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 Sequence alignment and genome mapping pose significant 

challenges, primarily focusing on speed and storage space 

requirements for mapped sequences. With the ever-increasing volume 

of DNA sequence data, it becomes imperative to develop efficient 

alignment methods that not only reduce storage demands but also 

offer rapid alignment. This study introduces the Parallel Sequence 

Alignment with a Hash-Based Model (PSALR) algorithm, 

specifically designed to enhance alignment speed and optimize 

storage space while maintaining utmost accuracy. In contrast to other 

algorithms like BLAST, PSALR efficiently indexes data using a hash 

table, resulting in reduced computational load and processing time, 

this algorithm utilizes data compression and packetization with 

conventional bandwidth sizes, distributing data among different 

nodes to reduce memory and transfer time. Upon receiving 

compressed data, nodes can seamlessly perform searching and 

mapping, eliminating the need for unpacking and decoding at the 

destination. As an additional innovation, PSALR not only divides 

sequences among processors but also breaks down large sequences 

into sub-sequences, forwarding them to nodes. This approach 

eliminates any restrictions on query length sent to nodes, and 

evaluation results are returned directly to the user without central 

node involvement. Another notable feature of PSALR is its utilization 

of overlapping sub-sequences within both query and reference 

sequences. This ensures that the search and mapping process includes 

all possible sub-sequences of the target sequence, rather than being 

limited to a subset. Performance tests indicate that the PSALR 

algorithm outperforms its counterparts, positioning it as a promising 

solution for efficient sequence alignment and genome mapping. 

 

Keywords: 
Indexing, Hash Base, Sequence 

Alignment, Mapping, MPI. 

 

*Corresponding author: 
emadi@iauyazd.ac.ir (S. Emadi). 

1. Introduction 

Bioinformatics is the application of computer 

science, statistics, and probability to molecular 

biology. Sequence alignment has become a 

fundamental tool in identifying similarities and 

differences between sequences as a result of recent 

advances in molecular biology [1, 2]. Based on 

dynamic programming, the Needleman-Wunsch 

algorithm was the first optimal algorithm for 

aligning two sequences proposed in 1970 [3, 4]. 

The advent of next-generation sequencing has 

increased the length of query sequences, making it 

necessary to develop tools that are faster, more 

sensitive, and more accurate for mapping short and 

long queries [5]. To overcome this challenge, 
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various techniques have been developed, such as 

data compression and parallelism. While multiple 

alignment tools are available, next-generation 

sequencing experiments consistently generate 

exomes or whole-genome sequences for several 

hundred to several hundred thousand samples 

within a short period of time, requiring more 

efficient analysis tools [6].  

Most alignment tools use an index-based mapping 

strategy based on the Burrows-Wheeler transform 

(BWT) or hash table to address issues regarding 

storage space and mapping speed [7]. As part of the 

alignment process, BWT-based tools use the FM-

index data structure and the suffix array concept. 

While it has good speed, it lacks efficient 

management of mismatches and INDEL/GAPs [8, 

9]. The hash table-based method, however, is more 

accurate, responsive, and efficient in terms of 

handling non-compliances and INDELs/GAPs. 

Some BWT-based tools include BWA [9, 10], 

SSAHA2, SOAP2 [11], Bowtie1 [12], and Bowtie2 

[13]. Hash table-based tools such as AGILE [14], 

SeqAlto [15], Blast [16], PATTERN HUNTER 

[17], SSAHA [18], and NextGen Map [19] can 

reduce search times to O(1) and have high speeds 

despite requiring more memory [7, 20].  

Among bioinformatics applications, hashing is 

widely used for sequence alignment, K-mer 

calculation, and error correction [21]. However, 

most hash table-based applications, such as 

BLAST, use the seed-and-extend strategy, which 

involves expanding candidate regions (K-mer) on 

both sides, scoring them, and reporting the best 

match (K-mer is a substring of length k) [6, 22]. 

Due to the high number of calculations required for 

expansion, scoring, and evaluation, this approach 

consumes 90% of the mapping time [18]. In order 

to overcome this limitation, researchers have 

explored various techniques to increase the speed 

of the process and reduce the memory load on the 

node, including parallel architectures. Some 

algorithms use MPI and OpenMP for accurate 

alignment of sequences [23, 24], while others use 

CUDA for approximate alignment or 

multithreading on the GPU for short or long 

sequence [25, 26]. Alignment tools typically use 

multithreading for parallelism, with 

implementations such as Bowtie1, Bowtie2, and 

BLASR [27] utilizing the Posix Threads technique. 

There are two versions of the BWA aligner, one 

utilizing Posix Threads and the other utilizing MPI 

and ‘distributed memory [28]. SHRiMP [29] and 

SHRiMP2 [30] are parallel alignments that have a 

distributed version available [31]. Some alignment 

tools, such as SOAP3 [32], BarraCUDA [33], and 

CUSHAW [34], use GPUs to parallelize their 

process. In some cases, multithreading is 

associated with SIMD parallelism to use hardware 

or processor accelerators, including SSE or 

GPGPUs. To achieve parallelism in indexing and 

mapping while minimizing data overhead and 

ensuring safety, this study employs the MPI 

technique in a fully distributed manner. Unlike 

GPU-based techniques, multithreading is not 

suitable due to safety concerns [35]. 

In this study, we introduce the PSALR algorithm, 

a significant advancement in sequence alignment 

technology over our previous research. Our prior 

work [36] utilized OpenMP for parallel processing, 

relying heavily on a single processor to manage 

shared memory for hash table creation and 

sequence similarity searches. Although effective 

for smaller datasets, this method struggled with 

scalability and efficient processing of larger 

genomic sequences, often resulting in notable 

overhead and computational bottlenecks. 

To overcome these challenges, we developed the 

PSALR algorithm, which employs MPI to achieve 

true parallel processing across multiple nodes. This 

architecture not only speeds up the processing by 

distributing workload more evenly across nodes 

but also significantly reduces memory usage. 

Unlike the OpenMP-based approach, PSALR 

methodically divides large DNA sequences into 

smaller, manageable subsequences. These are then 

distributed across various nodes to prevent any 

single node from becoming a computational 

bottleneck. 

Moreover, PSALR incorporates advanced data 

compression and reduction techniques, enhancing 

the efficiency of sequence alignment processes. 

This method allows for the immediate initiation of 

the mapping process upon data arrival at each node, 

eliminating the necessity for data to be integrated 

centrally. Each node independently processes parts 

of the data, thus eliminating delays associated with 

central data processing and significantly reducing 

network traffic. 

Additionally, results are compiled and returned 

directly to the user from each individual node, 

bypassing any central aggregation. This structural 

refinement not only minimizes the resources and 

time spent on integrating data but also improves the 

precision and accuracy of the alignment process. 

By ensuring comprehensive data processing at 

each node, PSALR guarantees that no part of the 

sequence data is overlooked. 

The primary objective of this study is to enhance 

both the accuracy and speed of sequence alignment 

algorithms while optimizing memory usage. The 

PSALR algorithm utilizes an MPI-based 

concurrency framework along with innovative 
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hash-based indexing and compression techniques. 

Diverging from the traditional seed-and-extend 

methods prevalent in hash table-based alignment 

tools, PSALR eliminates unnecessary steps such as 

expansion, scoring, and evaluation, streamlining 

the alignment process. However, continuous 

improvements and modifications are essential to 

further enhance the algorithm’s accuracy, speed, 

and efficiency. The purpose of this study is to 

present solutions that address these challenges, 

which are discussed in more detail below.  

• The MPI parallelization technique is used 

in this study to distribute data and tasks across 

nodes, resulting in faster processing time. 

• In this study, a packing technique is 

employed to group 32 characters, equivalent to 64 

bits, into each packet. These packets are then sent 

to the nodes in the subsequent phase along with 

their corresponding packet index. This approach 

leads to significant enhancements in memory 

consumption, bandwidth transmission, and data 

transmission speed. 

• To enhance the precision and accuracy of 

the algorithm, this study allows the user to select 

the dynamics of K-mers with the desired length. By 

doing so, the algorithm avoids limited and fixed 

sensitivity, resulting in more reliable and accurate 

results. 

• The purpose of this study is to create a hash 

table based on K-mers present within the text rather 

than all possible K-mers of length k. This results in 

a smaller hash table, resulting in faster processing 

times and less memory consumption. 

• To enable fully distributed and concurrent 

indexing and mapping, this study breaks down 

large sequences in the reference input file into 

smaller sequences. It allows the sequence to be 

divided between nodes, resulting in faster 

processing and better utilization of resources. 

• To increase efficiency and reduce latency, 

this study initiates the mapping process in the 

nodes upon receipt of the first batch of query 

sequences. By using this approach, it is not 

necessary to receive all sequences prior to 

mapping, which results in faster processing and 

improved resource utilization. 

• To minimize data transfer and improve the 

efficiency of the algorithm, this study eliminates 

the need to send results from nodes to a central 

node for integration and sending to the output. 

Instead, results are generated locally node and 

combined on each node, increasing processing 

speed and reductions in network traffic. 

The study is organized as follows: Section 2 

reviews the relevant literature in this field. In 

section 3, the problem is defined, and hypotheses 

are presented. The proposed solution is presented 

in section 4, including MPI parallelization, 

compression and reduction techniques, dynamic 

selection of K-mers, and a hash table based on K-

mers in the text. The results of experiments 

performed on the proposed algorithm using both 

overlap and non-overlap techniques are presented 

in Section 5. The results are compared with three 

other algorithms regarding time and memory 

consumption. Lastly, Section 6 concludes and 

suggests future directions. 

 

2 Literature Review 

The first step before mapping is to call the 

reference or query genome sequences and index 

them. Some algorithms use reference indexing, 

others use query sequence indexing, and some use 

indexing for mapping. The techniques used in 

alignment are hash tables and BWT. The hash base 

technique creates a hash table for reference and 

query sequences. The keys are generated by 

substrings (K-mer), and their values are a list of the 

positions of all possible substrings in the sequence 

[7]. The alignment process with either of the two 

techniques can be done serially or in parallel. 

Parallel alignment is more difficult than serial 

alignment, and the developer must be more careful 

to solve the problem on multicore platforms by a 

trade-off between increasing performance and 

time.  

In [16], the BLAST algorithm is introduced as the 

basis of hash algorithms, with an alignment process 

that occurs in three stages: input preprocessing, 

search, and evaluation. In BLAST algorithms, the 

query sequences are transformed into overlapping 

K-mers and stored in a hash table. During the 

search and mapping phases, each K-mer is 

searched within the reference sequences to identify 

exact matches. These matches are then expanded 

on both sides until their score meets or exceeds the 

specified threshold. Finally, the scores are 

reviewed for the final evaluation. 

In [37], the BLAST algorithm was optimized using 

an open-source parallelization of BLAST. This 

optimization aimed to share the database, reduce 

I/O by storing small utility files, enable parallel I/O 

on shared files, and implement scalable processing 

protocols. In this algorithm, the raw reference 

sequences are formatted, partitioned, and stored in 

a shared storage space before the search operation. 

The master node then utilizes a greedy algorithm to 

assign search sections to worker nodes. Each 

worker node copies the relevant partition to its 

local disk and performs the search operation. 

Finally, the results from each node are sent to the 

master for centralized integration, and this process 
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continues until all partitions are completed. Once 

all the results for the desired query sequence have 

been received, the master node calls the MPIBlast 

output function to format and print the results to the 

output file. 

In [38], the parallel implementation of the BLAST 

algorithm in HPC supercomputers and clusters 

using thousands of processors is examined. Job 

distribution and search management are 

accomplished using a Java library called PCJ. The 

PCJ-BLAST package is responsible for reading the 

sequences to be compared, dividing them, and 

initiating the implementation of multiple NCBI-

BLASTs. Additionally, it addresses the issue of 

parallel I/O by utilizing the PCJ library, aiming to 

significantly reduce the time required for sequence 

analysis.  

In [39], a simulation-based framework was 

developed to analyze the scalability and 

performance of critical optimizations in a parallel 

genome search program, such as MPIBlast. This 

algorithm leverages an advanced macro-scale 

simulator (SST/macro) to enhance the alignment 

capability. 

In [9], an optical parallel processing architecture is 

utilized. In this algorithm, the query sequence 

divides DNA into windows by the overlap 

technique. It then extracts the points in the 

reference in parallel and, finally, uses a simple 

algorithm to find the edit distance and analyzes the 

correlation rate by comparing the window-based 

DNA sequence using the extracted points and their 

locations. This algorithm adopts several 

metamaterial-based optical correlations to 

implement the proposed parallel architecture. This 

wave computational architecture completely 

controls wave and phase transmission using 

dielectric and plasmonic materials. Although 

optics provides high-speed processing of alignment 

results, not every arbitrary algorithm can be 

implemented effectively using it. So, each 

algorithm introduced for sequence alignment must 

consider the limitations and advantages of the 

nature of parallel processing and the appropriate 

architecture. 

In [40], a BWT-based parallel alignment technique 

is proposed. This technique utilizes hardware 

called MPU-BWA to accelerate alignment with 

minimal modifications to the BWA_MEM 

software. It integrates seamlessly with PCIe-based 

infrastructure to achieve significant speed 

improvements, up to 75 times faster in a clustering 

environment. The algorithm follows a three-phase 

approach for the alignment process. First, it 

performs seed selection, then matches the query 

sequence, and filters the seeds using a heuristic 

algorithm. Finally, it expands the remaining seeds. 

The hardware component is employed specifically 

in the seed selection and expansion phases. 

In [8], clustering algorithms are employed to 

develop parallel alignment algorithms. This 

algorithm first identifies regions that can be 

mapped and then performs the mapping process 

specifically within those regions. This approach 

significantly reduces the time required for high-

quality alignment when using a local aligner such 

as BLAST or the Smith-Waterman (SW) 

algorithm. The algorithm involves a master 

processor and N-1 worker processors. The master 

processor and workers collaborate to detect 

common regions between two strings. Both 

processors read the input sequences in parallel and 

determine their lengths. Each processor then 

extracts and segments the larger sequence overlap. 

Each segment of the string is read by the Pi 

processor, which further divides it into overlapping 

substrings. These substrings are then compared 

using a binary matrix to calculate the number of 

matching elements and score the desired segment. 

Finally, each processor sends its results to the 

master node for further analysis and processing.  

In [41], a parallel aligner utilizing the suffix array 

technique is proposed. This aligner is designed to 

rapidly align RNA sequences to servers equipped 

with multicore processors. The algorithm 

combines the mapping operation with a suffix array 

and local alignment to align query sequences using 

the Smith-Waterman (SW) algorithm. While the 

suffix array offers faster processing compared to 

the SW algorithm, it does not inherently support 

INDEL/GAP acceptance. However, this limitation 

is overcome by combining the suffix array 

technique with the local alignment approach. By 

leveraging this combination, the proposed 

algorithm achieves high-speed alignment of RNA 

sequences while accommodating INDEL/GAP 

acceptance. 

In [35], a high-performance parallel K-mer 

indexing and counting library is introduced. This 

library is specifically designed for use in 

distributed memory environments. The library 

provides a collection of simple and reliable APIs 

with serial semantics, allowing for flexible and 

scalable parallel implementations. To ensure safety 

and minimize data overhead, the algorithm avoids 

using multithreading techniques and instead 

utilizes the Message Passing Interface (MPI) 

technique. By leveraging MPI, the library achieves 

efficient parallelization without compromising 

safety or incurring excessive data overhead. 

Additionally, the algorithm keeps the indexes in 

memory to reduce the cost associated with 



PSALR: Parallel Sequence Alignment for long Sequence Read with Hash model 

439 

 

accessing the file system when performing 

operations. 

In [26], a parallel alignment algorithm based on the 

FED algorithm [42] is proposed for accurate 

sequence alignment. This algorithm utilizes the 

Message Passing Interface (MPI) technique for 

parallelization. The FED algorithm employs a 

general strategy that involves mapping compressed 

DNA sequences of constant length. Specifically, 

the algorithm performs alignment without 

decoding the text by compressing only the 

reference sequence (text) and generating multiple 

patterns for the given query sequence. This 

approach allows for efficient alignment without the 

need to decode the entire text. However, it's 

important to note that the FED algorithm is serial-

based and may not be suitable for large-scale texts 

from gene banks. Additionally, the algorithm 

requires the creation of multiple patterns for 

mapping. 

In [43], an alignment algorithm is proposed that 

consists of four phases: seed selection, clustering, 

linking, and scoring. The term "seed" refers to a K-

mer that serves as a candidate for mapping between 

query and reference sequences. The STAR 

algorithm, introduced in this paper, is claimed to be 

five times faster than other mappers but requires 

more memory. For each query sequence, the 

algorithm searches for the longest sequence that 

matches exactly with one or more locations in the 

reference genome. This matching sequence is 

called the Maximum Mappable Prefix (MMP). In 

the second phase, the algorithm connects the seeds 

to form a complete query by clustering adjacent 

seed bases. This process results in an 

interconnected set of seeds. Finally, the seeds are 

selected based on the best alignment for scoring the 

query, taking into account mismatches and 

INDEL/GAP information. 

In [44], an algorithm is proposed for sequence 

alignment analysis and comparison using dynamic 

programming. This algorithm is specifically 

designed for pairwise alignment within a clustering 

system in an MPI environment. Notably, the 

scoring matrix is calculated concurrently in this 

algorithm. It is important to mention that although 

this algorithm utilizes dynamic programming for 

alignment, which is a rigorous and accurate 

method, it can be slower compared to more 

recently developed heuristic methods. 

In [45], the BFAST algorithm is proposed, which 

consists of three phases: creating a reference index, 

finding candidate alignment locations (CALs) 

using the reference index, and performing local 

alignment. Local alignment is performed on the 

possible CAL keys to identify the best possible 

alignment. The algorithm uses several independent 

space seeds as a pattern. The seed must match at 

least one of these patterns.  

In [29], the SHRiMP algorithm is introduced, 

which is capable of handling INDEL/gap 

variations in addition to mismatches. This 

algorithm utilizes a mask to generate possible keys 

for mapping sequences. Based on these masks or 

patterns, the algorithm does not include some bases 

in the mapping. The match and mismatch of the 

bases will not make a difference in the mapping 

result, and they will be able to control the data 

polymorphism. They are also allowed to map 

color-space sequences generated by AB-SoLID. 

Some tools have recently learned the hash table to 

improve the alignment process.  

In [46], a bit-mapping method is proposed for 

mapping query sequences to a reference database. 

This method involves learning the hash algorithm 

from the transcriptome to generate binary hash 

codes for sequences. The query sequences are then 

mapped to the corresponding transcripts based on 

their hash codes. This algorithm treats the query 

mapping problem as the nearest neighbor search 

(NNS) problem in the learning machine, which 

aims to find the nearest neighbor to the query item 

by measuring a certain distance. 

In [47], a combination of matrix and linked-list 

data structures is utilized to store sequence 

information. The matrix represents a two-

dimensional grid, where the rows and columns 

correspond to the hash values generated by two 

specific hash functions. These hash values act as 

coordinates for storing and locating sequences 

within the matrix. By using the hash values as 

coordinates, the method ensures efficient storage 

and retrieval of sequences. The matrix provides a 

structured framework for organizing the sequences 

based on their hash values, allowing for quick 

access to the desired sequences. Additionally, 

linked lists are used within each matrix cell to 

handle collisions or multiple sequences with the 

same hash values. 

In [48], the authors propose a novel seeding 

approach that relies on long inexact matches rather 

than short exact matches. They demonstrate that 

this approach yields a better trade-off between time 

and accuracy in settings with up to a 25% mutation 

rate. To achieve this, they utilize sketches of a 

subset of graph nodes, which are more robust to 

indels. These sketches are stored in a k-nearest 

neighbor index, effectively mitigating the curse of 

dimensionality. Their approach stands in contrast 

to existing methods and emphasizes the significant 

role that sketching in vector space can play in 

bioinformatics applications. The authors further 
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demonstrate that their method can scale graphs 

with 1 billion nodes and provide quasi-logarithmic 

query times for queries with an edit distance of 

25%. In fact, for such queries, longer sketch-based 

seeds result in a 4× increase in recall compared to 

exact seeds. 

In [49], the authors introduced a novel sequence 

alignment technique called ESA. This algorithm is 

implemented on the Sunway TaihuLight 

architecture and is capable of performing both local 

and global alignment. The algorithm incorporates 

several advanced features, including cache-aware 

sequence alignment, capacity-aware load 

balancing, and bandwidth-aware data transfer. 

However, one limitation of ESA is its relatively 

high computational time. Additionally, when the 

lengths of the sequences being aligned differ 

significantly, ESA may encounter an issue of 

asymmetric load distribution among the 

processors. 

In [50], the authors introduced the FMapper 

algorithm, specifically designed for the TaihuLight 

supercomputer. This algorithm is optimized to 

leverage the computing power of the fourth-

generation ShenWei multi-core architecture 

(SW26010). The FMapper algorithm incorporates 

dynamic task scheduling, synchronous I/O, and 

data transfer techniques to maximize performance 

and efficiency. The authors achieved a significant 

speedup of 6 compared to the naïve 

implementation. Additionally, when scaling up to 

512 compute groups, they observed a strong 

scaling efficiency of 65%." 

In [51], The main objective is to find the maximum 

alignment region between two sequences and then 

identify the seeds within that region to increase 

sensitivity. In this algorithm, artificial intelligence 

rules are used to find additional seeds with 

different lengths. Additionally, this algorithm can 

be used for weighted seeds. The "if-else" rule is a 

simple expression in AI that is used to determine 

the length of seeds to be searched for and whether 

overlapping seeds should be merged or discarded. 

In [52] The computational burden of algorithm is 

alleviated by utilizing the LexicHash method to 

estimate sequence similarities. To achieve this, the 

algorithm performs a hash function on each k-mer 

within the read sequence and stores the minimum 

hash value. By counting the number of minimum 

hash matches between pairs of reads, the algorithm 

can estimate the similarity between two sequences. 

It is crucial to carefully choose the parameter k 

when identifying sequences. Increasing the value 

of k enhances accuracy and precision, but there is 

a possibility of losing some matches. 

In [36], the authors employ the OpenMP 

parallelization method and shared memory to 

enhance performance. The method involves 

dividing sequences amongst processors, with each 

processor dividing its reference sequences into 

completely overlapping k-mers. A shared hash 

table is then created with the assistance of other 

processors. In the subsequent step, each processor 

receives a query sequence and, using the shared 

hash table checks the percentage of similarity 

between the query sequence and the sequences in 

the hash table. The result is then returned to the 

user. Although this method offers several 

advantages, such as ease of implementation and 

reduced overhead due to the use of shared memory, 

it can only run on a single node and is not 

distributed. Additionally, if the reference 

sequences are few but lengthy, a few processors 

may have to handle a substantial workload. 

Therefore, to enhance this method, distribution can 

be increased, and other methods can be utilized to 

manage the load if necessary. 

Most of the algorithms mentioned in the literature 

require special hardware platforms or the addition 

of special software and algorithms to enable 

parallelism in the alignment process. However, 

these approaches often result in overheads, and in 

many cases, only the overlap technique is used in 

one of the input sequences, typically the query. 

This approach leads to only a portion of the 

reference sequences being placed in the hash table 

and subsequently used in the search and mapping 

phases, potentially resulting in reduced accuracy in 

the output results. A detailed comparison of the 

above algorithms is provided in Table 1.  

 

3 Methodology 

This algorithm employs a novel approach 

compared to many hash table-based applications, 

such as the BLAST family, which utilizes the seed-

and-extend strategy. Instead, this algorithm uses an 

SSAHA-based method, dynamically selecting the 

K-mer size and utilizing the overlap technique to 

extract them from both input sequences. The 

overlap technique can improve accuracy by up to 

100% regardless of INDEL/GAP and mismatch.   

To optimize time and memory management, this 

algorithm utilizes parallelism, with a master node 

and N-1 worker nodes responsible for compressing 

and dividing data, creating a hash table, and 

mapping query sequences. 

The algorithm breaks down large reference 

sequences into smaller ones and distributes them to 

different nodes, allowing for fully distributed and 

concurrent indexing. 
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Table 1. Comparison of parallel alignment algorithms. 
 

Techniques for 

memory 

optimization 

The use of 

hard/soft 
ware 

INDEL/Gap 

acceptance 

Parallelism 

MPI/Openmp/ 

GPU 

Alignment 

techniq

ue 

Algorith

m 
Year Reference 

No No yes -- Hash-Base BLAST 1990 Altschul, S.F., 

et al 

No Greedy Algorithm yes MPI Hash-Base MPIBlast 2005 Lin, H., et al. 

No PCJ-lib yes MPI Hash-Base Parallel-
Blast 

2018 Nowicki, M., et 
al. 

No SST/macro yes MPI Hash-Base Parallel-
Blast 

2013 Dechev, D., et 
al. 

No Optics yes NA Hash-Base WOC 2018 Mozafari, F., et 
al. 

No --- Yes MPI BWT-Base STAR 2013 Dobin, A., et al. 

No MPU Limited number -- BWT-Base MPU-

BWA 

2018 Vijayaraghavan, 

T., et al. 

No --- Yes MPI Hash-Base RPAlign 2009 Bandyopadhyay

, S, et al. 

No ---- yes --- Suffix Array 

& 

Hash-Base 

HPG 

Aligner 
SA 

2015 Martinez, H, et 

al. 

NO --- Yes MPI Hash-Base Kmerind 2019 Pan, T., et al. 

Compress Multi-Pattern Yes MPI Hash-Base Fast 

Matching 

Method 

2014 Q. Xue et al. 

NO --- Yes MPI Hash-Base Parallel 

Pairwise 

2006 Chen, Y, et al. 

Hash-code ----- NA --- Hash-Base Learning 
hash-

table 

2020 Yu, X, et al. 

Multi-level-index  Yes POSIX Hash-Base BFAST 2009 Homer, N, et al. 

 ------ Yes OpenMP Hash-Base SHRiMP 2009 Rumble, S.M., 
et al. 

Yes ------- Yes OpenMP Hash-Base Parallel-
Alignmen

t 

2022 Esmat, A., et al. 

Yes  NA ------- Hash-Base Matrix-

LinkedLi

st 

2022 Peng, F., et al. 

----- ------ Yes ----  Graph 

Alignmen
t 

2023 Canzar, S., et al. 

No NA Yes GPU Needleman-
Wunsch 

scalable 
parallel 

algorithm 

 

2023 Muhammad,U. 
et al. 
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Additionally, nodes do not need to return their 

results to the primary node, and each node puts its 

results in the output file.  

An evaluation method is used to assess the 

accuracy, precision, and sensitivity of the 

algorithm, which demonstrates that selecting 

sequence overlapping bases not only increases 

accuracy but also does not reduce sensitivity. 

Overall, this algorithm provides a more efficient 

and accurate approach to sequence alignment 

without the need for specialized hardware or 

software  

 

3.1 Problem Definition 

In this study, we aim to optimize the alignment of 

genomic sequences by improving the storage 

process, managing memory, and increasing 

execution speed. To achieve this goal, we propose 

a novel algorithm that utilizes various techniques, 

including parallelism, compression, reduction, and 

hash-based indexing. These techniques enable 

efficient memory management and faster 

processing without compromising accuracy or 

sensitivity. PSALR Algorithm dynamically selects 

K-mers with desired lengths and enables user-

defined overlap to enhance precision and accuracy. 

Additionally, PSALR breaks down large reference 

sequences into smaller ones and distributes them 

across nodes for fully distributed and concurrent 

indexing. This algorithm eliminates the need to 

return results to a central node, reducing network 

traffic and improving efficiency. The purpose of 

this study is to investigate the alignment of 

genomic sequences, improve the storage process 

and sparse execution, and at the same time the 

indexing and mapping steps to manage memory 

and increase speed, definitions are needed that are 

detailed in [36]. But it is briefly described below. 

 
3.1.1. Definition 1 

In sequence alignment, the reference sequences are 

known sequences that are stored in a database, 

while the query sequences are unknown sequences 

that are compared to the reference sequences to 

identify and predict their structure. The goal of 

sequence alignment is to identify regions of 

similarity between the query and reference 

sequences, which can provide insights into the 

evolutionary relationships, functional domains, 

and other important features of biological 

molecules such as DNA, RNA, and proteins. 

 

1 2

1 2

Re ( , ,..., ) , 1

( , ,..., ) , 1

m

n

f seq seq seq m

Query seq seq seq n

 

 
 

 

3.1.2. Definition 2 

In DNA sequencing, each DNA string is 

represented by the four nucleotide bases: A 

(adenine), C (cytosine), G (guanine), and T 

(thymine). Depending on the length of the DNA 

string, these nucleotides combine to form the 

sequence. To optimize memory consumption in 

data storage, binary numbers are used instead of 

characters. This means that only two bits are 

needed to represent each nucleotide base instead of 

the standard eight bits used to represent a single 

character. By compressing the data in this way, it 

can reduce the memory footprint of the DNA 

sequences and improve the efficiency of the 

alignment process. 

( ) (00)2 ( ) (01)2

( ) (10)2 ( ) (11)2

F A F C

F G F T

 

 
 

          

3.1.3. Definition 3 

A K-mer is a sub-string of length k that is a 

continuous sequence of DNA bases within an input 

sequence. The number of K-mers within a string is 

obtained from the relation 1N K   if the K-

mers overlap or from the relation /N K if they do 

not overlap. According to Definition 2, each K-mer 

can be represented as a unique number with 2k bits, 

which is referred to as the mer index. The mer 

index can be created using Equation 1. 
1

1
( ) 4 ( ) 1,2,...,

k i

i
E w f bi i k


        (1)                                                                                                   

 
3.1.4. Definition 4 

The hash table is defined as a triple (w, E(w), 

Position), where w is a K-mer, E(w) is its index, 

and position is an array of positions of w within the 

reference file. This hash table allows for efficient 

indexing and searching of K-mers within the 

reference file, enabling the alignment algorithm to 

quickly identify regions of similarity between the 

query and reference sequences. When a query 

sequence is received, the algorithm uses the hash 

table to locate the K-mers within the query 

sequence and then searches for matching K-mers 

within the reference file. The positions of these 

matching K-mers are stored in the Position array, 

allowing the algorithm to identify potential regions 

of similarity between the query and reference 

sequences. 

 

3.1.5. Definition 5 

To search for all query sequence hits within the 

reference sequences, the PSALR algorithm scrolls 

through the query sequence from base zero to (l-k), 

where l represents the length of the query sequence.   

For each base t, it obtains the list of positions r, 
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which represents the occurrence of the K-mer 

wt(Q) within the query sequence, from the hash 

table. It then extracts the list of K-mer positions and 

place them in a table, which will be used for 

mapping in the next phase. Finally, the algorithm 

calculates the list of hits using Equation 2, as 

described in Ning, Cox, and Mullikin (2001). 

1 1 1 2 2 2( . . )( . . )...( . . )t t r r t rH i j j i j j i j j        (2)                                       

                                              

The value t represents the distance of the K-mer 

from the beginning of the input sequence. The 

collision list contains three elements: index (ir), 

shift (jr-t), and offset (jr), which are used to identify 

the locations of the K-mer match within the 

reference sequence. The collision list is sorted first 

by index and then by shift, allowing for efficient 

mapping of the query sequence to the reference 

sequence. By sorting the collision list in this way, 

it can quickly identify regions of high similarity 

between the query and reference sequences and 

accurately align the sequences. 

In the final step of this algorithm, the list of hits 

based on index, shift, and offset it sorted. Then, the 

algorithm performs a scan to identify hits that have 

the same index and shift, which allows us to 

determine the corresponding bases between the 

query and reference sequences. If the algorithm is 

allowed to accept INDELs, there may be 

differences between the positions of the hits that 

are equal to the number of INDELs present. In this 

case, closely matched areas can be combined to 

create larger regions for GAP acceptance. By using 

this approach, this algorithm can accurately align 

the query and reference sequences, even in the 

presence of INDELs or other types of variations. 

 

4. The Proposed Technique 

Algorithm PSALR utilizes MPI parallelism to 

divide the operation process into two parts. The 

master or zero node performs certain operations 

such as receiving, preprocessing, compressing, and 

sending data, as shown in Figure1. The worker 

nodes are responsible for receiving data, extracting 

K-mers, creating hash tables, and searching and 

mapping query sequences concurrently.  

In the master section, a node receives the sequences 

from the input files and preprocesses them. Each 

character (base) in the sequence is converted into 

two binary bits to reduce their size, and the 

compressed data is placed in 8-byte packets before 

being sent to the worker nodes. 

In the worker section, each node receives its 

sequences, extracts the overlapping K-mers with a 

window length of one from the received reference 

sequences, and creates a hash table from them. The 

worker nodes then perform search and mapping 

with the query sequences received in the hash table 

and print the mapping results of their sequences in 

the output file. 

By utilizing MPI parallelism in this way, the 

PSALR algorithm can efficiently process large 

amounts of data and speed up the alignment 

process, making it a valuable tool for genomic 

research and related fields. 

 

 
Figure1. The PSALR framework 
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Problem: The task is to find encrypted pattern(s) P' 

in encrypted sequence(s) T' without decoding, 

using n nodes for concurrent processing. The 

reference file may contain one or several 

sequences, while the query file may contain one or 

several patterns. 

To address this problem, we propose an algorithm 

that operates in both zero and non-zero nodes. 

Algorithm 1 presents an example of parallel 

execution in these two operational nodes. The 

master node performs operations in lines 1-39, 

while the worker node performs operations in lines 

40-43. Details and code for both nodes are 

provided in the following sections. 

 
 

Algorithm 1: Query search in the Hash table and extract their 

positions in each node 

1.  IF Node == 0 THEN 

2.      For each sequence (seq) in the dataset, do 

3.          IF (seq is large) THEN 

4.              Initialize start_index 

5.              WHILE (start_index + 180 < seq.size()) do 

6.                  Add 180 characters from start_index to Section_data 

7.                  Increment start_index by (180 - k) 

8.              END WHILE 

9.              Dispatch(Section_data) // Continue processing sectioned 

data 

10.         ELSE 

11.              For i <- 1 to seq.size(), i += 32 do 

12.                  Add 32 characters from position i to Section_seq 

13.              END FOR 

14.              IF (mod exists) THEN 

15.                  Add remaining characters (mod) to Section_seq 

16.              END IF 

17.         END IF 

18.      END FOR 

19.      Count <- seq_count / Number_threads 

20.      For i <- 1 to Count, do 

21.          MPI_Send(&ready, 1, MPI::BOOL, executer_id, 

READY_TAG, MPI_COMM_WORLD) 

22.          MPI_Send(&k, 1, MPI_UNSIGNED, executer, 

GLOBAL_K_TAG, MPI_COMM_WORLD)  // K-mer size 

23.          For each data in Section_seq, do 

24.              Orgin = compress(data) 

25.              MPI_Send(&orgin, 1, MPI_UNSIGNED_LONG, 

executer_id, ORIGIN_TAG, MPI_COMM_WORLD) 

26.          END FOR 

27.          MPI_Send(&dataset_index, 1, MPI_UNSIGNED, 

executer_id, DATASET_INDEX_TAG, MPI_COMM_WORLD) 

28.          MPI_Send(&mer_index, 1, MPI_UNSIGNED, executer_id, 

DATASET_INDEX_TAG, MPI_COMM_WORLD) 

29.          MPI_Send(&section_seq_size, 1, MPI_UNSIGNED, 

executer_id, SECTION_SIZE_TAG, MPI_COMM_WORLD) 

30.      END FOR 

31.  END IF 

32.  ELSE IF Node != 0 THEN 

33.      For i <- 1 to Count, do 

34.          MPI_Recv(&ready_for_seq, 1, MPI::BOOL, 0, 

READY_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE) 

35.          MPI_Recv(&origin, 1, MPI_UNSIGNED_LONG, 0, 

ORIGIN_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE) 

36.          MPI_Recv(&sectioned_seq_size, 1, MPI_UNSIGNED, 0, 

SECTION_SIZE_TAG, MPI_COMM_WORLD, 

MPI_STATUS_IGNORE) 

37.          MPI_Recv(&debug_f_l2, 1, MPI::BOOL, 0, 

DEBUG_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE) 

38.          MPI_Recv(&big_seq, 1, MPI::BOOL, 0, DEBUG_TAG, 

MPI_COMM_WORLD, MPI_STATUS_IGNORE) 

39.          MPI_Recv(&k, 1, MPI_UNSIGNED, 0, 

GLOBAL_K_TAG, MPI_COMM_WORLD, 

MPI_STATUS_IGNORE) 

40.      END FOR 

41.      Extract_Kmer_from_origin() 

42.      Create_Hash_table() 

43.      Extract_Query_Position_in_Hash_table() 

44.      Perform_Mapping() 

45.  END IF 

The zero or master nodes execute three main 

phases, namely input reception, encoding, and 

sending. These phases are explained in detail 

below: 

 

•   Input Reception 

DNA sequences consist of two complementary 

strands, which are represented as separate files 

during preprocessing. The query sequences are 

typically provided in .fastq format, while the 

reference sequences are in .fasta format. The input 

sequences may contain the character N instead of 

one of the four main bases, which is often randomly 

replaced with one of the bases in other algorithms. 

However, in PSALR, N characters are eliminated 

to prevent incorrect events and improve accuracy, 
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as the algorithm considers overlapping bases and 

calculates both mismatches and gaps. 

 

•   Encoding 

Parallel and network algorithms face challenges 

such as file transfer and bandwidth occupancy. The 

query and reference files contain characters that 

require significant memory and bandwidth to 

transmit since each character occupies 8 bits. To 

address this issue, this algorithm employs 

compression techniques that reduce each 

character's size to 2 bits, allowing the transmission 

of four characters with a single byte. The nodes can 

continue searching and aligning by receiving the 

transmitted encoded characters without decryption, 

which saves time and memory compared to some 

existing algorithms. 

During this phase, the string is encrypted and 

packaged into 8-byte packets, as outlined in 

Pseudo-code 1. This algorithm packs 32 characters, 

or 64 bits, into each packet and then sends the 

packet index to the nodes in the next phase. The 

encryption and packaging process is performed for 

all query and reference sequences, significantly 

improving memory consumption, bandwidth 

transmission, and data transmission speed. 

To encode each character as an unmarked integer 

with two bits in each nucleotide, binary numbers 

are used instead of characters. Since the string 

length may not be a multiple of 32, the last packet 

may not be complete. Thus, the final package size 

is calculated as follows: 

 

Last_Pack = String.size() % 32 

 

After sending the string data packets, an eight-byte 

status packet is sent to indicate if the final packet 

contains several characters. 

 

•   Sending 

This section details the three types of data that need 

to be transmitted in this algorithm. The first type 

comprises compressed packets of reference 

sequences, which must be divided among the nodes 

to concurrently create a hash table. The second type 

is the user-specified K-mer size, which must be 

sent to all nodes. The final type consists of 

compressed packages of query sequences, which 

must be sent to all nodes for searching and mapping 

based on the hash table created in subsequent 

phases. 

When using MPI parallelism in algorithm, the 

sequences are divided among the nodes. If N is the 

number of nodes and M is the number of reference 

sequences, each node is assigned approximately 

M/N sequences. Thus, the zero nodes must send the 

encoded packets of each sequence to one node, 

which extracts K-mers from the received packets 

and creates a hash table. If a reference sequence is 

large, it can be broken into subsequences and 

distributed among the nodes to avoid overloading 

any one node. For instance, if the master node is 

WM and the other nodes are WS, a large sequence 

SL can be divided into segments, with each node 

assigned a segment except the master. If the K-mer 

size is k, the size of each segment Fi, i = 1, 2, ..., n 

is calculated as follows: 

1

SL
K

N


  
 

 Where N is the number of processors, the 

beginning and end of each segment can be 

calculated as follows: 

[ ] ( 1)* 1
1

SL
start i i

N
  

  
 

and 

[ ] *
1

SL
End i i K

N
 

  

Next, operations performed on non-zero or worker 

nodes, including subsequence extraction, hash 

table creation, query sequence search, and 

mapping, are described. 

 

•   K-mer Extraction 

Each node receives the K-mer size (k) and 

compressed packets of reference sequences, which 

are extracted using the overlap technique without 

decoding the packets in sequential shifts. At each 

time step, the node receives a query sequence from 

the zero nodes and generates a list of K-mers from 

it. 

Many hash-based aligners only index non-

overlapping K-mers of the reference database to 

preserve memory. This means that they only 

include 1/k of the database locations in the index 

table for K-mers of length k. For example, if the K-

mer size is five and a query or reference sequence 

is as follows, a window of five characters is drawn 

on the sequence using the overlap technique. This 

approach returns all possible subsequences of the 

string as K-mers. Thus, the number of K-mers 

obtained from the sequence is calculated as 

follows: 

Number (k_mer) = (n - K_mer+ 1) 

Where n is the length of the strings or the number 

of bases. In the following example, the number of 

K-mers will be equal to 11. 



Emadi et al / Journal of AI and Data Mining, Vol. 12, No. 3, 2024 
 

446 
 

 

S1= CGTCACTCTGAGGAT 

 

K-mers is: GTCA, GTCAC, TCACT, CACTC, 

ACTCT, CTCTG, TCTGA, CTGAG, TGAGG, 

GAGGA, AGGAT 

 

Regardless of the overlap technique, the number of 

K-mers in the same string that reaches the search 

and mapping phases is only part of all of the string 

subsequences shown below. 

 
K-mers is: CGTCA, CTCTG, AGGAT 

 

In other words, the number of K-mers that reach 

the main phase is obtained by dividing the string 

length by the size of K-mer, which will be only 

three K-mers in the same example. 

In this small example, the difference in the number 

of K-mers that reach the search and mapping 

phases can be seen. This difference in datasets with 

millions of bass characters can significantly reduce 

the output accuracy. Many algorithms convert only 

one of their sequences to overlap and the other to 

non-overlap and send it to the search and mapping 

phases so that they can maintain some accuracy 

because selecting K-mers with the overlap 

technique increases the amount of memory several 

times. Some algorithms even use the non-overlap 

technique for both query and reference sequences, 

sacrificing performance and accuracy for speed and 

memory. However, this algorithm uses the overlap 

technique for both query and reference sequences 

and tries to manage memory and time using 

techniques that will be discussed later so that they 

do not increase dramatically and even improve in 

many cases, and bring its accuracy closer to 100 by 

considering two mismatches and two gaps per K-

mer.  

 

•   Hash Table Creation 

The first process in alignment is to create a hash 

table for the reference sequence. The indexing 

process begins after the nodes receive the reference 

sequences. As mentioned earlier, not all possible 

states of K-mer are included in this table, and only 

the K-mers in the sequence are placed in the hash 

table by moving over the desired sequence. Their 

position is then recorded in the table. According to 

definition 4, the hash table consists of three parts: 

w, E (w), and position. In SSAHA, two data 

structures are used to create a hash table: a list of 

positions and an array of pointers to the list. Since 

this algorithm puts all possible states of K-mer in 

the table, 4k pointers are required. Pointers in 

position E (w) point to the entry in the list of 

desired K-mer positions. However, in this 

algorithm, not all possible states of K-mer are 

entered, and K-mers are placed in the hash table 

that is in the reference sequences. So, it helps to 

reduce the hash table.  

Another problem is using two passes to create a 

hash table in the SSAHA algorithm. In the first 

pass, all non-overlapping events are counted in 

each of the 4k possible states, and in the second 

pass, the event information of that K-mer is placed 

in the reference list in the reference sequences.  

Algorithm 2: Create a Hash-table for every node 

Input: A set of sequences in the Reference file  

Output: A hash table with k-K-mers of the reference file and their 

position 

01  Initialize a hash table: Map <unsigned long, vector<unsigned 

int>> table1 

02  For each sequence in Ref_file do 

03      For each K-mer in the sequence do 

04          Split the K-mer into substrings (K-mer, k, mersvector)  // 

Store K-mers in mersvector 

05      End For 

06  End For 

07  For each K-mer in mersvector do 

08      If K-mer exists in table1 (insertion.second is false) then 

09          Add dataset_index and mer_index to the existing entry in the 

hash table 

10      Else 

11          Create a new entry in the hash table with dataset_index and 

mer_index 

12      End If 

13  End For 

17  End For 

In the PSALR algorithm, all overlapping K-mers 

can be completed with a one-pass hash table. In 

other words, the K-mer positions are placed in the 

position list in the order of their passage, passing 

through the beginning of the reference sequences. 

Algorithm 2 displays pseudo-code to create a hash 

table. 

5. Evaluation 

In this section, the PSALR algorithm is evaluated 

with overlap and non-overlap techniques and 

compared with the other three algorithms in terms 

of memory and time consumption in the indexing 

section. Experiments are performed on datasets 

with different numbers and lengths based on Table 

2, the results of which are analyzed in the next 

section. Implementations and evaluations are done 

on a machine with 128 cores and 256 GB of 



PSALR: Parallel Sequence Alignment for long Sequence Read with Hash model 
 

447 

 

memory. STAR, BFAST, and SHRiMP algorithms 

are used to evaluate and compare the proposed 

algorithm. Some aligners argue that using all 

sequence bases for indexing and mapping reduces 

the sensitivity of the algorithm, and if a base 

mutates in K-mer, it will be rejected in the mapping 

phase. 

 
Table 2. Datasets used in experiments. 

Sequence-number Size Name Source Organism DB 

2,727,589 3.1GB SRR072029.fastq Query Genomic Fragaria 
vesca f.alba 

DB 

1 741MB GRCH37.p13 
CHROMOSOME 1 

Ref Genomic H. sapiens 

7,757,821 2.6GB SRR077487.fastq Query 1000 

Genome 
HG00096, 

NCBI 

H. sapiens DB2 

1 208MB GRCH37.p13 
CHOROMOSOME x 

Ref 1000 
Genome 

reference 

GRch37 

H. sapiens 

14,166,619 2.6GB SRR494099.fastq 

 

Query Genomic H. sapiens DB3 

1 439MB GRCH38-Genome 
CHROMOSOME 2 

Ref NCBI 
Nucleotide 

CM0004

63.1 

H. sapiens 

Therefore, they use Space Seed technique to extract 

K-mers from sequences that will reduce accuracy. 

The Space Seed technique in bioinformatics is a 

method used to enhance the sensitivity of sequence 

mapping by selectively considering specific seeds 

of a sequence rather than analyzing the entire 

sequence. This technique aims to improve the 

detection of similarities or patterns between 

sequences while allowing for some degree of 

mismatch. However, this study shows that not only 

accuracy but also sensitivity will be increased by 

selecting all bases and involving them in indexing 

and mapping and that the False Negative problem 

will be prevented by considering mismatch and 

indels in K-mers. The details will be explained 

below. 

The first item in the experiments is size K. As 

mentioned in the literature review, the K-mer size 

can be considered differently. Selecting a small K-

mer size increases sensitivity but increases false 

positives (FP). Instead, selecting a large K-mer 

reduces sensitivity, speeds up the process, and 

reduces FP. Selecting longer K-mers in indexing 

will result in less FP. In this way, a better alignment 

will be obtained [53]. Most algorithms, such as the 

BLAST family, use a small k-size, or algorithms, 

such as BFAST, use K-mers longer than 14 to 

manage memory at two-level or higher indexes. 

Some algorithms, such as ELAND, MAQ, BFAST, 

and SHRiMP use the space seed technique so that 

not all bases are considered for mapping, and only 

the part specified in the template is selected to 

increase the sensitivity and accept some mismatch 

by defining such patterns. For example, if a pattern 

is considered to be 11101001, the size of K-mer is 

8, but its weight is 5, and only 1,2,3,5,8 K-mer 

bases are used to map two sequences. These 

algorithms generally use fixed lengths and weights 

by default to perform the alignment process. Space 

seeds and their shifted samples map fewer 

positions for adaptation and do not include INDEL 

[7, 20]. In a group of these algorithms, one or more 

templates are defined independently so that at the 

time of mapping, the K-mer must match at least one 

of the templates. However, another group follows 

the seed-and-vote technique, in which several 

seeds jointly identify a candidate region. In space 

seed-based algorithms, K-mers are first extracted 

from the query based on the defined template and 

placed in the index table (in the case of reference-

indexed algorithms, this is done for reference 

sequences). The search and alignment then take 

place in another sequence [54]. However, the 

proposed algorithm uses larger k sizes from the 

BLAST family and other common algorithms by 

selecting sequential and overlapping bases to 

reduce false positives in addition to improving 

accuracy.  

Using the overlap technique in query and reference 

sequences, the PSALR algorithm tries to complete 

the process accuracy, which significantly increases 

memory consumption, especially during indexing. 

Therefore, two groups of comparisons are used in 

the next section to evaluate the algorithm. The first 

group is the comparison of memory and time 

consumed to index the data in the proposed 

algorithm with overlap and non-overlap 

techniques, and the second group is the comparison 

of memory and time with three other algorithms 

with a different number of processors at the time of 

data indexing. 
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5.1 Comparison of the proposed method with 

overlap and non-overlap techniques 

In this section, the memory and time required to 

index the proposed algorithm with overlap and 

non-overlap techniques are reviewed and 

compared. 

In the first mode, like most aligners, query 

sequences are considered with the overlap 

technique, reference sequences are considered with 

the non-overlap technique, and indexing and 

mapping are performed on the three datasets 

mentioned. In the second mode, K-mers of query 

and reference sequences are extracted by the 

overlap technique, and indexing and mapping are 

performed. As mentioned earlier, hashing 

algorithms consume the most memory and time in 

indexing. In the PSALR algorithm, after indexing, 

the queries are entered sequentially and aligned. 

They then go out and free up memory so that the 

amount of memory consumed does not increase. 

The implementation of the algorithm on three 

datasets by overlap and non-overlap techniques can 

be seen in Figure2. As can be seen in the figure, the 

amount of memory consumed by the overlap 

technique is several times higher than the non-

overlap one due to the increase in the number of K-

mers. For example, the amount of memory 

consumption in the K-mer with a length of 17 in 

DB1 is significantly reduced from 38.4GB to 3.53 

GB. Therefore, most aligners use the same 

technique and extract only query sequences by the 

overlap technique so that they can maintain some 

accuracy. Algorithms such as SSAHA, SNAP, and 

BSSHA are examples of this. 

The time required to index each of the DBs by 

overlap and non-overlap techniques is shown in 

Figure 3. For example, in the same DB1 and K-mer 

with a length of 17, the consumption time increases 

from 1159 to 86 seconds because, in the overlap 

technique, all sequence K-mers must be extracted 

and placed in a table. 

However, in the non-overlap technique, only 1/k is 

extracted from the subsequences and placed in the 

table, so it greatly reduces memory and time but 

lacks the necessary accuracy for the reasons stated 

earlier. In this study, 2,4,8 and 16 processors are 

used to evaluate the algorithm and execute it in 

parallel. In the following, the amount of memory 

and time consumed by the algorithm with two 

techniques and execution on 2 and 16 processors 

with k of different lengths are shown. The amount 

of memory consumption of datasets is compared by 

the overlap technique with 2 and 16 processors in 

Figure 4. 

 
Figure 2. Comparison of memory consumption in three 

datasets by overlap and non-overlap techniques with two 

processors. 

 

Figure 3. The time required for indexing by overlap and 

non-overlap techniques with two processors. 
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When the concurrency technique is used, each node 

receives a segment of the data sequence and 

generates its index table. In this way, the amount of 

memory consumed is reduced in proportion to the 

number of processors. However, in 2-processor 

mode, only one node is responsible for creating the 

hash table, which increases memory and time 

consumption. Therefore, creating a distributed 

hash table can help to consume memory several 

times. 

 

 

Figure 4. Consumption memory for indexing datasets 

with 2 and 16 processors. 

Figure 5 shows the time required to index the 

reference sequence in different datasets with this 

number of processors. As the number of processors 

increases, the time required for indexing is greatly 

reduced. For example, the time required to index a 

DB1 by 2 processors in K-mers with a length of 15 

is 1800 seconds but is reduced to 100 seconds with 

16 processors. Therefore, creating a distributed 

index table can reduce the speed by several times 

in addition to memory reduction. 

Based on the above, it can be concluded that the 

proposed algorithm in K-mer with a length of 17 

has the highest memory and time consumption and 

that by increasing the length of k again, memory 

and time consumption decrease because the 

number of K-mer in the overlap technique is 

obtained based on the formula 1N K  , and 

increasing the length of k reduces their number. 

 

5.2 Comparison of the proposed algorithm with 

other algorithms with different processors 
In this section, the PSALR algorithm is compared 

with the other three algorithms. The overlap 

technique of query and reference sequences is used 

to extract K-mers and align the sequences to 

evaluate and compare the PSALR algorithm. The 

version used of the three compared algorithms can 

be seen in Table 3. 

 

 

Figure 5. Consumption time for indexing datasets with 2 

and 16 processors. 

The three STW algorithms, which are based on 

BWT, and the BFAST and SHRiMP algorithms, 

which are both hash-based, are compared with the 

proposed algorithm. Since BWT algorithms do not 

use K-mers for alignment and space seed 

algorithms, typically use fixed K-mers with 

different weights to extract K-mers, in this section, 

K-mer with lengths of 11 and 20 are used by default 

of other algorithms to evaluate the PSALR 

algorithm. 

The memory and time consumption of the PSALR 

algorithm using K-mer with length 11 is compared 

with other algorithms in Figure 6 and 7. 
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Table 3. Alignment tools. 

 

As shown in Figure 6, we have the highest amount 

of memory at np = 2 because the distribution 

reaches zero, and only one processor is involved in 

creating the table. Although the PSALR algorithm 

uses the overlap technique in extracting K-mers, it 

manages memory consumption using the 

mentioned techniques and performs better than 

other algorithms. In this algorithm, the hash table 

is created even with a large, fully distributed 
sequence. Therefore, as the number of processor 

increases, memory consumption decreases. 
 

 
Figure 6. Comparison of memory consumption in the 

PSALR method with K-mer = 11. 
 

However, in other algorithms, the memory 

consumption at different np is not much different 

from each other. The memory and time 

consumption of the PSALR algorithm with a 

different number of processors is compared with 

other algorithms in Table 4. 

The time required to index the reference table in the 

proposed algorithm with overlap and non-overlap 

techniques and its comparison with other 

algorithms can be seen in Figure 7. Although the 

reduction in time consumption can be seen as the 

number of processors increases in all algorithms, 

the proposed algorithm performs better with both 

techniques than the other algorithms. According to 

the figure, SHRiMP has the most time consumption 

among algorithms. The same comparisons with K-

mer = 20 can be seen in Figure 8 and 9. 
 

 
Figure 7. Comparison of time consumption of the PSALR 

algorithm with K-mer = 11. 

When the overlap technique is used and all possible 

K-mers are extracted from the sequence, high time 

and memory are required to extract and index them. 

As shown in Figure 8, the length of K-mers has 

increased compared to the previous experiment. 

The PSALR algorithm does not work well 

compared to other algorithms in the overlap 

technique and np = 2, which is without distribution, 

and only one processor is responsible for extracting 

all possible K-mers from a large sequence and, then 

recording their positions from the sequence in the 

table, but improves at higher np as the number of 

processors increases and the sequence indexing is 

divided between more nodes. However, it easily 

performs better than other algorithms in the non-

overlap technique used in many alignments.  

Similarly, Figure 9 shows a comparison of the time 

consumed to index the data for the PSALR 

algorithm with the other three algorithms, which is 

better in both modes. 
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Table 4. Comparison of memory and time consumption of the proposed algorithm with other algorithms with different 

numbers of processors. 

Time(sec) Memory (MB) Algorithm Input 

Np=16 Np=8 Np=4 Np=2 Np=16 Np=8 Np=4 Np=2    

86 180 260 690 811 1495 3189 8135 Overlap 

K=11 

 

 

 
DB1 

23 40 49 93 243 390 697 1638 Non-overlap 
K=11 

87 140 320 840 2690 5680 13004 37580 Overlap 
K=20 

39 45 48 87 252 530 1208 3535 Non-overlap 

K=20 

360 480 1020 1680 19660 19968 22016 22835 

 

STAR 

1860 2520 3300 4200 7870 7688 7688 7579 
 

BFAST 

3540 4560 6000 7500 12710 12700 12697 12697 

 

SHRiMP 

26 43 60 156 358 586 985 2475 Overlap 

K=11 

 

 

 
DB2 

11 11 13 28 89 160 290 608 Non-overlap 
K=11 

24 34 65 223 751 1573 3396 8908 Overlap 

K=20 

12 12 15 22 76 152 344 998 Non-overlap 

K=20 

 

360 480 660 1200 5658 5288 5741 6907 

 

STAR 

300 540 720 1980 2372 2113 2115 1965 
 

BFAST 

1740 2640 3900 8340 4633 4532 4508 4517 

 

SHRiMP 

128 248 480 360 556 916 1795 4695 Overlap 

K=11 

 

 

 

DB3 
24 25 30 60 161 267 483 982 Non-overlap 

K=11 

110 216 454 1380 1600 2808 7773 15974 Overlap 

K=20 

24 24 30 46 150 299 742 2101 Non-overlap 

K=20 

420 600 1020 2220 11366 10752 14028 14848 
 

STAR 

720 1900 1920 4680 4409 4478 4425 4681 

 

BFAST 

2880 3180 5700 9420 8744 8749 8750 8766 

 

SHRiMP 

According to Table 4, the PSALR algorithm does 

not perform best in terms of memory consumption 

for the entire length of K-mers due to the increase 

in length and number of K-mers. As mentioned 

before, other algorithms try to improve it by 

keeping the K-mer length constant by default or 

creating multi-level indexes.  

The proposed algorithm does not work better 

without these techniques only when fewer 

processors are used, and work is divided between 

fewer processors, but it works better in terms of 

time consumed in all modes. 

One of the most important criteria for aligners is 

the accuracy of mapping, which can be greatly 

increased by using the overlap technique. 

However, this technique requires a lot of memory, 

and one of the problems with the hash method is 

the amount of memory consumed during the 

indexing phase. Therefore, in this study, attempts 

were made to achieve improvements in memory 

and speed by providing solutions in the processes 

of indexing and mapping of alignment so that 

precision and accuracy are not lost but increased. 

In this technique, three datasets with different sizes 

and short and long queries are used, and the 

proposed algorithm is evaluated and compared 

with the overlap and technique and overlapping 

queries. It is found that memory and time 

consumption are reduced several times less in the 

second mode, but accuracy is reduced for the 

reasons stated. The PSALR algorithm is also 

compared and evaluated with the other three 

algorithms, and it is shown that it performs much 

better even with the overlap technique with a high 

number of processors and does not perform better 
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only in some cases, such as k = 17 with a low 

number of processors that the work is divided little. 

 

 

Figure 8. Comparison of memory consumption of 

the PSALR. 

 

6. Conclusion and Feature Work 

Bioinformatics, through the analysis of biological 

data such as genetic and protein sequences, plays a 

key role in identifying the genetic factors of 

diseases, developing personalized treatments, and 

accelerating processes of diagnosis and 

prevention[55]. Due to the exponential growth of 

DNA sequences, the process of searching for and 

storing sequences in databases has become 

increasingly time and memory-intensive. As a 

result, there is a pressing need for efficient 

algorithms that can accelerate database searches 

while minimizing memory usage. The SSAHA 

algorithm, renowned for its efficiency and speed 

when compared to seed-and-extend-based 

techniques like BLAST, achieves rapid searches in 

large databases by eliminating the expansion and 

evaluation steps commonly found in hash-based 

methods. The primary objective of this study is to 

enhance the SSAHA algorithm by addressing 

memory management, indexing, and leveraging 

parallelism for multiple processors, all while 

improving accuracy and performance. To establish 

a comprehensive distributed system, PSALR 

incorporates parallelization techniques during the 

indexing and mapping phases, breaking down large 

sequences into shorter segments distributed across 

multiple nodes. Additionally, nodes autonomously 

relay their results to users without necessitating 

users to retrieve results, which significantly 

enhances both time and bandwidth efficiency. 

 

 
Figure 9. Comparison of time consumption of the PSALR 

algorithm with K-mer = 20. 

 

To boost the algorithm's accuracy, two key 

techniques are employed. Firstly, the extraction of 

all K-mers from sequences with a window of length 

1 ensures the inclusion of all K-mers in the 

alignment. Secondly, a hash table is constructed 

based on the K-mers in the text, as opposed to all 

possible K-mers of length k. The dynamic selection 

of K-mers of desired length by users reduces false 

positives and increases true positives while 

maintaining sensitivity. In the evaluation process, 

we compared the proposed algorithm to BWTs and 

Hash-based algorithms. Our findings indicate that 

it outperforms them in memory consumption under 

most circumstances, except when the distribution is 

zero or the number of processors is small. 

Nonetheless, there is still room for optimization in 

query sequence alignment. This algorithm 

necessitates sending all query sequences to each 

node, with each node aligning all sequences in the 

query file based on its index table and subsequently 

transmitting them to the output. While this 

approach doesn't increase memory consumption 

during alignment, future work should focus on 

 

0
5000

10000
15000
20000
25000
30000
35000
40000

np=2 np=4 np=8 np=16

M
e
m
(M

B
)

DB1,k=20

Ref-overlap Ref-Non-overlap

SATR BFAST

SHRiMP

0

3000

6000

9000

12000

np=2 np=4 np=8 np=16M
e
m
(M

B
)

DB2,k=20

Ref-overlap Ref-Non-overlap

SATR BFAST

SHRiMP

0
3000
6000
9000

12000
15000
18000

np=2 np=4 np=8 np=16

M
e
m
(M

B
)

DB3,k=20

Ref-overlap Ref-Non-overlap

SATR BFAST

SHRiMP

 

0

2000

4000

6000

8000

np=2 np=4 np=8 np=16

Ti
m

e(
Se

c)

DB1,k=20

Ref-overlap Ref-Non-overlap SATR

BFAST SHRiMP

0

2000

4000

6000

8000

10000

np=2 np=4 np=8 np=16

Ti
m

e(
Se

c)

DB2,k=20

Ref-overlap Ref-Non-overlap SATR

BFAST SHRiMP

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

np=2 np=4 np=8 np=16

Ti
m

e(
Se

c)
DB3,k=20

Ref-overlap Ref-Non-overlap SATR

BFAST SHRiMP



PSALR: Parallel Sequence Alignment for long Sequence Read with Hash model 
 

453 

 

further optimizing alignment to enhance overall 

performance. 
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 چکیده:

شت ژنوم با چالش یتوال یترازبند سرعت و ن یمتعدد یهاو نگا ست که عمدتاً بر  ضا ازیمواجه ا شته یهایتوال یسازرهیذخ یبه ف شده متمرکزند. با نگا

سعه روش ،DNA یابییتوال یهاحجم داده شیافزا ضمن کاهش ن یترازبند یهاتو فراهم  زینرا  عیسر یامکان ترازبند ،یسازرهیذخ یازهایکارآمد که 

 شیافزا یبرا ژهیطور وکه به شررودیم یمعرف( PSALR)بر هش  یبا مدل مبتن یتوال یمواز یترازبند تمیپژوهش، الگور نیاسررت. در ا یکنند، ضرررور

ضا یسازنهیبه ،یسرعت ترازبند ست. در مقا یو حفظ حداکثر دقت طراح یسازرهیذخ یف با  BLAST ،PSALR رینظ ییهاتمیبا الگور سهیشده ا

ستفاده از جداول هش، داده سبات جهیکرده و در نت یسازهیها را کارآمدتر نماا شرده تمیالگور نی. ادهدیو زمان پردازش را کاهش م یبار محا  یسازبا ف

 یهاداده افتی. پس از درکندیمرا کم  ازیمختلف، زمان انتقال و حافظه مورد ن یهاگره انیداده م عیمرسوم و توز دبانیآن در ابعاد پهنا یبندداده، بسته

بزرگ به  یهایتوال میدر تقسرر PSALR گرید ینوآور هسررتند. یبردارقادر به جسررتجو و نقشرره ییو رمزگشررا ییبه بازگشررا ازیها بدون نفشرررده، گره

به  ماًیمسررتق، یبه گره مرکز ازیبدون ن را  یابیارز جینکرده و نتا جادیا یدر طول کوئر یتیکه محدود یکردیهاسررت؛ روها به گرهو ارسررال آن هایرتوالیز

هدف  یممکن توال یهایرتوالیز یکه تمام کندیم نیو مرجع تضررم یرکوئ یهمپوشرران در توال یهایرتوالیاسررتفاده از ز ن،ی. همچنگرداند،یکاربر بازم

 یبرا دبخشیام یداشته و راهکار یبهتر ییخود کارا انینسبت به همتا PSALR دهدینشان م یعملکرد یها. آزمونرندیمورد جستجو و نگاشت قرار گ

 و نگاشت ژنوم است. یکارآمد توال یترازبند

 .MPIنگاشت،  ،یتوال یبر هش، ترازبند یمبتن ،یسازهینما :کلمات کلیدی


