Journal of Artificial Intelligence and Data Mining (JAIDM), Vol. 12, No. 3, 2024, 435-454.

Journal of Artificial Intelligence and Data Mining (JAIDM)

Journal homepage: http://jad.shahroodut.ac.ir

BRYDY

Shahrood University of
Technology

Research paper

PSALR: Parallel Sequence Alignment for long Sequence Read with

Hash model
Nasrin Aghaee-Maybodi !, Amin Nezarat 2, Sima Emadi ** and Mohammad Reza Ghaffari 4

1. Department of Computer Engineering, Islamic Azad University, Yazd Branch, Iran.
2. Department of Computer Engineering, Shiraz University, .Iran
3. Department of Computer Engineering, Islamic Azad University, Yazd Branch, Iran
4. Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research,
Education, and Extension Organization, Karaj, Tehran, Iran.

Article Info Abstract

Sequence alignment and genome mapping pose significant
challenges, primarily focusing on speed and storage space
requirements for mapped sequences. With the ever-increasing volume
of DNA sequence data, it becomes imperative to develop efficient
alignment methods that not only reduce storage demands but also
offer rapid alignment. This study introduces the Parallel Sequence
Alignment with a Hash-Based Model (PSALR) algorithm,
specifically designed to enhance alignment speed and optimize
storage space while maintaining utmost accuracy. In contrast to other
algorithms like BLAST, PSALR efficiently indexes data using a hash
table, resulting in reduced computational load and processing time,
this algorithm utilizes data compression and packetization with
conventional bandwidth sizes, distributing data among different
nodes to reduce memory and transfer time. Upon receiving
compressed data, nodes can seamlessly perform searching and
mapping, eliminating the need for unpacking and decoding at the
destination. As an additional innovation, PSALR not only divides
sequences among processors but also breaks down large sequences
into sub-sequences, forwarding them to nodes. This approach
eliminates any restrictions on query length sent to nodes, and
evaluation results are returned directly to the user without central
node involvement. Another notable feature of PSALR is its utilization
of overlapping sub-sequences within both query and reference
sequences. This ensures that the search and mapping process includes
all possible sub-sequences of the target sequence, rather than being
limited to a subset. Performance tests indicate that the PSALR
algorithm outperforms its counterparts, positioning it as a promising
solution for efficient sequence alignment and genome mapping.

Article History:
Received 06 May 2024
Revised 02 October 2024
Accepted 24 November 2024

DOI:10.22044/jadm.2024.14462.2554

Keywords:
Indexing, Hash Base, Sequence
Alignment, Mapping, MPI.

*Corresponding author:
emadi@iauyazd.ac.ir (S. Emadi).

1. Introduction

Bioinformatics is the application of computer
science, statistics, and probability to molecular
biology. Sequence alignment has become a
fundamental tool in identifying similarities and
differences between sequences as a result of recent
advances in molecular biology [1, 2]. Based on
dynamic programming, the Needleman-Wunsch

algorithm was the first optimal algorithm for
aligning two sequences proposed in 1970 [3, 4].
The advent of next-generation sequencing has
increased the length of query sequences, making it
necessary to develop tools that are faster, more
sensitive, and more accurate for mapping short and
long queries [5]. To overcome this challenge,

mailto:emadi@iauyazd.ac.ir
mailto:emadi@iauyazd.ac.ir

Emadi et al / Journal of Al and Data Mining, Vol. 12, No. 3, 2024

various techniques have been developed, such as
data compression and parallelism. While multiple
alignment tools are available, next-generation
sequencing experiments consistently generate
exomes or whole-genome sequences for several
hundred to several hundred thousand samples
within a short period of time, requiring more
efficient analysis tools [6].

Most alignment tools use an index-based mapping
strategy based on the Burrows-Wheeler transform
(BWT) or hash table to address issues regarding
storage space and mapping speed [7]. As part of the
alignment process, BWT-based tools use the FM-
index data structure and the suffix array concept.
While it has good speed, it lacks efficient
management of mismatches and INDEL/GAPs [8,
9]. The hash table-based method, however, is more
accurate, responsive, and efficient in terms of
handling non-compliances and INDELS/GAPs.
Some BWT-based tools include BWA [9, 10],
SSAHA2, SOAP2 [11], Bowtiel [12], and Bowtie2
[13]. Hash table-based tools such as AGILE [14],
SeqAlto [15], Blast [16], PATTERN HUNTER
[17], SSAHA [18], and NextGen Map [19] can
reduce search times to O(1) and have high speeds
despite requiring more memory [7, 20].

Among bioinformatics applications, hashing is
widely used for sequence alignment, K-mer
calculation, and error correction [21]. However,
most hash table-based applications, such as
BLAST, use the seed-and-extend strategy, which
involves expanding candidate regions (K-mer) on
both sides, scoring them, and reporting the best
match (K-mer is a substring of length k) [6, 22].
Due to the high number of calculations required for
expansion, scoring, and evaluation, this approach
consumes 90% of the mapping time [18]. In order
to overcome this limitation, researchers have
explored various techniques to increase the speed
of the process and reduce the memory load on the
node, including parallel architectures. Some
algorithms use MPI and OpenMP for accurate
alignment of sequences [23, 24], while others use
CUDA for approximate alignment or
multithreading on the GPU for short or long
sequence [25, 26]. Alignment tools typically use
multithreading for parallelism, with
implementations such as Bowtiel, Bowtie2, and
BLASR [27] utilizing the Posix Threads technique.
There are two versions of the BWA aligner, one
utilizing Posix Threads and the other utilizing MPI
and ‘distributed memory [28]. SHRIMP [29] and
SHRiIMP2 [30] are parallel alignments that have a
distributed version available [31]. Some alignment
tools, such as SOAP3 [32], BarraCUDA [33], and
CUSHAW [34], use GPUs to parallelize their

436

process. In some cases, multithreading is
associated with SIMD parallelism to use hardware
or processor accelerators, including SSE or
GPGPUs. To achieve parallelism in indexing and
mapping while minimizing data overhead and
ensuring safety, this study employs the MPI
technique in a fully distributed manner. Unlike
GPU-based techniques, multithreading is not
suitable due to safety concerns [35].

In this study, we introduce the PSALR algorithm,
a significant advancement in sequence alignment
technology over our previous research. Our prior
work [36] utilized OpenMP for parallel processing,
relying heavily on a single processor to manage
shared memory for hash table creation and
sequence similarity searches. Although effective
for smaller datasets, this method struggled with
scalability and efficient processing of larger
genomic sequences, often resulting in notable
overhead and computational bottlenecks.

To overcome these challenges, we developed the
PSALR algorithm, which employs MPI to achieve
true parallel processing across multiple nodes. This
architecture not only speeds up the processing by
distributing workload more evenly across nodes
but also significantly reduces memory usage.
Unlike the OpenMP-based approach, PSALR
methodically divides large DNA sequences into
smaller, manageable subsequences. These are then
distributed across various nodes to prevent any
single node from becoming a computational
bottleneck.

Moreover, PSALR incorporates advanced data
compression and reduction techniques, enhancing
the efficiency of sequence alignment processes.
This method allows for the immediate initiation of
the mapping process upon data arrival at each node,
eliminating the necessity for data to be integrated
centrally. Each node independently processes parts
of the data, thus eliminating delays associated with
central data processing and significantly reducing
network traffic.

Additionally, results are compiled and returned
directly to the user from each individual node,
bypassing any central aggregation. This structural
refinement not only minimizes the resources and
time spent on integrating data but also improves the
precision and accuracy of the alignment process.
By ensuring comprehensive data processing at
each node, PSALR guarantees that no part of the
sequence data is overlooked.

The primary objective of this study is to enhance
both the accuracy and speed of sequence alignment
algorithms while optimizing memory usage. The
PSALR algorithm utilizes an MPI-based
concurrency framework along with innovative

PSALR: Parallel Sequence Alignment for long Sequence Read with Hash model

hash-based indexing and compression techniques.
Diverging from the traditional seed-and-extend
methods prevalent in hash table-based alignment
tools, PSALR eliminates unnecessary steps such as
expansion, scoring, and evaluation, streamlining
the alignment process. However, continuous
improvements and modifications are essential to
further enhance the algorithm’s accuracy, speed,
and efficiency. The purpose of this study is to
present solutions that address these challenges,
which are discussed in more detail below.

» The MPI parallelization technique is used
in this study to distribute data and tasks across
nodes, resulting in faster processing time.

+ In this study, a packing technique is
employed to group 32 characters, equivalent to 64
bits, into each packet. These packets are then sent
to the nodes in the subsequent phase along with
their corresponding packet index. This approach
leads to significant enhancements in memory
consumption, bandwidth transmission, and data
transmission speed.

« To enhance the precision and accuracy of
the algorithm, this study allows the user to select
the dynamics of K-mers with the desired length. By
doing so, the algorithm avoids limited and fixed
sensitivity, resulting in more reliable and accurate
results.

» The purpose of this study is to create a hash
table based on K-mers present within the text rather
than all possible K-mers of length k. This results in
a smaller hash table, resulting in faster processing
times and less memory consumption.

» To enable fully distributed and concurrent
indexing and mapping, this study breaks down
large sequences in the reference input file into
smaller sequences. It allows the sequence to be
divided between nodes, resulting in faster
processing and better utilization of resources.

» Toincrease efficiency and reduce latency,
this study initiates the mapping process in the
nodes upon receipt of the first batch of query
sequences. By using this approach, it is not
necessary to receive all sequences prior to
mapping, which results in faster processing and
improved resource utilization.

« To minimize data transfer and improve the
efficiency of the algorithm, this study eliminates
the need to send results from nodes to a central
node for integration and sending to the output.
Instead, results are generated locally node and
combined on each node, increasing processing
speed and reductions in network traffic.

The study is organized as follows: Section 2
reviews the relevant literature in this field. In
section 3, the problem is defined, and hypotheses

437

are presented. The proposed solution is presented
in section 4, including MPI parallelization,
compression and reduction techniques, dynamic
selection of K-mers, and a hash table based on K-
mers in the text. The results of experiments
performed on the proposed algorithm using both
overlap and non-overlap techniques are presented
in Section 5. The results are compared with three
other algorithms regarding time and memory
consumption. Lastly, Section 6 concludes and
suggests future directions.

2 Literature Review

The first step before mapping is to call the
reference or query genome sequences and index
them. Some algorithms use reference indexing,
others use query sequence indexing, and some use
indexing for mapping. The techniques used in
alignment are hash tables and BWT. The hash base
technique creates a hash table for reference and
query sequences. The keys are generated by
substrings (K-mer), and their values are a list of the
positions of all possible substrings in the sequence
[7]. The alignment process with either of the two
techniques can be done serially or in parallel.
Parallel alignment is more difficult than serial
alignment, and the developer must be more careful
to solve the problem on multicore platforms by a
trade-off between increasing performance and
time.

In [16], the BLAST algorithm is introduced as the
basis of hash algorithms, with an alignment process
that occurs in three stages: input preprocessing,
search, and evaluation. In BLAST algorithms, the
guery sequences are transformed into overlapping
K-mers and stored in a hash table. During the
search and mapping phases, each K-mer is
searched within the reference sequences to identify
exact matches. These matches are then expanded
on both sides until their score meets or exceeds the
specified threshold. Finally, the scores are
reviewed for the final evaluation.

In [37], the BLAST algorithm was optimized using
an open-source parallelization of BLAST. This
optimization aimed to share the database, reduce
1/0 by storing small utility files, enable parallel 1/0O
on shared files, and implement scalable processing
protocols. In this algorithm, the raw reference
sequences are formatted, partitioned, and stored in
a shared storage space before the search operation.
The master node then utilizes a greedy algorithm to
assign search sections to worker nodes. Each
worker node copies the relevant partition to its
local disk and performs the search operation.
Finally, the results from each node are sent to the
master for centralized integration, and this process

Emadi et al / Journal of Al and Data Mining, Vol. 12, No. 3, 2024

continues until all partitions are completed. Once
all the results for the desired query sequence have
been received, the master node calls the MPIBlast
output function to format and print the results to the
output file.

In [38], the parallel implementation of the BLAST
algorithm in HPC supercomputers and clusters
using thousands of processors is examined. Job
distribution and search management are
accomplished using a Java library called PCJ. The
PCJ-BLAST package is responsible for reading the
sequences to be compared, dividing them, and
initiating the implementation of multiple NCBI-
BLASTSs. Additionally, it addresses the issue of
parallel 1/0O by utilizing the PCJ library, aiming to
significantly reduce the time required for sequence
analysis.

In [39], a simulation-based framework was
developed to analyze the scalability and
performance of critical optimizations in a parallel
genome search program, such as MPIBIlast. This
algorithm leverages an advanced macro-scale
simulator (SST/macro) to enhance the alignment
capability.

In [9], an optical parallel processing architecture is
utilized. In this algorithm, the query sequence
divides DNA into windows by the overlap
technique. It then extracts the points in the
reference in parallel and, finally, uses a simple
algorithm to find the edit distance and analyzes the
correlation rate by comparing the window-based
DNA sequence using the extracted points and their
locations. This algorithm adopts several
metamaterial-based optical correlations to
implement the proposed parallel architecture. This
wave computational architecture completely
controls wave and phase transmission using
dielectric and plasmonic materials. Although
optics provides high-speed processing of alignment
results, not every arbitrary algorithm can be
implemented effectively using it. So, each
algorithm introduced for sequence alignment must
consider the limitations and advantages of the
nature of parallel processing and the appropriate
architecture.

In [40], a BWT-based parallel alignment technique
is proposed. This technique utilizes hardware
called MPU-BWA to accelerate alignment with
minimal modifications to the BWA_MEM
software. It integrates seamlessly with PCle-based
infrastructure to achieve significant speed
improvements, up to 75 times faster in a clustering
environment. The algorithm follows a three-phase
approach for the alignment process. First, it
performs seed selection, then matches the query
sequence, and filters the seeds using a heuristic

438

algorithm. Finally, it expands the remaining seeds.
The hardware component is employed specifically
in the seed selection and expansion phases.

In [8], clustering algorithms are employed to
develop parallel alignment algorithms. This
algorithm first identifies regions that can be
mapped and then performs the mapping process
specifically within those regions. This approach
significantly reduces the time required for high-
quality alignment when using a local aligner such
as BLAST or the Smith-Waterman (SW)
algorithm. The algorithm involves a master
processor and N-1 worker processors. The master
processor and workers collaborate to detect
common regions between two strings. Both
processors read the input sequences in parallel and
determine their lengths. Each processor then
extracts and segments the larger sequence overlap.
Each segment of the string is read by the Pi
processor, which further divides it into overlapping
substrings. These substrings are then compared
using a binary matrix to calculate the number of
matching elements and score the desired segment.
Finally, each processor sends its results to the
master node for further analysis and processing.

In [41], a parallel aligner utilizing the suffix array
technique is proposed. This aligner is designed to
rapidly align RNA sequences to servers equipped
with multicore processors. The algorithm
combines the mapping operation with a suffix array
and local alignment to align query sequences using
the Smith-Waterman (SW) algorithm. While the
suffix array offers faster processing compared to
the SW algorithm, it does not inherently support
INDEL/GAP acceptance. However, this limitation
is overcome by combining the suffix array
technique with the local alignment approach. By
leveraging this combination, the proposed
algorithm achieves high-speed alignment of RNA
sequences while accommodating INDEL/GAP
acceptance.

In [35], a high-performance parallel K-mer
indexing and counting library is introduced. This
library is specifically designed for use in
distributed memory environments. The library
provides a collection of simple and reliable APIs
with serial semantics, allowing for flexible and
scalable parallel implementations. To ensure safety
and minimize data overhead, the algorithm avoids
using multithreading techniques and instead
utilizes the Message Passing Interface (MPI)
technique. By leveraging MPI, the library achieves
efficient parallelization without compromising
safety or incurring excessive data overhead.
Additionally, the algorithm keeps the indexes in
memory to reduce the cost associated with

PSALR: Parallel Sequence Alignment for long Sequence Read with Hash model

accessing the file system when performing
operations.

In [26], a parallel alignment algorithm based on the
FED algorithm [42] is proposed for accurate
sequence alignment. This algorithm utilizes the
Message Passing Interface (MPI) technique for
parallelization. The FED algorithm employs a
general strategy that involves mapping compressed
DNA sequences of constant length. Specifically,
the algorithm performs alignment without
decoding the text by compressing only the
reference sequence (text) and generating multiple
patterns for the given query sequence. This
approach allows for efficient alignment without the
need to decode the entire text. However, it's
important to note that the FED algorithm is serial-
based and may not be suitable for large-scale texts
from gene banks. Additionally, the algorithm
requires the creation of multiple patterns for
mapping.

In [43], an alignment algorithm is proposed that
consists of four phases: seed selection, clustering,
linking, and scoring. The term "seed" refers to a K-
mer that serves as a candidate for mapping between
guery and reference sequences. The STAR
algorithm, introduced in this paper, is claimed to be
five times faster than other mappers but requires
more memory. For each query sequence, the
algorithm searches for the longest sequence that
matches exactly with one or more locations in the
reference genome. This matching sequence is
called the Maximum Mappable Prefix (MMP). In
the second phase, the algorithm connects the seeds
to form a complete query by clustering adjacent
seed bases. This process results in an
interconnected set of seeds. Finally, the seeds are
selected based on the best alignment for scoring the
query, taking into account mismatches and
INDEL/GAP information.

In [44], an algorithm is proposed for sequence
alignment analysis and comparison using dynamic
programming. This algorithm is specifically
designed for pairwise alignment within a clustering
system in an MPI environment. Notably, the
scoring matrix is calculated concurrently in this
algorithm. It is important to mention that although
this algorithm utilizes dynamic programming for
alignment, which is a rigorous and accurate
method, it can be slower compared to more
recently developed heuristic methods.

In [45], the BFAST algorithm is proposed, which
consists of three phases: creating a reference index,
finding candidate alignment locations (CALSs)
using the reference index, and performing local
alignment. Local alignment is performed on the
possible CAL keys to identify the best possible

439

alignment. The algorithm uses several independent
space seeds as a pattern. The seed must match at
least one of these patterns.

In [29], the SHRIMP algorithm is introduced,
which is capable of handling INDEL/gap
variations in addition to mismatches. This
algorithm utilizes a mask to generate possible keys
for mapping sequences. Based on these masks or
patterns, the algorithm does not include some bases
in the mapping. The match and mismatch of the
bases will not make a difference in the mapping
result, and they will be able to control the data
polymorphism. They are also allowed to map
color-space sequences generated by AB-SoLID.
Some tools have recently learned the hash table to
improve the alignment process.

In [46], a bit-mapping method is proposed for
mapping query sequences to a reference database.
This method involves learning the hash algorithm
from the transcriptome to generate binary hash
codes for sequences. The query sequences are then
mapped to the corresponding transcripts based on
their hash codes. This algorithm treats the query
mapping problem as the nearest neighbor search
(NNS) problem in the learning machine, which
aims to find the nearest neighbor to the query item
by measuring a certain distance.

In [47], a combination of matrix and linked-list
data structures is utilized to store sequence
information. The matrix represents a two-
dimensional grid, where the rows and columns
correspond to the hash values generated by two
specific hash functions. These hash values act as
coordinates for storing and locating sequences
within the matrix. By using the hash values as
coordinates, the method ensures efficient storage
and retrieval of sequences. The matrix provides a
structured framework for organizing the sequences
based on their hash values, allowing for quick
access to the desired sequences. Additionally,
linked lists are used within each matrix cell to
handle collisions or multiple sequences with the
same hash values.

In [48], the authors propose a novel seeding
approach that relies on long inexact matches rather
than short exact matches. They demonstrate that
this approach yields a better trade-off between time
and accuracy in settings with up to a 25% mutation
rate. To achieve this, they utilize sketches of a
subset of graph nodes, which are more robust to
indels. These sketches are stored in a k-nearest
neighbor index, effectively mitigating the curse of
dimensionality. Their approach stands in contrast
to existing methods and emphasizes the significant
role that sketching in vector space can play in
bioinformatics applications. The authors further

Emadi et al / Journal of Al and Data Mining, Vol. 12, No. 3, 2024

demonstrate that their method can scale graphs
with 1 billion nodes and provide quasi-logarithmic
query times for queries with an edit distance of
25%. In fact, for such queries, longer sketch-based
seeds result in a 4x increase in recall compared to
exact seeds.

In [49], the authors introduced a novel sequence
alignment technique called ESA. This algorithm is
implemented on the Sunway TaihuLight
architecture and is capable of performing both local
and global alignment. The algorithm incorporates
several advanced features, including cache-aware
sequence alignment, capacity-aware load
balancing, and bandwidth-aware data transfer.
However, one limitation of ESA is its relatively
high computational time. Additionally, when the
lengths of the sequences being aligned differ
significantly, ESA may encounter an issue of
asymmetric load distribution among the
processors.

In [50], the authors introduced the FMapper
algorithm, specifically designed for the TaihuLight
supercomputer. This algorithm is optimized to
leverage the computing power of the fourth-
generation ShenWei multi-core architecture
(SW26010). The FMapper algorithm incorporates
dynamic task scheduling, synchronous 1/0, and
data transfer techniques to maximize performance
and efficiency. The authors achieved a significant
speedup of 6 compared to the naive
implementation. Additionally, when scaling up to
512 compute groups, they observed a strong
scaling efficiency of 65%."

In [51], The main objective is to find the maximum
alignment region between two sequences and then
identify the seeds within that region to increase
sensitivity. In this algorithm, artificial intelligence
rules are used to find additional seeds with
different lengths. Additionally, this algorithm can
be used for weighted seeds. The "if-else" rule is a
simple expression in Al that is used to determine
the length of seeds to be searched for and whether
overlapping seeds should be merged or discarded.
In [52] The computational burden of algorithm is
alleviated by utilizing the LexicHash method to
estimate sequence similarities. To achieve this, the
algorithm performs a hash function on each k-mer
within the read sequence and stores the minimum
hash value. By counting the number of minimum
hash matches between pairs of reads, the algorithm
can estimate the similarity between two sequences.
It is crucial to carefully choose the parameter k
when identifying sequences. Increasing the value
of k enhances accuracy and precision, but there is
a possibility of losing some matches.

440

In [36], the authors employ the OpenMP
parallelization method and shared memory to
enhance performance. The method involves
dividing sequences amongst processors, with each
processor dividing its reference sequences into
completely overlapping k-mers. A shared hash
table is then created with the assistance of other
processors. In the subsequent step, each processor
receives a query sequence and, using the shared
hash table checks the percentage of similarity
between the query sequence and the sequences in
the hash table. The result is then returned to the
user. Although this method offers several
advantages, such as ease of implementation and
reduced overhead due to the use of shared memory,
it can only run on a single node and is not
distributed. Additionally, if the reference
sequences are few but lengthy, a few processors
may have to handle a substantial workload.
Therefore, to enhance this method, distribution can
be increased, and other methods can be utilized to
manage the load if necessary.

Most of the algorithms mentioned in the literature
require special hardware platforms or the addition
of special software and algorithms to enable
parallelism in the alignment process. However,
these approaches often result in overheads, and in
many cases, only the overlap technique is used in
one of the input sequences, typically the query.
This approach leads to only a portion of the
reference sequences being placed in the hash table
and subsequently used in the search and mapping
phases, potentially resulting in reduced accuracy in
the output results. A detailed comparison of the
above algorithms is provided in Table 1.

3 Methodology

This algorithm employs a novel approach
compared to many hash table-based applications,
such as the BLAST family, which utilizes the seed-
and-extend strategy. Instead, this algorithm uses an
SSAHA-based method, dynamically selecting the
K-mer size and utilizing the overlap technique to
extract them from both input sequences. The
overlap technique can improve accuracy by up to
100% regardless of INDEL/GAP and mismatch.
To optimize time and memory management, this
algorithm utilizes parallelism, with a master node
and N-1 worker nodes responsible for compressing
and dividing data, creating a hash table, and
mapping query sequences.

The algorithm breaks down large reference
sequences into smaller ones and distributes them to
different nodes, allowing for fully distributed and
concurrent indexing.

PSALR: Parallel Sequence Alignment for long Sequence Read with Hash model

Table 1. Comparison of parallel alignment algorithms.

Reference Year Algorith Alignment Parallelism INDEL/Gap The use of Techniques for
m techniq MPI1/Openmp/ acceptance hard/soft memory
ue ware optimization
GPU
Altschul, S.F., 1990 BLAST Hash-Base - yes No No
etal
Lin, H., et al. 2005 MPIBlast Hash-Base MPI yes Greedy Algorithm No
Nowicki, M., et 2018 Parallel- Hash-Base MPI yes PCJ-lib No
al. Blast
Dechev, D., et 2013 Parallel- Hash-Base MPI yes SST/macro No
al. Blast
Mozafari, F.,et 2018 WOC Hash-Base NA yes Optics No
al.
Dobin, A, etal. 2013 STAR BWT-Base MPI Yes - No
Vijayaraghavan, 2018 MPU- BWT-Base - Limited number MPU No
T. etal BWA
Bandyopadhyay 2009 RPAlign Hash-Base MPI Yes -—- No
, S, etal.
Martinez, H, et 2015 HPG Suffix Array yes No
al. Aligner &
SA
Hash-Base
Pan, T., etal. 2019 Kmerind Hash-Base MPI Yes - NO
Q. Xue et al. 2014 Fast Hash-Base MPI Yes Multi-Pattern Compress
Matching
Method
Chen, Y, et al. 2006 Parallel Hash-Base MPI Yes - NO
Pairwise
Yu, X, etal. 2020 Learning Hash-Base NA Hash-code
hash-
table
Homer, N, etal. 2009 BFAST Hash-Base POSIX Yes Multi-level-index
Rumble, S.M., 2009 SHRIMP Hash-Base OpenMP Yes -
etal.
Esmat, A.,etal. 2022 Parallel- Hash-Base OpenMP Yes e Yes
Alignmen
t
Peng, F., et al. 2022 Matrix- Hash-Base @~ - NA Yes
LinkedLi
st
Canzar, S.,etal. 2023 Graph Yes e e
Alignmen
t
Muhammad,U. 2023 scalable Needleman- GPU Yes NA No
etal. parallel Wunsch
algorithm

441

Emadi et al / Journal of Al and Data Mining, Vol. 12, No. 3, 2024

Additionally, nodes do not need to return their
results to the primary node, and each node puts its
results in the output file.

An evaluation method is used to assess the
accuracy, precision, and sensitivity of the
algorithm, which demonstrates that selecting
sequence overlapping bases not only increases
accuracy but also does not reduce sensitivity.
Overall, this algorithm provides a more efficient
and accurate approach to sequence alignment
without the need for specialized hardware or
software

3.1 Problem Definition

In this study, we aim to optimize the alignment of
genomic sequences by improving the storage
process, managing memory, and increasing
execution speed. To achieve this goal, we propose
a novel algorithm that utilizes various techniques,
including parallelism, compression, reduction, and
hash-based indexing. These techniques enable
efficient memory management and faster
processing without compromising accuracy or
sensitivity. PSALR Algorithm dynamically selects
K-mers with desired lengths and enables user-
defined overlap to enhance precision and accuracy.
Additionally, PSALR breaks down large reference
sequences into smaller ones and distributes them
across nodes for fully distributed and concurrent
indexing. This algorithm eliminates the need to
return results to a central node, reducing network
traffic and improving efficiency. The purpose of
this study is to investigate the alignment of
genomic sequences, improve the storage process
and sparse execution, and at the same time the
indexing and mapping steps to manage memory
and increase speed, definitions are needed that are
detailed in [36]. But it is briefly described below.

3.1.1. Definition 1

In sequence alignment, the reference sequences are
known sequences that are stored in a database,
while the query sequences are unknown sequences
that are compared to the reference sequences to
identify and predict their structure. The goal of
sequence alignment is to identify regions of
similarity between the query and reference
sequences, which can provide insights into the
evolutionary relationships, functional domains,
and other important features of biological
molecules such as DNA, RNA, and proteins.

Ref =(seq,,seqd,,...,seq,,) ,m >1
Query =(seq,,seq,,...,seq,) ,n =1

442

3.1.2. Definition 2
In DNA sequencing, each DNA string is
represented by the four nucleotide bases: A
(adenine), C (cytosine), G (guanine), and T
(thymine). Depending on the length of the DNA
string, these nucleotides combine to form the
sequence. To optimize memory consumption in
data storage, binary numbers are used instead of
characters. This means that only two bits are
needed to represent each nucleotide base instead of
the standard eight bits used to represent a single
character. By compressing the data in this way, it
can reduce the memory footprint of the DNA
sequences and improve the efficiency of the
alignment process.
F(A)=(00)2

F(G)=(10)2

F(C)=(01)2
F(T)=(@11)2

3.1.3. Definition 3

A K-mer is a sub-string of length k that is a
continuous sequence of DNA bases within an input
sequence. The number of K-mers within a string is
obtained from the relation N +K —1 if the K-
mers overlap or from the relation N /K if they do
not overlap. According to Definition 2, each K-mer
can be represented as a unigue number with 2k bits,
which is referred to as the mer index. The mer
index can be created using Equation 1.

K i1 Ly
Ew)=> 47*f@bi) i=12...k @
3.1.4. Definition 4

The hash table is defined as a triple (w, E(w),
Position), where w is a K-mer, E(w) is its index,
and position is an array of positions of w within the
reference file. This hash table allows for efficient
indexing and searching of K-mers within the
reference file, enabling the alignment algorithm to
quickly identify regions of similarity between the
query and reference sequences. When a query
sequence is received, the algorithm uses the hash
table to locate the K-mers within the query
sequence and then searches for matching K-mers
within the reference file. The positions of these
matching K-mers are stored in the Position array,
allowing the algorithm to identify potential regions
of similarity between the query and reference
sequences.

3.1.5. Definition 5

To search for all query sequence hits within the
reference sequences, the PSALR algorithm scrolls
through the query sequence from base zero to (I-k),
where | represents the length of the query sequence.
For each base t, it obtains the list of positions r,

PSALR: Parallel Sequence Alignment for long Sequence Read with Hash model

which represents the occurrence of the K-mer
wi(Q) within the query sequence, from the hash
table. It then extracts the list of K-mer positions and
place them in a table, which will be used for
mapping in the next phase. Finally, the algorithm
calculates the list of hits using Equation 2, as
described in Ning, Cox, and Mullikin (2001).
H=0,]0000505,.0,)0,.0,4.,) @
The value t represents the distance of the K-mer
from the beginning of the input sequence. The
collision list contains three elements: index (i),
shift (jr), and offset (j), which are used to identify
the locations of the K-mer match within the
reference sequence. The collision list is sorted first
by index and then by shift, allowing for efficient
mapping of the query sequence to the reference
sequence. By sorting the collision list in this way,
it can quickly identify regions of high similarity
between the query and reference sequences and
accurately align the sequences.

In the final step of this algorithm, the list of hits
based on index, shift, and offset it sorted. Then, the
algorithm performs a scan to identify hits that have
the same index and shift, which allows us to
determine the corresponding bases between the
guery and reference sequences. If the algorithm is
allowed to accept INDELs, there may be
differences between the positions of the hits that
are equal to the number of INDELSs present. In this
case, closely matched areas can be combined to
create larger regions for GAP acceptance. By using
this approach, this algorithm can accurately align

Pra-procassing
sequences

Diwide the Ref
seguUeENCes
between N-1 nodes

Comprassion and
packing sequences

the query and reference sequences, even in the
presence of INDELS or other types of variations.

4. The Proposed Technique

Algorithm PSALR utilizes MPI parallelism to
divide the operation process into two parts. The
master or zero node performs certain operations
such as receiving, preprocessing, compressing, and
sending data, as shown in Figurel. The worker
nodes are responsible for receiving data, extracting
K-mers, creating hash tables, and searching and
mapping query sequences concurrently.

In the master section, a node receives the sequences
from the input files and preprocesses them. Each
character (base) in the sequence is converted into
two binary bits to reduce their size, and the
compressed data is placed in 8-byte packets before
being sent to the worker nodes.

In the worker section, each node receives its
sequences, extracts the overlapping K-mers with a
window length of one from the received reference
sequences, and creates a hash table from them. The
worker nodes then perform search and mapping
with the query sequences received in the hash table
and print the mapping results of their sequences in
the output file.

By utilizing MPI parallelism in this way, the
PSALR algorithm can efficiently process large
amounts of data and speed up the alignment
process, making it a valuable tool for genomic
research and related fields.

Master

Ready to Send

query

sequUBNCas

to o nodes(N-1)

S5end Sequences o Nodes

Croate
Hash-table

Create
Hash-table

Map

Out-pul File

Creato
Hash-table

Workers

Figurel. The PSALR framework

443

Emadi et al / Journal of Al and Data Mining, Vol. 12, No. 3, 2024

Problem: The task is to find encrypted pattern(s) P'
in encrypted sequence(s) T' without decoding,
using n nodes for concurrent processing. The
reference file may contain one or several
sequences, while the query file may contain one or
several patterns.

To address this problem, we propose an algorithm
that operates in both zero and non-zero nodes.
Algorithm 1 presents an example of parallel
execution in these two operational nodes. The
master node performs operations in lines 1-39,
while the worker node performs operations in lines
40-43. Details and code for both nodes are
provided in the following sections.

Algorithm 1: Query search in the Hash table and extract their

positions in each node

1. IF Node == 0 THEN

2. For each sequence (seq) in the dataset, do

3. IF (seq is large) THEN

4. Initialize start_index

5. WHILE (start_index + 180 < seq.size()) do

6. Add 180 characters from start_index to Section_data
7. Increment start_index by (180 - k)

8. END WHILE

9. Dispatch(Section_data) // Continue processing sectioned
data

10. ELSE

11. For i <- 1 to seq.size(), i += 32 do

12. Add 32 characters from position i to Section_seq
13. END FOR

14. IF (mod exists) THEN

15. Add remaining characters (mod) to Section_seq

16. END IF

17. END IF

18. END FOR

19. Count <- seq_count / Number_threads

20. Fori<-1 to Count, do

21. MPI Send(&ready, 1, MPL::BOOL, executer _id,
READY_TAG, MPI COMM_WORLD)

22. MPI Send(&k, 1, MPI_UNSIGNED, executer,
GLOBAL K TAG, MPI COMM_WORLD) // K-mer size
23. For each data in Section_seq, do

24, Orgin = compress(data)

444

25. MPI_Send(&orgin, 1, MPI UNSIGNED_ LONG,
executer_id, ORIGIN_TAG, MPI COMM_WORLD)

26. END FOR

27. MPI_Send(&dataset_index, 1, MPI_ UNSIGNED,

executer_id, DATASET INDEX_TAG, MPI COMM_WORLD)

28. MPI_Send(&mer_index, 1, MPI UNSIGNED, executer id,
DATASET INDEX_TAG, MPI COMM_WORLD)

29. MPI_Send(§ion_seq_size, 1, MPI UNSIGNED,
executer_id, SECTION_SIZE TAG, MPI COMM_WORLD)

30. ENDFOR

31. ENDIF

32. ELSE IF Node = 0 THEN
33. Fori<-1 to Count, do

34. MPI_Recv(&ready for seq, 1, MPL::BOOL, 0,
READY TAG, MPI COMM_WORLD, MPI_STATUS_IGNORE)

35. MPI_Recv(&origin, 1, MPI_UNSIGNED_LONG, 0,
ORIGIN_TAG, MPL COMM_WORLD, MPI_STATUS_IGNORE)

36. MPI_Recv(§ioned seq_size, 1, MPI UNSIGNED, 0,
SECTION_SIZE TAG, MPI_ COMM_WORLD,
MPI_STATUS_IGNORE)

37. MPI_Recv(&debug_f 12, 1, MPI::BOOL, 0,
DEBUG_TAG, MPI_ COMM_WORLD, MPI STATUS_IGNORE)

38. MPI_Recv(&big_seq, 1, MPI::BOOL, 0, DEBUG_TAG,
MPI COMM_WORLD, MPI_STATUS IGNORE)

39, MPI_Recv(&k, 1, MPL UNSIGNED, 0,
GLOBAL_K_TAG, MPI COMM_WORLD,
MPI_STATUS_IGNORE)

40. END FOR

41. Extract Kmer from_origin()

42. Create_Hash_table()

43. Extract Query Position_in_Hash table()
44. Perform_Mapping()

45. ENDIF

The zero or master nodes execute three main
phases, namely input reception, encoding, and
sending. These phases are explained in detail
below:

e Input Reception

DNA sequences consist of two complementary
strands, which are represented as separate files
during preprocessing. The query sequences are
typically provided in .fastg format, while the
reference sequences are in .fasta format. The input
sequences may contain the character N instead of
one of the four main bases, which is often randomly
replaced with one of the bases in other algorithms.
However, in PSALR, N characters are eliminated
to prevent incorrect events and improve accuracy,

PSALR: Parallel Sequence Alignment for long Sequence Read with Hash model

as the algorithm considers overlapping bases and
calculates both mismatches and gaps.

e Encoding

Parallel and network algorithms face challenges
such as file transfer and bandwidth occupancy. The
query and reference files contain characters that
require significant memory and bandwidth to
transmit since each character occupies 8 bits. To
address this issue, this algorithm employs
compression techniques that reduce each
character's size to 2 bits, allowing the transmission
of four characters with a single byte. The nodes can
continue searching and aligning by receiving the
transmitted encoded characters without decryption,
which saves time and memory compared to some
existing algorithms.

During this phase, the string is encrypted and
packaged into 8-byte packets, as outlined in
Pseudo-code 1. This algorithm packs 32 characters,
or 64 bits, into each packet and then sends the
packet index to the nodes in the next phase. The
encryption and packaging process is performed for
all query and reference sequences, significantly
improving memory consumption, bandwidth
transmission, and data transmission speed.

To encode each character as an unmarked integer
with two bits in each nucleotide, binary numbers
are used instead of characters. Since the string
length may not be a multiple of 32, the last packet
may not be complete. Thus, the final package size
is calculated as follows:

Last_Pack = String.size() % 32

After sending the string data packets, an eight-byte
status packet is sent to indicate if the final packet
contains several characters.

» Sending

This section details the three types of data that need
to be transmitted in this algorithm. The first type
comprises compressed packets of reference
sequences, which must be divided among the nodes
to concurrently create a hash table. The second type
is the user-specified K-mer size, which must be
sent to all nodes. The final type consists of
compressed packages of query sequences, which
must be sent to all nodes for searching and mapping
based on the hash table created in subsequent
phases.

When using MPI parallelism in algorithm, the
sequences are divided among the nodes. If N is the
number of nodes and M is the number of reference
sequences, each node is assigned approximately
M/N sequences. Thus, the zero nodes must send the

445

encoded packets of each sequence to one node,
which extracts K-mers from the received packets
and creates a hash table. If a reference sequence is
large, it can be broken into subsequences and
distributed among the nodes to avoid overloading
any one node. For instance, if the master node is
Ww and the other nodes are Ws, a large sequence
S. can be divided into segments, with each node
assigned a segment except the master. If the K-mer
size is k, the size of each segment Fi,i=1,2, ..., n
is calculated as follows:

i'i‘K
N -1

Where N is the number of processors, the
beginning and end of each segment can be
calculated as follows:

] } SL
startfi]=0 -1D* +1
[1=0-9* =
and
End[i]=1* SL +K
N -1

Next, operations performed on non-zero or worker
nodes, including subsequence extraction, hash
table creation, query sequence search, and
mapping, are described.

» K-mer Extraction
Each node receives the K-mer size (k) and
compressed packets of reference sequences, which
are extracted using the overlap technique without
decoding the packets in sequential shifts. At each
time step, the node receives a query sequence from
the zero nodes and generates a list of K-mers from
it.
Many hash-based aligners only index non-
overlapping K-mers of the reference database to
preserve memory. This means that they only
include 1/k of the database locations in the index
table for K-mers of length k. For example, if the K-
mer size is five and a query or reference sequence
is as follows, a window of five characters is drawn
on the sequence using the overlap technique. This
approach returns all possible subsequences of the
string as K-mers. Thus, the number of K-mers
obtained from the sequence is calculated as
follows:

Number (k_mer) = (n - K_mer+ 1)
Where n is the length of the strings or the number
of bases. In the following example, the number of
K-mers will be equal to 11.

Emadi et al / Journal of Al and Data Mining, Vol. 12, No. 3, 2024

S1= CGTCACTCTGAGGAT

K-mers is: GTCA, GTCAC, TCACT, CACTC,
ACTCT, CTCTG, TCTGA, CTGAG, TGAGG,
GAGGA, AGGAT

Regardless of the overlap technique, the number of
K-mers in the same string that reaches the search
and mapping phases is only part of all of the string
subsequences shown below.

K-mers is: CGTCA, CTCTG, AGGAT

In other words, the number of K-mers that reach
the main phase is obtained by dividing the string
length by the size of K-mer, which will be only
three K-mers in the same example.

In this small example, the difference in the number
of K-mers that reach the search and mapping
phases can be seen. This difference in datasets with
millions of bass characters can significantly reduce
the output accuracy. Many algorithms convert only
one of their sequences to overlap and the other to
non-overlap and send it to the search and mapping
phases so that they can maintain some accuracy
because selecting K-mers with the overlap
technique increases the amount of memory several
times. Some algorithms even use the non-overlap
technique for both query and reference sequences,
sacrificing performance and accuracy for speed and
memory. However, this algorithm uses the overlap
technique for both query and reference sequences
and tries to manage memory and time using
techniques that will be discussed later so that they
do not increase dramatically and even improve in
many cases, and bring its accuracy closer to 100 by
considering two mismatches and two gaps per K-
mer.

» Hash Table Creation

The first process in alignment is to create a hash
table for the reference sequence. The indexing
process begins after the nodes receive the reference
sequences. As mentioned earlier, not all possible
states of K-mer are included in this table, and only
the K-mers in the sequence are placed in the hash
table by moving over the desired sequence. Their
position is then recorded in the table. According to
definition 4, the hash table consists of three parts:
w, E (w), and position. In SSAHA, two data
structures are used to create a hash table: a list of
positions and an array of pointers to the list. Since
this algorithm puts all possible states of K-mer in
the table, 4% pointers are required. Pointers in
position E (w) point to the entry in the list of
desired K-mer positions. However, in this

algorithm, not all possible states of K-mer are
entered, and K-mers are placed in the hash table
that is in the reference sequences. So, it helps to
reduce the hash table.

Another problem is using two passes to create a

hash table in the SSAHA algorithm. In the first
pass, all non-overlapping events are counted in
each of the 4 possible states, and in the second
pass, the event information of that K-mer is placed
in the reference list in the reference sequences.

Algorithm 2: Create a Hash-table for every node

446

Input: A set of sequences in the Reference file

Output: A hash table with k-K-mers of the reference file and their
position

01 Initialize a hash table: Map <unsigned long, vector<unsigned
int>> tablel

02 For each sequence in Ref file do

03 For each K-mer in the sequence do

04 Split the K-mer into substrings (K-mer, k, mersvector) //
Store K-mers in mersvector

05 End For

06 End For

07 For each K-mer in mersvector do

08 If K-mer exists in tablel (insertion.second is false) then

09 Add dataset_index and mer_index to the existing entry in the
hash table

10 Else

11 Create a new entry in the hash table with dataset_index and
mer_index

12 EndIf
13 End For

17 End For

In the PSALR algorithm, all overlapping K-mers
can be completed with a one-pass hash table. In
other words, the K-mer positions are placed in the
position list in the order of their passage, passing
through the beginning of the reference sequences.
Algorithm 2 displays pseudo-code to create a hash
table.

5. Evaluation

In this section, the PSALR algorithm is evaluated
with overlap and non-overlap techniques and
compared with the other three algorithms in terms
of memory and time consumption in the indexing
section. Experiments are performed on datasets
with different numbers and lengths based on Table
2, the results of which are analyzed in the next
section. Implementations and evaluations are done
on a machine with 128 cores and 256 GB of

PSALR: Parallel Sequence Alignment for long Sequence Read with Hash model

memory. STAR, BFAST, and SHRiMP algorithms
are used to evaluate and compare the proposed
algorithm. Some aligners argue that using all
sequence bases for indexing and mapping reduces

the sensitivity of the algorithm, and if a base
mutates in K-mer, it will be rejected in the mapping
phase.

Table 2. Datasets used in experiments.

DB Organism Source Name Size Sequence-number
DB Fragaria Genomic Query SRR072029.fastq 3.1GB 2,727,589
vesca f.alba
H. sapiens Genomic Ref GRCH37.p13 741MB 1
CHROMOSOME 1
DB2 H. sapiens 1000 Query SRRO077487 .fastq 2.6GB 7,757,821
Genome
HGO00096,
NCBI
H. sapiens 1000 Ref GRCH37.p13 208MB 1
Genome CHOROMOSOME x
reference
GRch37
DB3 H. sapiens Genomic Query SRR494099.fastq 2.6GB 14,166,619
H. sapiens NCBI Ref GRCH38-Genome 439MB 1
Nucleotide CHROMOSOME 2
CMO0004
63.1

Therefore, they use Space Seed technique to extract
K-mers from sequences that will reduce accuracy.
The Space Seed technique in bioinformatics is a
method used to enhance the sensitivity of sequence
mapping by selectively considering specific seeds
of a sequence rather than analyzing the entire
sequence. This technique aims to improve the
detection of similarities or patterns between
sequences while allowing for some degree of
mismatch. However, this study shows that not only
accuracy but also sensitivity will be increased by
selecting all bases and involving them in indexing
and mapping and that the False Negative problem
will be prevented by considering mismatch and
indels in K-mers. The details will be explained
below.

The first item in the experiments is size K. As
mentioned in the literature review, the K-mer size
can be considered differently. Selecting a small K-
mer size increases sensitivity but increases false
positives (FP). Instead, selecting a large K-mer
reduces sensitivity, speeds up the process, and
reduces FP. Selecting longer K-mers in indexing
will result in less FP. In this way, a better alignment
will be obtained [53]. Most algorithms, such as the
BLAST family, use a small k-size, or algorithms,
such as BFAST, use K-mers longer than 14 to
manage memory at two-level or higher indexes.
Some algorithms, such as ELAND, MAQ, BFAST,
and SHRiMP use the space seed technique so that
not all bases are considered for mapping, and only
the part specified in the template is selected to
increase the sensitivity and accept some mismatch
by defining such patterns. For example, if a pattern
is considered to be 11101001, the size of K-mer is
8, but its weight is 5, and only 1,2,3,5,8 K-mer

bases are used to map two sequences. These
algorithms generally use fixed lengths and weights
by default to perform the alignment process. Space
seeds and their shifted samples map fewer
positions for adaptation and do not include INDEL
[7, 20]. In a group of these algorithms, one or more
templates are defined independently so that at the
time of mapping, the K-mer must match at least one
of the templates. However, another group follows
the seed-and-vote technique, in which several
seeds jointly identify a candidate region. In space
seed-based algorithms, K-mers are first extracted
from the query based on the defined template and
placed in the index table (in the case of reference-
indexed algorithms, this is done for reference
sequences). The search and alignment then take
place in another sequence [54]. However, the
proposed algorithm uses larger k sizes from the
BLAST family and other common algorithms by
selecting sequential and overlapping bases to
reduce false positives in addition to improving
accuracy.

Using the overlap technique in query and reference
sequences, the PSALR algorithm tries to complete
the process accuracy, which significantly increases
memory consumption, especially during indexing.
Therefore, two groups of comparisons are used in
the next section to evaluate the algorithm. The first
group is the comparison of memory and time
consumed to index the data in the proposed
algorithm with overlap and non-overlap
techniques, and the second group is the comparison
of memory and time with three other algorithms
with a different number of processors at the time of
data indexing.

Emadi et al / Journal of Al and Data Mining, Vol. 12, No. 3, 2024

5.1 Comparison of the proposed method with
overlap and non-overlap techniques

In this section, the memory and time required to
index the proposed algorithm with overlap and
non-overlap techniques are reviewed and
compared.

In the first mode, like most aligners, query
sequences are considered with the overlap
technique, reference sequences are considered with
the non-overlap technique, and indexing and
mapping are performed on the three datasets
mentioned. In the second mode, K-mers of query
and reference sequences are extracted by the
overlap technigque, and indexing and mapping are
performed. As mentioned earlier, hashing
algorithms consume the most memory and time in
indexing. In the PSALR algorithm, after indexing,
the queries are entered sequentially and aligned.
They then go out and free up memory so that the
amount of memory consumed does not increase.
The implementation of the algorithm on three
datasets by overlap and non-overlap techniques can
be seen in Figure2. As can be seen in the figure, the
amount of memory consumed by the overlap
technique is several times higher than the non-
overlap one due to the increase in the number of K-
mers. For example, the amount of memory
consumption in the K-mer with a length of 17 in
DBL is significantly reduced from 38.4GB to 3.53
GB. Therefore, most aligners use the same
technique and extract only query sequences by the
overlap technique so that they can maintain some
accuracy. Algorithms such as SSAHA, SNAP, and
BSSHA are examples of this.

The time required to index each of the DBs by
overlap and non-overlap techniques is shown in
Figure 3. For example, in the same DB1 and K-mer
with a length of 17, the consumption time increases
from 1159 to 86 seconds because, in the overlap
technique, all sequence K-mers must be extracted
and placed in a table.

However, in the non-overlap technique, only 1/k is
extracted from the subsequences and placed in the
table, so it greatly reduces memory and time but
lacks the necessary accuracy for the reasons stated
earlier. In this study, 2,4,8 and 16 processors are
used to evaluate the algorithm and execute it in
parallel. In the following, the amount of memory
and time consumed by the algorithm with two
techniques and execution on 2 and 16 processors
with k of different lengths are shown. The amount
of memory consumption of datasets is compared by
the overlap technique with 2 and 16 processors in
Figure 4.

448

DB1,np=2

Time(Sec)

K-mer

—Ref-overlap Ref-Non-overlap

DB2,np=2

12000

9000
6000
3000
k=11 k=15 k=17 k=20 k=2

Mem(MB)

0

=25

K-mer

—Ref-overlap Ref-Non-overlap

DB3,np=2

Mem(MB)

K-mer
Ref-Non-overlap

—Ref-overlap

Figure 2. Comparison of memory consumption in three
datasets by overlap and non-overlap techniques with two
processors.

DB1,np=2

1500

1000 /x

Time(Sec)

K-mer
—Ref-overlap Ref-Non-overlap

DB2,np=2

300
200 l //\

100

Time(Sec)

K-mer
—Ref-overlap Ref-Non-overlap

DB3,np=2

2000

1500
1000
k=11 k=15 k=17 k=20 k=25

K-mer
Ref-Non-overlap

Time(Sec)

1
3

—Ref-overlap

Figure 3. The time required for indexing by overlap and
non-overlap techniques with two processors.

PSALR: Parallel Sequence Alignment for long Sequence Read with Hash model

When the concurrency technique is used, each node
receives a segment of the data sequence and
generates its index table. In this way, the amount of
memory consumed is reduced in proportion to the
number of processors. However, in 2-processor
mode, only one node is responsible for creating the
hash table, which increases memory and time
consumption. Therefore, creating a distributed
hash table can help to consume memory several
times.

DB1,np=2,16
50000
EE 40000
?_ 30000
E 20000

[}
E 10000
0
k=11 k=15 k=17 k=20 k=25
K-mer
—np=2 np=16
DB2,np=2,16

Mem(MB)

Time(Sec)

K-mer

—np=2 np=16

DB3,np=2,16

30000
20000
10000

K-mer
—np=2

Mem(MB)

np=16

Figure 4. Consumption memory for indexing datasets
with 2 and 16 processors.

Figure 5 shows the time required to index the
reference sequence in different datasets with this
number of processors. As the number of processors
increases, the time required for indexing is greatly
reduced. For example, the time required to index a
DB1 by 2 processors in K-mers with a length of 15
is 1800 seconds but is reduced to 100 seconds with
16 processors. Therefore, creating a distributed
index table can reduce the speed by several times
in addition to memory reduction.

Based on the above, it can be concluded that the
proposed algorithm in K-mer with a length of 17
has the highest memory and time consumption and
that by increasing the length of k again, memory
and time consumption decrease because the
number of K-mer in the overlap technique is

449

obtained based on the formula N —K +1, and
increasing the length of k reduces their number.

5.2 Comparison of the proposed algorithm with
other algorithms with different processors

In this section, the PSALR algorithm is compared
with the other three algorithms. The overlap
technique of query and reference sequences is used
to extract K-mers and align the sequences to
evaluate and compare the PSALR algorithm. The
version used of the three compared algorithms can
be seen in Table 3.

DB1,np=2,16

K-mer

—np=2 np=16

DB3,np=2,16

2000
1500
1000

K-mer
—np=2 np=16

@
3
38

°

DB2,np=2,16

300

S
3

Time(Sec)

K-mer
—np=2

np=16

Figure 5. Consumption time for indexing datasets with 2
and 16 processors.

The three STW algorithms, which are based on
BWT, and the BFAST and SHRiMP algorithms,
which are both hash-based, are compared with the
proposed algorithm. Since BWT algorithms do not
use K-mers for alignment and space seed
algorithms, typically use fixed K-mers with
different weights to extract K-mers, in this section,
K-mer with lengths of 11 and 20 are used by default
of other algorithms to evaluate the PSALR
algorithm.

The memory and time consumption of the PSALR
algorithm using K-mer with length 11 is compared
with other algorithms in Figure 6 and 7.

Emadi et al / Journal of Al and Data Mining, Vol. 12, No. 3, 2024

Table 3. Alignment tools.

Tool version Technology
STAR 275a MPI
BFAST 0-7-0 POSIX
SHRiIMP 2-2-2 OpenMP

As shown in Figure 6, we have the highest amount
of memory at np = 2 because the distribution
reaches zero, and only one processor is involved in
creating the table. Although the PSALR algorithm
uses the overlap technique in extracting K-mers, it
manages memory consumption using the
mentioned techniques and performs better than
other algorithms. In this algorithm, the hash table
is created even with a large, fully distributed
sequence. Therefore, as the number of processor
increases, memory consumption decreases.

25000

20000

DB1,k=11
15000

10000
5000
o -
np=2 np=8

Ref-Non-overlap m SATR

Mem(MB)

|

np=4 np=16

B Ref-overlap
BFAST

m SHRIMP
DB2,k=11

9000
)
z 6000
£
T 3000
=
0
np=2 np=8

Ref-Non-overlap m SATR

L

np=16

np=4
B Ref-overlap
BFAST

H SHRIMP
DB3,k=11

18000

@ 15000

= 12000

‘é’ 9000

@ 6000 I

= 3000 I I

0 -
np=2 np=8

Ref-Non-overlap ® SATR
W SHRimp

1

np=4 np=16

B Ref-overlap
BFAST

Figure 6. Comparison of memory consumption in the
PSALR method with K-mer = 11.

However, in other algorithms, the memory
consumption at different np is not much different
from each other. The memory and time
consumption of the PSALR algorithm with a
different number of processors is compared with
other algorithms in Table 4.

The time required to index the reference table in the
proposed algorithm with overlap and non-overlap
techniques and its comparison with other
algorithms can be seen in Figure 7. Although the
reduction in time consumption can be seen as the
number of processors increases in all algorithms,

450

the proposed algorithm performs better with both
techniques than the other algorithms. According to
the figure, SHRiMP has the most time consumption
among algorithms. The same comparisons with K-
mer = 20 can be seen in Figure 8 and 9.

DB1,k=11

2000 I
0

np=2

B Ref-overlap

Time(Sec)

1

np=4 np=8 np=16

Ref-Non-overlap

SATR BFAST
W SHRiIMP
DB2,k=11
10000
‘G‘ 8000
Q
!1’ 6000
g 4000
= 2000
: 1 i n
np=2 np=4 np=8 np=16
B Ref-overlap Ref-Non-overlap m SATR
BFAST W SHRiIMP
DB3,k=11
10000
’g 8000
©, 6000
g 4000
= 2000
= | i
np=2 np=4 np=8 np=16
B Ref-overlap Ref-Non-overlap m SATR
BFAST B SHRIMP

Figure 7. Comparison of time consumption of the PSALR
algorithm with K-mer = 11.

When the overlap technique is used and all possible
K-mers are extracted from the sequence, high time
and memory are required to extract and index them.
As shown in Figure 8, the length of K-mers has
increased compared to the previous experiment.
The PSALR algorithm does not work well
compared to other algorithms in the overlap
technique and np =2, which is without distribution,
and only one processor is responsible for extracting
all possible K-mers from a large sequence and, then
recording their positions from the sequence in the
table, but improves at higher np as the number of
processors increases and the sequence indexing is
divided between more nodes. However, it easily
performs better than other algorithms in the non-
overlap technique used in many alignments.
Similarly, Figure 9 shows a comparison of the time
consumed to index the data for the PSALR
algorithm with the other three algorithms, which is
better in both modes.

PSALR: Parallel Sequence Alignment for long Sequence Read with Hash model

Table 4. Comparison of memory and time consumption of the proposed algorithm with other algorithms with different
numbers of processors.

Input

DB1

DB2

DB3

Algorithm Memory (MB) Time(sec)
Np=2 Np=4 Np=8 Np=16 Np=2 Np=4 Np=8 Np=16
Overlap 8135 3189 1495 811 690 260 180 86
Norﬁz\}:rlap 1638 697 390 243 93 49 40 23
O}f/grllip 37580 13004 5680 2690 840 320 140 87
Norﬁg\i?rlap 3535 1208 530 252 87 48 45 39
é(T=A20R 22835 22016 19968 19660 1680 1020 480 360
BFAST 7579 7688 7688 7870 4200 3300 2520 1860
SHRiIMP 12697 12697 12700 12710 7500 6000 4560 3540
Overlap 2475 985 586 358 156 60 43 26
Nor::\}elrlap 608 290 160 89 28 13 11 11
Oif/;rllip 8908 3396 1573 751 223 65 34 24
Nor:f(;\i?rlap 998 344 152 76 22 15 12 12
K=20
STAR 6907 5741 5288 5658 1200 660 480 360
BFAST 1965 2115 2113 2372 1980 720 540 300
SHRiMP 4517 4508 4532 4633 8340 3900 2640 1740
Overlap 4695 1795 916 556 360 480 248 128
Nor::\}elrlap 982 483 267 161 60 30 25 24
Olf/;rllip 15974 7773 2808 1600 1380 454 216 110
Nor:f;\fgrlap 2101 742 299 150 46 30 24 24
é(T_AZOR 14848 14028 10752 11366 2220 1020 600 420
BFAST 4681 4425 4478 4409 4680 1920 1900 720
SHRiIMP 8766 8750 8749 8744 9420 5700 3180 2880

According to Table 4, the PSALR algorithm does
not perform best in terms of memory consumption
for the entire length of K-mers due to the increase
in length and number of K-mers. As mentioned
before, other algorithms try to improve it by
keeping the K-mer length constant by default or
creating multi-level indexes.

The proposed algorithm does not work better
without these techniques only when fewer
processors are used, and work is divided between
fewer processors, but it works better in terms of
time consumed in all modes.

One of the most important criteria for aligners is
the accuracy of mapping, which can be greatly
increased by using the overlap technique.
However, this technique requires a lot of memory,
and one of the problems with the hash method is
the amount of memory consumed during the

451

indexing phase. Therefore, in this study, attempts
were made to achieve improvements in memory
and speed by providing solutions in the processes
of indexing and mapping of alignment so that
precision and accuracy are not lost but increased.
In this technique, three datasets with different sizes
and short and long queries are used, and the
proposed algorithm is evaluated and compared
with the overlap and technique and overlapping
queries. It is found that memory and time
consumption are reduced several times less in the
second mode, but accuracy is reduced for the
reasons stated. The PSALR algorithm is also
compared and evaluated with the other three
algorithms, and it is shown that it performs much
better even with the overlap technique with a high
number of processors and does not perform better

Emadi et al / Journal of Al and Data Mining, Vol. 12, No. 3, 2024

only in some cases, such as k = 17 with a low
number of processors that the work is divided little.

DB1,k=20

40000
— 35000
@ 30000
= 25000
‘E’ 20000

15000

5 o
0
np=2 np=4 np=8 np=16
M Ref-overlap Ref-Non-overlap
SATR BFAST
W SHRIMP
DB2,k=20

—_ 12000
o 9000
> 50001 l
g 3002
s np=2 np=4 np=8 np=16

M Ref-overlap Ref-Non-overlap

SATR BFAST
B SHRIMP
DB3,k=20

— 18000
2 b
~ 9000
E 6000
L 3000
S o

np=2 np=4 np=8 np=16
W Ref-overlap
SATR

B SHRIMP

Ref-Non-overlap
BFAST

Figure 8. Comparison of memory consumption of
the PSALR.

6. Conclusion and Feature Work

Bioinformatics, through the analysis of biological
data such as genetic and protein sequences, plays a
key role in identifying the genetic factors of
diseases, developing personalized treatments, and
accelerating processes of diagnosis and
prevention[55]. Due to the exponential growth of
DNA sequences, the process of searching for and
storing sequences in databases has become
increasingly time and memory-intensive. As a
result, there is a pressing need for efficient
algorithms that can accelerate database searches
while minimizing memory usage. The SSAHA
algorithm, renowned for its efficiency and speed
when compared to seed-and-extend-based
techniques like BLAST, achieves rapid searches in
large databases by eliminating the expansion and
evaluation steps commonly found in hash-based
methods. The primary objective of this study is to
enhance the SSAHA algorithm by addressing
memory management, indexing, and leveraging
parallelism for multiple processors, all while
improving accuracy and performance. To establish

452

a comprehensive distributed system, PSALR
incorporates parallelization techniques during the
indexing and mapping phases, breaking down large
sequences into shorter segments distributed across
multiple nodes. Additionally, nodes autonomously
relay their results to users without necessitating
users to retrieve results, which significantly
enhances both time and bandwidth efficiency.

DB1,k=20
2000
so00

4000

Time(Sec)

2000

0
np=2 np=4 np=g np=16

Ref-Non-overlap m SATR
M SHRiIMP

W Ref-overlap
BFAST

DB2,k=20

10000

; l | | m

np=2 np=4 np=8 np=16

Time(Sec)

M Ref-overlap
BFAST

Ref-Non-overlap B SATR
W SHRIMP

DB3,k=20

9000
8000
— 7000
@ 6000
9 so00
@ 4000
E 3000
2000
1000
0

np=2 np=4 np=8 np=16

Ref-Non-overlap ® SATR
H SHRIMP

W Ref-overlap
BFAST

Figure 9. Comparison of time consumption of the PSALR
algorithm with K-mer = 20.

To boost the algorithm's accuracy, two key
techniques are employed. Firstly, the extraction of
all K-mers from sequences with a window of length
1 ensures the inclusion of all K-mers in the
alignment. Secondly, a hash table is constructed
based on the K-mers in the text, as opposed to all
possible K-mers of length k. The dynamic selection
of K-mers of desired length by users reduces false
positives and increases true positives while
maintaining sensitivity. In the evaluation process,
we compared the proposed algorithm to BWTs and
Hash-based algorithms. Our findings indicate that
it outperforms them in memory consumption under
most circumstances, except when the distribution is
zero or the number of processors is small.
Nonetheless, there is still room for optimization in
query sequence alignment. This algorithm
necessitates sending all query sequences to each
node, with each node aligning all sequences in the
query file based on its index table and subsequently
transmitting them to the output. While this
approach doesn't increase memory consumption
during alignment, future work should focus on

PSALR: Parallel Sequence Alignment for long Sequence Read with Hash model

further optimizing alignment to enhance overall
performance.

References

[1] L. Hasan, Z. Al-Ars, and S. Vassiliadis, "Hardware
acceleration of sequence alignment algorithms - an
overview," in Proc. of the International Conference on
Design & Technology of Integrated Systems in
Nanoscale Era (DTIS), 2007, pp. 92-97, IEEE.

[2] P. Bawono et al., "Multiple sequence alignment," in
Bioinformatics, Springer, 2017, pp. 167-189.

[3] S. B. Needleman and C. D. Wunsch, "A general
method applicable to the search for similarities in the
amino acid sequence of two proteins,” Journal of
Molecular Biology, vol. 48, no. 3, pp. 443-453, 1970.

[4] J. D. G. De Herve et al., "A perceptual hash function
to store and retrieve large scale DNA sequences," arXiv
preprint arXiv:1412.5517, 2014.

[5] W. J. Wilbur and D. J. Lipman, "Rapid similarity
searches of nucleic acid and protein data banks,"
Proceedings of the National Academy of Sciences, vol.
80, no. 3, pp. 726-730, 1983.

[6] J. Choi et al., "HIA: a genome mapper using hybrid
index-based sequence alignment,” Algorithms for
Molecular Biology, vol. 10, no. 1, pp. 1-9, 2015.

[7] H. Li and N. Homer, "A survey of sequence
alignment algorithms for next-generation sequencing,"
Briefings in Bioinformatics, vol. 11, no. 5, pp. 473-483,
2010.

[8] S. Bandyopadhyay and R. Mitra, "A parallel
pairwise local sequence alignment algorithm,” IEEE
Transactions on NanoBioscience, vol. 8, no. 2, pp. 139-
146, 2009.

[9] F. Mozafari et al., "Speeding up DNA sequence
alignment by optical correlator,” Optics & Laser
Technology, vol. 108, pp. 124-135, 2018.

[10] H. Li and R. Durbin, "Fast and accurate short read
alignment with Burrows—Wheeler transform,”
Bioinformatics, vol. 25, no. 14, pp. 1754-1760, 2009.

[11] R. Li et al, "SOAP: short oligonucleotide
alignment program,” Bioinformatics, vol. 24, no. 5, pp.
713-714, 2008.

[12] 1 B. Langmead, "Ultrafast and memory-efficient
alignment of short DNA sequences to the human
genome," Genome Biology, vol. 10, article R25, 2009.

[13] B. Langmead and S. L. Salzberg, "Fast gapped-read
alignment with Bowtie 2," Nature Methods, vol. 9, no.
4, pp. 357-359, 2012.

[14] S. Misraetal., "Anatomy of a hash-based long read
sequence mapping algorithm for next generation DNA
sequencing," Bioinformatics, vol. 27, no. 2, pp. 189-195,
2010.

453

[15] J. C. Mu et al., "Fast and accurate read alignment
for resequencing,” Bioinformatics, vol. 28, no. 18, pp.
2366-2373, 2012.

[16] S. F. Altschul et al., "Basic local alignment search
tool," Journal of Molecular Biology, vol. 215, no. 3, pp.
403-410, 1990.

[17] B. Ma, J. Tromp, and M. Li, "PatternHunter: faster
and more sensitive homology search," Bioinformatics,
vol. 18, no. 3, pp. 440-445, 2002.

[18] Z. Ning, A. J. Cox, and J. C. Mullikin, "SSAHA: a
fast search method for large DNA databases,” Genome
Research, vol. 11, no. 10, pp. 1725-1729, 2001.

[19] F. J. Sedlazeck, P. Rescheneder, and A. Von
Haeseler, "NextGenMap: fast and accurate read
mapping in highly polymorphic genomes,"
Bioinformatics, vol. 29, no. 21, pp. 2790-2791, 2013.

[20] S. Canzar and S. L. Salzberg, "Short read mapping:
An algorithmic tour,” Proceedings of the IEEE, vol. 105,
no. 3, pp. 436-458, 2017.

[21] H. Mohamadi et al., "ntHash: recursive nucleotide
hashing,” Bioinformatics, vol. 32, no. 22, pp. 3492-
3494, 2016.

[22] T. D. Wu, "Bitpacking techniques for indexing
genomes: Il. Enhanced suffix arrays,” Algorithms for
Molecular Biology, vol. 11, pp. 1-16, 2016.

[23] D. Geng et al., "The implementation of KMP
algorithm based on MPI+ OpenMP," in Proc. of the 9th
International Conference on Fuzzy Systems and
Knowledge Discovery (FSKD), 2012, IEEE.

[24] C. S. Kouzinopoulos, P. D. Michailidis, and K. G.
Margaritis, "Performance study of parallel hybrid
multiple pattern matching algorithms for biological
sequences," in Proc. of the International Conference on
Bioinformatics Models, Methods and Algorithms, 2012,
SCITEPRESS.

[25] H. Li et al., "A fast CUDA implementation of agrep
algorithm for approximate nucleotide sequence
matching,” in Proc. IEEE 9th Symposium on
Application Specific Processors (SASP), 2011, IEEE.

[26] Q. Xue, J. Xie, and J. S., "A parallel algorithm,” in
Proc. 2014 International Conference on Information
Science, Electronics and Electrical Engineering, 2014.

[27] M. J. Chaisson and G. Tesler, "Mapping single
molecule sequencing reads using basic local alignment
with successive refinement (BLASR): application and
theory," BMC Bioinformatics, vol. 13, p. 238, 2012.

[28] D. Peters, K. Qiu, and P. Liang, "Faster short DNA
sequence alignment with parallel BWA," in AIP
Conference Proceedings, 2011, American Institute of
Physics.

[29] S. M. Rumble et al., "SHRiIMP: accurate mapping
of short color-space reads,"” PLoS Comput Biol, vol. 5,
no. 5, e1000386, 2009.

Emadi et al / Journal of Al and Data Mining, Vol. 12, No. 3, 2024

[30] M. David et al., "SHRiIMP2: sensitive yet practical
short read mapping," Bioinformatics, vol. 27, no. 7, pp.
1011-1012, 2011.

[31] R. AlSaad, Q. Malluhi, and M. Abouelhoda,
"Efficient parallel implementation of the SHRiIMP
sequence alignment tool using MapReduce," in Qatar
Foundation Annual Research Forum Volume 2012 Issue
1, 2012, Hamad bin Khalifa University Press (HBKU
Press).

[32] C.-M. Liu et al., "SOAP3: ultra-fast GPU-based
parallel alignment tool for short reads," Bioinformatics,
vol. 28, no. 6, pp. 878-879, 2012.

[33] P. Klus et al., "BarraCUDA—a fast short read
sequence aligner using graphics processing units," BMC
Research Notes, vol. 5, no. 1, p. 27, 2012.

[34] Y. Liu, B. Schmidt, and D. L. Maskell, "CUSHAW:
a CUDA compatible short read aligner to large genomes
based on the Burrows—Wheeler transform,”
Bioinformatics, vol. 28, no. 14, pp. 1830-1837, 2012.

[35] T. Pan et al., "Kmerind: A flexible parallel library
for K-mer indexing of biological sequences on
distributed memory systems,” IEEE/ACM Transactions
on Computational Biology and Bioinformatics, vol. 16,
no. 4, pp. 1117-1131, 2019.

[36] A. M. Esmat et al., "A parallel hash-based method
for local sequence alignment,” Concurrency and
Computation: Practice and Experience, vol. 2021,
article e6568, 2021.

[37] H. Lin et al., "Efficient data access for parallel
BLAST," in Proc. 19th IEEE International Parallel and
Distributed Processing Symposium, 2005, IEEE.

[38] M. Nowicki, D. Bzhalava, and P. Bala, "Massively
parallel implementation of sequence alignment with
basic local alignment search tool using parallel
computing in Java library," Journal of Computational
Biology, vol. 25, no. 8, pp. 871-881, 2018.

[39] D. Dechev and A. Tae-Hyuk, "Using SST/Macro
for effective analysis of MPI-based applications:
Evaluating large-scale genomic sequence search,” IEEE
Access, vol. 1, pp. 428-435, 2013.

[40] T. Vijayaraghavan, A. Rajesh, and K.
Sankaralingam, "MPU-BWM: Accelerating sequence
alignment,” IEEE Computer Architecture Letters, vol.
17, no. 2, pp. 179-182, 2018.

[41] H. Martinez et al., "Concurrent and accurate short
read mapping on multicore processors," IEEE/ACM
Transactions on Computational Biology and
Bioinformatics, vol. 12, no. 5, pp. 995-1007, 2015.

[42] J. W. Kim, E. Kim, and K. Park, "Fast matching
method for DNA sequences,” in Proc. International
Symposium on Combinatorics, Algorithms,
Probabilistic and Experimental Methodologies, 2007,
Springer.

454

[43] A. Dobin et al., "STAR: ultrafast universal RNA-
seq aligner,” Bioinformatics, vol. 29, no. 1, pp. 15-21,
2013.

[44] Y. Chen, S. Yu, and M. Leng, "Parallel sequence
alignment algorithm for clustering system,” in Proc.
International Conference on Programming Languages
for Manufacturing, 2006, Springer.

[45] N. Homer, B. Merriman, and S. F. Nelson,
"BFAST: an alignment tool for large scale genome
resequencing,” PloS One, vol. 4, no. 11, 7767, 2009.

[46] X. Yu and X. Liu, "Mapping RNA-seq reads to
transcriptomes efficiently based on learning to hash
method," Computers in Biology and Medicine, vol. 116,
p. 103539, 2020.

[47] F. Peng etal., "New hash-based sequence alignment
algorithm,” in Proc. 2nd International Conference on
Bioinformatics and Intelligent Computing, 2022.

[48] A. Joudaki et al., "Aligning distant sequences to
graphs using long seed sketches,"” Genome Research,
2023, article gr.277659.123.

[49] H. Zhang et al., "ESA: An efficient sequence
alignment algorithm for biological database search on
Sunway TaihuLight," Parallel Computing, vol. 117, p.
103043, 2023.

[50] K. Xu, X. D. Kai, A. Muller, R. Kobus, B. Schmidt,
and W. Liu, "FMapper: Scalable read mapper based on
succinct hash index on SunWay TaihuLight,” Journal of
Parallel and Distributed Computing, vol. 161, p. 11,
2022.

[51] S. Suchindra, "New sequence alignment algorithm
using Al rules and dynamic seeds,” Bioscience &
Engineering: An International Journal (BIOEJ), vol. 10,
no. 1/2, 2023.

[52] G. Greenberg, A. N. Ravi, and I. Shomorony,
"LexicHash: sequence similarity estimation via
lexicographic comparison of hashes," Bioinformatics,
2023, article btad652.

[53] M. Zaharia et al., "Faster and more accurate
sequence alignment with SNAP,"” arXiv preprint
arXiv:1111.5572, 2011.

[54] S. Canzar and S. L. Salzberg, "Short read mapping:
An algorithmic tour," Proceedings of the IEEE, vol. 105,
no. 3, pp. 436-458, 2015.

[55] M. Shamsollahi, A. Badiee, and M. Ghazanfari,
"Using combined descriptive and predictive methods of
data mining for coronary artery disease prediction: A
case study approach," Journal of Al and Data Mining,
vol. 7, no. 1, pp. 47-58, 2019.

NET o goga 0ylons (000030 0,90 55500l 5 cgtan g dlxo Ohlen 5 solac

(PSALR) yupr y (Soimo Joo b SV gb sbd iilgs (sl p JIs5 s3lge o)l

T lit Lo yanzs g ™ golos Lowws Oyl (ol g (BT (9 yus
Ol e 93 (oMl S13T oKD (33 uolg ¢ i gunols 05,5
coll e 3 g ¢ 3l g oL ¢ 35 guaolS 09,5 "
Ol e 38 (oDl SI3T 6lRG1S (339 Ay ¢ 47 gunolS 09,5 "
Ol Ol T 639U s 3 Rigel iz (lojle colnl (5333 LAS (S35l gt iz danns 3o (51l Lolus (slidiany 5 09,5 T

YOV Gondy oY YEN /oY 550 V- VF/-0/-F JLu)

RN

b 335 oo 008 25 155 sl g3 (gjlo 0, slad ay L 5 Sy s Bitos a5] dzlge so0wie o tlle b pgis cus S5 5 g (gosls
w218 5 |y s ol Ol i3l 05033 Gl 1alS e a5 el sl slasis, axe 5§ DNA b JIgs sleosls w38
Ol sl s ssbar 4 05 oe (By2e (PSALR) oy (oo Jue b I8 (5l sl mipsl e Gioty ol 5o ol (5552 S
LPSALR BLAST s olaet Xl b awslie jo caw Toads >l s iSlas Las 5 g5l 0,058 sl s g5le aige (gam)ly ey
il 00,83 b o oSl (ol ams oo 2L 1y 5510 ylej g (Slew bre b am 10 g 08,5 (g5ke wles ol 5 1) laools i Jglas 5l eslaz |
slools il o 5l s S o o5 | 5L 050 alabl> o Jlanl e ccalisee lae S ylie 00ly 11365 5 pamspe wibisligs Slal ,o T goaias wsls
4 S slals i 3 PSALR (505 (55158 w5104 5 o & 08 oLtS50) 5 alaS5l & 5LS (g0 oo S w8
& Losdins (535 50 05 4l oo 1y ol s 5 00,55 olaml (6555 Jsbo 5 (sogame o (53,509, emiloo 5 e o])l 5 Lo Jlsi 2
Gan JI5 e o 05 oAled 45 S o a5 5555 5 55 e slo s 5l a6l miman w1 gl 5
e el 5,8, 5 ails s 2l 955 hlies a4 S PSALR oo o (it g0,5kas glaggal w555)3 il 5 g 990

el pgiy S g g ..\.J)lf Gl

MPL el (Jlgs ol iy sie o5 jlwales 1 goudS” GlodS

