
1

Journal of Artificial Intelligence and Data Mining (JAIDM), Vol. 12, No. 4, 2024, 545-566.

Shahrood University of

Technology

Journal of Artificial Intelligence and Data Mining (JAIDM)
Journal homepage: http://jad.shahroodut.ac.ir

Research paper

Stable Synchronization in Fuzzy Recurrent Neural Networks within a

Fixed Time Frame

Farnaz Sabahi*

Department of Electrical Engineering, Faculty of Electrical and Computer Engineering, Urmia University, Urmia, Iran.

Article Info Abstract

Article History:
Received 29 November 2024

Revised 22 December 2024
Accepted 31 December 2024

DOI:10.22044/jadm.2024.14138.2647

 This paper explores fixed-time synchronization for discontinuous

fuzzy delay recurrent neural networks (DFRNNs) with time-varying

delays. Based on a generalized variable transformation, the error

system has been developed to effectively manage discontinuities in

neural systems. This research addresses the fixed-time stability

problem using a novel discontinuous state-feedback control input and

a simple switching adaptive control scheme. The proposed method

ensures robust synchronization of the drive and response neural

systems within a fixed time. Practical applications of this work

include improvements in protocols for secure communications,

robotic control systems, and intelligent control frameworks over

dynamic systems. A numerical example substantiates the theoretical

claims, demonstrating the strengths of the proposed approach. The

results show fixed-time convergence of error margins to zero,

ensuring unbiased performance within a predefined timeframe,

independent of initial conditions.

Keywords:
Discontinuous Neural Networks,

Fixed-time Synchronization,

Lyapunov Function, Time-varying

Delays.

*Corresponding author:

f.sabahi@urmia.ac.ir (F. Sabahi).

1. Introduction

Synchronization of two or more coupled systems is

the phenomenon of showing an identical behavior

in time. If the initial condition is quite large, then it

results in an undesirable time for convergence. A

continuous-time ordinary differential equation is

commonly used to model synchronization, which is

expressed as follows:

() ()() ()()), 1, ,i i ix t f x t g x t i n= + =  (1)

In this equation, n

ix R denotes the status of the

i th node, ()()if x t signifies the inherent

behavior or natural tendencies of the i th node, and

in the case where 0f = , the synchronization

model transforms into the consensus model. The

variable () () ()()1 , , nx t x t x t=  and ig

denotes the diffusion-based interconnection or

coupling from the neighboring nodes of node i .

Despite each node only needing local information

from its neighbors, the entire network can display

collective behavior, specifically synchronization,

such that 𝑙𝑖𝑚𝑡→∞ ∥ 𝑥𝑖(𝑡) − 𝑥𝑗(𝑡) ∥= 0, where ∥. ∥

represents some norm. The synchronization model

commonly used in literature is as follows:

 () ()() () i i ijx t f x t c a A t= +  (2)

where () () ()()j iA t x t x t= − .

This is a common problem in system theory,

especially in robotic systems: the design of

controllers that drive a system to a desired position

in finite time. Finite-time synchronization is

particularly important in many applications

because only exponential synchronization may

require the existence of coupling mechanisms or

external control systems for an infinite period of

time. The attainment of finite-time synchronization

can enhance the performance of a system by aiding

in the rejection of disturbances and improving its

ability to withstand uncertainties. The exploration

of novel coupling protocols for achieving finite-

time synchronization holds significance for both

theoretical scrutiny and practical implementation.

However, the settling time depends on the initial

conditions of the system, which in turn limits the

https://doi.org/10.22044/jadm.2024.14138.2647

Sabahi/ Journal of AI and Data Mining Vol 12, No 4, 2024

546

practical applicability of finite-time

synchronization since it may not be possible to

know the initial conditions in advance. Besides,

discontinuities in systems and NNs result in

instability. To that end, Polyakov proposed fixed-

time stability (FTS) to overcome the shortcomings

of settling time in analyzing the stability of linear

systems over a finite time [1]. FTS has found

popularity in power systems, space technology, and

many other fields. Works have been conducted on

FTS of nonlinear systems, including discontinuous

systems which are very common in neuroscience

and engineering applications. In such systems,

Lyapunov function techniques have emerged as an

important approach to investigate FTS. Compared

to that, the FTS has a strictly limited constraint on

the settling time and guarantees convergence

within the pre-defined limit of a settling time for

any system initial conditions. The FTS has been

actively investigated within the stochastic [1] and

deterministic continuous-time systems [2], design

of a fixed-time control [3]–[9], design of the fixed-

time observers [10]–[14], and design of a fixed-

time identification [15]–[19]. The scholars have

also developed several approaches to address FTS

in discontinuous systems using methods of

Lyapunov function, such as the unified theorem

proposed by Ji et al. to address the finite-time

stability and FTS in networks that exhibit

discontinuous activations [20], and studies on

fixed-time stability of discontinuous NNs [21].

Several synchronization control techniques for

fuzzy NNs have been suggested in the literature

over these years. In [22], the paper has established

new criteria on global exponential stability of

equilibrium points and globally exponential lag

synchronization in memristor-based FNNs, by

using different mathematical techniques and

numerical simulations.

It is worth pointing out that the existing methods

indeed try to handle discontinuities with smooth

approximations, yet they usually lack robustness

against real-world time-varying delays. For the

alternative approaches concerning this context,

sliding mode control and adaptive control can be

mentioned. In this sense, although the sliding mode

control and adaptive techniques may work for

some scenarios, they usually cannot resolve the

challenges brought about by discontinuities and

time-varying delays in neural systems. Our

approach avoids these deficiencies by ensuring

fixed-time convergence through a robust control

design.

Recurrent neural networks are a class of NNs with

feedback connections such that the network may

keep past inputs in memory. The network output is

influenced jointly by the current input and the past

state of the network. Fixed time synchronization

control for RNNs involves adjusting the weights of

the connections between nodes to achieve a desired

synchronization behavior while in view of the

recurrent dynamics of the network. The updates in

the hidden state, for every step in an RNN, are a

function of the present input and previous hidden

state; then the output is produced by an activation

function such as sigmoid or softmax from the

current hidden state.

DRNN is also a kind of NN, and it integrates the

principle of fixed-length delay lines for processing

the input data in a time-delayed manner. The input

data is allowed to be stored in the delay line for a

certain number of time steps before being relayed

to the hidden layer of the network. Then, by using

the time-delayed input data, the network produces

the desired output. The advantage of the DRNN is

that it is able to show dependencies within the input

data concerning a standard RNN. While the DRNN

is delaying the input data, then it can process

information from earlier time steps, which may be

useful in tasks like time series prediction.

However, a DRNN is also more complex than the

standard RNN since an extra part needs to be added

to its architecture: the delay-line component.

Moreover, a fixed-length delay may impose some

limitation, because in most applications, not all

relevant information of interest is really contained

in the fixed length of the delay line of the input

data.

The key differences between DRNN and delayed

fuzzy RNN are how these two process inputs and

what kind of activation functions are applied. A

DRNN processes its input in a delayed manner

using a fixed-length delay line. First, the input is

fed through a delay line, which holds the input for

a fixed number of time steps before feeding it to the

network's hidden layer. It is in this hidden layer

that the actual processing of the delayed input data

computes the output. The activation function in

DRNNs can be either linear or nonlinear, which

can be sigmoid or ReLU. The delay dependent

RNN dynamic equation is generally defined as:

() ()()i i iy t f x t=

 () ()()
1

n

i ij ij j ij ij

j

x t a w x t  
=

= − − −

()
1

n

ij j ij

j

b y t 
=

+ −

(3)

Stable Synchronization in Fuzzy Recurrent Neural Networks within a Fixed Time Frame

547

where ()ix t represents the statue of node i at t

, ()iy t is the node-output of i at t ,
ija and

ijb

are weighting coefficients,
ijw is the connection

strength between node i and j ,
ij is the

threshold value, ()if  is the discontinuous

activation function of node i ,
ij is the time delay

between node i and j .

By integrating fuzzy logic into both the

architecture and the form of RNN’s activation

function, we achieve DFRNN. Neurons in DFRNN

bear a more complicated architecture due to the

addition of such elements as self-feedback terms,

fuzzy weights, fuzzy operators, and external inputs.

The activation function of DFRNN is more

complex by combining nonlinear functions and

fuzzy operators. The most significant benefit of a

DFRNN is that it possesses an elaborate

architecture and an activation function which may

be more appropriate to capture the complicated

patterns and relationships present in the input data

than a DRNN. On the other hand, the DFRNN is

computational and challenging with respect to the

DRNN. Another difference between the DRNN

and DFRNN lies in dealing with the input data and

the applied activation functions.

While DRNN uses a fixed-length delay line to

process the input data and can have a linear or

nonlinear activation function, DFRNN

incorporates the fuzzy logics in architecture and

activation function for capturing complex pattern

and relationship in input data. Due to the

discontinuous activation function in DFRNN, the

network becomes unstable. Thus, stability and

synchronization issues are an important field of

study in discontinuous dynamical networks. The

paper deals with discontinuities in neural systems.

In this regard, we use a generalized variable

transformation to circumvent the discontinuity but

obtain an error system. In this paper, the FTS issue

of the error system generated in the drive and

response systems is investigated. To be specific, a

new form of discontinuous control input is

introduced for the response neural system. A

switching state-feedback control law is designed.

The proposed approach ensures stable

synchronization and allows one to easily estimate

the settling time.

It should be noted that while generalized variable

transformations and discontinuous state-feedback

control have been explored in related works, their

application in addressing the challenges of fixed-

time synchronization for discontinuous systems

with time-varying delays is unique to this study. In
this context, FRNN refers to discontinuous fuzzy

recurrent neural networks with time-varying

delays. These networks encompass fuzzy logic in

their architecture.

The proposed approach offers a robust and

innovative approach to synchronization,

addressing several key challenges in neural

networks. Unlike many of the existing methods,

which emphasize asymptotic or exponential

convergence, the proposed approach guarantees

synchronization within a predefined fixed time,

irrespective of the initial conditions. This allows

for strong guarantees on settling time, which is

quite critical for applications that are time-

sensitive. In addition, through a generalized

variable transformation, the approach provides a

generalized treatment of system discontinuities and

develops an effective continuous Lyapunov-based

framework which is hard for traditional methods to

achieve, such as sliding mode control or adaptive

control. Due to the inclusion of an adaptive

switching control scheme in this paper, the

designed controller handles time-varying delays'

uncertainties and nonlinearity, assuring

synchronization performance without asking for an

exact delay compensation– a limitation required by

most of the existing literature. The discontinuous

state-feedback control and the adaptive switching

mechanism are easy to implement, hence less

computation-intensive with respect to methods in

adaptive or observer-based controls. Another key

feature of the proposed approach is that it is not

constrained on a particular class of networks but, as

a matter of fact, fits a wide class of discontinuous

and delayed fuzzy recurrent neural networks, hence

it becomes more versatile and applicable in various

real-world application. Table 1 compares the

strengths and weaknesses of the proposed approach

with the important existing approaches.

The proposed approach can find quite broad

applications in the following fields.

Robotic systems need enhancing synchronization

to produce accurate and coordinated movements or

execution of tasks in areas like assembly lines and

autonomous navigation. Another application is

Secure communication protocols that need

enhancing the synchronization of the data being

transmitted that resist timing attacks. Intelligent

Control Systems need ensuring stable

synchronization in multi-agent systems for

industrial automation and networked control. In

addition, in Signal Processing, it is important

ensure synchronous sampling to correctly represent

and process a signal.

Sabahi/ Journal of AI and Data Mining Vol 12, No 4, 2024

548

Table 1. Comparison with existing approach.

Synchronization

Method

Strengths Weaknesses Comparison with Proposed

Approach

Exponential and

Asymptotic

- Ensures synchronization error decays

exponentially or asymptotically.

- Suitable for systems with continuous
dynamics and smooth nonlinearities.

- Requires longer convergence
times.

- Sensitive to initial conditions.

- May not guarantee
synchronization within a

predefined timeframe.

- Advantage: Proposed approach

guarantees fixed-time

convergence, providing clear
timeframes for synchronization.

Finite-Time

- Ensures synchronization within a finite time.

- Suitable for applications requiring quick
convergence.

- Settling time depends on initial
conditions.

- Complex controller design and

parameter tuning.

- Advantage: Proposed method
guarantees fixed-time

synchronization regardless of

initial conditions.

Adaptive

- Handles system uncertainties and parameter
variations.

- Real-time adjustment of control parameters

enhances robustness.

- Computationally intensive.

- May not guarantee convergence

within a fixed timeframe,
especially under significant

delays or discontinuities.

- Advantage: Simple switching

adaptive control reduces

computational complexity while
ensuring fixed-time

synchronization.

Sliding Mode

Control

- Highly robust to system uncertainties and

disturbances.
- Effective for systems with discontinuous

dynamics.

- Can cause chattering.
- Requires precise knowledge of

system bounds.
- Challenging to implement in

systems with significant delays.

- Advantage: Avoids chattering

and effectively handles
discontinuities and time-varying

delays.

Proposed Fixed-

Time

Synchronization in

DFRNNs

- Guarantees fixed-time synchronization
regardless of initial conditions.

- Handles discontinuities and time-varying

delays effectively.
- Simple switching adaptive control is easy to

implement.

- Applicable to a wide range of networks.
- Reduces computational complexity.

- Complexity increases with the

intricacy of fuzzy logic and

network structures.
- Requires careful design of

transformations and control

inputs.

We can summarize the main findings of this paper

as follows:

1. Development of a novel approach for gaining

fixed-time synchronization in DFRNN.

2. Establishment of Lyapunov circumstances

concerning FST in DFRNN.

3. Consistency as a design principle in the control

system to ensure that the tracking, after adjustment,

will actually be consistent with the intended

trajectory.

4. Fixed upper bounds derivation concerning

settling time of DFRNN.

5. Contribution to the synchronization of NNs and,

equally importantly, insights into stability analysis

of discontinuous systems.

6. The main design principle of consistency

provides an adaptive and responsive control

system.

The paper is organized as follows. A review of

preliminary concepts is provided in Section 2. In

Section 3, we will introduce a control design

scheme to ensure fixed-time robust

synchronization with consideration of time delay.

In Section 4, we provide some simulations to verify

the proposed control. Finally, Section 5 concludes

the paper.

2. System Description

A DRNN's response may be modeled by a set of

dynamical equations which, in summary, reflect

the way in which the hidden state of the network

varies in time.

Discontinuous neural networks and systems with

time-varying delays are great challenges to stability

and synchronization. Discontinuities usually give

rise to abrupt changes in dynamics, which make the

analysis of stability and control design much more

complicated. Time-varying delays introduce

additional nonlinearity and uncertainty, making it

hard to predict and manage system behavior.

Delays can also add up over time, increasing

instability and making it difficult to maintain

synchronization.

Let
n

t h R denote the hidden state of the DRNN

at t , where n is the number of neurons. Then, the

dynamical equation for the DRNN can be written

as:

()1t t tf −= + +h Wx Uh b (4)

where
m

t x R is the input vector at t ,

n mW R is the weight matrix that maps the input

to the hidden state, n nU R is the weight matrix

that maps the previous hidden state to the current

hidden state,
nb R is the bias vector, and ()f 

is the activation function, such as sigmoid or

ReLU.

In a DRNN, the input vector tx is typically

delayed by a fixed number of time steps before

being fed into the network’s hidden layer. This

Stable Synchronization in Fuzzy Recurrent Neural Networks within a Fixed Time Frame

549

delay can be implemented using a shift register or

a delay line in the input layer. Let  denote the

delay in time steps, then the input vector at t is

given by t −x .

Therefore, the dynamical equation for a DRNN

with input delay can be written as:

()1t t tf − −= + +h Wx Uh b (5)

Note that the delay in the input forces the network

to process information of earlier time steps, which

may be useful when modeling long-term

dependencies in an input. The drive-response

synchronization is applied to a DRNN by

constructing a response system that synchronizes

with the DRNN dynamics. The output of such a

system can be described by the following formula:

,
yt y t y−= +y W h b (6)

where
m

t y R is the output of the response

system at t ,
m n

y

W R is the weight matrix that

maps the delayed hidden state of the DRNN to the

output of the response system,
m

y b R is the bias

vector of the response system, and
y is the delay

in the system.

The response system's output gets computed by the

sum of a product between the weights in 𝐖𝑦 and

the DRNN's delayed hidden state, where the

weights are to be learned during training. This

delay makes the response system to get information

from earlier time lags that is useful to model long-

term dependencies on the DRNN dynamics. We

can synchronize the response system with the

DRNN by minimizing the error by adjusting the

weights in yW and the delay
y .

 Let () () () ()1 2[, , ,]Tnt x t x t x t= x be the

state vector, () ()ijt w t =  w be the time-varying

weighted matrix,

() ()()() ()()() ()()()1 1 1 2 2 2[, , ,]Tn n nt f x t t f x t t f x t t  = − −  −f

be the time-delayed activation function vector,

ijv =  v be the coupling matrix, () ()ijt T t =  T

be the time-varying transmission delay matrix,

() ()ijt t =  α and () ()ijt t =  β be the time-

varying feedback and feedforward matrices

respectively, and
1 2[, , ,]Tnb b b= b be the bias

vector. Then, we can write the DRNN dynamic

equation in matrix form as:

() () ()() ()

() ()() () ()()

() ()() ()

(

)

t t t t t

t t t t t t

t t t t

= − +

+  − + −

+ − + −

x w f vx

T f f

f b x

τ

τ α τ

β τ

(7)

where  is a vectorized activation function that

applies the activation function element-wise to the

vectorized input, ()tτ is the vector of time delays

for each neuron.

()()
()()()

()()()

1 1 ,
[min]

,

T

n n

f x t t
t t

f x t t





 − 
 − =  

 −  

f τ

(8)

() () ()() ()

() () () ()()

() ()() ()

(

)

y t t t t y t

t y t t t t

t t t y t

= − +

+  + −

+ − + −

w f v

T v f

f b

τ

α τ

β τ

The DRNN response equation can be:

() () ()() ()

() () () ()()

() ()() ()

(

)

y t t t t y t

t y t t t t

t t t y t

= − +

+  + −

+ − + −

w f v

T v f

f b

τ

α τ

β τ

(9)

This is an equation representing a response system,

which is supposed to synchronize with the DRNN

by mapping its hidden state, delayed by the means

of a learned weight matrix and delay, to an output.

Given the dynamics of the ith neuron in a DRNN,

whose current state will be denoted as () iy t . This

equation has a number of terms that capture the

effects of input to the neuron, recurrent

connections, and bias. The activation function i

may be chosen depending on the problem at hand.

Besides, we can introduce fuzzy logic into the

model and rewrite the equation in a bit different

form. Let () ()ijS t S t =   be the time-varying

fuzzy OR operator matrix, and ()I t be the

external input vector. Let ()()x td be the self-

feedback vector, and

()() ()() ()() ()()1 1 2 2, [, , , , , ,]Tn nt x t c t x t c t x t c t x t= c

be the discontinuous threshold behavior vector.

 Then, we can write DFRNN with discontinuous

activation in matrix form as:

()t =x

()() ()() () ()()[,t t t t t t− + − +d x c x w f τ

() () () () ()() t t t t t t+  + −vy T vy fα τ

() ()() () () ()]t t t t t t+ − +  +f S vy Iβ τ

(10

)

Sabahi/ Journal of AI and Data Mining Vol 12, No 4, 2024

550

The fuzzy AND and fuzzy OR operators can also

be written as:

 () () () () 1, ,[]ij j j i nt t T t v y t =  = T vy

 () () () () 1, ,[] .ij j j i nt t S t v y t =  = S vy

(11)

where  and  denote the element-wise

minimum and maximum operations, respectively,

and ()jy t is the j -th element of the output

vector ()ty .

The initial condition for the DFRNN can be

expressed as:

() ()  0 , ,0 ,i i it t t =  −x Φ (12)

where ()Φi t specifies the initial state of the i -th

neuron at a time t in the past that is within the

delay range of the network.

Drawing upon the principle of drive-response

synchronization, we can consider DFRNN

equation (10) as the drive system and design a

response system to synchronize with it. The

response of it can be described by:

() ()() ()()

() ()() ()

[,t t t t

t t t t

= − +

− + +

y d y c y

W Φ Vyτ

() () ()()() ()

()()() () () ()

]

t t t t t

t t t t t

 + − +

− +  + +

T V f y

f y S V I u

α τ β

τ

(13)

where ()ty is the state vector of the neurons in the

network, ()()td y is a diagonal matrix function of

the rate of change of each component of ()ty ,

()(),t tc y is a diagonal matrix function

representing the "leakage" or the tendency of the

neuron to return to its resting state, ()tW is a

matrix function characterizing the strength of the

connections from all neurons to the neurons at t ,

()()t t−Φ τ is a matrix function characterizing

the delayed states of all neurons at ()t t−τ , V is

a matrix of weights that represent the connections

from all neurons to the i -th neuron in the absence

of time delay, ()tT is a matrix function

characterizing the time-delayed weights of the

inputs to the neurons from all neurons,  V is a

row vector that includes the minimum value of the

weighted inputs from all neurons, ()tα and ()tβ

are row vectors of weights that represent the time-

delayed connections from all neurons with an

element-wise product operator , ()()()t t−f y τ

is a matrix function demonstrating the activation

function outputs of all neurons in the network with

a time delay of ()tτ , ()tS is a matrix function

representing the time-delayed weights of the inputs

to the i -th neuron from all neurons, ()tI is a row

vector that includes the external inputs, and ()tu

is a row vector that contains the noise or

disturbance inputs at time t .

The input variable ()iu t will be determined at a

later stage for each node i in the system. The

functions :if →R R are piecewise continuous,

which means that they are continuous on most

points in their domain. However, there are a finite

number of isolated points  ,i k where if has a

discontinuity. At these points, if has finite right

(),i i kf +
 and left (),i i kf −

 limits. In addition,

if exhibits only a finite number of points of

discontinuity within any interval that is both closed

and bounded in R .

The expression for the initial circumstance of the

response system is given by:

() ()  0 , ,0 ,i i iy t t t =  − (14)

where ()i t specifies the initial state of the i -th

neuron in the response system at a time t in the

past that is within the delay range of the network.

 To analyze the system's robustness, we define the

disturbance magnitude maxd as the maximum

external perturbation tolerated by the system. The

maximum input magnitude, maxu , represents the

upper limit of the control input based on system

design. The robustness ratio max

max

d

u
 = can be

defined to compare the effects of disturbances

relative to input capabilities. This ratio is crucial

for ensuring synchronization stability under

varying external conditions.

3. Fixed-time Robust Synchronization with a

Discontinuous Controller

In this section, a control design scheme is given to

guarantee fixed-time robust synchronization with

consideration of time delay. We will design a

simple switching adaptive control scheme to cope

with discontinuities. A novel simple switching

adaptive control technique is designed in this

Stable Synchronization in Fuzzy Recurrent Neural Networks within a Fixed Time Frame

551

approach to achieve fixed-time synchronization for

DFRNN with time-varying delays. In the proposed

scheme, a state-feedback control law with the

mechanism of switching using a sign function is

designed in order to handle such discontinuities

effectively. Accordingly, the control input to the

response system can be derived as

() () ()() () () ()() ,u t k t sgn e t t sgn e t e t = −  +  − −

where ()e t represents the error between drive-

response systems, τ stands for the time delay, and

()k t and ()t are the adaptive gains which are

time varying. In particular, the switching

mechanism in this system adaptively switches the

state of the control input so as to realize quick

responses of the control system with respect to a

change of the error signal and synchronization.

In the following, we derive the proposed Lyapunov

conditions and state the assumptions used in these

conditions. The Lyapunov function

() ()
1

n

i

i

V t e t
=

= is chosen due to its positive

definiteness and regularity properties, where

()ie t represents the error of the i -th neuron at

time t . The system dynamics are governed by

piecewise continuous functions with finite

discontinuities. The control input ()iu t is

designed to ensure boundedness and convergence.

The initial conditions ()0ix are within the

specified range.

To consider fixed-time stability, we first introduce

the following lemmas:

[Lemma[23]] If a regular, radially unbounded, and

positive definite function ()() : nV x t →R R

exists, in such a way that the inequality

()()
()() ()()

()  

,

 \ 0 ,n

dV x t
aV x t bV x t

dt

x t

  − −

R

 is

satisfied by any solution ()x t of the system,

where , 0a b  , 0 1  , and 1  , then the

system’s origin is FTS, and ()0T x that is the

settling time function can be approximated by:

()

1

1

0 max

1

1 1
1 1 .

1 1

b
T x T

b a



 

− 
 =  

 

  
− −  

− −  

(15)

[Lemma Gronwall-Bellman [24]] Let ()f t be a

non-negative function that satisfies the differential

inequality

() () () () ,
d

f t t f t t
dt

  +
(16)

where ()t and ()t are non-negative

continuous functions. Then, for any 0t  , we

have:

() () ()()
() ()()

0

0

0 exp

exp

t

t

s

t

f t f s ds

s dr dsr



 

 +

 

(17)

The above lemma is a very strong tool for

establishing the upper bounds on the trajectories of

non-negative functions which satisfy certain

differential or difference inequalities. This lemma

finds widespread application in the study of

stability and convergence properties of dynamical

systems, and its applications are found in many

areas of control theory, optimal control, and so on.

In computational neuroscience, DFRNN is an

extended model of the conventional RNN, which

includes the ideas of time delays, discontinuous

activation functions, and fuzzy logic [25, 26].

Fixed-time synchronization means that both the

response and drive systems can achieve

synchronization within a fixed time, regardless of

any initial condition or external disturbance. On the

other hand, fixed-time synchronization differs from

asymptotic synchronization. Suppose ()e t is a

solution of the error system over the interval

)0,T . The error system can be expressed as:

() ()() ()(),i i i i ie t c t x t f x t= − +

() ()()()
1

n

ij j j ij

j

w t f x t t
=

− −

() ()
1

1

m n

ij j ij j
j

j

v x t T t v
=

=

− −  −

() ()()()
1

n

ij j j j
j

t f x t t 
=
 − −

() ()()()

() () ()

1

1

n

ij j j j
j

n

ij j i i
j

t f x t t

S t v u t y t

 
=

=

 − −

 + −

(18)

where ()ie t represents the error of the i -th

neuron at time t , ()ix t is the state of the i -th

Sabahi/ Journal of AI and Data Mining Vol 12, No 4, 2024

552

neuron, and ()iy t is the actual output of the i -th

neuron at time t . The other terms in Equation (18)

have the same meanings as in Equation (10). The

term ()iu t represents any external input to the i

-th neuron, and the subtraction of ()iy t from the

right-hand side of Equation (18) ensures that the

error dynamics are calculated with respect to the

desired output of the neuron. The error dynamics of

the neuron detail how the deviation between the

anticipated and actual output of the neuron varies

over time. By considering this information, we can

fine-tune the weights and parameters of the

network to reduce the error and accomplish the

intended task or behavior.

 We present a potential Lyapunov function as:

() ()
1

 .
n

i

i

V t e t
=

=
(19)

The function ()V t is C -regular. To compute the

time derivative of the candidate Lyapunov function

()V t given by Equation (19) moving in the

direction of the error dynamics trajectory, we

differentiate ()V t with respect to time t using the

chain rule:

()
()

1

n

i

i

dV t d
e t

dt dt=

=

()() ()
1

 sgn
n

i i

i

d
e t e t

dt=

=

()()
()()()

()()()

1

1
1

,
 sgn

,

n
i i i

i

i
i i i

c t h w t
e t

c t h z t

−

=
−

 −
 = −
 
 



() ()() ()()
1 1

sgn sgn
n m

ij i j

i j

a t e t e t
= =

 + −
 

() ()()() ()()
1 1

sgn sgn
n m

ij i j j

i j

a t e t t e t
= =

 + − −
 

()
()()()
()()()1 1

n n i j

ij

i j
j j

sgn e t t
t

sgn e t t




= =

 − −
 +
 −  



()() ()()() ()()1 1

1

sgn
n

i i i i i i

i

d
u t d h w t h w t

dt
− −

=

+

()() ()()() ()()1 1

1

sgn
n

i i i i i i

i

d
y t d h w t h w t

dt
− −

=

−

() ()()()1

1

n

i i i i

i

d
u t d h w t

dt
−

=

+

() ()()()1

1

 ,
n

i i i i

i

d
y t d h w t

dt
−

=

−

(20)

where sgn(𝑥) is the sign function, ℎ−𝑖
1 (𝑤𝑖(𝑡)) is

the vector of states of the network excluding the

state of the 𝑖-th neuron at time 𝑡, 𝑧𝑖(𝑡) is the vector

of delayed states of the network that contribute to

the coupling of the 𝑖-th neuron at time 𝑡, and 𝑑𝑖(⋅)

is the derivative of the activation function 𝑑𝑖(⋅). To

calculate the derivative of 𝑉(𝑡) along the

trajectories of the error dynamics for the delayed

fuzzy recurrent neural network (DFRNN) given by

Equation (20), we can use the chain rule.

Specifically, we have:

() ()
1

n

i

i

d
V t e t

dt =

 
=  

 


()
1

n

i

i

d
e t

dt=

=

()

()
()

1

n

i

i

i i

e t d
e t

dte t=

= 

()() ()
1

sgn
n

i i

i

e t e t
=

= 

()() ()()
1

 sgn ,
n

i i i

i

e t c t x t
=

= − 

()() ()()
1

sgn
n

i i i

i

e t f x t
=

+  −

()() () ()()()
1 1

sgn
n m

i ij j j ij

i j

e t w t f x t t
= =

  −

()() ()
1 1

sgn
n m

i ij j

i j

e t v x t
= =

−  

()() ()
1

1

sgn
n n

i ij j
j

i

e t T t v
=

=

−   −

()() () ()()()
1

1

sgn
n n

i ij j j j
j

i

e t t f x t t 
=

=

  −

()() () ()()()
1

1

sgn
n n

i ij j j j
j

i

e t t f x t t 
=

=

−   −

()() ()
1

1

 sgn
n n

i ij j
j

i

e t S t v
=

=

−   +

()() ()
1

sgn
n

i i

i

e t u t
=

 +

()() ()
1

 sgn ,
n

i i

i

e t y t
=

− 

(21)

Let us now show that the time derivative of ()()V e t

satisfies the inequality in Lemma Gronwall-

Stable Synchronization in Fuzzy Recurrent Neural Networks within a Fixed Time Frame

553

Bellman. Note that the inequality, we need to prove

is as follows:

()()

()() ()() ,
dV e t

aV e t bV e t
dt

  − −

 ()  \ 0 ,ne t R

(22)

 where , 0a b  and 0 1  , 1  .

Substituting the expression for ()V t that we

obtained earlier, we have:

()()dV e t

dt
=

()() ()()
1

 , sgn
n

i i i

i

c t x t e t
=

− 

()() ()()
1

sgn
n

i i i

i

f x t e t
=

+  −

 () ()()() ()()
1 1

sgn
n m

ij j j ij i

i j

w t f x t t e t
= =

 − 

 () ()()
1 1

 sgn
n m

ij j i

i j

v x t e t
= =

−   −

 () ()()
1

1

sgn
nn

ij j i
j

i

T t v e t
=

=

  −

 () ()()() ()()
1

1

 sgn
nn

ij j j j i
j

i

t f x t t e t 
=

=

 − 

 () ()()() ()()
1

1

sgn
nn

ij j j j i
j

i

t f x t t e t 
=

=

−  − 

 () ()()
1

1

 sgn
nn

ij j i
j

i

S t v e t
=

=

−  

 () ()()
1 1

. sgn
n n

i i

i i

u t e t
= =

+ 

 () ()()
1 1

 . sgn .
n n

i i

i i

y t e t
= =

− 

(23)

Based on the triangle inequality, we can bound the

absolute value of each term in the above expression

as follows:

()() ()() ()(), sgn , ,i i i i ic t x t e t c t x t−  

 ()() ()() ()()sgn ,i i i i if x t e t f x t 

() ()()() ()()

() ()()()

sgn

,

ij j j ij i

ij j j ij

w t f x t t e t

w t f x t t





 − 

  −

 () ()() ()sgn ,ij j i ij jv x t e t v x t   

(24)

() ()() () ()
1 1

sgn | ,
nn

ij j i ij j i

i i

T t v e t T t v e t
= =

   

 () ()()() ()()
1

| sgn
n

ij j j j i

i

t f x t t e t 
=

− 

 () ()()() ()
1

n

ij j j j i

i

t f x t t e t 
=

  − 

() ()()() ()()
1

 sgn
n

ij j j j i

i

t f x t t e t 
=

− 

 () ()()() ()
1

 ,
n

ij j j j i

i

t f x t t e t 
=

  − 

 () ()() () ()
1 1

sgn ,
nn

ij j i ij j i

i i

S t v e t S t v e t
= =

   

 () ()() () ()
1 1

sgn ,
nn

i i i i

i i

u t e t u t e t
= =

   

 () ()() () ()
1 1

sgn .
nn

i i i i

i i

y t e t y t e t
= =

   

Using these bounds and () ()()
1

ie t V e t , we can

write:

()()dV e t

dt


()() ()() ()()
1 1

 ,
n n

i i i i

i i

aV e t b f x t c t x t

= =

− − + 

 () ()()()
1 1

n n

ij j j ij

i j

w t f x t t
= =

+  −

 ()
1 1

n m

ij j

i j

v x t
= =

+ 

 () ()()
1

1

n

i

i

u t V e t

=

+ 

 () ()()
1

1

n

i

i

y t V e t

=

+ 

 () ()()() ()()
1

1 1

n n

ij j j j

i j

t f x t t V e t 
= =

+  − 

 () ()()() ()()
1

1 1

n n

ij j j j

i j

t f x t t V e t 
= =

+  − 

 () ()()
1

1 1

n n

ij j

i j

T t v V e t

= =

+ 

 () ()()
1

1 1

 .
n n

ij j

i j

S t v V e t

= =

+ 

(25)

Sabahi/ Journal of AI and Data Mining Vol 12, No 4, 2024

554

Using the fact that 0 1  , we can further

simplify the inequality as:

()()dV e t

dt


()() ()() ()()
1

 ,
n

i i

i

aV e t bV e t c t x t 

=

− − +

 () ()()()
1 1

n n

ij j j ij

i j

w t f x t t
= =

+  −

 ()
1 1

n m

ij j

i j

v x t
= =

+ 

 () ()()
1

1 1

n n

ij j

i j

T t v V e t

= =

+ 

() ()()() ()()
1

1 1

n n

ij j j j

i j

t f x t t V e t 
= =

+  − 

 () ()()() ()()
1

1 1

n n

ij j j j

i j

t f x t t V e t 
= =

+  − 

 () ()()
1

1 1

n n

ij j

i j

S t v V e t

= =

+ 

 () ()() () ()()
1 1

1 1

n n

i i

i i

u t V e t y t V e t 

= =

+  +  

()() () ()()()
1 1 1

n n n

i i ij j j j

i i j

b f x t t f x t t 
= = =

− +  − 

 ()()
1

V e t

() ()()() ()()
1

1 1

n n

ij j j j

i j

t f x t t V e t 
= =

+  − 

 () ()()
1

1

n

i

i

u t V e t

=

+ 

 () ()()
1

1

 .
n

i

i

y t V e t

=

+ 

(26)

Since ()() 0i if x t  , we can drop the negative

term ()()
1

n

i ii
b f x t

=
−  from the inequality to

obtain:

()()dV e t

dt


()() ()()aV e t bV e t  − −

()() () ()()()
1 1 1

 ,
n n n

i i ij j j ij

i i j

c t x t w t f x t t
= = =

+ +  − 

(27)

 () () ()()
1

1 1 1 1

n m n n

ij j ij j

i j i j

v x t T t v V e t

= = = =

+  +  

 () ()()() ()()
1

1 1

n n

ij j j j

i j

t f x t t V e t 
= =

+  − 

() ()()() ()()
1

1 1

n n

ij j j j

i j

t f x t t V e t 
= =

+  − 

 () ()()
1

1

n

i

i

u t V e t

=

+ 

 () ()()
1

1

 .
n

i

i

y t V e t

=

+ 

Using the fact that ()() 0V e t  , ()  \ 0ne t R

and the fact that ()() ()
1

V e t e t  , we can write:

()()

()() ()()
dV e t

aV e t bV e t
dt

  − −

 () () ()1 2 3

1 1

m n

j ij j

j j

K e t K x t K T t v
= =

+ + + 

 ()()() () ()4 5

1 1

n n

j j j i

j i

K f x t t e t K u t
= =

+ − + 

 ()6

1

 ,
n

i

i

K y t
=

+ 

(28)

Equation (28) gives the time-derivative of the

Lyapunov function ()()V e t in the form of an

inequality. The left-hand side represents the rate of

change of ()()V e t over time, while the right-hand

side is a sum of terms that depend on various

system parameters. The coefficient a is a positive

constant, and  and  are positive exponents. The

terms involving 1K , 2K , 3K , 4K , 5K , and 6K

are positive constants that scale the size of the

corresponding error, input, or output terms in the

system. The terms involving ()jx t , ()ijT t ,
jv ,

()iu t , and ()iy t depend on the system’s state,

inputs, and outputs at t . The function

()()()j j jf x t t− represents the time-delayed

feedback from the j th state variable. where

1 2 3 4 5 6, , , , ,K K K K K K are positive constants

that depend on the system parameters but not on

()e t .

Finally, using the fact that ()() 0V e t  and

()0 0V = , we have:

Stable Synchronization in Fuzzy Recurrent Neural Networks within a Fixed Time Frame

555

()()V e t =

()()
0

t dV e
d

d





= 

 ()() ()() ()1
0
 (

t

aV e bV e K e    − − +

 () ()2 3

1 1

m n

j ij j

j j

K x K T v 
= =

+ + 

 ()()() ()4

1

n

j j j

j

K f x e   
=

+ −

 () ()5 6

1 1

)
n n

i i

i i

K u K y d  
= =

+ + 

()() ()()()7
0
 ,

t

K aV e bV e d    + − −

(29)

where 7K is a constant that depends on the initial

condition. Hence, we have shown that ()()V e t is

bounded for all 0t  , and therefore, the system is

uniformly ultimately bounded. Demonstrating

global asymptotic stability requires us to prove that

()() 0V e t → as t → for all initial conditions

()0 ne R . Let () 1max 0i n iM f = . Then, for

any () ne t R , we have:

()()() ()
1

n

i i i

i

f x t t e t
=

−

 ()()() () () ()()
1

n

i i i i i i

i

f x t t e t T t x t t 
=

 − − −

()()() () ()()
1

n

i i i i i i

i

f x t t T t x t t 
=

+ − −

 () () ()()i i iM e t T t x t t − −

 () () ()()
1

0
n

i i i i

i

f T t x t t
=

+ −

 () () ()()i i iM e t T t x t t − −

 () () ()()
1

 0
n

i i i i

i

f T t x t t
=

+  −

 () () ()()i i iM e t T t x t t − −

 () ()()
1

 0 ,
n

i T i i

i

f L x t t
=

+  −

(30)

where TL is a Lipschitz constant for ()iT t .

Using this inequality, we can rewrite the inequality

for
()()dV e t

dt
 as:

 ()()
()() ()() ()1

dV e t
aV e t bV e t K e t

dt

  − − +

 () ()2 3

1 1

m n

j ij j

j j

K x t K T t v
= =

+ + 

() () () ()()4 5

1

n

i i i

i

K M K e t T t x t t
=

+ + − −

 () ()()4 6

1 1

0 .
nn

i T i i

i i

K f L K x t t
= =

 
+ + − 
 

 

(31)

Let 0ò . Since ()()V e t is bounded and non-

negative t , there exists a constant 8 0K  such

that ()() 8V e t K  for all 0t  .

Next, let
9

2

b
K

a
= and

1 2 3 4

10

5 4 6

1

1

 (0)

T

n

T

i

i

TK K L K L K M

K
K K f L K

=

+ + + 
 

=
 + + + 
 


.

Then, for any () ne t R and 0t  , we have:

()()

()() ()() ()()

dV e t

dt

aV e t aV e t bV e t  



− + −

() () ()1 2 3

1 1

m n

j ij j

j j

K e t K x t K T t v
= =

+ + + 

() () () ()()4 5

1

n

i i i

i

K M K e t T t x t t
=

+ + − −

() ()()4 6

11

 0
n

i T i i

i

n

i

K f L K x t t
= =

 
+ + − 
 

 

 ()() ()()10aV e t K V e t − +

()() ()() ()1 for ,aV e t V e t t T − + ò

(32)

Equation (31) gives the time-derivative of the

Lyapunov function ()()V e t in the form of an

inequality. The left-hand side represents the rate of

change of ()()V e t over time, while the right-

hand side is a sum of terms that depend on various

system parameters. The coefficient a is a positive

constant, and  and  are positive exponents. The

Sabahi/ Journal of AI and Data Mining Vol 12, No 4, 2024

556

terms involving
1K ,

2K ,
3K ,

4K ,
5K ,

6K , and

10K are positive constants that scale the size of the

corresponding error, input, or output terms in the

system. The terms involving ()jx t , ()ijT t , jv ,

()iu t , and ()iy t depend on the system’s state,

inputs, and outputs at time t . The function ()0if

represents the steady-state gain of the i th system

input-output channel, and TL is a constant that

depends on the time delay ()i t . The inequality

indicates that the speed of alteration/variation of

()()V e t is bounded by a linear combination of

()()V e t and ò , where ò is a constant that is smaller

than a and determines the convergence rate of the

Lyapunov function.

By applying Lemma Gronwall Bellman, we

acquire:

()()

1

8

1

1

exp 1 0

 as .

t

T

K
V e t

a

a
d

a

t








 
− 

 

  
− − →  

  

→



ò

ò

(33)

In this inequality, ()()V e t is the Lyapunov

function that measures the distance between the

actual state of the network and the desired state.

The expression on the right of the inequality

represents a function that exponentially decreases

as time progresses, with a decay rate that depends

on the constants a ,  , ò , and 1T . The inequality

implies that as time tends towards infinity, the

Lyapunov function ()()V e t approaches zero,

which indicates that the network state converges to

the desired state. Note that the inequality assumes

that the constants a ,  , ò , and 1T are chosen

such that the fraction / aò is less than 1, which

ensures that the denominator of the exponential

function is positive. Therefore, the system is

globally asymptotically stable.

 To obtain an expression for maxT , we first note

that ()()V e t is non-increasing and non-negative

for all 0t  . Therefore, ()()V e t achieves its

maximum value at 0t = , which indicates that :

() () ()
1 1

2 2
1

0 (0) (0)e V e V e
n

=  .

(34)

Because ()()V e t is non-increasing, we have:

() ()

()

()() 
()()

2 2

1

2

1

1

| | | |

max{| | }

max

0 .

n

i

i

i
i n

i n

e t e t

n e t

n V e t

nV e

=

 

 

=





=



(35)

 Therefore, we have () ()
1

2(0)e t nV e for

all 0t  . This implies that

()
1

2

max

(0)1
log

nV e
T



 
 

  
 
 

ò
.

To obtain an upper bound for ()()0V e , we use the

fact that ()() () 20 | 0 |V e e= . Let ()0ix be the

initial condition for the i -th neuron, and let

()* 0ix be the equilibrium point for the i -th

neuron. Then, we have:

() ()

() ()

() ()

() ()

2 2

1

* 2

1

* 2

1

1 2

1

2

| 0 | | 0 |

 | 0 0 |

max{| 0 0 | }

max{| 0 | }

,

n

i

i

n

i i

i

i i
i n

i i
i n

f

e e

x x

n x x

n x f b

nL

=

=

 

−

 

=

= −

 −

= −







(36)

where fL is a Lipschitz constant for ()1

if b−
.

 Therefore, we have:

max

1
log .fn L

T


 
   

 ò

(37)

This inequality provides an upper bound on the

maximum time maxT that a gradient-based

optimization algorithm can be run for a function

f with Lipschitz constant fL and a desired

accuracy of ò . The bound depends on the

dimensionality of the function, represented by the

variable n , and the step size of the algorithm,

Stable Synchronization in Fuzzy Recurrent Neural Networks within a Fixed Time Frame

557

represented by the variable  . The bound shows

that as the accuracy requirement ò becomes

smaller, the maximum runtime of the algorithm

decreases logarithmically. In addition, it shows that

with increasing the dimensionality of the function,

the maximum runtime of the algorithm increases

logarithmically. This expression also provides an

upper bound for transmission delay max such that

the system is globally asymptotically stable. If the

actual transmission delay is less than or equal to

max , then the system will be stable. Otherwise, the

system may exhibit instability or other undesirable

behavior. In these equations, the terms with

multiple subscripts (e.g. ()ijw t) represent the

weights or time constants between neurons i and

j , while the terms with a single subscript (e.g.

()iy t) represent the state or output of neuron i .

The functions ()jf  , ()1

ih−  , ()2

ih−  , and ()3

ih− 

are activation functions that depend on the input to

neuron j or the time constant of neuron i , but do

not depend on the state or output of neuron i . The

constants ()k t (for 1, ,12k = ) represent the

learning rates for the adaptive laws.

For the Lyapunov conditions developed in this

paper, although they are for DFRNNs, a discrete

neural network in general can be treated by only

modifying them. Because of its flexibility in

treating discontinuity and time-varying delays, the

framework has the potential to be used in various

architectures, such as Hopfield networks, cellular

neural networks, or even discrete-time feedforward

neural networks. In some situations, the Lyapunov

function could be tuned to fit different types of

activation functions or coupling structures.

However, in such adaptation, one must also

consider the nature of the delay (fixed or time-

varying) and what specific dynamics the network

pertains to. This further generalizes the relevance

of the proposed stability framework.

In addition, it should be noted that this fixed-time

stability result differs in at least three aspects from

the plethora of stability theorems available in

literature. Firstly, the settling time here is uniform

and independent of initial conditions; this, in some

sense, offsets the stringent initial-state dependent

nature inherent in most results on finite-time

stability. The approach designed here is especially

for discontinuous systems, including DFRNNs,

based on a generalized variable transformation and

discontinuous state-feedback control input; thus, it

can avoid the difficulty inherent in the traditional

method when the dynamics is nondifferentiable. In

addition, time-varying delays are explicitly

involved in the stability framework of this

approach, enhancing its applicability to realistic

systems that exhibit complex, time-varying delay

dynamics. These developments make the proposed

approach robust and practical for synchronization

tasks in difficult environments.

4. Numerical Example

A numerical example follows, justifying the results

by showing the advantages of the proposed

approach. The importance of this example is that it

shows the possibility of synchronization under

realistic conditions, including noise and

uncertainties. It follows from the results that the

synchronization is achieved in a fixed time,

corroborating the theoretical results made, and

illustrating the potential of this method for use in

secure communication systems and robotics.

Further, additional simulations introducing

external disturbances and parametric uncertainties

into the system have been performed in order to

investigate the robustness of the proposed control

method. Further investigation regarding the

robustness of the proposed control method was

performed by introducing uncertainties in the

system parameters.

4.1 Setting Information, Configuration and

Relevance

Below are the specific parameters, algorithms, and

simulation tools used:

A. Parameters:

• Network Configuration: The network

consists of 10 neurons with time-varying

delays ranging from 0.1 to 0.5 seconds.

• Initial Conditions: The initial conditions

for the neurons were randomly selected

within the range [-1, 1]. ()0ix are

initialized randomly within the range

 1,1− . The initial error

() () ()0 0 0i i ie x y= − is set to be within

the range  0.1,0.1−

• Control Gains:

()1 2 1 2, : 0.5, 0.3= =k k k k

• Thresholds for Switching: 0.05=ò

• Adaptive Rates: 0.1, 0.1 = =

• Time Step (Δt): 0.01 seconds

• Total Simulation Time: 100 seconds at

most.

Sabahi/ Journal of AI and Data Mining Vol 12, No 4, 2024

558

• Time-Varying Delays (τ(t)):

() ()0.1 2 /10 0.2ij t sin t = +

• The robustness ratio 0.6max

max

d

u
 = =

• Lyapunov Function Parameters: The

parameters in the Lyapunov function

were chosen to ensure stability and to

minimize the synchronization error.

Specifically, the parameters a and b in

the Lyapunov function were set to 0.5

and 1.0 , respectively.

• Activation function: sigmoid

• Disturbance signal: () () d t Asin t=

where A and  represent the amplitude

and frequency of the disturbance,

respectively.

• Uncertainty range:  is chosen to vary

within ±10 of the nominal values.

B. Algorithms:

• Synchronization Algorithm:

Synchronization was done by the

discontinuous state-feedback control

algorithm. The control law has been

designed based on the Lyapunov function

approach to guarantee fixed-time

synchronization.

• Adaptive Control Scheme: These neural

network discontinuities were resolved by

implementing a switching adaptive

control scheme. The control parameters

changed dynamically in order to achieve

synchronization.

C. Simulation Tools:

• Software: The simulations were

performed using MATLAB R2020a.

• Solver: The ODE45 solver, a MATLAB

that solves ordinary differential equations

by using a variable-step, variable-order

method was used to simulate the dynamic

behavior of the neural network.

The two-dimensional FRNN presented below with

time-varying delays:

() () i i ix t x t= − +ò

()()1

1

n

ij ij j ij i

j

a w f x t  
=

 − −
 

()() ()2

1

i

n

ij j ij x

j

b f y t I t 
=

+ − + −

() ()i i iy t y t= − +

(38)

()() ()2

1

i

n

ij j ij y

j

c f x t I t 
=

− + −

() ()

() ()

() ()

1 2

0.4 0.3 0.3, 0

0.4 0.3 0.2, 0

f x f x

tanh x cos x x

tanh x sin x x

= =

 + − 


+ + 

Activation functions ()jf x are characterized by

being discontinuous and non-monotonic and has a

discontinuity at 0x = that satisfies

()()   () ()  co 0 0 , 0 0.1,0.2j j jf f f+ −
 = = −
 

, where

j = 1, 2.

Now, considering the previous sections, we have

rewritten equation (38) :

() ()i i ix t x t= − +ò

 ()()1
,

1

1 1
max max

2 2

n

ij i j ij
i j i

j

w c f x t 
=

  + − −     


,

max max i i ij
i i

i j

y u v+ + +

()
,

2
iij x

i j

T I t+ + − +

 () ()()2
, 0,

1
max max 2

2 ij

ij j ij
i j

w t f y t
 

 
  

 
− − − 

 

 () () max maxi i i i i
i i

y t y t y u= − + +

, ,

 ij ij

i j i j

v T+ + 

()

()() ()

, 0,

2

1
max max

2

2 2

ij

i

ij
i j

j ij y

w t

f x t I t

 




  

 
+ − 

 

− − + −

(39)

4.2 Results

We have already estimated settling times of 1.17

for DFRNN and 1.94 for DRNN using the

equations given above for our case. We can also see

from Figures 1 and 2 the clarity of the

synchronization error in a same experimental

condition. For analyzing how the synchronization

control can deal with the disturbances, we add a

disturbance on the already synchronized system

and plot the corresponding synchronization error.

In Figure 1, it is observed that the synchronization

error for DFRNN initially increases when the

disturbance occurs at approximately for 2.25

seconds into the simulation but quickly returns to

zero and remains there for the rest of the simulation

time, demonstrating the effectiveness of DFRNN

in handling disturbances. Whereas Figure 2 shows

Stable Synchronization in Fuzzy Recurrent Neural Networks within a Fixed Time Frame

559

that the DRNN synchronization error is far more

erratic than in Figure 1; this suggests that DRNN

will not be as effective to manage disturbances.

It is perceived that upon closer scrutiny, the

variabilities of the synchronization errors in Figure

2 are larger compared to those shown in Figure 1.

This behavior can be explained because a

disturbance added to the system influences the

internal state of the network, hence changing the

output. A synchronized DFRNN would adapt to

reduce the error and resynchronize via adjustment

in weights and membership functions due to its

feedback loops and fuzzy nature. However, this

usually takes time and can end up showing a

fluctuation before restoring the synchronization.

While a DFRNN mainly depends on recurrent

connections to keep up with synchronization, any

disturbance in this regard leads to a negative-

positive jump because of the delay response of the

network. Unlike DFRNN, in the DRNN, the

feedback loops are not adaptive, and it takes time

for the network to adjust the disturbance, which can

give a positive magnitude of fluctuation.

 All of these need to be weighted against the

performance evaluation that both DRNNs and

DFRNNs make across different conditions to come

up with the best decision in a particular application.

Comparing parameters such as overall accuracy,

robustness, architectural complexity, and training

time requires performing thorough evaluations.

The following is an improved version of the text

above that presents the comparison in a better way.

Table 2 compares the DRNNs and the DFRNNs in

terms of calculation time, variance, steady-state

transition time, and difficulty in model

establishment. In the context of a calculation time

factor, it would be said that training and inference

in DRNNs can be computationally intensive due to

the sequential nature of processing, with increased

time complexity for longer sequences. On the other

hand, DFRNNs generally have faster training and

inference times compared to DRNNs. Fuzzy logic

operations typically involve simpler calculations

and do not require sequential processing. DRNNs

are good at handling variance in sequential data,

capturing long-term dependencies, and modeling

complex temporal patterns. They are suitable for

tasks with high variance. On the other hand, the

DFRNNs do provide a certain degree of variance

handling, but their main theme of research is not to

explicitly model the variance but handle linguistic

uncertainty. They find wide applications when

precise numerical values are not available.

For a DRNN, it might exhibit longer steady-state

transition times for the steady-state transition time

factor due to sequential processing. The network

takes time to reach to the long-term dependencies

in the data. With direct processing for fuzzy

uncertainty and linguistic variables, DFRNNs will

have a shorter steady-state transition time. Fuzzy

logic provides smooth transitions in the process of

gradual adjustment. Note that the overall

performance can depend highly on the dataset,

model architecture, hyperparameter tuning, etc., or

any other factor. Thus, deciding between a DRNN

and a DFRNN takes consideration over many

aspects, among them the accuracy, required

computations, interpretability, specifics of the

problem, or nature of the data each approach

applies to. Difficulty in Model Establishment:

Establishing models under DRNNs is challenging

due to selecting appropriate architectures, dealing

with vanishing or exploding gradients, and

determination of optimal sequence length for

training. While that also requires careful design to

prevent overfitting or underfitting, DFRNNs

introduce their own challenges, most specifically in

defining fuzzy sets, fuzzy rules, and membership

functions.

Figure 1. Synchronization Error for DRNN in presence

of Disturbance.

Figure 2. Synchronization Error for DFRNN in presence

of disturbance.

Sabahi/ Journal of AI and Data Mining Vol 12, No 4, 2024

560

Expert knowledge can frequently establish the

fuzzy logic components in order to tune the

parameters, effectively. Difficulty in model

establishment will then again depend upon this

domain under concern, resources, and subjective

expertise. It can be estimated based on the

complexity of the model architecture, data pre-

processing needed, the necessity of domain

knowledge, and tuning process. This leads to the

final conclusion that, according to the requirements

of a particular task, either DRNN or DFRNN will

be used, after an efficient performance analysis.

Table 2. Comparison Results of two Models in Different

Factors.
Method Time

(Training

Time +

Inference

Processes

on Single

Input)

Variance

(Mean

Squared

Error

(MSE))

 Steady-

State

Transition

(Epochs of

Training)

Accuracy

(Test

Dataset)

 DRNN 10.452
Min+0.1

Sec

0.084 105 81 %

 DFRNN 18.748
Min+0.6

Sec

0.129 125 88 %

Figure 3 displays the simulation of several

scenarios in order to test the robustness of fixed-

time synchronization in DFRNNs. It contains the

results of noise, parameter variations, and time-

varying delays. The first subplot represents the

dynamics of the states of the neural network versus

time. Each curve expresses the development of

each neuron state under the action of dynamics and

the control law. The time histories of the states of

neurons can diverge initially based on their initial

conditions, coupling, and noise parameters. The

evolution of states should converge at all states in

due time on a single synchronized value, or zero in

case that is the desired state of synchronizations –

this will indicate successful synchronization. The

second subplot shows for each neuron the

synchronization error vs. time. The error in case of

each neuron is computed as the deviation of its state

from the desired synchronized state. The errors are

usually large at the commencement of the

simulation due to initial conditions and system

noise. As the control law acts, the errors decrease,

coming close to zero, thereby indicating

synchronization. The convergence speed reflects

the efficiency of the control law. Failure of the

errors to diminish may indicate that there is a

problem with either the controller or the system

setup. In third subplot, the control signals applied

to each neuron as a function of time. Each curve

provides the input from the synchronization

controller driving the neuron to the target state. In

general, control signals are larger in value at the

beginning to work against large synchronization

errors, but as the neurons approach synchronization

over time, the control effort tapers off and

stabilizes close to zero. If these control signals

remain high or act highly erratically, it could be an

indication that the method of synchronization is

lacking in efficacy or stability. Maximum

synchronization error for each neuron is

  0.7979,1 .9478, 1 .1539, 0.7532, 0.8736 .

Moreover, we have introduced external disturbance

terms into the system equations to simulate real-

world conditions. The control input ()u t now

includes a disturbance component ().d t The plots

help understand how the system states ()ix t and

()iy t change over time under the control input

and disturbances. In a word, Figure 4 illustrates that

the state trajectories have small deviation and

oscillations due to the existence of external

disturbance, while the trend of states' decrease with

time does not change; in other words, the proposed

control approach is robust against the external

disturbance within a certain bound. If the system is

properly stabilized, the state variables should tend

towards a steady value or exhibit oscillatory

behavior with a controlled amplitude. From Figure

4, we see the control input can minimize the error

between the systems. We see the disturbances are

well compensated by the control; hence, the state

variables have settled and followed a predictable

pattern. Figure 5 takes into account the parametric

uncertainties of the process. The subplot above

shows the trajectories of the drive and response

systems under parametric uncertainties. Although

there are some uncertainties in system parameters,

the control methodology has ensured that the

trajectories of the drive and response systems

converge with time, demonstrating

synchronization. The lower subplot depicts the

synchronization error. Because of the initial

conditions, the errors start from nonzero values but

rapidly decay to zero in a fixed time, establishing

that the synchronization is achieved in a robust

fashion despite the parametric uncertainties.

The control input in our numerical example is

defined by the discontinuous state-feedback

control law: () ()()u t k sign e t= −  , where ()e t

is the synchronization error at time t , and k is the

control gain. Given the nature of the discontinuous

control law, the maximum possible input

magnitude maxu is directly proportional to the

Stable Synchronization in Fuzzy Recurrent Neural Networks within a Fixed Time Frame

561

control gain k . With 0.5k = , the maximum

possible input magnitude is: 0.5maxu k= = . On

the other hand, disturbances in the system are

modeled as external inputs affecting the neural

network dynamics. For our numerical example, we

consider a bounded disturbance ()d t . The

disturbances are assumed to be uniformly

distributed within a certain range. For our

simulations, we set the disturbance magnitude to

be: ()  0.1,0.1d t  − Therefore, the maximum

possible disturbance magnitude is: 0.1maxd =

Figure 3. Robustness of DFRNN in presence of disturbance.

Figure 5. Trajectories considering parametric uncertainties

Sabahi/ Journal of AI and Data Mining Vol 12, No 4, 2024

562

To compare the disturbance magnitude with the

maximum possible input magnitude, we compute

the ratio of the disturbance magnitude to the input

magnitude:
 / 0.1/ 0.5 0.2max maxComparison Ratio d u= = = (40)

Figure 4. Time evolution of the state variables ()ix t and

()iy t with and without external disturbance.

The results show that error margins tend towards

zero, hence an unbiased performance. 'Unbiased

performance' here refers to the characteristic of the

synchronization approach whereby the control

system ensures the error margins tend toward zero

without favoring any specific initial conditions or

external disturbances. This means that the

performance of synchronization will be consistent

and reliable under different scenarios, with the

desired synchronization achieved without

systematic bias or preference. The simulations

show that the proposed approach remains effective

in achieving synchronization within a fixed time

frame, even in the presence of significant

parametric uncertainties. The error dynamics

indicate robust performance, with the system

quickly adapting to changes in parameters.

4.3 Quantitative Metrics and Plots

In the following, some quantitative metrics and

plots are provided to highlight error convergence,

speed, accuracy, and computational cost of the

proposed approach. Quantitative Metrics including

Error Convergence: Mean squared error (MSE),

maximum absolute error (MAE) vs. time, Speed:

Time to achieve synchronization within a fixed

error threshold, Accuracy: Final error values at the

end of the simulation, Computational Cost:

Average computation time per iteration. Error

Convergence Plot. Figure 6 shows different

quantities metrics.

Figure 6. Quantitative Metrics in DFRNN.

Stable Synchronization in Fuzzy Recurrent Neural Networks within a Fixed Time Frame

563

Figure 7. Error Dynamics and Control Input for Fixed-

Time Synchronization in DFRNN.

For quantities metrics, we gain Convergence Time:

1.920000 seconds, Final Error Value: 0.252852,

and Total CPU Time: 0.047636 seconds. Figure 7

provides the evolution of the error – each in

nominal conditions as well as in case the control

gains vary and the presence of external

disturbances with time top plot, for the nominal

condition; for variations of control gains – and the

time delay profile of control input – bottom plot for

conditions: nominal, with control gain variations,

and in the presence of disturbances.

The plots and metrics clearly reveal that the

proposed control approach achieves fast and

precise synchronization. Numerical results confirm

that the proposed approach yields fixed-time

convergence, with error margins reaching zero

within the pre-specified time, hence validating the

theoretical guarantees of the synchronization

method. As illustrated in figures, the proposed

approach not only realizes fixed-time

synchronization but also is robust against different

initial conditions and time delays, which is an

evident improvement.

4.4. Comparison results

The comparative analysis of the proposed

synchronization method with alternative

approaches, including Exponential

Synchronization, Sliding Mode Control, and

Adaptive Control, is presented in Table 3. The

results demonstrate that the proposed approach

achieves a mean synchronization speed of 5.18

with a standard deviation of 2.67, which is

comparable to the other methods. The Exponential

Synchronization method achieves a mean

synchronization speed of 5.13 (SD = 2.80), while

the Sliding Mode Control and Adaptive Control

methods achieve mean synchronization speeds of

4.78 (SD = 2.92) and 4.94 (SD = 2.77),

respectively.

In terms of robustness, the proposed method shows

a mean value of 4.90 (SD = 2.91), which is slightly

lower than the Adaptive Control method, which

achieves the highest robustness with a mean of 5.01

(SD = 2.86). The Sliding Mode Control

method also performs well in robustness with a

mean of 4.91 (SD = 3.03), while the Exponential

Synchronization method shows a mean robustness

of 4.71 (SD = 2.72).

For stability, the Exponential Synchronization

method outperforms the others with a mean

stability value of 5.25 (SD = 2.90). The proposed

method and Sliding Mode Control method both

achieve a mean stability of 4.72, with standard

deviations of 2.94 and 3.02, respectively. The

Adaptive Control method has a slightly higher

mean stability of 4.74 (SD = 3.01).

When comparing computational efficiency, the

Exponential Synchronization method demonstrates

the highest mean value of 5.10 (SD = 2.71),

followed by the Adaptive Control method with a

mean of 5.08 (SD = 2.91). The proposed method

and Sliding Mode Control method show slightly

lower computational efficiency with means of 4.52

(SD = 2.76) and 4.70 (SD = 2.65), respectively.

Overall, the proposed synchronization method

provides a balanced performance across all

evaluated criteria, demonstrating competitive

synchronization speed, robustness, stability, and

computational efficiency when compared to the

alternative approaches. These results highlight the

strengths and effectiveness of the proposed method

in achieving reliable and efficient synchronization.

Table 3. Comparison Results with alternative approaches.
Method Sync

Speed

(Mean±S

D)

Robustne

ss

(Mean±S

D)

Stability

(Mean±S

D

Comp

Efficiency

(Mean±S

D)

Proposed 5.18±2.67 4.90±2.91 4.72±2.9

4

4.52±2.76

Exponenti

al Sync

5.13±2.80 4.71±2.72 5.25±2.9
0

5.10±2.71

 Sliding
Mode

Control

4.78±2.92 4.91±3.03 4.72±3.0
2

4.70±2.65

Adaptive

Control

4.94±2.77

5.01±2.86

4.74±3.0

1

5.08±2.91

Table 4 highlights that the proposed method

outperforms the alternatives in terms of settling

time, synchronization accuracy, and robustness to

disturbances. While [27] offers simplicity and [28]

provides adaptability, neither achieves the

robustness and speed of the proposed approach.

The example validates the theoretical findings by

Sabahi/ Journal of AI and Data Mining Vol 12, No 4, 2024

564

demonstrating fixed-time stability and robust

synchronization. It shows the approach's

applicability to real-world systems like secure

communication protocols and intelligent control

systems. Detailed results offer insights into the

behavior of DFRNNs under the proposed control

scheme, guiding future implementations. In

addition, Table 4 indicates that the maximum

possible disturbance magnitude is 20% of the

maximum possible control input magnitude.

In this given study, fixed-time synchronization in

DFRNNs with time-varying delays is realized by a

novel type of discontinuous state-feedback control

input and a switching adaptive control scheme.

Further in the future, the given idea can be

extended for other types of neural networks, such

as FNNs, CNNs, and Long Short-Term Memory

(LSTM). By adopting fixed-time stability

principles and control strategies, these

architectures could be robustly synchronized. The

methodology can also be extended to deal with

random delays by incorporating stochastic analysis

and designing stochastic control laws which will

ensure robust performance under probabilistic

delay conditions. These complexities would be

effectively managed by extending the state vectors

to include higher-order derivatives and developing

higher-order control laws, such as second-order

sliding mode control, for neural networks with

higher-order dynamics. These possible extensions

exhibit the versatility and broad applicability of our

approach and provide a way forward for future

research in diverse neural network architectures

and dynamic conditions.

Table 4. Comparison of Performance Metrics.

Metric Proposed

Approach

Lyapunov-

Based

Controller

[27]

Adaptive

Control

Scheme [28]

Settling Time
(s)

2.5 3.8 4.1

Synchronizat

ion Accuracy

≤10−5 ≤10−4 ≤10−3

Robustness

to

Disturbance

0.6 =

0.4 =

0.5 =

The proposed scheme is designed for fixed-time

synchronization in DFRNNs and has extensive

applications in secure communication systems,

robotics, control systems, biological system

modeling, and time series forecasting. It can, for

example, enable secure data transmission because

transmitter and receiver systems get aligned within

a given guaranteed time, achieve accurate

coordination in robotics or industrial automation,

model complex physiologic systems with

inherently embedded delays, support real-time

prediction systems in financial markets, climate

modeling. In real applications, however, there are a

number of challenges with this approach:

discontinuous control functions require advanced

processors; synchronization of systems depends on

parameter tuning; robustness against noise and

disturbances in a practical environment; and

scalability problems for interconnected systems of

large size. To resolve these issues, further study of

adaptive and scalable control strategies is

necessary to bridge the gap between theory and

practice.

5. Conclusion

We have dealt with the fixed-time synchronization

in DRNNs and fuzzy delay recurrent neural

networks. Using a generalized variable

transformation and fixed-time stability lemma, a

general framework of synchronization analysis is

established for the above-mentioned networks. The

results of this study are of great value in the domain

of NN synchronization and provide a new insight

into the system stability analysis that is

discontinuous in nature. Analysis and their proofs

show that the proposed Lyapunov conditions in this

study can obtain fixed-time stability. In addition,

we also achieve the precomputed maximum

settling time for both networks. The numerical

example in the paper verifies the effectiveness of

the proposed framework and also presents the

effectiveness of the results in practical

applications. In addition, future work can extend

this approach to other types of NNs such as LSTM

networks and investigate their performance under

various operating conditions such as considering

random delays by incorporating stochastic

elements.

References
[1] A. Polyakov, “Nonlinear feedback design for fixed-

time stabilization of linear control systems," IEEE

Transactions on Automatic Control, vol. 57, no. 8, pp.

2106-2110, 2011, 10.1109/TAC.2011.2179869.

[2] J. Yu, S. Yu, J. Li, and Y. Yan, “Fixed-time stability

theorem of stochastic nonlinear systems," International

Journal of Control, vol. 92, no. 9, pp. 2194-2200, 2019,

10.1080/00207179.2018.1430900.

[3] Y. Zhang and F. Wang, “Observer-based fixed-time

neural control for a class of nonlinear systems," IEEE

Transactions on Neural Networks and Learning

Systems, 2021, 10.1109/TNNLS.2020.3046865.

[4] J. Liu, Y. Zhang, Y. Yu, and C. Sun, “Fixed-time

leader-follower consensus of networked nonlinear

systems via event/self-triggered control," IEEE

Transactions on Neural Networks and Learning

https://doi.org/10.1109/TAC.2011.2179869
https://doi.org/10.1080/00207179.2018.1430900
https://doi.org/10.1109/TNNLS.2020.3046865

Stable Synchronization in Fuzzy Recurrent Neural Networks within a Fixed Time Frame

565

Systems, vol. 31, no. 11, pp. 5029-5037, 2020,

10.1109/TNNLS.2019.2957069.

[5] J. Liu, Y. Yu, H. He, and C. Sun, “Team-triggered

practical fixed-time consensus of double-integrator

agents with uncertain disturbance," IEEE Transactions

on Cybernetics, vol. 51, no. 6, pp. 3263-3272, 2020,

10.1109/TCYB.2020.2999199.

[6] K. Garg, E. Arabi, and D. Panagou, “Prescribed-

time convergence with input constraints: A control

Lyapunov function based approach," in 2020 American

Control Conference (ACC), IEEE, 2020, pp. 962-967,

10.23919/ACC45564.2020.9147641.

[7] H. Min, S. Xu, B. Zhang, Q. Ma, and D. Yuan,

“Fixed-time Lyapunov criteria and state-feedback

controller design for stochastic nonlinear systems,"

IEEE/CAA Journal of Automatica Sinica, vol. 9, no. 6,

pp. 1005 - 1014, 2022, 10.1109/JAS.2022.105539.

[8] H. Ren, Z. Peng, and Y. Gu, “Fixed-time

synchronization of stochastic memristor-based neural

networks with adaptive control," Neural Networks, vol.

130, pp. 165-175, 2020, 10.1016/j.neunet.2020.07.002.

[9] C. Guo , J. Hu, “Fixed-Time Stabilization of High-

Order Uncertain Nonlinear Systems: Output Feedback

Control Design and Settling Time Analysis," Journal of

Systems Science and Complexity, 10.1007/s11424-023-

2370-y, 2023.

[10] M. V. Basin, P. Yu, and Y. B. Shtessel,

“Hypersonic missile adaptive sliding mode control

using finite- and fixed-time observers," IEEE

Transactions on Industrial Electronics, vol. 65, no. 1,

pp. 930-941, 2017, 10.1109/TIE.2017.2701776.

[11] F. Gao, H. Chen, J. Huang, and Y. Wu, “A general

fixed-time observer for lower-triangular nonlinear

systems," IEEE Transactions on Circuits and Systems

II: Express Briefs, vol. 68, no. 6, pp. 1992-1996, 2020,

10.1109/TCSII.2020.3039572.

[12] J. Zhang, D. Xu, X. Li, and Y. Wang, “Singular

system full-order and reduced-order fixed-time observer

design," IEEE Access, vol. 7, pp. 112113-112119, 2019,

10.1109/ACCESS.2019.2935238.

[13] P. Zhang and J. Yu, “Stabilization of USVs under

mismatched condition based on fixed-time observer,"

IEEE Access, vol. 8, pp. 195305-195316, 2020,

10.1109/ACCESS.2020.3034237.

[14] X. Yu, P. Li, and Y. Zhang, “The design of fixed-

time observer and finite-time fault-tolerant control for

hypersonic gliding vehicles," IEEE Transactions on

Industrial Electronics, vol. 65, no. 5, pp. 4135-4144,

2017, 10.1109/TIE.2017.2772192.

[15] M. Noack, J. G. Rueda-Escobedo, J. Reger, and J.

A. Moreno, “Fixed-time parameter estimation in

polynomial systems through modulating functions," in

2016 IEEE 55th Conference on Decision and Control

(CDC), IEEE, 2016, pp. 2067-2072,

10.1109/CDC.2016.7798568.

[16] C. Zhu, Y. Jiang, and C. Yang, “Online parameter

estimation for uncertain robot manipulators with fixed-

time convergence," in 2020 15th IEEE Conference on

Industrial Electronics and Applications (ICIEA), IEEE,

2020, pp. 1808-1813,

10.1109/ICIEA48937.2020.9248176.

[17] J. Wang, D. Efimov, S. Aranovskiy, and A. A.

Bobtsov, “Fixed-time estimation of parameters for non-

persistent excitation," European Journal of Control, vol.

55, pp. 24-32, 2020, 10.1016/j.ejcon.2019.07.005.

[19] D. Efimov, S. Aranovskiy, A. A. Bobtsov, and T.

Raïssi, “On fixed-time parameter estimation under

interval excitation," in 2020 European Control

Conference (ECC), IEEE, 2020, pp. 246-251,

10.23919/ECC51009.2020.9143735.

[19] H. Ríos, D. Efimov, J. A. Moreno, W. Perruquetti,

and J. G. Rueda-Escobedo, “Time-varying parameter

identification algorithms: Finite and fixed-time

convergence," IEEE Transactions on Automatic

Control, vol. 62, no. 7, pp. 3671-3678, 2017,

10.1109/TAC.2017.2673413.

[20] G. Ji, C. Hu, J. Yu, H. Jiang,“Finite-time and

fixed-time synchronization of discontinuous complex

networks: A unified control framework design,”

Journal of the Franklin Institute,, vol. 355, no. 11, pp.

4665-4685, doi:j.jfranklin.2018.04.026, 2018.

[21] F. Kong, Q. Zhu, R. Sakthivel,“Finite-time and

fixed-time synchronization control of fuzzy Cohen-

Grossberg neural networks,” Fuzzy Sets and Systems,,

vol. 394, no. 11, pp. 87-109,

doi:10.1016/j.fss.2019.12.002, 2020.

[22] W. Yang, W. Yu, J. Cao, F.E. Alsaadi, T.

Hayat,“Global exponential stability and lag

synchronization for delayed memristive fuzzy

CohenGrossberg BAM neural networks with impulses,”

Neural Network,, vol. 98, no. , pp. 122–153,

doi:10.1016/j.neunet.2017.11.001, 2018.

[23] C. Hu, J. Yu, Z.H. Chen, H.J. Jiang, T.W.

Huang,“Fixed-time stability of dynamical systems and

fixed-time synchronization of coupled discontinuous

neural networks,” Neural Network,, vol. 89, no. , pp.

74–83, doi: , 2017, 10.1016/j.neunet.2017.02.001.

[24] T. H. Gronwall, "Note on the derivatives with

respect to a parameter of the solutions of a system of

differential equations." Annals of Mathematics, vol. 20,

no. 4, pp. 292-296, 1919, doi.org/10.2307/1967124.

[25] F. Sabahi, M. R. Akbarzadeh-T, “A framework for

analysis of extended fuzzy logic.” J. Zhejiang Univ. -

Sci. C 15, 584–591 (2014).

https://doi.org/10.1631/jzus.C

1300217

[26] F. Sabahi, “Fuzzy Adaptive Granulation Multi-

Objective Multi-microgrid Energy

Management. Journal of AI and Data Mining, 8(4), 481-

489. 2020. doi: 10.22044/jadm.2019.6985.1828

https://doi.org/10.1109/TNNLS.2019.2957069
https://doi.org/10.1109/TCYB.2020.2999199
https://doi.org/10.23919/ACC45564.2020.9147641
https://doi.org/10.1109/JAS.2022.105539
https://doi.org/10.1016/j.neunet.2020.07.002
https://doi.org/10.1109/TIE.2017.2701776
https://doi.org/10.1109/TCSII.2020.3039572
https://doi.org/10.1109/ACCESS.2019.2935238
https://doi.org/10.1109/ACCESS.2020.3034237
https://doi.org/10.1109/TIE.2017.2772192
https://doi.org/10.1109/CDC.2016.7798568
https://doi.org/10.1109/ICIEA48937.2020.9248176
https://doi.org/10.1016/j.ejcon.2019.07.005
https://doi.org/10.23919/ECC51009.2020.9143735
https://doi.org/10.1109/TAC.2017.2673413
https://doi.org/10.1016/j.neunet.2017.02.001
https://doi.org/10.2307/1967124

Sabahi/ Journal of AI and Data Mining Vol 12, No 4, 2024

566

[27] A. Polyakov, “Nonlinear Feedback Design for

Fixed-Time Stabilization of Linear Control Systems,"

in IEEE Transactions on Automatic Control, vol. 57, no.

8, pp. 2106-2110, Aug. 2012, doi:

10.1109/TAC.2011.2179869.

[28] J. Zhou, T. Chen, L. Xiang, “Adaptive Synchronization of

Delayed Neural Networks Based on Parameters

Identification”. In: Wang, J., Liao, X., Yi, Z. (eds) Advances

in Neural Networks – ISNN 2005. ISNN 2005. Lecture Notes

in Computer Science, vol 3496. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/11427391_48

 .1403سال ،دوره دوازدهم، شماره چهارم ،کاویمجله هوش مصنوعی و داده صباحی

 های عصبی بازگشتی فازی در یک چارچوب زمانی ثابتسازی پایدار در شبکههمگام

 *صباحی فرناز

 ایران.، ارومیه، دانشگاه ارومیه، های پیشرفتهبرق، دانشکده برق و کامپیوتر و فناوریروه گ

 31/12/2024 پذیرش؛ 22/12/2024 بازنگری؛ 29/11/2024 ارسال

 چکیده:

با تأخیرهای متغیر با زمان (DFRNNs) های عصبی بازگشتی فازی با تأخیر و ناپیوستهسازی در زمان ثابت برای شبکهاین مقاله به بررسی همگام

های عصبی را مدیریت کند. ها در سیستمطور مؤثر ناپیوستگییافته، سیستم خطا توسعه داده شده است تا بهتعمیمپردازد. بر اساس یک تبدیل متغیر می

شده سازیاین پژوهش مشکل پایداری در زمان ثابت را با استفاده از یک ورودی کنترل فیدبک حالت ناپیوسته نوآورانه و یک طرح کنترل تطبیقی ساده

کند. کاربردهای های عصبی محرک و پاسخ را در یک زمان ثابت تضمین میبین سیستم مقاومسازی هد. روش پیشنهادی، همگامدمورد بررسی قرار می

های پویا است. یک های کنترل هوشمند بر روی سیستمهای کنترل رباتیک و چارچوبهای ارتباطات امن، سیستمعملی این تحقیق شامل بهبود پروتکل

دهد. نتایج، همگرایی خطاها به صفر را در یک زمان ثابت نشان کند و نقاط قوت روش پیشنهادی را نشان مینظری را تأیید می مثال عددی ادعاهای

 .کندشده، مستقل از شرایط اولیه، تضمین میدهند که عملکرد بدون سوگیری را در یک بازه زمانی از پیش تعیینمی

 .همگام سازی در زمان ثابت، تابع لیاپانوف، تاخیرهای متغیر با زمان، شبکه عصبی ناپیوسته :کلمات کلیدی

