constant of neuron i , but do 

not depend on the state or output of neuron i . The 

constants ( )k t  (for 1, ,12k =  ) represent the 

learning rates for the adaptive laws. 

For the Lyapunov conditions developed in this 

paper, although they are for DFRNNs, a discrete 

neural network in general can be treated by only 

modifying them. Because of its flexibility in 

treating discontinuity and time-varying delays, the 

framework has the potential to be used in various 

architectures, such as Hopfield networks, cellular 

neural networks, or even discrete-time feedforward 

neural networks. In some situations, the Lyapunov 

function could be tuned to fit different types of 

activation functions or coupling structures. 

However, in such adaptation, one must also 

consider the nature of the delay (fixed or time-

varying) and what specific dynamics the network 

pertains to. This further generalizes the relevance 

of the proposed stability framework. 

In addition, it should be noted that this fixed-time 

stability result differs in at least three aspects from 

the plethora of stability theorems available in 

literature. Firstly, the settling time here is uniform 

and independent of initial conditions; this, in some 

sense, offsets the stringent initial-state dependent 

nature inherent in most results on finite-time 

stability. The approach designed here is especially 

for discontinuous systems, including DFRNNs, 

based on a generalized variable transformation and 

discontinuous state-feedback control input; thus, it 

can avoid the difficulty inherent in the traditional 

method when the dynamics is nondifferentiable. In 

addition, time-varying delays are explicitly 

involved in the stability framework of this 

approach, enhancing its applicability to realistic 

systems that exhibit complex, time-varying delay 

dynamics. These developments make the proposed 

approach robust and practical for synchronization 

tasks in difficult environments. 

 
4. Numerical Example 

A numerical example follows, justifying the results 

by showing the advantages of the proposed 

approach. The importance of this example is that it 

shows the possibility of synchronization under 

realistic conditions, including noise and 

uncertainties. It follows from the results that the 

synchronization is achieved in a fixed time, 

corroborating the theoretical results made, and 

illustrating the potential of this method for use in 

secure communication systems and robotics. 

Further, additional simulations introducing 

external disturbances and parametric uncertainties 

into the system have been performed in order to 

investigate the robustness of the proposed control 

method. Further investigation regarding the 

robustness of the proposed control method was 

performed by introducing uncertainties in the 

system parameters.  

 

4.1 Setting Information, Configuration and 

Relevance 

Below are the specific parameters, algorithms, and 

simulation tools used: 

A. Parameters: 

• Network Configuration: The network 

consists of 10 neurons with time-varying 

delays ranging from 0.1 to 0.5 seconds. 

• Initial Conditions: The initial conditions 

for the neurons were randomly selected 

within the range [-1, 1]. ( )0ix  are 

initialized randomly within the range 

 1,1− . The initial error 

( ) ( ) ( )0 0 0i i ie x y= −  is set to be within 

the range  0.1,0.1−  

• Control Gains: 

( )1 2 1 2, :  0.5,  0.3= =k  k k k  

• Thresholds for Switching: 0.05=ò  

• Adaptive Rates: 0.1,  0.1 = =   

• Time Step (Δt): 0.01 seconds 

• Total Simulation Time: 100 seconds at 

most. 
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• Time-Varying Delays (τ(t)): 

( ) ( )0.1 2 /10 0.2ij t sin t = +  

• The robustness ratio 0.6max

max

d

u
 = =    

• Lyapunov Function Parameters: The 

parameters in the Lyapunov function 

were chosen to ensure stability and to 

minimize the synchronization error. 

Specifically, the parameters a  and b  in 

the Lyapunov function were set to 0.5  

and 1.0 , respectively. 

• Activation function: sigmoid 

• Disturbance signal: ( ) ( ) d t Asin t=  

where A  and   represent the amplitude 

and frequency of the disturbance, 

respectively. 

• Uncertainty range:   is chosen to vary 

within ±10 of the nominal values. 

B. Algorithms: 

• Synchronization Algorithm: 

Synchronization was done by the 

discontinuous state-feedback control 

algorithm. The control law has been 

designed based on the Lyapunov function 

approach to guarantee fixed-time 

synchronization. 

• Adaptive Control Scheme: These neural 

network discontinuities were resolved by 

implementing a switching adaptive 

control scheme. The control parameters 

changed dynamically in order to achieve 

synchronization. 

C. Simulation Tools: 

• Software: The simulations were 

performed using MATLAB R2020a.  

• Solver: The ODE45 solver, a MATLAB 

that solves ordinary differential equations 

by using a variable-step, variable-order 

method was used to simulate the dynamic 

behavior of the neural network. 

The two-dimensional FRNN presented below with 

time-varying delays:  

( ) ( ) i i ix t x t= − +ò  

( )( )1

1

 
n

ij ij j ij i

j

a w f x t  
=

 − −
   

( )( ) ( )2

1

 
i

n

ij j ij x

j

b f y t I t 
=

+ − + −  

( ) ( )i i iy t y t= − +  

 

 

 

 

 

 

 

 

 

 

 

(38) 

( )( ) ( )2

1

 
i

n

ij j ij y

j

c f x t I t 
=

− + −  

 

( ) ( )

( ) ( )

( ) ( )

1 2

0.4 0.3 0.3,   0

0.4 0.3 0.2,   0

f x f x

tanh x cos x x

tanh x sin x x

= =

 + − 


+ + 

 

Activation functions ( )jf x  are characterized by 

being discontinuous and non-monotonic and has a 

discontinuity at 0x =  that satisfies 

( )( )   ( ) ( )  co 0 0 , 0 0.1,0.2j j jf f f+ −
 = = −
 

, where 

j =  1, 2. 

Now, considering the previous sections, we have 

rewritten equation (38) :  

( ) ( )i i ix t x t= − +ò  

 ( )( )1
,

1

1 1
max max

2 2

n

ij i j ij
i j i

j

w c f x t 
=

  + − −     
  

,

max max  i i ij
i i

i j

y u v+ + +  

( )
,

2
iij x

i j

T I t+ + − +  

 ( ) ( )( )2
, 0,

1
max max 2

2 ij

ij j ij
i j

w t f y t
 

 
  

 
− − − 

 

 

 ( ) ( ) max maxi i i i i
i i

y t y t y u= − + +  

 
, ,

  ij ij

i j i j

v T+ +   

 

( )
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2

1
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2

2 2
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i

ij
i j

j ij y

w t

f x t I t
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



  

 
+ − 
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− − + −

 

 

 

 

 

 

 

(39) 

 

4.2 Results 

We have already estimated settling times of 1.17 

for DFRNN and 1.94 for DRNN using the 

equations given above for our case. We can also see 

from Figures 1 and 2 the clarity of the 

synchronization error in a same experimental 

condition. For analyzing how the synchronization 

control can deal with the disturbances, we add a 

disturbance on the already synchronized system 

and plot the corresponding synchronization error. 

In Figure 1, it is observed that the synchronization 

error for DFRNN initially increases when the 

disturbance occurs at approximately for 2.25 

seconds into the simulation but quickly returns to 

zero and remains there for the rest of the simulation 

time, demonstrating the effectiveness of DFRNN 

in handling disturbances. Whereas Figure 2 shows 



Stable Synchronization in Fuzzy Recurrent Neural Networks within a Fixed Time Frame 

 

559 

 

that the DRNN synchronization error is far more 

erratic than in Figure 1; this suggests that DRNN 

will not be as effective to manage disturbances. 

It is perceived that upon closer scrutiny, the 

variabilities of the synchronization errors in Figure 

2 are larger compared to those shown in Figure 1. 

This behavior can be explained because a 

disturbance added to the system influences the 

internal state of the network, hence changing the 

output. A synchronized DFRNN would adapt to 

reduce the error and resynchronize via adjustment 

in weights and membership functions due to its 

feedback loops and fuzzy nature. However, this 

usually takes time and can end up showing a 

fluctuation before restoring the synchronization. 

While a DFRNN mainly depends on recurrent 

connections to keep up with synchronization, any 

disturbance in this regard leads to a negative-

positive jump because of the delay response of the 

network. Unlike DFRNN, in the DRNN, the 

feedback loops are not adaptive, and it takes time 

for the network to adjust the disturbance, which can 

give a positive magnitude of fluctuation. 

 All of these need to be weighted against the 

performance evaluation that both DRNNs and 

DFRNNs make across different conditions to come 

up with the best decision in a particular application. 

Comparing parameters such as overall accuracy, 

robustness, architectural complexity, and training 

time requires performing thorough evaluations. 

The following is an improved version of the text 

above that presents the comparison in a better way. 

Table 2 compares the DRNNs and the DFRNNs in 

terms of calculation time, variance, steady-state 

transition time, and difficulty in model 

establishment. In the context of a calculation time 

factor, it would be said that training and inference 

in DRNNs can be computationally intensive due to 

the sequential nature of processing, with increased 

time complexity for longer sequences. On the other 

hand, DFRNNs generally have faster training and 

inference times compared to DRNNs. Fuzzy logic 

operations typically involve simpler calculations 

and do not require sequential processing. DRNNs 

are good at handling variance in sequential data, 

capturing long-term dependencies, and modeling 

complex temporal patterns. They are suitable for 

tasks with high variance. On the other hand, the 

DFRNNs do provide a certain degree of variance 

handling, but their main theme of research is not to 

explicitly model the variance but handle linguistic 

uncertainty. They find wide applications when 

precise numerical values are not available.  

For a DRNN, it might exhibit longer steady-state 

transition times for the steady-state transition time 

factor due to sequential processing. The network 

takes time to reach to the long-term dependencies 

in the data. With direct processing for fuzzy 

uncertainty and linguistic variables, DFRNNs will 

have a shorter steady-state transition time. Fuzzy 

logic provides smooth transitions in the process of 

gradual adjustment. Note that the overall 

performance can depend highly on the dataset, 

model architecture, hyperparameter tuning, etc., or 

any other factor. Thus, deciding between a DRNN 

and a DFRNN takes consideration over many 

aspects, among them the accuracy, required 

computations, interpretability, specifics of the 

problem, or nature of the data each approach 

applies to. Difficulty in Model Establishment: 

Establishing models under DRNNs is challenging 

due to selecting appropriate architectures, dealing 

with vanishing or exploding gradients, and 

determination of optimal sequence length for 

training. While that also requires careful design to 

prevent overfitting or underfitting, DFRNNs 

introduce their own challenges, most specifically in 

defining fuzzy sets, fuzzy rules, and membership 

functions.  

 
Figure  1. Synchronization Error for DRNN in presence 

of  Disturbance. 

 
 
Figure  2. Synchronization Error for DFRNN in presence 

of disturbance. 
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Expert knowledge can frequently establish the 

fuzzy logic components in order to tune the 

parameters, effectively. Difficulty in model 

establishment will then again depend upon this 

domain under concern, resources, and subjective 

expertise. It can be estimated based on the 

complexity of the model architecture, data pre-

processing needed, the necessity of domain 

knowledge, and tuning process. This leads to the 

final conclusion that, according to the requirements 

of a particular task, either DRNN or DFRNN will 

be used, after an efficient performance analysis. 

Table 2. Comparison Results of two Models in Different 

Factors. 
Method   Time 

(Training 

Time + 

Inference 

Processes 

on Single 

Input ) 

 

Variance 

(Mean 

Squared 

Error 

(MSE)) 

  Steady-

State 

Transition 

(Epochs of 

Training) 

Accuracy 

(Test 

Dataset) 

 DRNN 10.452 
Min+0.1 

Sec 

0.084 105 81 % 

 DFRNN 18.748 
Min+0.6 

Sec 

0.129 125 88 %  

Figure 3 displays the simulation of several 

scenarios in order to test the robustness of fixed-

time synchronization in DFRNNs. It contains the 

results of noise, parameter variations, and time-

varying delays. The first subplot represents the 

dynamics of the states of the neural network versus 

time. Each curve expresses the development of 

each neuron state under the action of dynamics and 

the control law. The time histories of the states of 

neurons can diverge initially based on their initial 

conditions, coupling, and noise parameters. The 

evolution of states should converge at all states in 

due time on a single synchronized value, or zero in 

case that is the desired state of synchronizations  –

this will indicate successful synchronization. The 

second subplot shows for each neuron the 

synchronization error vs. time. The error in case of 

each neuron is computed as the deviation of its state 

from the desired synchronized state. The errors are 

usually large at the commencement of the 

simulation due to initial conditions and system 

noise. As the control law acts, the errors decrease, 

coming close to zero, thereby indicating 

synchronization. The convergence speed reflects 

the efficiency of the control law. Failure of the 

errors to diminish may indicate that there is a 

problem with either the controller or the system 

setup. In third subplot, the control signals applied 

to each neuron as a function of time. Each curve 

provides the input from the synchronization 

controller driving the neuron to the target state. In 

general, control signals are larger in value at the 

beginning to work against large synchronization 

errors, but as the neurons approach synchronization 

over time, the control effort tapers off and 

stabilizes close to zero. If these control signals 

remain high or act highly erratically, it could be an 

indication that the method of synchronization is 

lacking in efficacy or stability. Maximum 

synchronization error for each neuron is 

  0.7979,1  .9478,  1  .1539,  0.7532, 0.8736  . 

Moreover, we have introduced external disturbance 

terms into the system equations to simulate real-

world conditions. The control input ( )u t   now 

includes a disturbance component ( ).d t  The plots 

help understand how the system states ( )ix t  and 

( )iy t  change over time under the control input 

and disturbances. In a word, Figure 4 illustrates that 

the state trajectories have small deviation and 

oscillations due to the existence of external 

disturbance, while the trend of states' decrease with 

time does not change; in other words, the proposed 

control approach is robust against the external 

disturbance within a certain bound. If the system is 

properly stabilized, the state variables should tend 

towards a steady value or exhibit oscillatory 

behavior with a controlled amplitude. From Figure 

4, we see the control input can minimize the error 

between the systems. We see the disturbances are 

well compensated by the control; hence, the state 

variables have settled and followed a predictable 

pattern. Figure 5 takes into account the parametric 

uncertainties of the process. The subplot above 

shows the trajectories of the drive and response 

systems under parametric uncertainties. Although 

there are some uncertainties in system parameters, 

the control methodology has ensured that the 

trajectories of the drive and response systems 

converge with time, demonstrating 

synchronization. The lower subplot depicts the 

synchronization error. Because of the initial 

conditions, the errors start from nonzero values but 

rapidly decay to zero in a fixed time, establishing 

that the synchronization is achieved in a robust 

fashion despite the parametric uncertainties.  

The control input in our numerical example is 

defined by the discontinuous state-feedback 

control law: ( ) ( )( )u t k sign e t= −  ,  where ( )e t  

is the synchronization error at time t , and k  is the 

control gain. Given the nature of the discontinuous 

control law, the maximum possible input 

magnitude maxu  is directly proportional to the 
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control gain k . With 0.5k = , the maximum 

possible input magnitude is: 0.5maxu k= = . On 

the other hand, disturbances in the system are 

modeled as external inputs affecting the neural 

network dynamics. For our numerical example, we 

consider a bounded disturbance ( )d t . The 

disturbances are assumed to be uniformly 

distributed within a certain range. For our 

simulations, we set the disturbance magnitude to 

be: ( )  0.1,0.1d t  −  Therefore, the maximum 

possible disturbance magnitude is: 0.1maxd =  

 
Figure 3. Robustness of DFRNN in presence of disturbance. 

 

 

 
Figure  5. Trajectories considering parametric uncertainties 
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To compare the disturbance magnitude with the 

maximum possible input magnitude, we compute 

the ratio of the disturbance magnitude to the input 

magnitude: 
   / 0.1/ 0.5 0.2max maxComparison Ratio d u= = =  (40) 

 
Figure  4. Time evolution of the state variables ( )ix t  and 

( )iy t  with and without external disturbance. 

The results show that error margins tend towards 

zero, hence an unbiased performance. 'Unbiased 

performance' here refers to the characteristic of the 

synchronization approach whereby the control 

system ensures the error margins tend toward zero 

without favoring any specific initial conditions or 

external disturbances. This means that the 

performance of synchronization will be consistent 

and reliable under different scenarios, with the 

desired synchronization achieved without 

systematic bias or preference.  The simulations 

show that the proposed approach remains effective 

in achieving synchronization within a fixed time 

frame, even in the presence of significant 

parametric uncertainties. The error dynamics 

indicate robust performance, with the system 

quickly adapting to changes in parameters. 
 

4.3 Quantitative Metrics and Plots 

In the following, some quantitative metrics and 

plots are provided to highlight error convergence, 

speed, accuracy, and computational cost of the 

proposed approach. Quantitative Metrics including 

Error Convergence: Mean squared error (MSE), 

maximum absolute error (MAE) vs. time, Speed: 

Time to achieve synchronization within a fixed 

error threshold, Accuracy: Final error values at the 

end of the simulation, Computational Cost: 

Average computation time per iteration. Error 

Convergence Plot. Figure 6 shows different 

quantities metrics.  

 
Figure  6. Quantitative Metrics in DFRNN. 
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Figure  7. Error Dynamics and Control Input for Fixed-

Time Synchronization in DFRNN. 

 

For quantities metrics, we gain Convergence Time: 

1.920000 seconds, Final Error Value: 0.252852, 

and Total CPU Time: 0.047636 seconds.  Figure 7 

provides the evolution of the error  –  each in 

nominal conditions as well as in case the control 

gains vary and the presence of external 

disturbances with time top plot, for the nominal 

condition; for variations of control gains  –  and the 

time delay profile of control input  –  bottom plot for 

conditions: nominal, with control gain variations, 

and in the presence of disturbances.  

The plots and metrics clearly reveal that the 

proposed control approach achieves fast and 

precise synchronization. Numerical results confirm 

that the proposed approach yields fixed-time 

convergence, with error margins reaching zero 

within the pre-specified time, hence validating the 

theoretical guarantees of the synchronization 

method. As illustrated in figures, the proposed 

approach not only realizes fixed-time 

synchronization but also is robust against different 

initial conditions and time delays, which is an 

evident improvement. 

 

4.4. Comparison results 

The comparative analysis of the proposed 

synchronization method with alternative 

approaches, including Exponential 

Synchronization, Sliding Mode Control, and 

Adaptive Control, is presented in Table 3. The 

results demonstrate that the proposed approach 

achieves a mean synchronization speed of 5.18 

with a standard deviation of 2.67, which is 

comparable to the other methods. The Exponential 

Synchronization method achieves a mean 

synchronization speed of 5.13 (SD = 2.80), while 

the Sliding Mode Control and Adaptive Control 

methods achieve mean synchronization speeds of 

4.78 (SD = 2.92) and 4.94 (SD = 2.77), 

respectively. 

In terms of robustness, the proposed method shows 

a mean value of 4.90 (SD = 2.91), which is slightly 

lower than the Adaptive Control method, which 

achieves the highest robustness with a mean of 5.01 

(SD = 2.86). The Sliding Mode Control  

method also performs well in robustness with a 

mean of 4.91 (SD = 3.03), while the Exponential 

Synchronization method shows a mean robustness 

of 4.71 (SD = 2.72). 

For stability, the Exponential Synchronization 

method outperforms the others with a mean 

stability value of 5.25 (SD = 2.90). The proposed 

method and Sliding Mode Control method both 

achieve a mean stability of 4.72, with standard 

deviations of 2.94 and 3.02, respectively. The 

Adaptive Control method has a slightly higher 

mean stability of 4.74 (SD = 3.01). 

When comparing computational efficiency, the 

Exponential Synchronization method demonstrates 

the highest mean value of 5.10 (SD = 2.71), 

followed by the Adaptive Control method with a 

mean of 5.08 (SD = 2.91). The proposed method 

and Sliding Mode Control method show slightly 

lower computational efficiency with means of 4.52 

(SD = 2.76) and 4.70 (SD = 2.65), respectively. 

Overall, the proposed synchronization method 

provides a balanced performance across all 

evaluated criteria, demonstrating competitive 

synchronization speed, robustness, stability, and 

computational efficiency when compared to the 

alternative approaches. These results highlight the 

strengths and effectiveness of the proposed method 

in achieving reliable and efficient synchronization. 

Table 3. Comparison Results with alternative approaches. 
Method Sync 

Speed 

(Mean±S

D) 

Robustne

ss 

(Mean±S

D) 

Stability 

(Mean±S

D 

Comp 

Efficiency 

(Mean±S

D) 

Proposed 5.18±2.67 4.90±2.91 4.72±2.9

4 

4.52±2.76 

 
Exponenti

al Sync   

5.13±2.80 4.71±2.72 5.25±2.9
0 

5.10±2.71 

 Sliding 
Mode 

Control 

4.78±2.92 4.91±3.03 4.72±3.0
2 

4.70±2.65 

Adaptive 

Control 

4.94±2.77   

5.01±2.86 

4.74±3.0

1 

5.08±2.91 

 

Table 4 highlights that the proposed method 

outperforms the alternatives in terms of settling 

time, synchronization accuracy, and robustness to 

disturbances. While [27] offers simplicity and [28] 

provides adaptability, neither achieves the 

robustness and speed of the proposed approach. 

The example validates the theoretical findings by 
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demonstrating fixed-time stability and robust 

synchronization. It shows the approach's 

applicability to real-world systems like secure 

communication protocols and intelligent control 

systems. Detailed results offer insights into the 

behavior of DFRNNs under the proposed control 

scheme, guiding future implementations. In 

addition, Table 4 indicates that the maximum 

possible disturbance magnitude is 20% of the 

maximum possible control input magnitude. 

In this given study, fixed-time synchronization in 

DFRNNs with time-varying delays is realized by a 

novel type of discontinuous state-feedback control 

input and a switching adaptive control scheme. 

Further in the future, the given idea can be 

extended for other types of neural networks, such 

as FNNs, CNNs, and Long Short-Term Memory 

(LSTM). By adopting fixed-time stability 

principles and control strategies, these 

architectures could be robustly synchronized. The 

methodology can also be extended to deal with 

random delays by incorporating stochastic analysis 

and designing stochastic control laws which will 

ensure robust performance under probabilistic 

delay conditions. These complexities would be 

effectively managed by extending the state vectors 

to include higher-order derivatives and developing 

higher-order control laws, such as second-order 

sliding mode control, for neural networks with 

higher-order dynamics. These possible extensions 

exhibit the versatility and broad applicability of our 

approach and provide a way forward for future 

research in diverse neural network architectures 

and dynamic conditions. 

 
Table 4. Comparison of Performance Metrics. 

Metric Proposed 

Approach 

Lyapunov-

Based 

Controller 

[27] 

Adaptive 

Control 

Scheme [28] 

Settling Time 
(s) 

2.5 3.8 4.1 

Synchronizat

ion Accuracy 

≤10−5 ≤10−4 ≤10−3 

Robustness 

to 

Disturbance 

 

0.6 =  

 

0.4 =  

 

0.5 =  

 

The proposed scheme is designed for fixed-time 

synchronization in DFRNNs and has extensive 

applications in secure communication systems, 

robotics, control systems, biological system 

modeling, and time series forecasting. It can, for 

example, enable secure data transmission because 

transmitter and receiver systems get aligned within 

a given guaranteed time, achieve accurate 

coordination in robotics or industrial automation, 

model complex physiologic systems with 

inherently embedded delays, support real-time 

prediction systems in financial markets, climate 

modeling. In real applications, however, there are a 

number of challenges with this approach: 

discontinuous control functions require advanced 

processors; synchronization of systems depends on 

parameter tuning; robustness against noise and 

disturbances in a practical environment; and 

scalability problems for interconnected systems of 

large size. To resolve these issues, further study of 

adaptive and scalable control strategies is 

necessary to bridge the gap between theory and 

practice. 

  

5. Conclusion 

We have dealt with the fixed-time synchronization 

in DRNNs and fuzzy delay recurrent neural 

networks. Using a generalized variable 

transformation and fixed-time stability lemma, a 

general framework of synchronization analysis is 

established for the above-mentioned networks. The 

results of this study are of great value in the domain 

of NN synchronization and provide a new insight 

into the system stability analysis that is 

discontinuous in nature. Analysis and their proofs 

show that the proposed Lyapunov conditions in this 

study can obtain fixed-time stability. In addition, 

we also achieve the precomputed maximum 

settling time for both networks. The numerical 

example in the paper verifies the effectiveness of 

the proposed framework and also presents the 

effectiveness of the results in practical 

applications. In addition, future work can extend 

this approach to other types of NNs such as LSTM 

networks and investigate their performance under 

various operating conditions such as considering 

random delays by incorporating stochastic 

elements.  
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  های عصبی بازگشتی فازی در یک چارچوب زمانی ثابتسازی پایدار در شبکههمگام

 

  *صباحی فرناز

 ایران.، ارومیه، دانشگاه ارومیه، های پیشرفتهبرق، دانشکده برق و کامپیوتر و فناوریروه گ

 31/12/2024 پذیرش؛ 22/12/2024 بازنگری؛ 29/11/2024 ارسال

 چکیده:

با تأخیرهای متغیر با زمان  (DFRNNs) های عصبی بازگشتی فازی با تأخیر و ناپیوستهسازی در زمان ثابت برای شبکهاین مقاله به بررسی همگام

های عصبی را مدیریت کند. ها در سیستمطور مؤثر ناپیوستگییافته، سیستم خطا توسعه داده شده است تا بهتعمیمپردازد. بر اساس یک تبدیل متغیر می

شده سازیاین پژوهش مشکل پایداری در زمان ثابت را با استفاده از یک ورودی کنترل فیدبک حالت ناپیوسته نوآورانه و یک طرح کنترل تطبیقی ساده

کند. کاربردهای های عصبی محرک و پاسخ را در یک زمان ثابت تضمین میبین سیستم مقاومسازی هد. روش پیشنهادی، همگامدمورد بررسی قرار می

های پویا است. یک های کنترل هوشمند بر روی سیستمهای کنترل رباتیک و چارچوبهای ارتباطات امن، سیستمعملی این تحقیق شامل بهبود پروتکل

دهد. نتایج، همگرایی خطاها به صفر را در یک زمان ثابت نشان کند و نقاط قوت روش پیشنهادی را نشان مینظری را تأیید می مثال عددی ادعاهای

 .کندشده، مستقل از شرایط اولیه، تضمین میدهند که عملکرد بدون سوگیری را در یک بازه زمانی از پیش تعیینمی

  .همگام سازی در زمان ثابت، تابع لیاپانوف، تاخیرهای متغیر با زمان، شبکه عصبی ناپیوسته :کلمات کلیدی

 


