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 This paper presents an accurate and efficient method for determining 

the coordinates of welding seams, addressing a significant challenge 

in the deployment of welding robots for complex tasks. Despite 

welding robots’ precision in following predetermined paths, they 

struggle with seam identification due to noisy industrial 

environments, stringent accuracy requirements, and computational 

complexity. Unlike existing approaches, which either rely on random 

sampling or are limited to simple geometries, our method combines 

splicing techniques with welding map alignment to handle complex 

shapes with multiple seams. This research employs a weighed method 

to integrate point clouds captured by RGB-D cameras, producing a 

low-noise point cloud. By leveraging the welding map of parts drawn, 

the method identifies probable regions for weld seams within the 

point cloud, substantially reducing the search space. This enables the 

system to find the weld seam in a timely manner. Knowing the 

approximate shape of the weld based on the available weld map, an 

innovative technique is then used to accurately locate the weld seam 

within these regions. Experimental results on fence-shaped structures 

in a simulated environment show a mean average error of 1.30 mm, 

achieving a 30% improvement in precision and a 77% reduction in 

computation time compared to the state-of-the-art methods. The 

approach's ability to accurately identify weld seams in complex 

shapes, coupled with its computational efficiency, suggests strong 

potential for real-world application. By leveraging welding maps and 

robust point cloud processing techniques, the method effectively 

addresses noise and variability, key challenges in industrial 

environments. 
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1. Introduction 

Welding is a manufacturing technique employed 

across various industries to connect metal 

components and parts. However, the industry faces 

significant challenges when relying on human 

welders. High injury rates due to exposure to 

extreme heat, fumes, and heavy machinery remain 

a persistent concern, with welding-related injuries 

accounting for a considerable proportion of 

workplace accidents in manufacturing 

environments. Turnover rates are also high, as the 

physically demanding nature of welding 

contributes to job dissatisfaction and workforce 

shortages. Furthermore, quality control issues arise 

from human error, leading to inconsistencies in 

weld quality and increased production costs. These 

challenges underscore the growing need for robotic 

welding technology, which offers improved safety, 

precision, and efficiency, while mitigating the 
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reliance on human labor in harsh working 

conditions. Robot welding technology is 

extensively used in various domains, including 

ship and bridge construction, automobile 

manufacturing, aircraft component production, 

railway carriage fabrication, and numerous other 

fields. Welding robots are the preferred choice for 

most welding tasks due to their versatility, 

efficiency, and precision in operation [1-4]. 

Welding robots have been utilized in various 

research projects, generally falling into two 

categories: those that do not use a camera and those 

that do. Wang and their collaborators [5] 

introduced a digital twin system for welding path 

planning in ship sub-assembly welding. Lei and 

their collaborators [6] utilized the arc voltage 

tracking method, incorporating a self-developed 

arc voltage module for orbital robotic welding. 

Rokossa [7] scanned components using a laser 

scanner, modeled the geometric contours in a 

simulator, and generated the synchronous 

movements of two UR5e robots. These studies are 

examples of the first category and assume that the 

weld seam trajectory is predetermined. 

The second category of research studies employs 

depth cameras in welding tasks to find weld seam 

trajectories. Takubo and their collaborators [8] 

used 3D point clouds obtained from a depth camera 

to weld two flat plates at right angles to each other. 

They used the RANSAC algorithm to segment 

planes, extracting the weld line as the intersection 

of the two planes. Similarly, Yang and their 

collaborators [9] segmented planes and identified 

feature points on one plane, using a spline function 

for path fitting. In these studies, the RANSAC 

algorithm works randomly and struggles to find 

planes in complex shapes. These two latter 

methods could only determine the intersection of 

two angled intersecting planes, lacking solutions 

for more complex geometries involving more than 

two planes or parallel planes. 

Kusumoto and their collaborators [10] captured 

each plane vertically to minimize the noise in point 

clouds. However, this approach is impractical for 

complex shapes with more than two planes since it 

is time-consuming to locate and capture each plane 

individually. Wang and their collaborators [11] 

proposed a multi-layer positioning strategy based 

on point clouds, which includes both a coarse 

positioning process and a fine positioning process. 

In the coarse positioning stage, the maximum 

likelihood method is employed, followed by fine 

positioning to improve accuracy.  

Gao and their collaborators [12] focused on D-type 

welds by identifying edge points and fitting a weld 

curve to these points, though their method only 

works for superficial weld seams. Yang and their 

collaborators [13] extracted similar weld seams 

that are the intersection of two pipes. They try to 

extract feature points from a preprocessed point 

cloud. Then key points are generated from the 

extracted feature points using a new algorithm 

called the bubble method. Finally, they find a 

course weld seam using key points and refine this 

weld seam. 

While several methods have been developed for 

weld seam trajectory identification, they are often 

constrained by their reliance on idealized 

geometries or simplified welding environments. 

For instance, methods using RANSAC-based 

segmentation [8,9] are effective for planar 

intersections but struggle with complex or irregular 

weld seam geometries due to random sampling 

inefficiencies. Similarly, approaches requiring 

multiple scans or vertical captures [10] are 

impractical in industrial settings, where time and 

resource constraints are critical. These limitations 

hinder their applicability to real-world welding 

tasks involving intricate shapes and multiple 

seams. This paper addresses these challenges by 

leveraging welding maps to reduce search spaces 

and employing innovative splicing techniques for 

more accurate seam detection. 

The designed approach is specifically tailored to 

identify weld seam trajectories in complex welding 

tasks, such as those involving parts with multiple 

seams oriented in various directions. While the 

method demonstrates significant improvements in 

precision and efficiency under these scenarios, its 

effectiveness may vary in environments with 

entirely different characteristics or constraints and 

may not be universally applicable without 

adjustments. 

In summary, this paper makes the following 

contributions: 

1. Combination and prioritization of information 

from cameras placed at different angles to 

reduce errors. 

2. Matching the welding map with the point cloud 

to identify the initial seam search area. 

3. Introduction of a new method for determining 

the position of the welding seam trajectory in a 

specified search area. The combination of steps 

1 to 3 leads to an effective and efficient 

approach. 

4. Development of the approach in a simulation 

environment. 

The remainder of this paper is organized as 

follows: Section 2 describes the primary concepts. 

Section 3 provides a comprehensive explanation of 

our method for weld seam extraction. Section 4 

presents the experimental results to demonstrate 
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the reliability of the proposed method. Finally, 

section 5 summarizes the study and discusses 

future work. 

 

2. Primary Concepts 

This section outlines the definitions of key 

concepts used in this research. Additionally, it 

presents descriptions of the algorithms and 

methods employed throughout the paper.  

The main input of the system which come from 

RGB-D camera are point cloud. Point cloud is a set 

of data points in a three-dimensional space, each 

representing a specific location, often obtained 

using RGB-D camera, 3D scanners, or 

photogrammetry. These points collectively form a 

"cloud" that approximates the shape and structure 

of an object or environment. Each point is defined 

by coordinates (X, Y, Z) relative to an origin. Point 

clouds are widely used in applications such as 3D 

modeling, computer graphics, geographic 

information systems (GIS), and robotics. They are 

crucial for creating accurate digital models of 

physical objects and environments. Visualization 

of point clouds allows users to view and interact 

with the data in a 3D space, aiding in understanding 

the scanned object's structure and details [14]. 

Here, we use some depth camera to capture depth 

information as well as along with standard color 

images. Unlike traditional cameras that capture 

only two-dimensional color information, depth 

cameras provide three-dimensional data by 

measuring the distance of objects from the camera. 

This additional dimension allows for the creation 

of 3D models and spatial understanding of the 

scene. The output of a depth camera is a depth 

image, which contains information about the 

distance of each pixel in the image from the 

camera, enabling applications such as 3D 

modeling, robotics, and spatial analysis. Depth 

images are often showed as grayscale, where 

lighter shades represent closer objects and darker 

shades represent farther objects. 

The Iterative Closest Point (ICP) algorithm [15] is 

the most widely used point cloud registration 

algorithm at present which aligns two point clouds 

to minimize error. If one point cloud is designated 

as the source and the other as the target, the 

algorithm computes an optimal transformation 

matrix that minimizes the error between the 

transformed source and target point clouds. 

The point-to-point method iteratively finds the 

nearest point in the target cloud for each point in 

the source cloud. It then calculates a transformation 

matrix to map the source points to the 

corresponding target points [16]. The source point 

cloud is transformed using this matrix, and the 

error is calculated using (1). This process is 

repeated iteratively: the source point cloud is 

transformed, and the error is recalculated until the 

alignment is optimized. 

 

(1) 

In the above equation, R and T represent the 

rotation and translation matrices, n is the number of 

points in point cloud, and 𝐴𝑖 and 𝐵𝑖 are the points 

of the target and source point clouds, respectively. 

To reduce computational complexity, the Voxel 

Grid Filter [17] is employed to reduce the number 

of points in a point cloud. It subdivides the original 

point cloud into grids with N voxels [18]. Then, the 

center of gravity of each voxel is calculated by 

averaging all the points within that voxel and is 

used to replace all voxel's points [19]. If the 

barycenter point does not exist, the data point 

closest to the barycenter in the voxel is used to 

replace all the points. As a result, the number of 

points in the point cloud is reduced by a factor of 

N. 

 

3. Proposed Approach 

In this section, the proposed approach is explained. 

The following framework is considered. The 

welding parts, which features multiple weld seams, 

is positioned on a work table. To capture 

comprehensive depth information, several fixed 

RGB-D cameras are strategically placed around the 

welding parts, with three cameras utilized in this 

study. The depth images obtained from these 

cameras, along with their corresponding point 

clouds, are used for calculating the coordinates of 

visible weld seams. For weld seams that are not 

visible and are on the underside of the welding 

parts, calculations can be performed by flipping the 

welding parts on the table.  

As a new idea, our approach incorporates a 3D 

welding map, as designing such a map is a crucial 

primary step in all industrial welding projects. 

Since this study was initiated to address the needs 

of the fence production industry, our proposed 

method has been developed and tested specifically 

on fence shapes. However, the method can be used 

for other forms of welding. 

Figure 1 shows the flowchart of the proposed weld 

seam extraction method, which outlines the general 

steps of our approach. 
 

3.1. Capture Depth Images 

In this research, we used the PyBullet library in 

Python [20] to simulate the desired environment. 

The environment includes a ground plane, a desk, 

a fence, and a Kuka arm robot. The fence has two 
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horizontal and two vertical parts, featuring 16 weld 

seams. The configuration of the designed 

environment is shown in Figure 2. Additionally, 

there is a 1 mm gap between each welding part to 

allow the cameras to capture each part more 

effectively. 

We use three cameras around the welding parts to 

obtain depth images from different perspectives, 

providing a comprehensive view of the fence. 

Adding more cameras could increase costs for an 

industry. Two cameras are positioned on the left 

and right sides of the fence, each at a 45-degree 

angle from the table and at equal distances from the 

fence.  

The fixed cameras 1 and 2 are located at (1, 0, 2) 

and (-0.7, 0, 2) respectively, in the world 

coordinate system. The third camera is an eye-on-

hand camera mounted on the robot arm, located at 

(0.15, -1, 2.5) in the world coordinate system. The 

positions of the cameras are shown in Figure 3. 

Depth images contain information about the 

relative distances of objects in the picture from the 

camera and are used to determine the coordinates 

of each object. The captured images are shown in 

Figure 4. 

 

 
Figure 1. Flowchart for the proposed method of weld 

seam extraction approach. 

 

3.2. Generate Point Clouds 

Using depth images along with the camera's view 

matrix and projection matrix, we can calculate a 

point in a point cloud corresponding to each pixel 

in the depth image. The final point cloud is in the 

world coordinate system and includes every object 

in the environment. Therefore, we remove all 

undesired points from the final point cloud 

(background points) and retain only the points 

corresponding to the welding parts. To achieve 

this, we set the filter range of the passthrough filter 

based on the coordinates of the target workpiece, 

ensuring that only the points within the required 

coordinates are saved, as shown in (2). 

 

(2) 

where  are the coordinates of each point 

in the point cloud and  are the 

lower and upper bounds along the x, y, and z-axis 

respectively, which filter out the desired points. 

This equation selects the points with coordinates in 

the desired range among all the points in the point 

cloud. 
 

 
Figure 2. Simulated welding environment. 

 

 
Figure 3. The placement of three depth cameras in the 

simulation environment relative to the welding part. 

Figure 4. Generated depth images (A. camera 1, B. 

camera 2, C. eye-on-hand camera). 

3.3. Transform to Robot Coordinates & Splice 

Point Clouds 

The final calculated coordinates of the weld seams 

should be in robot coordinates so that they can be 

directly used by the robot arm. Therefore, we need 

to convert the point clouds from the world 

coordinate system to the robot coordinate system. 

,
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For this purpose, a transformation matrix is 

defined, with its rotation set to 0 degrees and its 

translation part calculated based on the location of 

the arm in the world coordinate system, which is 

(0.15, -1.1, 1.9). Equation (3) shows the calculated 

transformation matrix used for this conversion. 

Figure 5 shows the point clouds calculated from 

depth images in the robot coordinate system. 

 

(3

) 

where is the position of the robot arm 

in the world coordinate system. 

These point clouds show different views of the 

fence. Some points may overlap in each point 

cloud, but generally, they complement each other. 

It is necessary to merge them to create a single, 

complete point cloud. To merge two point clouds, 

we use the ICP algorithm in point-to-point mode 

with a maximum correspondence distance of 0.001 

m and 50 iterations. Setting the maximum 

correspondence distance to lower values will cause 

more points to be removed during down-sampling. 

If the value is set lower than 0.001, important 

points around the welding seams will be lost. The 

three point clouds are merged into one using the 

following process: 

1. Use the ICP algorithm on the point clouds from 

camera 1 and camera 2 to find the optimal 

transformation matrix for the camera 1  point 

cloud. 

2. Merge the transformed point cloud from 

camera 1 with the point cloud from camera 2 

using a specific algorithm with prioritization. 

3. Use the ICP algorithm on the result of step 2 

and the point cloud from the eye-on-hand 

camera. 

4. Merge the transformed point cloud from step 3 

with the point cloud from the eye-on-hand 

camera. 

The point clouds in step 2 are merged using an 

approach designed to minimize noise in the final 

point cloud. Since camera 1 is on the right side of 

the welding parts, it is too far from the shape’s left 

side, resulting in 4-5 mm of noise on the left side 

of the point cloud from camera 1. Similarly, camera 

2 experiences this noise on the right side of its point 

cloud. 

To avoid transferring these noise values to the 

spliced point cloud, we merge the point clouds 

selectively, as shown in Figure 6. This way, the left 

and right sides of the fence are formed only by the 

camera that has the best view of that side. 

Additionally, any errors in the measurements can 

lead to a general bias, but the ICP algorithm can 

handle this bias effectively by matching the point 

clouds. Figure 7 shows the final spliced point cloud 

that will be used in further steps. 

 

3.4. Preprocess Point Cloud 

After splicing the point clouds, some noise will 

appear on the z-axis due to the splicing process. In 

this step, we first remove this noise by noting that 

the Z direction points are distributed within a 

limited range. Thus, passthrough filtering is 

adopted to quickly eliminate outliers in the Z 

direction, as shown in (4). This equation selects the 

points with Z values within the desired range from 

all the points in the spliced point cloud. There is no 

such noise in the X direction because we use the 

prioritized approach for splicing. There might be 

some error in the Y direction after splicing, but we 

don't have enough information about its value to 

remove the noise using limited ranges. However, 

the approach introduced in the following steps 

could help overcome this error. 

 
(4) 

 
 
Figure 5. Point clouds in robot coordinates (A. camera 1, 

B. camera 2, C. eye-on-hand camera). 

 
Figure 5. Selected parts for merging (A. selected part of 

camera 1 point cloud, B. selected part of camera 2 point 

cloud). 
 

Secondly, since there are many points in the final 

point cloud that negatively affect the speed of point 

cloud computing in the later stages, we perform 

down-sampling to reduce the number of points 

while preserving important information around the 

weld seams. Subsampling of the point cloud using 

the Voxel Grid filter is applied for this purpose. A 

Voxel size of 0.01 m has been chosen as 

appropriate for this fence shape. The down-

sampled point cloud is shown in Figure 8. 
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Figure 6. Final spliced point cloud. 

 

 
Figure 7. Downsampled point cloud. 

 

3.5. Identify Weld Regions from Map & Match 

with Point Cloud 

In this step, we aim to use a 3D welding map of the 

welding parts. Designing a 3D welding map is 

essential for almost all industrial welding projects. 

Therefore, a welding map should always be 

available before starting a welding project. This 

map is a DXF file designed in AutoCAD. Figure 9 

shows the map in AutoCAD software and its 

corresponding point cloud. Note that the weld 

seams are shown in red on the welding map. The 

ezdxf library [21] in Python has been used to read 

the DXF file, extracting the start and end point 

coordinates of each weld seam in world 

coordinates. Using these coordinates from the 

welding map, we can estimate the weld line in the 

environment. Therefore, by considering an area 

around the start and end coordinates of each weld 

line on the map, we can confine our search area to 

this region in the real environment. 

Hegedus-Kuti and their collaborators [22] used a 

CAD model for welding defect recognition with 

3D scanners, employing the ICP algorithm to 

match the CAD model with the welding part. 

Similarly, Bjorndal [23] used the ICP algorithm to 

match CAD models with point clouds. In our study, 

the ICP algorithm is also used for matching the 

point cloud with the welding map.  

If there is no difference between the welding parts 

and the welding map, aligning the map with the 

point cloud using the ICP algorithm is sufficient to 

determine the coordinates of the weld seam. In this 

case, the coordinates of the weld seams in the map 

will be identical to their locations in the simulation 

environment. 

Most of the time, in the real world, errors in weld 

part sizes occur due to errors in building the parts 

or errors in their locations in the environment, 

making them different from the welding map. 

According to an industrial expert, the error for the 

width and height of a weld part in real cases could 

be up to 1% of their values, 5% for the length, and 

1% for their locations. In such cases, matching the 

point cloud and welding map is not sufficient to 

find the exact coordinates of weld seams. In the 

next section, we introduce our approach to find 

weld seam coordinates when there are errors in the 

welding parts. 

 
Figure 8. Welding map and its point cloud. 

 

3.6. Locate Weld Seams in Designated Areas 

These are the steps of our proposed method after 

globally matching the map point cloud with the 

preprocessed point cloud. This approach is utilized 

when matching the point cloud and welding map is 

insufficient for finding weld seam coordinates due 

to errors in the welding parts. 

1. Set a larger mask around a specific weld seam: 

The welding map helps us search locally 

around any weld seam. Therefore, we consider 

one of the weld seams. Using a mask with a 

margin as shown in (5), we extract a cube 

around this weld seam. 

 

(5) 

Where Zmax and Zmin represent the minimum 

and maximum coordinates of points in the Z 

direction. 

2. Extract boundary points: From the masked 

point cloud, extract boundary points to remove 

extra points and focus on the points on the weld 

seam. 

3. Set a smaller mask: Similar to step 1, use a 

mask with a margin as shown in (6) around the 

weld seam to further filter out extra points. 

 

(6) 

4. Calculate the start point of the weld line: 

a. Weld lines along the y-axis: 

 

 

max min

arg 3 5
,

z

z

m in cm cm l

l Z Z

=   
 

= − 

max min

arg 1.5 3 z

z

m in cm cm l

l Z Z

=   
 

= − 



Acquiring the Coordinates for the Welding Seam through the Utilization of Point Cloud and Welding Map 

541 

 

i. X: Find the maximum and minimum X 

values in the point cloud from step 3. 

The value closer to the map’s start point 

X value is the desired X. 

ii. Y: The second most frequent Y value in 

the point cloud from step 3. The most 

frequent value usually comes from 

noise. 

iii. Z: The same as the map’s start point Z 

value. 

b. Weld lines along the x-axis: Follow the 

same steps as for lines along the y-axis, but 

reverse the algorithm to calculate the X and 

Y values. 

c. Weld lines along the z-axis: If this line is 

near the weld line along the y-axis, use the 

calculations from step (a). If it is near the 

weld line along the x-axis, use the 

calculations from step (b). 

5. With the start point and the fixed size of the 

weld line, the target weld line can be 

calculated. 

 

4. Experiments 

The proposed method is verified using two fence 

shapes with different sizes, structures, and errors. It 

is assumed that the fences consist of boxes with a 

maximum size of 200×20×20 cm. Figure 10 shows 

the result of matching the map with the point cloud 

when there is an error-free fence in the simulated 

environment for the shape described earlier. To 

verify the algorithm for fence shapes with errors 

(meaning that fence parts differ from their original 

sizes in the welding map), we first added some 

errors to our fence shape, as shown in Figure 11. 

Then, we ran the algorithm on the point cloud 

shown in Figure 12. 

To further improve the effectiveness of this 

algorithm, we considered a new fence with 

different structures and part sizes. The new fence, 

shown in Figure 13, includes some applied errors. 

Note that this shape has a new welding map with 

each weld part's proper size and location. The 

experimental results are listed in Table 1. The 

number of weld seams in this Table indicates the 

number of seams calculated among all existing 

weld seams in the welding parts. For each weld 

seam, ME is the summation of ME values along the 

x and y-axes. Our method achieved an average ME 

of 1.30 in three different scenarios.  

We also implemented three other existing methods 

described in other studies [8, 9, 12]. The best result 

on our target error-free fence was achieved using 

the method by Takubo and their collaborators [8] 

with a slight enhancement. We executed their 

method three times for each weld seam due to the 

randomness of RANSAC algorithm. The 

maximum ME calculated by our method shows a 

30.51% improvement compared to the minimum 

ME calculated by the existing method. 

 

 
Figure 9. Extracted weld lines in the error-free fence. 

 

 

 
Figure 10. Errors applied to welding parts.    

                                 

 

 
Figure 12. Execution of the method’s steps on a shape 

with errors to calculate one target weld seam. 

 

For our approach, the running time has been 

calculated using the CPU hardware accelerator in 

Google Colab. By comparing the execution time of 

calculating one weld seam in an error-free fence 

using our method with the approach by Takubo and 

their collaborators [8], our method reduces the 

running time by 77.43%. However, when there are 

errors in the fence shape, the execution time 

increases with the proposed method. Despite this, 

the execution time remains acceptable and is still 

shorter than the reported running times of other 

existing methods. 
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Figure 113. New fence with error. 

 

Table 1. Weld seam detection results. 

 

5. Conclusion 

This paper proposed an efficient and applicable 

method for offline weld seam extraction in 

complex welding shapes using point cloud data and 

welding maps. The study addressed three main 

challenges: low precision, high execution time, and 

inapplicability to complicated welding shapes. 

Experiments and results in a simulated 

environment demonstrated that using welding 

maps could significantly reduce the initial search 

area and consequently decrease execution time. 

The introduced point cloud splicing technique 

produced a point cloud with minimal error, 

successfully increasing precision according to the 

experiments and results. Additionally, the 

innovative method using maps confined the search 

area around the weld seam, reducing costs and 

time, and effectively handled complex welding 

shapes compared to the RANSAC algorithm and 

other previous methods. Experiments in the 

simulated environment achieved high precision for 

offline weld seam extraction, with an average mean 

absolute error of 1.3 mm across different scenarios. 

While this study focused on developing and 

validating the proposed method in a simulated 

environment, future research will explore its 

application in real-world scenarios. These real-

world tests will provide valuable insights into the 

method's performance under practical conditions, 

including handling noise, irregularities, and 

varying environmental factors. This step will also 

help refine the approach and validate its feasibility 

for industrial applications. Future work will also 

focus on guiding a robot arm toward the estimated 

weld seam. An eye-on-hand camera will then 

capture new images for further calculations to 

refine precision even more. 
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 چکیده:

های جوشکاری در دنبال کردن با وجود دقت بالای ربات .دهدارائه می کاریدرزهای جوش این مقاله یک روش دقیق و کارآمد برای تعیین مختصات

و برای جوشکاری مناسب، های صنعتی پر نویز، الزامات دقیق ها در شناسایی درزهای جوش به دلیل محیطشده، این رباتمسیرهای از پیش تعیین

های به هندسهمحدود یا و گیری تصادفی متکی به نمونه یابرای پیدا کردن ناحیه جوش های موجود پیچیدگی محاسباتی با مشکل مواجه هستند. روش

موثر برای پیداکردن مختصات  رسم شده توسط طراح، روشیهای جوش نقشه ترازیِهای ادغام و همتکنیکبا ترکیب هستند. در اینجا، درز جوش ساده 

دار یک روش وزنبا در محیط موجود   RGB-D هایتوسط دوربینبدست آمده ابر نقاط  ،ابتدا .شودارائه میهای پیچیده با چندین درز شکلجوش با درز 

، مناطق محتمل برای درزهای جوش در ابر نقاط موجودهای جوش گیری از نقشهبا بهرهسپس کند. تولید را ابر نقاطی با نویز کم با هم ترکیب شده تا 

توجهی فضای جستجو به طور قابلشود، لذا تنها دراین مناطق محتمل انجام می آید. در ادامه جستجو برای تعیین مختصات درزهای جوشمیبدست 

با دانستن شکل تقریبی درز جوش بر اساس نقشه جوش موجود، یک  شود.یافته و منجر به افزایش سرعت روش در پیدا کردن درز جوش میکاهش 

تجربی بر روی ساختارهایی به شکل نرده در یک محیط نتایج در  شود.گرفته میبه کار محتمل تکنیک نوآورانه برای شناسایی دقیق درز جوش در مناطق 

 77درصدی در دقت و کاهش  30بهبود حاکی از حاصل شده است که ها برای مختصات درز جوشمتر میلی 30/1میانگین خطای  ،شدهسازیشبیه

  است.های موجود روشآخرین درصدی در زمان محاسبات در مقایسه با 
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