
1

Journal of Artificial Intelligence and Data Mining (JAIDM), Vol. 12, No. 3, 2024, 435-454.

Shahrood University of

Technology

Journal of Artificial Intelligence and Data Mining (JAIDM)
Journal homepage: http://jad.shahroodut.ac.ir

 Research paper

PSALR: Parallel Sequence Alignment for long Sequence Read with

Hash model
Nasrin Aghaee-Maybodi 1, Amin Nezarat 2, Sima Emadi *3 and Mohammad Reza Ghaffari 4

1. Department of Computer Engineering, Islamic Azad University, Yazd Branch, Iran.

2. Department of Computer Engineering, Shiraz University, .Iran
3. Department of Computer Engineering, Islamic Azad University, Yazd Branch, Iran

4. Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research,

Education, and Extension Organization, Karaj, Tehran, Iran.

Article Info Abstract

Article History:
Received 06 May 2024

Revised 02 October 2024
Accepted 24 November 2024

DOI:10.22044/jadm.2024.14462.2554

 Sequence alignment and genome mapping pose significant

challenges, primarily focusing on speed and storage space

requirements for mapped sequences. With the ever-increasing volume

of DNA sequence data, it becomes imperative to develop efficient

alignment methods that not only reduce storage demands but also

offer rapid alignment. This study introduces the Parallel Sequence

Alignment with a Hash-Based Model (PSALR) algorithm,

specifically designed to enhance alignment speed and optimize

storage space while maintaining utmost accuracy. In contrast to other

algorithms like BLAST, PSALR efficiently indexes data using a hash

table, resulting in reduced computational load and processing time,

this algorithm utilizes data compression and packetization with

conventional bandwidth sizes, distributing data among different

nodes to reduce memory and transfer time. Upon receiving

compressed data, nodes can seamlessly perform searching and

mapping, eliminating the need for unpacking and decoding at the

destination. As an additional innovation, PSALR not only divides

sequences among processors but also breaks down large sequences

into sub-sequences, forwarding them to nodes. This approach

eliminates any restrictions on query length sent to nodes, and

evaluation results are returned directly to the user without central

node involvement. Another notable feature of PSALR is its utilization

of overlapping sub-sequences within both query and reference

sequences. This ensures that the search and mapping process includes

all possible sub-sequences of the target sequence, rather than being

limited to a subset. Performance tests indicate that the PSALR

algorithm outperforms its counterparts, positioning it as a promising

solution for efficient sequence alignment and genome mapping.

Keywords:
Indexing, Hash Base, Sequence

Alignment, Mapping, MPI.

*Corresponding author:
emadi@iauyazd.ac.ir (S. Emadi).

1. Introduction

Bioinformatics is the application of computer

science, statistics, and probability to molecular

biology. Sequence alignment has become a

fundamental tool in identifying similarities and

differences between sequences as a result of recent

advances in molecular biology [1, 2]. Based on

dynamic programming, the Needleman-Wunsch

algorithm was the first optimal algorithm for

aligning two sequences proposed in 1970 [3, 4].

The advent of next-generation sequencing has

increased the length of query sequences, making it

necessary to develop tools that are faster, more

sensitive, and more accurate for mapping short and

long queries [5]. To overcome this challenge,

mailto:emadi@iauyazd.ac.ir
mailto:emadi@iauyazd.ac.ir

Emadi et al / Journal of AI and Data Mining, Vol. 12, No. 3, 2024

436

various techniques have been developed, such as

data compression and parallelism. While multiple

alignment tools are available, next-generation

sequencing experiments consistently generate

exomes or whole-genome sequences for several

hundred to several hundred thousand samples

within a short period of time, requiring more

efficient analysis tools [6].

Most alignment tools use an index-based mapping

strategy based on the Burrows-Wheeler transform

(BWT) or hash table to address issues regarding

storage space and mapping speed [7]. As part of the

alignment process, BWT-based tools use the FM-

index data structure and the suffix array concept.

While it has good speed, it lacks efficient

management of mismatches and INDEL/GAPs [8,

9]. The hash table-based method, however, is more

accurate, responsive, and efficient in terms of

handling non-compliances and INDELs/GAPs.

Some BWT-based tools include BWA [9, 10],

SSAHA2, SOAP2 [11], Bowtie1 [12], and Bowtie2

[13]. Hash table-based tools such as AGILE [14],

SeqAlto [15], Blast [16], PATTERN HUNTER

[17], SSAHA [18], and NextGen Map [19] can

reduce search times to O(1) and have high speeds

despite requiring more memory [7, 20].

Among bioinformatics applications, hashing is

widely used for sequence alignment, K-mer

calculation, and error correction [21]. However,

most hash table-based applications, such as

BLAST, use the seed-and-extend strategy, which

involves expanding candidate regions (K-mer) on

both sides, scoring them, and reporting the best

match (K-mer is a substring of length k) [6, 22].

Due to the high number of calculations required for

expansion, scoring, and evaluation, this approach

consumes 90% of the mapping time [18]. In order

to overcome this limitation, researchers have

explored various techniques to increase the speed

of the process and reduce the memory load on the

node, including parallel architectures. Some

algorithms use MPI and OpenMP for accurate

alignment of sequences [23, 24], while others use

CUDA for approximate alignment or

multithreading on the GPU for short or long

sequence [25, 26]. Alignment tools typically use

multithreading for parallelism, with

implementations such as Bowtie1, Bowtie2, and

BLASR [27] utilizing the Posix Threads technique.

There are two versions of the BWA aligner, one

utilizing Posix Threads and the other utilizing MPI

and ‘distributed memory [28]. SHRiMP [29] and

SHRiMP2 [30] are parallel alignments that have a

distributed version available [31]. Some alignment

tools, such as SOAP3 [32], BarraCUDA [33], and

CUSHAW [34], use GPUs to parallelize their

process. In some cases, multithreading is

associated with SIMD parallelism to use hardware

or processor accelerators, including SSE or

GPGPUs. To achieve parallelism in indexing and

mapping while minimizing data overhead and

ensuring safety, this study employs the MPI

technique in a fully distributed manner. Unlike

GPU-based techniques, multithreading is not

suitable due to safety concerns [35].

In this study, we introduce the PSALR algorithm,

a significant advancement in sequence alignment

technology over our previous research. Our prior

work [36] utilized OpenMP for parallel processing,

relying heavily on a single processor to manage

shared memory for hash table creation and

sequence similarity searches. Although effective

for smaller datasets, this method struggled with

scalability and efficient processing of larger

genomic sequences, often resulting in notable

overhead and computational bottlenecks.

To overcome these challenges, we developed the

PSALR algorithm, which employs MPI to achieve

true parallel processing across multiple nodes. This

architecture not only speeds up the processing by

distributing workload more evenly across nodes

but also significantly reduces memory usage.

Unlike the OpenMP-based approach, PSALR

methodically divides large DNA sequences into

smaller, manageable subsequences. These are then

distributed across various nodes to prevent any

single node from becoming a computational

bottleneck.

Moreover, PSALR incorporates advanced data

compression and reduction techniques, enhancing

the efficiency of sequence alignment processes.

This method allows for the immediate initiation of

the mapping process upon data arrival at each node,

eliminating the necessity for data to be integrated

centrally. Each node independently processes parts

of the data, thus eliminating delays associated with

central data processing and significantly reducing

network traffic.

Additionally, results are compiled and returned

directly to the user from each individual node,

bypassing any central aggregation. This structural

refinement not only minimizes the resources and

time spent on integrating data but also improves the

precision and accuracy of the alignment process.

By ensuring comprehensive data processing at

each node, PSALR guarantees that no part of the

sequence data is overlooked.

The primary objective of this study is to enhance

both the accuracy and speed of sequence alignment

algorithms while optimizing memory usage. The

PSALR algorithm utilizes an MPI-based

concurrency framework along with innovative

PSALR: Parallel Sequence Alignment for long Sequence Read with Hash model

437

hash-based indexing and compression techniques.

Diverging from the traditional seed-and-extend

methods prevalent in hash table-based alignment

tools, PSALR eliminates unnecessary steps such as

expansion, scoring, and evaluation, streamlining

the alignment process. However, continuous

improvements and modifications are essential to

further enhance the algorithm’s accuracy, speed,

and efficiency. The purpose of this study is to

present solutions that address these challenges,

which are discussed in more detail below.

• The MPI parallelization technique is used

in this study to distribute data and tasks across

nodes, resulting in faster processing time.

• In this study, a packing technique is

employed to group 32 characters, equivalent to 64

bits, into each packet. These packets are then sent

to the nodes in the subsequent phase along with

their corresponding packet index. This approach

leads to significant enhancements in memory

consumption, bandwidth transmission, and data

transmission speed.

• To enhance the precision and accuracy of

the algorithm, this study allows the user to select

the dynamics of K-mers with the desired length. By

doing so, the algorithm avoids limited and fixed

sensitivity, resulting in more reliable and accurate

results.

• The purpose of this study is to create a hash

table based on K-mers present within the text rather

than all possible K-mers of length k. This results in

a smaller hash table, resulting in faster processing

times and less memory consumption.

• To enable fully distributed and concurrent

indexing and mapping, this study breaks down

large sequences in the reference input file into

smaller sequences. It allows the sequence to be

divided between nodes, resulting in faster

processing and better utilization of resources.

• To increase efficiency and reduce latency,

this study initiates the mapping process in the

nodes upon receipt of the first batch of query

sequences. By using this approach, it is not

necessary to receive all sequences prior to

mapping, which results in faster processing and

improved resource utilization.

• To minimize data transfer and improve the

efficiency of the algorithm, this study eliminates

the need to send results from nodes to a central

node for integration and sending to the output.

Instead, results are generated locally node and

combined on each node, increasing processing

speed and reductions in network traffic.

The study is organized as follows: Section 2

reviews the relevant literature in this field. In

section 3, the problem is defined, and hypotheses

are presented. The proposed solution is presented

in section 4, including MPI parallelization,

compression and reduction techniques, dynamic

selection of K-mers, and a hash table based on K-

mers in the text. The results of experiments

performed on the proposed algorithm using both

overlap and non-overlap techniques are presented

in Section 5. The results are compared with three

other algorithms regarding time and memory

consumption. Lastly, Section 6 concludes and

suggests future directions.

2 Literature Review

The first step before mapping is to call the

reference or query genome sequences and index

them. Some algorithms use reference indexing,

others use query sequence indexing, and some use

indexing for mapping. The techniques used in

alignment are hash tables and BWT. The hash base

technique creates a hash table for reference and

query sequences. The keys are generated by

substrings (K-mer), and their values are a list of the

positions of all possible substrings in the sequence

[7]. The alignment process with either of the two

techniques can be done serially or in parallel.

Parallel alignment is more difficult than serial

alignment, and the developer must be more careful

to solve the problem on multicore platforms by a

trade-off between increasing performance and

time.

In [16], the BLAST algorithm is introduced as the

basis of hash algorithms, with an alignment process

that occurs in three stages: input preprocessing,

search, and evaluation. In BLAST algorithms, the

query sequences are transformed into overlapping

K-mers and stored in a hash table. During the

search and mapping phases, each K-mer is

searched within the reference sequences to identify

exact matches. These matches are then expanded

on both sides until their score meets or exceeds the

specified threshold. Finally, the scores are

reviewed for the final evaluation.

In [37], the BLAST algorithm was optimized using

an open-source parallelization of BLAST. This

optimization aimed to share the database, reduce

I/O by storing small utility files, enable parallel I/O

on shared files, and implement scalable processing

protocols. In this algorithm, the raw reference

sequences are formatted, partitioned, and stored in

a shared storage space before the search operation.

The master node then utilizes a greedy algorithm to

assign search sections to worker nodes. Each

worker node copies the relevant partition to its

local disk and performs the search operation.

Finally, the results from each node are sent to the

master for centralized integration, and this process

Emadi et al / Journal of AI and Data Mining, Vol. 12, No. 3, 2024

438

continues until all partitions are completed. Once

all the results for the desired query sequence have

been received, the master node calls the MPIBlast

output function to format and print the results to the

output file.

In [38], the parallel implementation of the BLAST

algorithm in HPC supercomputers and clusters

using thousands of processors is examined. Job

distribution and search management are

accomplished using a Java library called PCJ. The

PCJ-BLAST package is responsible for reading the

sequences to be compared, dividing them, and

initiating the implementation of multiple NCBI-

BLASTs. Additionally, it addresses the issue of

parallel I/O by utilizing the PCJ library, aiming to

significantly reduce the time required for sequence

analysis.

In [39], a simulation-based framework was

developed to analyze the scalability and

performance of critical optimizations in a parallel

genome search program, such as MPIBlast. This

algorithm leverages an advanced macro-scale

simulator (SST/macro) to enhance the alignment

capability.

In [9], an optical parallel processing architecture is

utilized. In this algorithm, the query sequence

divides DNA into windows by the overlap

technique. It then extracts the points in the

reference in parallel and, finally, uses a simple

algorithm to find the edit distance and analyzes the

correlation rate by comparing the window-based

DNA sequence using the extracted points and their

locations. This algorithm adopts several

metamaterial-based optical correlations to

implement the proposed parallel architecture. This

wave computational architecture completely

controls wave and phase transmission using

dielectric and plasmonic materials. Although

optics provides high-speed processing of alignment

results, not every arbitrary algorithm can be

implemented effectively using it. So, each

algorithm introduced for sequence alignment must

consider the limitations and advantages of the

nature of parallel processing and the appropriate

architecture.

In [40], a BWT-based parallel alignment technique

is proposed. This technique utilizes hardware

called MPU-BWA to accelerate alignment with

minimal modifications to the BWA_MEM

software. It integrates seamlessly with PCIe-based

infrastructure to achieve significant speed

improvements, up to 75 times faster in a clustering

environment. The algorithm follows a three-phase

approach for the alignment process. First, it

performs seed selection, then matches the query

sequence, and filters the seeds using a heuristic

algorithm. Finally, it expands the remaining seeds.

The hardware component is employed specifically

in the seed selection and expansion phases.

In [8], clustering algorithms are employed to

develop parallel alignment algorithms. This

algorithm first identifies regions that can be

mapped and then performs the mapping process

specifically within those regions. This approach

significantly reduces the time required for high-

quality alignment when using a local aligner such

as BLAST or the Smith-Waterman (SW)

algorithm. The algorithm involves a master

processor and N-1 worker processors. The master

processor and workers collaborate to detect

common regions between two strings. Both

processors read the input sequences in parallel and

determine their lengths. Each processor then

extracts and segments the larger sequence overlap.

Each segment of the string is read by the Pi

processor, which further divides it into overlapping

substrings. These substrings are then compared

using a binary matrix to calculate the number of

matching elements and score the desired segment.

Finally, each processor sends its results to the

master node for further analysis and processing.

In [41], a parallel aligner utilizing the suffix array

technique is proposed. This aligner is designed to

rapidly align RNA sequences to servers equipped

with multicore processors. The algorithm

combines the mapping operation with a suffix array

and local alignment to align query sequences using

the Smith-Waterman (SW) algorithm. While the

suffix array offers faster processing compared to

the SW algorithm, it does not inherently support

INDEL/GAP acceptance. However, this limitation

is overcome by combining the suffix array

technique with the local alignment approach. By

leveraging this combination, the proposed

algorithm achieves high-speed alignment of RNA

sequences while accommodating INDEL/GAP

acceptance.

In [35], a high-performance parallel K-mer

indexing and counting library is introduced. This

library is specifically designed for use in

distributed memory environments. The library

provides a collection of simple and reliable APIs

with serial semantics, allowing for flexible and

scalable parallel implementations. To ensure safety

and minimize data overhead, the algorithm avoids

using multithreading techniques and instead

utilizes the Message Passing Interface (MPI)

technique. By leveraging MPI, the library achieves

efficient parallelization without compromising

safety or incurring excessive data overhead.

Additionally, the algorithm keeps the indexes in

memory to reduce the cost associated with

PSALR: Parallel Sequence Alignment for long Sequence Read with Hash model

439

accessing the file system when performing

operations.

In [26], a parallel alignment algorithm based on the

FED algorithm [42] is proposed for accurate

sequence alignment. This algorithm utilizes the

Message Passing Interface (MPI) technique for

parallelization. The FED algorithm employs a

general strategy that involves mapping compressed

DNA sequences of constant length. Specifically,

the algorithm performs alignment without

decoding the text by compressing only the

reference sequence (text) and generating multiple

patterns for the given query sequence. This

approach allows for efficient alignment without the

need to decode the entire text. However, it's

important to note that the FED algorithm is serial-

based and may not be suitable for large-scale texts

from gene banks. Additionally, the algorithm

requires the creation of multiple patterns for

mapping.

In [43], an alignment algorithm is proposed that

consists of four phases: seed selection, clustering,

linking, and scoring. The term "seed" refers to a K-

mer that serves as a candidate for mapping between

query and reference sequences. The STAR

algorithm, introduced in this paper, is claimed to be

five times faster than other mappers but requires

more memory. For each query sequence, the

algorithm searches for the longest sequence that

matches exactly with one or more locations in the

reference genome. This matching sequence is

called the Maximum Mappable Prefix (MMP). In

the second phase, the algorithm connects the seeds

to form a complete query by clustering adjacent

seed bases. This process results in an

interconnected set of seeds. Finally, the seeds are

selected based on the best alignment for scoring the

query, taking into account mismatches and

INDEL/GAP information.

In [44], an algorithm is proposed for sequence

alignment analysis and comparison using dynamic

programming. This algorithm is specifically

designed for pairwise alignment within a clustering

system in an MPI environment. Notably, the

scoring matrix is calculated concurrently in this

algorithm. It is important to mention that although

this algorithm utilizes dynamic programming for

alignment, which is a rigorous and accurate

method, it can be slower compared to more

recently developed heuristic methods.

In [45], the BFAST algorithm is proposed, which

consists of three phases: creating a reference index,

finding candidate alignment locations (CALs)

using the reference index, and performing local

alignment. Local alignment is performed on the

possible CAL keys to identify the best possible

alignment. The algorithm uses several independent

space seeds as a pattern. The seed must match at

least one of these patterns.

In [29], the SHRiMP algorithm is introduced,

which is capable of handling INDEL/gap

variations in addition to mismatches. This

algorithm utilizes a mask to generate possible keys

for mapping sequences. Based on these masks or

patterns, the algorithm does not include some bases

in the mapping. The match and mismatch of the

bases will not make a difference in the mapping

result, and they will be able to control the data

polymorphism. They are also allowed to map

color-space sequences generated by AB-SoLID.

Some tools have recently learned the hash table to

improve the alignment process.

In [46], a bit-mapping method is proposed for

mapping query sequences to a reference database.

This method involves learning the hash algorithm

from the transcriptome to generate binary hash

codes for sequences. The query sequences are then

mapped to the corresponding transcripts based on

their hash codes. This algorithm treats the query

mapping problem as the nearest neighbor search

(NNS) problem in the learning machine, which

aims to find the nearest neighbor to the query item

by measuring a certain distance.

In [47], a combination of matrix and linked-list

data structures is utilized to store sequence

information. The matrix represents a two-

dimensional grid, where the rows and columns

correspond to the hash values generated by two

specific hash functions. These hash values act as

coordinates for storing and locating sequences

within the matrix. By using the hash values as

coordinates, the method ensures efficient storage

and retrieval of sequences. The matrix provides a

structured framework for organizing the sequences

based on their hash values, allowing for quick

access to the desired sequences. Additionally,

linked lists are used within each matrix cell to

handle collisions or multiple sequences with the

same hash values.

In [48], the authors propose a novel seeding

approach that relies on long inexact matches rather

than short exact matches. They demonstrate that

this approach yields a better trade-off between time

and accuracy in settings with up to a 25% mutation

rate. To achieve this, they utilize sketches of a

subset of graph nodes, which are more robust to

indels. These sketches are stored in a k-nearest

neighbor index, effectively mitigating the curse of

dimensionality. Their approach stands in contrast

to existing methods and emphasizes the significant

role that sketching in vector space can play in

bioinformatics applications. The authors further

Emadi et al / Journal of AI and Data Mining, Vol. 12, No. 3, 2024

440

demonstrate that their method can scale graphs

with 1 billion nodes and provide quasi-logarithmic

query times for queries with an edit distance of

25%. In fact, for such queries, longer sketch-based

seeds result in a 4× increase in recall compared to

exact seeds.

In [49], the authors introduced a novel sequence

alignment technique called ESA. This algorithm is

implemented on the Sunway TaihuLight

architecture and is capable of performing both local

and global alignment. The algorithm incorporates

several advanced features, including cache-aware

sequence alignment, capacity-aware load

balancing, and bandwidth-aware data transfer.

However, one limitation of ESA is its relatively

high computational time. Additionally, when the

lengths of the sequences being aligned differ

significantly, ESA may encounter an issue of

asymmetric load distribution among the

processors.

In [50], the authors introduced the FMapper

algorithm, specifically designed for the TaihuLight

supercomputer. This algorithm is optimized to

leverage the computing power of the fourth-

generation ShenWei multi-core architecture

(SW26010). The FMapper algorithm incorporates

dynamic task scheduling, synchronous I/O, and

data transfer techniques to maximize performance

and efficiency. The authors achieved a significant

speedup of 6 compared to the naïve

implementation. Additionally, when scaling up to

512 compute groups, they observed a strong

scaling efficiency of 65%."

In [51], The main objective is to find the maximum

alignment region between two sequences and then

identify the seeds within that region to increase

sensitivity. In this algorithm, artificial intelligence

rules are used to find additional seeds with

different lengths. Additionally, this algorithm can

be used for weighted seeds. The "if-else" rule is a

simple expression in AI that is used to determine

the length of seeds to be searched for and whether

overlapping seeds should be merged or discarded.

In [52] The computational burden of algorithm is

alleviated by utilizing the LexicHash method to

estimate sequence similarities. To achieve this, the

algorithm performs a hash function on each k-mer

within the read sequence and stores the minimum

hash value. By counting the number of minimum

hash matches between pairs of reads, the algorithm

can estimate the similarity between two sequences.

It is crucial to carefully choose the parameter k

when identifying sequences. Increasing the value

of k enhances accuracy and precision, but there is

a possibility of losing some matches.

In [36], the authors employ the OpenMP

parallelization method and shared memory to

enhance performance. The method involves

dividing sequences amongst processors, with each

processor dividing its reference sequences into

completely overlapping k-mers. A shared hash

table is then created with the assistance of other

processors. In the subsequent step, each processor

receives a query sequence and, using the shared

hash table checks the percentage of similarity

between the query sequence and the sequences in

the hash table. The result is then returned to the

user. Although this method offers several

advantages, such as ease of implementation and

reduced overhead due to the use of shared memory,

it can only run on a single node and is not

distributed. Additionally, if the reference

sequences are few but lengthy, a few processors

may have to handle a substantial workload.

Therefore, to enhance this method, distribution can

be increased, and other methods can be utilized to

manage the load if necessary.

Most of the algorithms mentioned in the literature

require special hardware platforms or the addition

of special software and algorithms to enable

parallelism in the alignment process. However,

these approaches often result in overheads, and in

many cases, only the overlap technique is used in

one of the input sequences, typically the query.

This approach leads to only a portion of the

reference sequences being placed in the hash table

and subsequently used in the search and mapping

phases, potentially resulting in reduced accuracy in

the output results. A detailed comparison of the

above algorithms is provided in Table 1.

3 Methodology

This algorithm employs a novel approach

compared to many hash table-based applications,

such as the BLAST family, which utilizes the seed-

and-extend strategy. Instead, this algorithm uses an

SSAHA-based method, dynamically selecting the

K-mer size and utilizing the overlap technique to

extract them from both input sequences. The

overlap technique can improve accuracy by up to

100% regardless of INDEL/GAP and mismatch.

To optimize time and memory management, this

algorithm utilizes parallelism, with a master node

and N-1 worker nodes responsible for compressing

and dividing data, creating a hash table, and

mapping query sequences.

The algorithm breaks down large reference

sequences into smaller ones and distributes them to

different nodes, allowing for fully distributed and

concurrent indexing.

PSALR: Parallel Sequence Alignment for long Sequence Read with Hash model

441

Table 1. Comparison of parallel alignment algorithms.

Techniques for

memory

optimization

The use of

hard/soft
ware

INDEL/Gap

acceptance

Parallelism

MPI/Openmp/

GPU

Alignment

techniq

ue

Algorith

m
Year Reference

No No yes -- Hash-Base BLAST 1990 Altschul, S.F.,

et al

No Greedy Algorithm yes MPI Hash-Base MPIBlast 2005 Lin, H., et al.

No PCJ-lib yes MPI Hash-Base Parallel-
Blast

2018 Nowicki, M., et
al.

No SST/macro yes MPI Hash-Base Parallel-
Blast

2013 Dechev, D., et
al.

No Optics yes NA Hash-Base WOC 2018 Mozafari, F., et
al.

No --- Yes MPI BWT-Base STAR 2013 Dobin, A., et al.

No MPU Limited number -- BWT-Base MPU-

BWA

2018 Vijayaraghavan,

T., et al.

No --- Yes MPI Hash-Base RPAlign 2009 Bandyopadhyay

, S, et al.

No ---- yes --- Suffix Array

&

Hash-Base

HPG

Aligner
SA

2015 Martinez, H, et

al.

NO --- Yes MPI Hash-Base Kmerind 2019 Pan, T., et al.

Compress Multi-Pattern Yes MPI Hash-Base Fast

Matching

Method

2014 Q. Xue et al.

NO --- Yes MPI Hash-Base Parallel

Pairwise

2006 Chen, Y, et al.

Hash-code ----- NA --- Hash-Base Learning
hash-

table

2020 Yu, X, et al.

Multi-level-index Yes POSIX Hash-Base BFAST 2009 Homer, N, et al.

 ------ Yes OpenMP Hash-Base SHRiMP 2009 Rumble, S.M.,
et al.

Yes ------- Yes OpenMP Hash-Base Parallel-
Alignmen

t

2022 Esmat, A., et al.

Yes NA ------- Hash-Base Matrix-

LinkedLi

st

2022 Peng, F., et al.

----- ------ Yes ---- Graph

Alignmen
t

2023 Canzar, S., et al.

No NA Yes GPU Needleman-
Wunsch

scalable
parallel

algorithm

2023 Muhammad,U.
et al.

Emadi et al / Journal of AI and Data Mining, Vol. 12, No. 3, 2024

442

Additionally, nodes do not need to return their

results to the primary node, and each node puts its

results in the output file.

An evaluation method is used to assess the

accuracy, precision, and sensitivity of the

algorithm, which demonstrates that selecting

sequence overlapping bases not only increases

accuracy but also does not reduce sensitivity.

Overall, this algorithm provides a more efficient

and accurate approach to sequence alignment

without the need for specialized hardware or

software

3.1 Problem Definition

In this study, we aim to optimize the alignment of

genomic sequences by improving the storage

process, managing memory, and increasing

execution speed. To achieve this goal, we propose

a novel algorithm that utilizes various techniques,

including parallelism, compression, reduction, and

hash-based indexing. These techniques enable

efficient memory management and faster

processing without compromising accuracy or

sensitivity. PSALR Algorithm dynamically selects

K-mers with desired lengths and enables user-

defined overlap to enhance precision and accuracy.

Additionally, PSALR breaks down large reference

sequences into smaller ones and distributes them

across nodes for fully distributed and concurrent

indexing. This algorithm eliminates the need to

return results to a central node, reducing network

traffic and improving efficiency. The purpose of

this study is to investigate the alignment of

genomic sequences, improve the storage process

and sparse execution, and at the same time the

indexing and mapping steps to manage memory

and increase speed, definitions are needed that are

detailed in [36]. But it is briefly described below.

3.1.1. Definition 1

In sequence alignment, the reference sequences are

known sequences that are stored in a database,

while the query sequences are unknown sequences

that are compared to the reference sequences to

identify and predict their structure. The goal of

sequence alignment is to identify regions of

similarity between the query and reference

sequences, which can provide insights into the

evolutionary relationships, functional domains,

and other important features of biological

molecules such as DNA, RNA, and proteins.

1 2

1 2

Re (, ,...,) , 1

(, ,...,) , 1

m

n

f seq seq seq m

Query seq seq seq n

 

 

3.1.2. Definition 2

In DNA sequencing, each DNA string is

represented by the four nucleotide bases: A

(adenine), C (cytosine), G (guanine), and T

(thymine). Depending on the length of the DNA

string, these nucleotides combine to form the

sequence. To optimize memory consumption in

data storage, binary numbers are used instead of

characters. This means that only two bits are

needed to represent each nucleotide base instead of

the standard eight bits used to represent a single

character. By compressing the data in this way, it

can reduce the memory footprint of the DNA

sequences and improve the efficiency of the

alignment process.

() (00)2 () (01)2

() (10)2 () (11)2

F A F C

F G F T

 

 

3.1.3. Definition 3

A K-mer is a sub-string of length k that is a

continuous sequence of DNA bases within an input

sequence. The number of K-mers within a string is

obtained from the relation 1N K  if the K-

mers overlap or from the relation /N K if they do

not overlap. According to Definition 2, each K-mer

can be represented as a unique number with 2k bits,

which is referred to as the mer index. The mer

index can be created using Equation 1.
1

1
() 4 () 1,2,...,

k i

i
E w f bi i k


  (1)

3.1.4. Definition 4

The hash table is defined as a triple (w, E(w),

Position), where w is a K-mer, E(w) is its index,

and position is an array of positions of w within the

reference file. This hash table allows for efficient

indexing and searching of K-mers within the

reference file, enabling the alignment algorithm to

quickly identify regions of similarity between the

query and reference sequences. When a query

sequence is received, the algorithm uses the hash

table to locate the K-mers within the query

sequence and then searches for matching K-mers

within the reference file. The positions of these

matching K-mers are stored in the Position array,

allowing the algorithm to identify potential regions

of similarity between the query and reference

sequences.

3.1.5. Definition 5

To search for all query sequence hits within the

reference sequences, the PSALR algorithm scrolls

through the query sequence from base zero to (l-k),

where l represents the length of the query sequence.

For each base t, it obtains the list of positions r,

PSALR: Parallel Sequence Alignment for long Sequence Read with Hash model

443

which represents the occurrence of the K-mer

wt(Q) within the query sequence, from the hash

table. It then extracts the list of K-mer positions and

place them in a table, which will be used for

mapping in the next phase. Finally, the algorithm

calculates the list of hits using Equation 2, as

described in Ning, Cox, and Mullikin (2001).

1 1 1 2 2 2(. .)(. .)...(. .)t t r r t rH i j j i j j i j j   (2)

The value t represents the distance of the K-mer

from the beginning of the input sequence. The

collision list contains three elements: index (ir),

shift (jr-t), and offset (jr), which are used to identify

the locations of the K-mer match within the

reference sequence. The collision list is sorted first

by index and then by shift, allowing for efficient

mapping of the query sequence to the reference

sequence. By sorting the collision list in this way,

it can quickly identify regions of high similarity

between the query and reference sequences and

accurately align the sequences.

In the final step of this algorithm, the list of hits

based on index, shift, and offset it sorted. Then, the

algorithm performs a scan to identify hits that have

the same index and shift, which allows us to

determine the corresponding bases between the

query and reference sequences. If the algorithm is

allowed to accept INDELs, there may be

differences between the positions of the hits that

are equal to the number of INDELs present. In this

case, closely matched areas can be combined to

create larger regions for GAP acceptance. By using

this approach, this algorithm can accurately align

the query and reference sequences, even in the

presence of INDELs or other types of variations.

4. The Proposed Technique

Algorithm PSALR utilizes MPI parallelism to

divide the operation process into two parts. The

master or zero node performs certain operations

such as receiving, preprocessing, compressing, and

sending data, as shown in Figure1. The worker

nodes are responsible for receiving data, extracting

K-mers, creating hash tables, and searching and

mapping query sequences concurrently.

In the master section, a node receives the sequences

from the input files and preprocesses them. Each

character (base) in the sequence is converted into

two binary bits to reduce their size, and the

compressed data is placed in 8-byte packets before

being sent to the worker nodes.

In the worker section, each node receives its

sequences, extracts the overlapping K-mers with a

window length of one from the received reference

sequences, and creates a hash table from them. The

worker nodes then perform search and mapping

with the query sequences received in the hash table

and print the mapping results of their sequences in

the output file.

By utilizing MPI parallelism in this way, the

PSALR algorithm can efficiently process large

amounts of data and speed up the alignment

process, making it a valuable tool for genomic

research and related fields.

Figure1. The PSALR framework

Emadi et al / Journal of AI and Data Mining, Vol. 12, No. 3, 2024

444

Problem: The task is to find encrypted pattern(s) P'

in encrypted sequence(s) T' without decoding,

using n nodes for concurrent processing. The

reference file may contain one or several

sequences, while the query file may contain one or

several patterns.

To address this problem, we propose an algorithm

that operates in both zero and non-zero nodes.

Algorithm 1 presents an example of parallel

execution in these two operational nodes. The

master node performs operations in lines 1-39,

while the worker node performs operations in lines

40-43. Details and code for both nodes are

provided in the following sections.

Algorithm 1: Query search in the Hash table and extract their

positions in each node

1. IF Node == 0 THEN

2. For each sequence (seq) in the dataset, do

3. IF (seq is large) THEN

4. Initialize start_index

5. WHILE (start_index + 180 < seq.size()) do

6. Add 180 characters from start_index to Section_data

7. Increment start_index by (180 - k)

8. END WHILE

9. Dispatch(Section_data) // Continue processing sectioned

data

10. ELSE

11. For i <- 1 to seq.size(), i += 32 do

12. Add 32 characters from position i to Section_seq

13. END FOR

14. IF (mod exists) THEN

15. Add remaining characters (mod) to Section_seq

16. END IF

17. END IF

18. END FOR

19. Count <- seq_count / Number_threads

20. For i <- 1 to Count, do

21. MPI_Send(&ready, 1, MPI::BOOL, executer_id,

READY_TAG, MPI_COMM_WORLD)

22. MPI_Send(&k, 1, MPI_UNSIGNED, executer,

GLOBAL_K_TAG, MPI_COMM_WORLD) // K-mer size

23. For each data in Section_seq, do

24. Orgin = compress(data)

25. MPI_Send(&orgin, 1, MPI_UNSIGNED_LONG,

executer_id, ORIGIN_TAG, MPI_COMM_WORLD)

26. END FOR

27. MPI_Send(&dataset_index, 1, MPI_UNSIGNED,

executer_id, DATASET_INDEX_TAG, MPI_COMM_WORLD)

28. MPI_Send(&mer_index, 1, MPI_UNSIGNED, executer_id,

DATASET_INDEX_TAG, MPI_COMM_WORLD)

29. MPI_Send(§ion_seq_size, 1, MPI_UNSIGNED,

executer_id, SECTION_SIZE_TAG, MPI_COMM_WORLD)

30. END FOR

31. END IF

32. ELSE IF Node != 0 THEN

33. For i <- 1 to Count, do

34. MPI_Recv(&ready_for_seq, 1, MPI::BOOL, 0,

READY_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE)

35. MPI_Recv(&origin, 1, MPI_UNSIGNED_LONG, 0,

ORIGIN_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE)

36. MPI_Recv(§ioned_seq_size, 1, MPI_UNSIGNED, 0,

SECTION_SIZE_TAG, MPI_COMM_WORLD,

MPI_STATUS_IGNORE)

37. MPI_Recv(&debug_f_l2, 1, MPI::BOOL, 0,

DEBUG_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE)

38. MPI_Recv(&big_seq, 1, MPI::BOOL, 0, DEBUG_TAG,

MPI_COMM_WORLD, MPI_STATUS_IGNORE)

39. MPI_Recv(&k, 1, MPI_UNSIGNED, 0,

GLOBAL_K_TAG, MPI_COMM_WORLD,

MPI_STATUS_IGNORE)

40. END FOR

41. Extract_Kmer_from_origin()

42. Create_Hash_table()

43. Extract_Query_Position_in_Hash_table()

44. Perform_Mapping()

45. END IF

The zero or master nodes execute three main

phases, namely input reception, encoding, and

sending. These phases are explained in detail

below:

• Input Reception

DNA sequences consist of two complementary

strands, which are represented as separate files

during preprocessing. The query sequences are

typically provided in .fastq format, while the

reference sequences are in .fasta format. The input

sequences may contain the character N instead of

one of the four main bases, which is often randomly

replaced with one of the bases in other algorithms.

However, in PSALR, N characters are eliminated

to prevent incorrect events and improve accuracy,

PSALR: Parallel Sequence Alignment for long Sequence Read with Hash model

445

as the algorithm considers overlapping bases and

calculates both mismatches and gaps.

• Encoding

Parallel and network algorithms face challenges

such as file transfer and bandwidth occupancy. The

query and reference files contain characters that

require significant memory and bandwidth to

transmit since each character occupies 8 bits. To

address this issue, this algorithm employs

compression techniques that reduce each

character's size to 2 bits, allowing the transmission

of four characters with a single byte. The nodes can

continue searching and aligning by receiving the

transmitted encoded characters without decryption,

which saves time and memory compared to some

existing algorithms.

During this phase, the string is encrypted and

packaged into 8-byte packets, as outlined in

Pseudo-code 1. This algorithm packs 32 characters,

or 64 bits, into each packet and then sends the

packet index to the nodes in the next phase. The

encryption and packaging process is performed for

all query and reference sequences, significantly

improving memory consumption, bandwidth

transmission, and data transmission speed.

To encode each character as an unmarked integer

with two bits in each nucleotide, binary numbers

are used instead of characters. Since the string

length may not be a multiple of 32, the last packet

may not be complete. Thus, the final package size

is calculated as follows:

Last_Pack = String.size() % 32

After sending the string data packets, an eight-byte

status packet is sent to indicate if the final packet

contains several characters.

• Sending

This section details the three types of data that need

to be transmitted in this algorithm. The first type

comprises compressed packets of reference

sequences, which must be divided among the nodes

to concurrently create a hash table. The second type

is the user-specified K-mer size, which must be

sent to all nodes. The final type consists of

compressed packages of query sequences, which

must be sent to all nodes for searching and mapping

based on the hash table created in subsequent

phases.

When using MPI parallelism in algorithm, the

sequences are divided among the nodes. If N is the

number of nodes and M is the number of reference

sequences, each node is assigned approximately

M/N sequences. Thus, the zero nodes must send the

encoded packets of each sequence to one node,

which extracts K-mers from the received packets

and creates a hash table. If a reference sequence is

large, it can be broken into subsequences and

distributed among the nodes to avoid overloading

any one node. For instance, if the master node is

WM and the other nodes are WS, a large sequence

SL can be divided into segments, with each node

assigned a segment except the master. If the K-mer

size is k, the size of each segment Fi, i = 1, 2, ..., n

is calculated as follows:

1

SL
K

N




 Where N is the number of processors, the

beginning and end of each segment can be

calculated as follows:

[] (1)* 1
1

SL
start i i

N
  



and

[] *
1

SL
End i i K

N
 



Next, operations performed on non-zero or worker

nodes, including subsequence extraction, hash

table creation, query sequence search, and

mapping, are described.

• K-mer Extraction

Each node receives the K-mer size (k) and

compressed packets of reference sequences, which

are extracted using the overlap technique without

decoding the packets in sequential shifts. At each

time step, the node receives a query sequence from

the zero nodes and generates a list of K-mers from

it.

Many hash-based aligners only index non-

overlapping K-mers of the reference database to

preserve memory. This means that they only

include 1/k of the database locations in the index

table for K-mers of length k. For example, if the K-

mer size is five and a query or reference sequence

is as follows, a window of five characters is drawn

on the sequence using the overlap technique. This

approach returns all possible subsequences of the

string as K-mers. Thus, the number of K-mers

obtained from the sequence is calculated as

follows:

Number (k_mer) = (n - K_mer+ 1)

Where n is the length of the strings or the number

of bases. In the following example, the number of

K-mers will be equal to 11.

Emadi et al / Journal of AI and Data Mining, Vol. 12, No. 3, 2024

446

S1= CGTCACTCTGAGGAT

K-mers is: GTCA, GTCAC, TCACT, CACTC,

ACTCT, CTCTG, TCTGA, CTGAG, TGAGG,

GAGGA, AGGAT

Regardless of the overlap technique, the number of

K-mers in the same string that reaches the search

and mapping phases is only part of all of the string

subsequences shown below.

K-mers is: CGTCA, CTCTG, AGGAT

In other words, the number of K-mers that reach

the main phase is obtained by dividing the string

length by the size of K-mer, which will be only

three K-mers in the same example.

In this small example, the difference in the number

of K-mers that reach the search and mapping

phases can be seen. This difference in datasets with

millions of bass characters can significantly reduce

the output accuracy. Many algorithms convert only

one of their sequences to overlap and the other to

non-overlap and send it to the search and mapping

phases so that they can maintain some accuracy

because selecting K-mers with the overlap

technique increases the amount of memory several

times. Some algorithms even use the non-overlap

technique for both query and reference sequences,

sacrificing performance and accuracy for speed and

memory. However, this algorithm uses the overlap

technique for both query and reference sequences

and tries to manage memory and time using

techniques that will be discussed later so that they

do not increase dramatically and even improve in

many cases, and bring its accuracy closer to 100 by

considering two mismatches and two gaps per K-

mer.

• Hash Table Creation

The first process in alignment is to create a hash

table for the reference sequence. The indexing

process begins after the nodes receive the reference

sequences. As mentioned earlier, not all possible

states of K-mer are included in this table, and only

the K-mers in the sequence are placed in the hash

table by moving over the desired sequence. Their

position is then recorded in the table. According to

definition 4, the hash table consists of three parts:

w, E (w), and position. In SSAHA, two data

structures are used to create a hash table: a list of

positions and an array of pointers to the list. Since

this algorithm puts all possible states of K-mer in

the table, 4k pointers are required. Pointers in

position E (w) point to the entry in the list of

desired K-mer positions. However, in this

algorithm, not all possible states of K-mer are

entered, and K-mers are placed in the hash table

that is in the reference sequences. So, it helps to

reduce the hash table.

Another problem is using two passes to create a

hash table in the SSAHA algorithm. In the first

pass, all non-overlapping events are counted in

each of the 4k possible states, and in the second

pass, the event information of that K-mer is placed

in the reference list in the reference sequences.

Algorithm 2: Create a Hash-table for every node

Input: A set of sequences in the Reference file

Output: A hash table with k-K-mers of the reference file and their

position

01 Initialize a hash table: Map <unsigned long, vector<unsigned

int>> table1

02 For each sequence in Ref_file do

03 For each K-mer in the sequence do

04 Split the K-mer into substrings (K-mer, k, mersvector) //

Store K-mers in mersvector

05 End For

06 End For

07 For each K-mer in mersvector do

08 If K-mer exists in table1 (insertion.second is false) then

09 Add dataset_index and mer_index to the existing entry in the

hash table

10 Else

11 Create a new entry in the hash table with dataset_index and

mer_index

12 End If

13 End For

17 End For

In the PSALR algorithm, all overlapping K-mers

can be completed with a one-pass hash table. In

other words, the K-mer positions are placed in the

position list in the order of their passage, passing

through the beginning of the reference sequences.

Algorithm 2 displays pseudo-code to create a hash

table.

5. Evaluation

In this section, the PSALR algorithm is evaluated

with overlap and non-overlap techniques and

compared with the other three algorithms in terms

of memory and time consumption in the indexing

section. Experiments are performed on datasets

with different numbers and lengths based on Table

2, the results of which are analyzed in the next

section. Implementations and evaluations are done

on a machine with 128 cores and 256 GB of

PSALR: Parallel Sequence Alignment for long Sequence Read with Hash model

447

memory. STAR, BFAST, and SHRiMP algorithms

are used to evaluate and compare the proposed

algorithm. Some aligners argue that using all

sequence bases for indexing and mapping reduces

the sensitivity of the algorithm, and if a base

mutates in K-mer, it will be rejected in the mapping

phase.

Table 2. Datasets used in experiments.

Sequence-number Size Name Source Organism DB

2,727,589 3.1GB SRR072029.fastq Query Genomic Fragaria
vesca f.alba

DB

1 741MB GRCH37.p13
CHROMOSOME 1

Ref Genomic H. sapiens

7,757,821 2.6GB SRR077487.fastq Query 1000

Genome
HG00096,

NCBI

H. sapiens DB2

1 208MB GRCH37.p13
CHOROMOSOME x

Ref 1000
Genome

reference

GRch37

H. sapiens

14,166,619 2.6GB SRR494099.fastq

Query Genomic H. sapiens DB3

1 439MB GRCH38-Genome
CHROMOSOME 2

Ref NCBI
Nucleotide

CM0004

63.1

H. sapiens

Therefore, they use Space Seed technique to extract

K-mers from sequences that will reduce accuracy.

The Space Seed technique in bioinformatics is a

method used to enhance the sensitivity of sequence

mapping by selectively considering specific seeds

of a sequence rather than analyzing the entire

sequence. This technique aims to improve the

detection of similarities or patterns between

sequences while allowing for some degree of

mismatch. However, this study shows that not only

accuracy but also sensitivity will be increased by

selecting all bases and involving them in indexing

and mapping and that the False Negative problem

will be prevented by considering mismatch and

indels in K-mers. The details will be explained

below.

The first item in the experiments is size K. As

mentioned in the literature review, the K-mer size

can be considered differently. Selecting a small K-

mer size increases sensitivity but increases false

positives (FP). Instead, selecting a large K-mer

reduces sensitivity, speeds up the process, and

reduces FP. Selecting longer K-mers in indexing

will result in less FP. In this way, a better alignment

will be obtained [53]. Most algorithms, such as the

BLAST family, use a small k-size, or algorithms,

such as BFAST, use K-mers longer than 14 to

manage memory at two-level or higher indexes.

Some algorithms, such as ELAND, MAQ, BFAST,

and SHRiMP use the space seed technique so that

not all bases are considered for mapping, and only

the part specified in the template is selected to

increase the sensitivity and accept some mismatch

by defining such patterns. For example, if a pattern

is considered to be 11101001, the size of K-mer is

8, but its weight is 5, and only 1,2,3,5,8 K-mer

bases are used to map two sequences. These

algorithms generally use fixed lengths and weights

by default to perform the alignment process. Space

seeds and their shifted samples map fewer

positions for adaptation and do not include INDEL

[7, 20]. In a group of these algorithms, one or more

templates are defined independently so that at the

time of mapping, the K-mer must match at least one

of the templates. However, another group follows

the seed-and-vote technique, in which several

seeds jointly identify a candidate region. In space

seed-based algorithms, K-mers are first extracted

from the query based on the defined template and

placed in the index table (in the case of reference-

indexed algorithms, this is done for reference

sequences). The search and alignment then take

place in another sequence [54]. However, the

proposed algorithm uses larger k sizes from the

BLAST family and other common algorithms by

selecting sequential and overlapping bases to

reduce false positives in addition to improving

accuracy.

Using the overlap technique in query and reference

sequences, the PSALR algorithm tries to complete

the process accuracy, which significantly increases

memory consumption, especially during indexing.

Therefore, two groups of comparisons are used in

the next section to evaluate the algorithm. The first

group is the comparison of memory and time

consumed to index the data in the proposed

algorithm with overlap and non-overlap

techniques, and the second group is the comparison

of memory and time with three other algorithms

with a different number of processors at the time of

data indexing.

Emadi et al / Journal of AI and Data Mining, Vol. 12, No. 3, 2024

448

5.1 Comparison of the proposed method with

overlap and non-overlap techniques

In this section, the memory and time required to

index the proposed algorithm with overlap and

non-overlap techniques are reviewed and

compared.

In the first mode, like most aligners, query

sequences are considered with the overlap

technique, reference sequences are considered with

the non-overlap technique, and indexing and

mapping are performed on the three datasets

mentioned. In the second mode, K-mers of query

and reference sequences are extracted by the

overlap technique, and indexing and mapping are

performed. As mentioned earlier, hashing

algorithms consume the most memory and time in

indexing. In the PSALR algorithm, after indexing,

the queries are entered sequentially and aligned.

They then go out and free up memory so that the

amount of memory consumed does not increase.

The implementation of the algorithm on three

datasets by overlap and non-overlap techniques can

be seen in Figure2. As can be seen in the figure, the

amount of memory consumed by the overlap

technique is several times higher than the non-

overlap one due to the increase in the number of K-

mers. For example, the amount of memory

consumption in the K-mer with a length of 17 in

DB1 is significantly reduced from 38.4GB to 3.53

GB. Therefore, most aligners use the same

technique and extract only query sequences by the

overlap technique so that they can maintain some

accuracy. Algorithms such as SSAHA, SNAP, and

BSSHA are examples of this.

The time required to index each of the DBs by

overlap and non-overlap techniques is shown in

Figure 3. For example, in the same DB1 and K-mer

with a length of 17, the consumption time increases

from 1159 to 86 seconds because, in the overlap

technique, all sequence K-mers must be extracted

and placed in a table.

However, in the non-overlap technique, only 1/k is

extracted from the subsequences and placed in the

table, so it greatly reduces memory and time but

lacks the necessary accuracy for the reasons stated

earlier. In this study, 2,4,8 and 16 processors are

used to evaluate the algorithm and execute it in

parallel. In the following, the amount of memory

and time consumed by the algorithm with two

techniques and execution on 2 and 16 processors

with k of different lengths are shown. The amount

of memory consumption of datasets is compared by

the overlap technique with 2 and 16 processors in

Figure 4.

Figure 2. Comparison of memory consumption in three

datasets by overlap and non-overlap techniques with two

processors.

Figure 3. The time required for indexing by overlap and

non-overlap techniques with two processors.

0

200

400

600

800

1000

1200

1400

k=11 k=15 k=17 k=20 k=25

Ti
m

e
(S

e
c)

K-mer

DB1,np=2

Ref-overlap Ref-Non-overlap

0

3000

6000

9000

12000

k=11 k=15 k=17 k=20 k=25

M
e

m
(M

B
)

K-mer

DB2,np=2

Ref-overlap Ref-Non-overlap

0

10000

20000

30000

k=11 k=15 k=17 k=20 k=25M
e

m
(M

B
)

K-mer

DB3,np=2

Ref-overlap Ref-Non-overlap

0

500

1000

1500

k=11 k=15 k=17 k=20 k=25

Ti
m

e
(S

e
c)

K-mer

DB1,np=2

Ref-overlap Ref-Non-overlap

0

100

200

300

k=11 k=15 k=17 k=20 k=25

Ti
m

e
(S

e
c)

K-mer

DB2,np=2

Ref-overlap Ref-Non-overlap

0

500

1000

1500

2000

k=11 k=15 k=17 k=20 k=25

Ti
m

e
(S

e
c)

K-mer

DB3,np=2

Ref-overlap Ref-Non-overlap

PSALR: Parallel Sequence Alignment for long Sequence Read with Hash model

449

When the concurrency technique is used, each node

receives a segment of the data sequence and

generates its index table. In this way, the amount of

memory consumed is reduced in proportion to the

number of processors. However, in 2-processor

mode, only one node is responsible for creating the

hash table, which increases memory and time

consumption. Therefore, creating a distributed

hash table can help to consume memory several

times.

Figure 4. Consumption memory for indexing datasets

with 2 and 16 processors.

Figure 5 shows the time required to index the

reference sequence in different datasets with this

number of processors. As the number of processors

increases, the time required for indexing is greatly

reduced. For example, the time required to index a

DB1 by 2 processors in K-mers with a length of 15

is 1800 seconds but is reduced to 100 seconds with

16 processors. Therefore, creating a distributed

index table can reduce the speed by several times

in addition to memory reduction.

Based on the above, it can be concluded that the

proposed algorithm in K-mer with a length of 17

has the highest memory and time consumption and

that by increasing the length of k again, memory

and time consumption decrease because the

number of K-mer in the overlap technique is

obtained based on the formula 1N K  , and

increasing the length of k reduces their number.

5.2 Comparison of the proposed algorithm with

other algorithms with different processors
In this section, the PSALR algorithm is compared

with the other three algorithms. The overlap

technique of query and reference sequences is used

to extract K-mers and align the sequences to

evaluate and compare the PSALR algorithm. The

version used of the three compared algorithms can

be seen in Table 3.

Figure 5. Consumption time for indexing datasets with 2

and 16 processors.

The three STW algorithms, which are based on

BWT, and the BFAST and SHRiMP algorithms,

which are both hash-based, are compared with the

proposed algorithm. Since BWT algorithms do not

use K-mers for alignment and space seed

algorithms, typically use fixed K-mers with

different weights to extract K-mers, in this section,

K-mer with lengths of 11 and 20 are used by default

of other algorithms to evaluate the PSALR

algorithm.

The memory and time consumption of the PSALR

algorithm using K-mer with length 11 is compared

with other algorithms in Figure 6 and 7.

0

10000

20000

30000

40000

50000

k=11 k=15 k=17 k=20 k=25

M
e

m
(M

B
)

K-mer

DB1,np=2,16

np=2 np=16

0

3000

6000

9000

12000

k=11 k=15 k=17 k=20 k=25

M
e

m
(M

B
)

K-mer

DB2,np=2,16

np=2 np=16

0

10000

20000

30000

k=11 k=15 k=17 k=20 k=25

M
e

m
(M

B
)

K-mer

DB3,np=2,16

np=2 np=16

0

200

400

600

800

1000

1200

1400

k=11 k=15 k=17 k=20 k=25

T
im

e
(S

e
c)

K-mer

DB1,np=2,16

np=2 np=16

0

500

1000

1500

2000

k=11 k=15 k=17 k=20 k=25

T
im

e
(S

e
c)

K-mer

DB3,np=2,16

np=2 np=16

0

100

200

300

k=11 k=15 k=17 k=20 k=25

T
im

e
(S

e
c)

K-mer

DB2,np=2,16

np=2 np=16

Emadi et al / Journal of AI and Data Mining, Vol. 12, No. 3, 2024

450

Table 3. Alignment tools.

As shown in Figure 6, we have the highest amount

of memory at np = 2 because the distribution

reaches zero, and only one processor is involved in

creating the table. Although the PSALR algorithm

uses the overlap technique in extracting K-mers, it

manages memory consumption using the

mentioned techniques and performs better than

other algorithms. In this algorithm, the hash table

is created even with a large, fully distributed
sequence. Therefore, as the number of processor

increases, memory consumption decreases.

Figure 6. Comparison of memory consumption in the

PSALR method with K-mer = 11.

However, in other algorithms, the memory

consumption at different np is not much different

from each other. The memory and time

consumption of the PSALR algorithm with a

different number of processors is compared with

other algorithms in Table 4.

The time required to index the reference table in the

proposed algorithm with overlap and non-overlap

techniques and its comparison with other

algorithms can be seen in Figure 7. Although the

reduction in time consumption can be seen as the

number of processors increases in all algorithms,

the proposed algorithm performs better with both

techniques than the other algorithms. According to

the figure, SHRiMP has the most time consumption

among algorithms. The same comparisons with K-

mer = 20 can be seen in Figure 8 and 9.

Figure 7. Comparison of time consumption of the PSALR

algorithm with K-mer = 11.

When the overlap technique is used and all possible

K-mers are extracted from the sequence, high time

and memory are required to extract and index them.

As shown in Figure 8, the length of K-mers has

increased compared to the previous experiment.

The PSALR algorithm does not work well

compared to other algorithms in the overlap

technique and np = 2, which is without distribution,

and only one processor is responsible for extracting

all possible K-mers from a large sequence and, then

recording their positions from the sequence in the

table, but improves at higher np as the number of

processors increases and the sequence indexing is

divided between more nodes. However, it easily

performs better than other algorithms in the non-

overlap technique used in many alignments.

Similarly, Figure 9 shows a comparison of the time

consumed to index the data for the PSALR

algorithm with the other three algorithms, which is

better in both modes.

0

5000

10000

15000

20000

25000

np=2 np=4 np=8 np=16

M
em

(M
B
)

DB1,k=11

Ref-overlap Ref-Non-overlap SATR

BFAST SHRiMP

0

3000

6000

9000

np=2 np=4 np=8 np=16

M
em

(M
B
)

DB2,k=11

Ref-overlap Ref-Non-overlap SATR

BFAST SHRiMP

0

3000

6000

9000

12000

15000

18000

np=2 np=4 np=8 np=16

M
em

(M
B
)

DB3,k=11

Ref-overlap Ref-Non-overlap SATR

BFAST SHRimp

0

2000

4000

6000

8000

np=2 np=4 np=8 np=16

Ti
m

e
(S

e
c)

DB1,k=11

Ref-overlap Ref-Non-overlap
SATR BFAST
SHRiMP

0

2000

4000

6000

8000

10000

np=2 np=4 np=8 np=16

Ti
m

e
(S

e
c)

DB2,k=11

Ref-overlap Ref-Non-overlap SATR

BFAST SHRiMP

0

2000

4000

6000

8000

10000

np=2 np=4 np=8 np=16

Ti
m

e
(S

e
c)

DB3,k=11

Ref-overlap Ref-Non-overlap SATR

BFAST SHRiMP

Technology version Tool

MPI 2.7.5.a STAR

POSIX 0-7-0 BFAST

OpenMP 2-2-2 SHRiMP

PSALR: Parallel Sequence Alignment for long Sequence Read with Hash model

451

Table 4. Comparison of memory and time consumption of the proposed algorithm with other algorithms with different

numbers of processors.

Time(sec) Memory (MB) Algorithm Input

Np=16 Np=8 Np=4 Np=2 Np=16 Np=8 Np=4 Np=2

86 180 260 690 811 1495 3189 8135 Overlap

K=11

DB1

23 40 49 93 243 390 697 1638 Non-overlap
K=11

87 140 320 840 2690 5680 13004 37580 Overlap
K=20

39 45 48 87 252 530 1208 3535 Non-overlap

K=20

360 480 1020 1680 19660 19968 22016 22835

STAR

1860 2520 3300 4200 7870 7688 7688 7579

BFAST

3540 4560 6000 7500 12710 12700 12697 12697

SHRiMP

26 43 60 156 358 586 985 2475 Overlap

K=11

DB2

11 11 13 28 89 160 290 608 Non-overlap
K=11

24 34 65 223 751 1573 3396 8908 Overlap

K=20

12 12 15 22 76 152 344 998 Non-overlap

K=20

360 480 660 1200 5658 5288 5741 6907

STAR

300 540 720 1980 2372 2113 2115 1965

BFAST

1740 2640 3900 8340 4633 4532 4508 4517

SHRiMP

128 248 480 360 556 916 1795 4695 Overlap

K=11

DB3
24 25 30 60 161 267 483 982 Non-overlap

K=11

110 216 454 1380 1600 2808 7773 15974 Overlap

K=20

24 24 30 46 150 299 742 2101 Non-overlap

K=20

420 600 1020 2220 11366 10752 14028 14848

STAR

720 1900 1920 4680 4409 4478 4425 4681

BFAST

2880 3180 5700 9420 8744 8749 8750 8766

SHRiMP

According to Table 4, the PSALR algorithm does

not perform best in terms of memory consumption

for the entire length of K-mers due to the increase

in length and number of K-mers. As mentioned

before, other algorithms try to improve it by

keeping the K-mer length constant by default or

creating multi-level indexes.

The proposed algorithm does not work better

without these techniques only when fewer

processors are used, and work is divided between

fewer processors, but it works better in terms of

time consumed in all modes.

One of the most important criteria for aligners is

the accuracy of mapping, which can be greatly

increased by using the overlap technique.

However, this technique requires a lot of memory,

and one of the problems with the hash method is

the amount of memory consumed during the

indexing phase. Therefore, in this study, attempts

were made to achieve improvements in memory

and speed by providing solutions in the processes

of indexing and mapping of alignment so that

precision and accuracy are not lost but increased.

In this technique, three datasets with different sizes

and short and long queries are used, and the

proposed algorithm is evaluated and compared

with the overlap and technique and overlapping

queries. It is found that memory and time

consumption are reduced several times less in the

second mode, but accuracy is reduced for the

reasons stated. The PSALR algorithm is also

compared and evaluated with the other three

algorithms, and it is shown that it performs much

better even with the overlap technique with a high

number of processors and does not perform better

Emadi et al / Journal of AI and Data Mining, Vol. 12, No. 3, 2024

452

only in some cases, such as k = 17 with a low

number of processors that the work is divided little.

Figure 8. Comparison of memory consumption of

the PSALR.

6. Conclusion and Feature Work

Bioinformatics, through the analysis of biological

data such as genetic and protein sequences, plays a

key role in identifying the genetic factors of

diseases, developing personalized treatments, and

accelerating processes of diagnosis and

prevention[55]. Due to the exponential growth of

DNA sequences, the process of searching for and

storing sequences in databases has become

increasingly time and memory-intensive. As a

result, there is a pressing need for efficient

algorithms that can accelerate database searches

while minimizing memory usage. The SSAHA

algorithm, renowned for its efficiency and speed

when compared to seed-and-extend-based

techniques like BLAST, achieves rapid searches in

large databases by eliminating the expansion and

evaluation steps commonly found in hash-based

methods. The primary objective of this study is to

enhance the SSAHA algorithm by addressing

memory management, indexing, and leveraging

parallelism for multiple processors, all while

improving accuracy and performance. To establish

a comprehensive distributed system, PSALR

incorporates parallelization techniques during the

indexing and mapping phases, breaking down large

sequences into shorter segments distributed across

multiple nodes. Additionally, nodes autonomously

relay their results to users without necessitating

users to retrieve results, which significantly

enhances both time and bandwidth efficiency.

Figure 9. Comparison of time consumption of the PSALR

algorithm with K-mer = 20.

To boost the algorithm's accuracy, two key

techniques are employed. Firstly, the extraction of

all K-mers from sequences with a window of length

1 ensures the inclusion of all K-mers in the

alignment. Secondly, a hash table is constructed

based on the K-mers in the text, as opposed to all

possible K-mers of length k. The dynamic selection

of K-mers of desired length by users reduces false

positives and increases true positives while

maintaining sensitivity. In the evaluation process,

we compared the proposed algorithm to BWTs and

Hash-based algorithms. Our findings indicate that

it outperforms them in memory consumption under

most circumstances, except when the distribution is

zero or the number of processors is small.

Nonetheless, there is still room for optimization in

query sequence alignment. This algorithm

necessitates sending all query sequences to each

node, with each node aligning all sequences in the

query file based on its index table and subsequently

transmitting them to the output. While this

approach doesn't increase memory consumption

during alignment, future work should focus on

0
5000

10000
15000
20000
25000
30000
35000
40000

np=2 np=4 np=8 np=16

M
e
m
(M

B
)

DB1,k=20

Ref-overlap Ref-Non-overlap

SATR BFAST

SHRiMP

0

3000

6000

9000

12000

np=2 np=4 np=8 np=16M
e
m
(M

B
)

DB2,k=20

Ref-overlap Ref-Non-overlap

SATR BFAST

SHRiMP

0
3000
6000
9000

12000
15000
18000

np=2 np=4 np=8 np=16

M
e
m
(M

B
)

DB3,k=20

Ref-overlap Ref-Non-overlap

SATR BFAST

SHRiMP

0

2000

4000

6000

8000

np=2 np=4 np=8 np=16

Ti
m

e(
Se

c)

DB1,k=20

Ref-overlap Ref-Non-overlap SATR

BFAST SHRiMP

0

2000

4000

6000

8000

10000

np=2 np=4 np=8 np=16

Ti
m

e(
Se

c)

DB2,k=20

Ref-overlap Ref-Non-overlap SATR

BFAST SHRiMP

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

np=2 np=4 np=8 np=16

Ti
m

e(
Se

c)
DB3,k=20

Ref-overlap Ref-Non-overlap SATR

BFAST SHRiMP

PSALR: Parallel Sequence Alignment for long Sequence Read with Hash model

453

further optimizing alignment to enhance overall

performance.

References
[1] L. Hasan, Z. Al-Ars, and S. Vassiliadis, "Hardware

acceleration of sequence alignment algorithms - an

overview," in Proc. of the International Conference on

Design & Technology of Integrated Systems in

Nanoscale Era (DTIS), 2007, pp. 92-97, IEEE.

[2] P. Bawono et al., "Multiple sequence alignment," in

Bioinformatics, Springer, 2017, pp. 167-189.

[3] S. B. Needleman and C. D. Wunsch, "A general

method applicable to the search for similarities in the

amino acid sequence of two proteins," Journal of

Molecular Biology, vol. 48, no. 3, pp. 443-453, 1970.

[4] J. D. G. De Herve et al., "A perceptual hash function

to store and retrieve large scale DNA sequences," arXiv

preprint arXiv:1412.5517, 2014.

[5] W. J. Wilbur and D. J. Lipman, "Rapid similarity

searches of nucleic acid and protein data banks,"

Proceedings of the National Academy of Sciences, vol.

80, no. 3, pp. 726-730, 1983.

[6] J. Choi et al., "HIA: a genome mapper using hybrid

index-based sequence alignment," Algorithms for

Molecular Biology, vol. 10, no. 1, pp. 1-9, 2015.

[7] H. Li and N. Homer, "A survey of sequence

alignment algorithms for next-generation sequencing,"

Briefings in Bioinformatics, vol. 11, no. 5, pp. 473-483,

2010.

[8] S. Bandyopadhyay and R. Mitra, "A parallel

pairwise local sequence alignment algorithm," IEEE

Transactions on NanoBioscience, vol. 8, no. 2, pp. 139-

146, 2009.

[9] F. Mozafari et al., "Speeding up DNA sequence

alignment by optical correlator," Optics & Laser

Technology, vol. 108, pp. 124-135, 2018.

[10] H. Li and R. Durbin, "Fast and accurate short read

alignment with Burrows–Wheeler transform,"

Bioinformatics, vol. 25, no. 14, pp. 1754-1760, 2009.

[11] R. Li et al., "SOAP: short oligonucleotide

alignment program," Bioinformatics, vol. 24, no. 5, pp.

713-714, 2008.

[12] 1 B. Langmead, "Ultrafast and memory-efficient

alignment of short DNA sequences to the human

genome," Genome Biology, vol. 10, article R25, 2009.

[13] B. Langmead and S. L. Salzberg, "Fast gapped-read

alignment with Bowtie 2," Nature Methods, vol. 9, no.

4, pp. 357-359, 2012.

[14] S. Misra et al., "Anatomy of a hash-based long read

sequence mapping algorithm for next generation DNA

sequencing," Bioinformatics, vol. 27, no. 2, pp. 189-195,

2010.

[15] J. C. Mu et al., "Fast and accurate read alignment

for resequencing," Bioinformatics, vol. 28, no. 18, pp.

2366-2373, 2012.

[16] S. F. Altschul et al., "Basic local alignment search

tool," Journal of Molecular Biology, vol. 215, no. 3, pp.

403-410, 1990.

[17] B. Ma, J. Tromp, and M. Li, "PatternHunter: faster

and more sensitive homology search," Bioinformatics,

vol. 18, no. 3, pp. 440-445, 2002.

[18] Z. Ning, A. J. Cox, and J. C. Mullikin, "SSAHA: a

fast search method for large DNA databases," Genome

Research, vol. 11, no. 10, pp. 1725-1729, 2001.

[19] F. J. Sedlazeck, P. Rescheneder, and A. Von

Haeseler, "NextGenMap: fast and accurate read

mapping in highly polymorphic genomes,"

Bioinformatics, vol. 29, no. 21, pp. 2790-2791, 2013.

[20] S. Canzar and S. L. Salzberg, "Short read mapping:

An algorithmic tour," Proceedings of the IEEE, vol. 105,

no. 3, pp. 436-458, 2017.

[21] H. Mohamadi et al., "ntHash: recursive nucleotide

hashing," Bioinformatics, vol. 32, no. 22, pp. 3492-

3494, 2016.

[22] T. D. Wu, "Bitpacking techniques for indexing

genomes: II. Enhanced suffix arrays," Algorithms for

Molecular Biology, vol. 11, pp. 1-16, 2016.

[23] D. Geng et al., "The implementation of KMP

algorithm based on MPI+ OpenMP," in Proc. of the 9th

International Conference on Fuzzy Systems and

Knowledge Discovery (FSKD), 2012, IEEE.

[24] C. S. Kouzinopoulos, P. D. Michailidis, and K. G.

Margaritis, "Performance study of parallel hybrid

multiple pattern matching algorithms for biological

sequences," in Proc. of the International Conference on

Bioinformatics Models, Methods and Algorithms, 2012,

SCITEPRESS.

[25] H. Li et al., "A fast CUDA implementation of agrep

algorithm for approximate nucleotide sequence

matching," in Proc. IEEE 9th Symposium on

Application Specific Processors (SASP), 2011, IEEE.

[26] Q. Xue, J. Xie, and J. S., "A parallel algorithm," in

Proc. 2014 International Conference on Information

Science, Electronics and Electrical Engineering, 2014.

[27] M. J. Chaisson and G. Tesler, "Mapping single

molecule sequencing reads using basic local alignment

with successive refinement (BLASR): application and

theory," BMC Bioinformatics, vol. 13, p. 238, 2012.

[28] D. Peters, K. Qiu, and P. Liang, "Faster short DNA

sequence alignment with parallel BWA," in AIP

Conference Proceedings, 2011, American Institute of

Physics.

[29] S. M. Rumble et al., "SHRiMP: accurate mapping

of short color-space reads," PLoS Comput Biol, vol. 5,

no. 5, e1000386, 2009.

Emadi et al / Journal of AI and Data Mining, Vol. 12, No. 3, 2024

454

[30] M. David et al., "SHRiMP2: sensitive yet practical

short read mapping," Bioinformatics, vol. 27, no. 7, pp.

1011-1012, 2011.

[31] R. AlSaad, Q. Malluhi, and M. Abouelhoda,

"Efficient parallel implementation of the SHRiMP

sequence alignment tool using MapReduce," in Qatar

Foundation Annual Research Forum Volume 2012 Issue

1, 2012, Hamad bin Khalifa University Press (HBKU

Press).

[32] C.-M. Liu et al., "SOAP3: ultra-fast GPU-based

parallel alignment tool for short reads," Bioinformatics,

vol. 28, no. 6, pp. 878-879, 2012.

[33] P. Klus et al., "BarraCUDA—a fast short read

sequence aligner using graphics processing units," BMC

Research Notes, vol. 5, no. 1, p. 27, 2012.

[34] Y. Liu, B. Schmidt, and D. L. Maskell, "CUSHAW:

a CUDA compatible short read aligner to large genomes

based on the Burrows–Wheeler transform,"

Bioinformatics, vol. 28, no. 14, pp. 1830-1837, 2012.

[35] T. Pan et al., "Kmerind: A flexible parallel library

for K-mer indexing of biological sequences on

distributed memory systems," IEEE/ACM Transactions

on Computational Biology and Bioinformatics, vol. 16,

no. 4, pp. 1117-1131, 2019.

[36] A. M. Esmat et al., "A parallel hash‐based method

for local sequence alignment," Concurrency and

Computation: Practice and Experience, vol. 2021,

article e6568, 2021.

[37] H. Lin et al., "Efficient data access for parallel

BLAST," in Proc. 19th IEEE International Parallel and

Distributed Processing Symposium, 2005, IEEE.

[38] M. Nowicki, D. Bzhalava, and P. BaŁa, "Massively

parallel implementation of sequence alignment with

basic local alignment search tool using parallel

computing in Java library," Journal of Computational

Biology, vol. 25, no. 8, pp. 871-881, 2018.

[39] D. Dechev and A. Tae-Hyuk, "Using SST/Macro

for effective analysis of MPI-based applications:

Evaluating large-scale genomic sequence search," IEEE

Access, vol. 1, pp. 428-435, 2013.

[40] T. Vijayaraghavan, A. Rajesh, and K.

Sankaralingam, "MPU-BWM: Accelerating sequence

alignment," IEEE Computer Architecture Letters, vol.

17, no. 2, pp. 179-182, 2018.

[41] H. Martinez et al., "Concurrent and accurate short

read mapping on multicore processors," IEEE/ACM

Transactions on Computational Biology and

Bioinformatics, vol. 12, no. 5, pp. 995-1007, 2015.

[42] J. W. Kim, E. Kim, and K. Park, "Fast matching

method for DNA sequences," in Proc. International

Symposium on Combinatorics, Algorithms,

Probabilistic and Experimental Methodologies, 2007,

Springer.

[43] A. Dobin et al., "STAR: ultrafast universal RNA-

seq aligner," Bioinformatics, vol. 29, no. 1, pp. 15-21,

2013.

[44] Y. Chen, S. Yu, and M. Leng, "Parallel sequence

alignment algorithm for clustering system," in Proc.

International Conference on Programming Languages

for Manufacturing, 2006, Springer.

[45] N. Homer, B. Merriman, and S. F. Nelson,

"BFAST: an alignment tool for large scale genome

resequencing," PloS One, vol. 4, no. 11, e7767, 2009.

[46] X. Yu and X. Liu, "Mapping RNA-seq reads to

transcriptomes efficiently based on learning to hash

method," Computers in Biology and Medicine, vol. 116,

p. 103539, 2020.

[47] F. Peng et al., "New hash-based sequence alignment

algorithm," in Proc. 2nd International Conference on

Bioinformatics and Intelligent Computing, 2022.

[48] A. Joudaki et al., "Aligning distant sequences to

graphs using long seed sketches," Genome Research,

2023, article gr.277659.123.

[49] H. Zhang et al., "ESA: An efficient sequence

alignment algorithm for biological database search on

Sunway TaihuLight," Parallel Computing, vol. 117, p.

103043, 2023.

[50] K. Xu, X. D. Kai, A. Müller, R. Kobus, B. Schmidt,

and W. Liu, "FMapper: Scalable read mapper based on

succinct hash index on SunWay TaihuLight," Journal of

Parallel and Distributed Computing, vol. 161, p. 11,

2022.

[51] S. Suchindra, "New sequence alignment algorithm

using AI rules and dynamic seeds," Bioscience &

Engineering: An International Journal (BIOEJ), vol. 10,

no. 1/2, 2023.

[52] G. Greenberg, A. N. Ravi, and I. Shomorony,

"LexicHash: sequence similarity estimation via

lexicographic comparison of hashes," Bioinformatics,

2023, article btad652.

[53] M. Zaharia et al., "Faster and more accurate

sequence alignment with SNAP," arXiv preprint

arXiv:1111.5572, 2011.

[54] S. Canzar and S. L. Salzberg, "Short read mapping:

An algorithmic tour," Proceedings of the IEEE, vol. 105,

no. 3, pp. 436-458, 2015.

[55] M. Shamsollahi, A. Badiee, and M. Ghazanfari,

"Using combined descriptive and predictive methods of

data mining for coronary artery disease prediction: A

case study approach," Journal of AI and Data Mining,

vol. 7, no. 1, pp. 47-58, 2019.

 .1403سال ،دوره دوازدهم، شماره سوم ،کاویمجله هوش مصنوعی و داده و همکاران عمادی

 (PSALR)هشمبتنی بر های طولانی با مدل ترازبندی موازی توالی برای خوانش

 4محمدرضا غفاریو ،*2، سیما عمادی2امین نظارات، 1نسرین آقایی میبدی

 .، ایران یزد، دانشگاه آزاد اسلامی، یزدکامپیوتر ، واحد گروه 1

 .کامپیوتر ، دانشگاه شیراز ، شیراز ، ایران گروه 2

 .کامپیوتر ، واحد یزد، دانشگاه آزاد اسلامی، یزد ، ایران گروه 3

 .رانیکرج، تهران، ا ،یکشاورز جیآموزش و ترو قات،یسازمان تحق ران،یا یکشاورز یوتکنولوژیب قاتیمؤسسه تحق ،یاسامانه یشناسستیگروه ز 4

 24/11/2024 پذیرش؛ 02/10/2024 بازنگری؛ 06/05/2024 ارسال

 چکیده:

شت ژنوم با چالش یتوال یترازبند سرعت و ن یمتعدد یهاو نگا ست که عمدتاً بر ضا ازیمواجه ا شته یهایتوال یسازرهیذخ یبه ف شده متمرکزند. با نگا

سعه روش ،DNA یابییتوال یهاحجم داده شیافزا ضمن کاهش ن یترازبند یهاتو فراهم زینرا عیسر یامکان ترازبند ،یسازرهیذخ یازهایکارآمد که

 شیافزا یبرا ژهیطور وکه به شررودیم یمعرف(PSALR)بر هش یبا مدل مبتن یتوال یمواز یترازبند تمیپژوهش، الگور نیاسررت. در ا یکنند، ضرررور

ضا یسازنهیبه ،یسرعت ترازبند ست. در مقا یو حفظ حداکثر دقت طراح یسازرهیذخ یف با BLAST ،PSALR رینظ ییهاتمیبا الگور سهیشده ا

ستفاده از جداول هش، داده سبات جهیکرده و در نت یسازهیها را کارآمدتر نماا شرده تمیالگور نی. ادهدیو زمان پردازش را کاهش م یبار محا یسازبا ف

 یهاداده افتی. پس از درکندیمرا کم ازیمختلف، زمان انتقال و حافظه مورد ن یهاگره انیداده م عیمرسوم و توز دبانیآن در ابعاد پهنا یبندداده، بسته

بزرگ به یهایتوال میدر تقسرر PSALR گرید ینوآور هسررتند. یبردارقادر به جسررتجو و نقشرره ییو رمزگشررا ییبه بازگشررا ازیها بدون نفشرررده، گره

به ماًیمسررتق، یبه گره مرکز ازیبدون ن را یابیارز جینکرده و نتا جادیا یدر طول کوئر یتیکه محدود یکردیهاسررت؛ روها به گرهو ارسررال آن هایرتوالیز

هدف یممکن توال یهایرتوالیز یکه تمام کندیم نیو مرجع تضررم یرکوئ یهمپوشرران در توال یهایرتوالیاسررتفاده از ز ن،ی. همچنگرداند،یکاربر بازم

 یبرا دبخشیام یداشته و راهکار یبهتر ییخود کارا انینسبت به همتا PSALR دهدینشان م یعملکرد یها. آزمونرندیمورد جستجو و نگاشت قرار گ

 و نگاشت ژنوم است. یکارآمد توال یترازبند

 .MPIنگاشت، ،یتوال یبر هش، ترازبند یمبتن ،یسازهینما :کلمات کلیدی

