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 Artificial neural networks are among the most significant models in 

machine learning that use numeric inputs. This study presents a new 

single-layer perceptron model based on categorical inputs. In the 

proposed model, every quality value in the training dataset receives a 

trainable weight. Input data is classified by determining the weight 

vector that corresponds to the categorical values in it. To evaluate the 

performance of the proposed model, we have used 10 datasets. We 

have compared the performance of the proposed model to that of other 

machine learning models, including neural networks, support vector 

machines, naïve Bayes classifiers, and random forests. According to 

the results, the proposed model resulted in a 36% reduction in 

memory usage when compared to baseline models across all datasets. 

Moreover, it demonstrated a training speed enhancement of 54.5% for 

datasets that contained more than 1000 samples. The accuracy of the 

proposed model is also comparable to other machine learning models. 
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1. Introduction 

Data is a collection of observed facts that can be 

divided into two categories: numeric and 

categorical. Numeric data, also known as 

quantitative data, are measurable and computable 

data and can be classified into two discrete and 

continuous categories [1]. Categorical data, also 

called non-numeric or qualitative data, represents 

characteristics. Such data is visible but cannot be 

calculated, such as color, style, nationality, gender 

[2]. In areas such as natural language processing 

[3], molecular biology, medicine, social sciences, 

game theory, education, economy, urbanism, 

classification of protein sequences [4] we are 

dealing with categorical datasets. 

The number of unique categories in a categorical 

variable is called cardinality. Low-cardinality 

refers to categorical variables with few unique 

values, typically less than 100, and do not change 

over time. Some of the quality variables are high 

cardinality, such as product IDs, zip codes, or 

names, as well as words in documents that contain 

hundreds or even thousands of distinct values [4]. 

One of the main challenges of using categorical 

data is to use it as input for machine learning 

models and neural networks. 

Machine learning is a branch of artificial 

intelligence and computer science that enable 

computers to automatically learn from data [5]. 

Neural networks are a class of machine learning 

models that are the basis of many important and 

widely used models, such as deep neural networks, 

convolutional neural networks and recurrent neural 

networks. These networks are applied to the vector 

of real numbers [6]. In order to use categorical data 

as input for neural networks, we must apply 

techniques to map it to numeric vectors. Such 

techniques are known as representation, distributed 

representation, encoding, and embedding [4]. 

One of the most common approaches to evaluate 

the performance of the techniques presented is to 

use them in algorithms and machine learning 

models for a specific task and then measure the 

model's end-to-end performance. The techniques 

presented so far have problems such as generating 

large and sparse numeric vectors, high memory 

consumption and high time required for training 
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embedded vectors, issues with optimizing the 

values of parameters, lack of attention to semantic 

relationships between categorical values, and lack 

of attention to the statistical information contained 

in the entire data, losing important information 

during the generation process of numeric vectors. 

Sometimes, high-cardinality features and variables 

contain valuable and important information but due 

to the large dimensions of vectors derived from 

their encoding, as well as the loss of useful 

information when categorizing values, the 

incorporation of such features in machine learning 

models is rare, and in most cases, they are ignored 

[7]. In fields such as medicine, categorical datasets 

may contain important information but unknown.  

The use of improper techniques could lead to the 

inability to observe this information and make 

predictions about patient treatments [8]. 

This article introduces a novel neural network 

model that accepts categorical data as input without 

the need for any mapping procedures. The model 

incorporates a single categorical neuron and 

assigns a distinct weight to each categorical value 

within a feature. Our proposed model eliminates 

the need for manual feature extraction and feature 

engineering. 

The rest of the article is organized as follows. 

Section 2 discusses techniques for encoding 

categorical data and how they are used in neural 

networks and machine learning models. Section 3 

details the principle of the proposed model that is 

known as proposed perceptron. Section 4 provides 

a set of experiments that are used to evaluate the 

model. Section 5 presents the positive aspects of 

the proposed approach, along with ideas for more 

research. 

 

2. Discussion 

Reily et al. [8] examine the heuristics for pre-

processing, selection of the encoding method, and 

choose the appropriate algorithm for classifying 

categorical data. Using heuristics like cardinality, 

ordinal, or nominal quality features, they have 

developed a flowchart to choose the suitable 

encoding technique for every feature in the dataset. 

A table was created for selecting a classification 

model based on heuristics such as model accuracy, 

speed, training time, model parameters, dataset 

features, and size of the dataset. 

Alexandridis et al. [9] have developed a method for 

using categorical data in radial basis function 

networks called CRBF, and categorical data are 

used directly in the neural network without 

mapping. Their proposed model consists of two 

stages. In the first stage, with the help of 

unsupervised learning, the number of first-layer 

centers and the categorical values of centers are 

estimated. In the second stage, with the help of 

supervised learning, the weights of the output layer 

are trained. To calculate the distance between input 

and quality centers, different distance indicators 

such as the Hamming distance have been used. The 

experiment of this model on 22 categorical datasets 

shows that for 15 cases of datasets the proposed 

model has yielded better results, and in the rest it 

has been relatively good performance and 

equivalent to the rest of the classifiers.  

Cardona et al. [10] have proposed a novel way to 

classify categorical data using machine learning 

models. First, the Chi-square distance criterion was 

used to map categorical values to another space, in 

which data is more separable. Then, they reduced 

the dimensions of the features by means of the t-

SNE algorithm. The features obtained are used to 

classify data by machine learning models. By 

testing this method on seven datasets, it can be 

concluded that the proposed method’s execution 

time for classification is reduced, and is also at the 

same level of accuracy other methods are. 

Perez and Castillo [4] have developed four 

hypotheses in order to provide a suitable map of 

protein data to classify protein sequences. These 

assumptions include translation, permutation, 

constant, and eigenvalues. Next, they performed a 

classification of protein sequences based on 

various models to evaluate their maps. They have 

shown that there is no significant improvement in 

the model’s average accuracy when mapping with 

translation, permutation and consistent 

assumptions and the resulting maps are equivalent 

to basic mapping. Using the eigenvalue-based 

mapping, the accuracy of the models will be 

comparable and the best model has an accuracy of 

83.25 percent. 

Hancock et al. [5] present a paper that explores the 

use of categorical data in machine learning models 

and neural networks. The article categorized 

categorical data encoding techniques into three 

groups: determined, algorithmic, and automatic. 

Determined techniques are the easiest to use, which 

involve using distinct numeric values to encode 

categorical values. These values remain consistent 

throughout the model’s train and test phases. Such 

techniques are suitable for dealing with low-

cardinality data because in this case, they have a 

low mapping memory and time and always use 

fixed numbers for encoding. These techniques 

include one one-hot encoding, integer encoding 

and so on. These techniques can result in high 

memory consumption for data with a high diversity 

of values (such as cities or postal codes). 

Algorithmic techniques are techniques that are 
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commonly referred to as the preprocessing stages. 

In these techniques, the transformation of 

categorical data into vector space requires both 

time and computational complexity, such as Latent 

Dirichlet Analysis (LDA) technique. 

Automated techniques are techniques that train the 

numeric representation of categorical data during 

the training process of neural network. Most of the 

time, the automatic technique input is a one-hot 

encoding vector of categorical value, and their 

output is a vector with a smaller size. As part of the 

neural network training process, the input weight 

matrix will be trained and will serve as the mapping 

table. The weight matrix that is derived can either 

be applied directly to the primary neural network 

or used for transfer learning in a different neural 

network. The time complexity of these techniques 

is higher and their output will be directly input into 

classification models. Such techniques in the field 

of natural language processing are SGNS, CBOW, 

or GloVe. 

Arat [11] has come up with a new approach to 

utilizing high-cardinality quality features in deep 

neural networks. In this method, the categorical 

features with high cardinality are first encoded 

using the mean-target technique, and then a 

decimal number is obtained for each value. The 

weights of each decimal value are updated during 

the training process of a deep neural network. The 

values obtained from mean-target encoding and the 

trained weight form a key-value pair for each 

categorical value that is stored in a mapping table. 

The key represents a categorical value with a high 

cardinality, and the value indicates the weight 

assigned to the key. According to the experiments, 

this method can learn neural networks and generate 

mapping vectors without requiring extra memory 

or time, unlike Van Hat and Minh Target methods. 

One-hot encoding [12], integer encoding [13], 

mean-target encoding [14], feature-hashing [15] 

techniques are commonly used methods for 

mapping categorical features. These methods 

generate large and sparse mapping vectors and by 

ignoring statistical information, they will cause 

poor results. In some techniques, due to the 

generation of the same codes for different 

categorical values, it will cause the loss of useful 

information in categorical features and the 

performance of the final model will be reduced. 

Various techniques have been presented to classify 

categorical features with high cardinality and 

utilize them optimally in machine learning models. 

These techniques include grouping and clustering 

values [16,17] to reduce cardinality, as well as 

techniques based on training embedded vectors 

[18,19]. However, these techniques face certain 

challenges. One challenge is the lack of 

consideration for the statistical information of the 

entire data when grouping categorical values. 

Additionally, the need for an appropriate method to 

measure similarity between categorical values of 

categorical features and the disregard for semantic 

relationships among categorical values in the final 

vectors have been noted.  

Moeyersoms and Martens [8] examine various 

techniques for using high-cardinality quality 

features into predictive models. These techniques 

involve dummy encoding, reducing the cardinality 

of categorical features by semantically grouping 

values (e.g., grouping postal code values based on 

province), and subsequently using dummy 

encoding to encode the obtained groups. 

Additionally, mapping functions based on the 

target function are utilized to convert categorical 

values into numeric values. Noteworthy mapping 

functions include Weight of Evidence (WOE), 

Supervised Ratio (SR), and Perlich Ratio (PR) 

functions. Through practical experimentation using 

the same dataset, the researchers have 

demonstrated that incorporating high-cardinality 

quality features, along with other common features 

and appropriate encoding, enhance the 

performance of the predictive model.  

The main issues with the majority of the 

approaches discussed are: the training or mapping 

of large datasets requires a lot of time and memory, 

the statistical information of the entire data is not 

used, and the semantic relationships between 

words are not taken into consideration.  

In the following section, we will introduce a new 

model for classifying the categorical data. This 

model is designed to handle both binary 

classification and regression challenges. However, 

this paper will restrict its analysis to the binary 

classification model, while subsequent works will 

investigate the model's potential for regression and 

other problems. 

 

3. Proposed Model  

Let's assume that the desired dataset DS has N data 

samples with n categorical features. So, n is the 

number of features in dataset. Moreover, suppose 

that for any data sample, we represent the jth 

quality feature as 𝑄𝐹𝑗 and the value of the 𝑄𝐹𝑗 for 

the ith data sample as 𝑄𝑉𝑗
(𝑖).Every categorical 

feature in the data sample has a categorical value 

from its own collection of categorical values 

(according to equation (3)). If we denote the ith 

data sample as 𝑆(𝑖) and the target output of the 𝑆(𝑖) 

as 𝑌𝑡
(𝑖)

, then for the ith data sample, we will have:  
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In the above equations, 𝑄𝐹𝑗 and 𝑄𝑉𝑗
(𝑖), respectively 

represent jth categorical feature and jth categorical 

value of ith data sample (𝑆(𝑖)); and dj represents the 

cardinality of 𝑄𝐹𝑗 and 𝑞𝑣𝑗,𝑘 is a categorical value 

that represents the kth categorical value of 𝑄𝐹𝑗. In 

the proposed model, any categorical value of any 

categorical feature will have its own weight, which 

will be updated during the training procedure of the 

proposed perceptron. If we display the weight of 

the 𝑄𝑉𝑗
(𝑖) as 𝑊

𝑄𝑉𝑗
(𝑖), then we have: 
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where, 𝑤𝑞𝑣𝑗,𝑘
 is a decimal number and represents 

the weight assigned to 𝑞𝑣𝑗,𝑘. 𝑊𝑄𝑉0
(𝑖) represents the 

bias weight and we display it with 𝑤0.  

The architecture of the common perceptron is 

shown in figure 1-A and the architecture of the 

proposed perceptron is shown in figure 1-B. This 

model is a single-layer neural network based on 

categorical values. It consists of n categorical 

inputs and one bias input. Its purpose is to perform 

binary classification on input data.  

 

 

 
Figure 1. Typical perceptron architecture based on real numbers (Vj

(i)) and proposed perceptron based on categorical values 

(QVj
(i)), (A) typical perceptron model for binary classification issues ،(B) proposed perceptron for Binary Classification. 

 

As shown in figure 1 and to maintain formula 

simplicity, the weight of bias is denoted as 𝑊𝑄𝑉0

(𝑖), 

and the value of bias is represented as 
( )

0 1iQV  . 

The following subsections presents a 

comprehensive description of the feedforward 

procedure, the loss function calculation, and the  

 

backpropagation procedure as proposed in the 

model. 
 
3.1. Feedforward on the proposed perceptron 

for binary classification 

Suppose that 𝑦𝑜𝑢𝑡
(𝑖)

 is the estimated output by the 

proposed perceptron for the 𝑆(𝑖). As the figure 1-B 
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illustrates, in a binary classification problem, the 

feedforward procedure of the proposed perceptron 

will be as follows: 
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In equation (5), 𝑦2
(𝑖)

 is the middle output of the 

proposed perceptron. The 𝑦1
(𝑖)

 is an algebraic 

expression. The 𝑊
𝑦1

(𝑖)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is the coefficient vector of 

𝑦1
(𝑖)

 which can be called as the coefficient vector of 

𝑆(𝑖). The p is a natural number. The output 𝑦2
(𝑖)

 

depends on the p value, with the difference that in 

equation (5). 

In mathematics, a norm is a function from a real or 

complex vector space to the non-negative real 

numbers that behaves in certain ways like the 

distance from the origin. In the norm of a vector, 

we use the absolute value of each element. So, the 

norm of each vector will always be a positive 

number. This study introduces a new formula that 

is similar to the norm function for calculating 

output values (𝑦2
(𝑖)

), where the actual values of the 

elements in 𝑊
𝑦1

(𝑖)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   are used rather than their 

absolute values. When p is an odd number, this 

strategy leads to a distribution of outputs in both 

positive and negative spaces, which simplifies the 

classification of the input samples. We can call this 

new formula as semi-norm function. 

It is essential to clarify that in the practical 

implementation of the proposed model, the 

algebraic expression 𝑦1
(𝑖)

 and the vector 𝑊
𝑦1

(𝑖)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   are 

not actually generated. These expressions have 

been utilized to enhance the comprehension of the 

proposed model. These expressions have been used 

to illustrate the relationship between the input and 

the variable 𝑦2
(𝑖)

. 

 

As observed in equation (5), for odd values of p, 

𝑦2
(𝑖)

 will always be a real number in the range 

(−∞,+∞) and for even values of p, 𝑦2
(𝑖)

 will 

always be a real number in the range [0, +∞). So, 

for even values of p, we have 
( )

20.5 ( ) 1iy   

and the predicted class will always be 'positive' for 

all data samples, similar to common neural 

networks. This means that if we only use the ‘bias’ 

as an input to the neural network then, for even 

values of p, we will face a problem and all samples 

will be classified as ‘positive’ class. 

 

To avoid this problem, there are two primary 

approaches: 1) using a threshold that is greater than 

0.5 to determine the final class, 2) shifting the 

activation function T units to the right of the y2-

axis. In this study, we used the second approach 

and proposed a new activation function for even 

values of p. Therefore, 𝑦𝑜𝑢𝑡
(𝑖)

 is obtained from 

equation (6): 
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Where, T is the transfer parameter and depends on 

the p value. If p be an odd number then 0T  , and 

if p be an even number so 0T  . The 𝑦𝑜𝑢𝑡
(𝑖)

 is a real 

number in the range of (0, 1). It depends on the type 

of problem and other parameters. In a binary 

classification problem, 𝑦𝑜𝑢𝑡
(𝑖)

 is calculated according 

to equation (6) and depends on the T value. Now 

the final class of the data sample 𝑆(𝑖) is obtained as 

follows: 
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According to the equation (7), 𝑐𝑙𝑎𝑠𝑠(𝑖) is the final 

predicted class for the data sample 𝑆(𝑖). In a binary 

classification problem, a data sample can be 

classified as either positive (pos) or negative (neg). 

Consider equations (5)-(7), it can be observed that: 
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According to the equations (7) and (8), it can be 

proven that: 
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Figure 2 displays the proposed activation function 

of the proposed perceptron. 
 

 
Figure 2. The proposed activation function and binary 

classification of data samples in the proposed perceptron. 

 

As shown in figure 2, the activation function for 

2 1p k  is just like the one in the common 

perceptron, but for 2p k if 4 0T   , then the 

value of 𝑦𝑜𝑢𝑡 will be 0.018 at least. Therefore, the 

area corresponding to each class will be similar to 

that shown in the figure 2-B.  

 

As we know, in all neural networks with sigmoid 

as an activation function in the output layer, there 

are two types of bias: one bias in input and one 

fixed threshold (=0.5) in activation function. In this 

paper, we introduce the shifted activation function 

or the trainable threshold (T). 

 
 

3.2. Loss function on the proposed perceptron 

for binary classification 

Until now, various loss functions have been 

provided for neural networks, and there are also 

different optimizers to optimize these loss 

functions. The two primary and common optimizer 

types are Gradient Descent (GD) and Stochastic 

Gradient Descent (SGD). In this article, binary 

cross entropy was used as the loss function and the 

SGD optimizer. Now, to measure the value of loss 

function for Si: 
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Where, 𝐿𝑆𝐺𝐷
(𝑖) is representing the value of the loss 

function based on the SGD. 𝑌𝑡
(𝑖) is the expected 

output for 𝑆(𝑖) (equation (2)), which can be either 

zero or one and 𝑦𝑜𝑢𝑡
(𝑖)

 is also the output given by the 

proposed perceptron for 𝑆(𝑖) (equation (6))), which 

is a decimal number within the range (0, +1). 

 

3.3. Backpropagation on the proposed 

perceptron for binary classification 

Considering the optimizer SGD for binary cross 

entropy (equation (10)), the backpropagation 

procedure in the proposed perceptron for binary 

classification problems and weight update will be 

as follows: 
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(11) 

If p is odd, T will always be a fixed value of zero. 

The value of T will need to be trained and 

optimized during the model training for even 

values of p. To update the T value, the formula is 

as follows: 
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3.4. An example of applying the proposed model 

to a data sample 

To learn more about how the proposed model 

works, we use an example. Consider the dataset in 

figure 3, which is related to the prediction of 

playing based on weather features. According to 

the “weather” dataset, we have 𝑁 = 14 data 

samples, 𝑛 = 4 categorical features and the 

problem is a binary classification with ‘positive’ 

class for ‘Play’ and ‘negative’ class for ‘Don’t 
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Play’. The weight and cardinality parameters in the 

proposed model will be as follows: 

 

  

 

 
Figure 3. The weather dataset and the symbols of the proposed model. 
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As you can see, each categorical value in each 

feature will be assigned a unique weight. Updating 

the weights for the first sample from the above 

dataset will be done as follows: 
 

(1)

(1)
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As seen, for each data sample, only the weights of 

the categorical values in the sample were updated. 

And the above calculations are done for all samples 

in one epoch. The above example shows how the 

proposed model works. 

 

4. Experiments  

In this section, we will detail the experimental 

results obtained from the proposed model.  

 

4.1. Experimental setup 

The proposed perceptron was implemented in 

Spyder environment and carried out on a PC with a 

2.5 GHz Intel Core i5 processor with 8 GB of 

memory. To evaluate the performance of the 

proposed perceptron, 10 categorical datasets with 

binary output were used. The UCI machine 

learning repository ([20]) has online availability of 

the datasets and their corresponding descriptions.  

In datasets that contain multiple classes, 

considering the number of samples in each class 

and maintaining a balanced distribution of classes, 

the entire class has been reduced to two classes and 

every problem has been turned into a binary 

classification problem. When a dataset contains 

unknown values for some features, we consider a 

new categorical value for that feature, which is 

known as MV or 'Missing Value'. All numeric 

features in the datasets were considered categorical 

features. Table 1 provides an overview of the pre-

processed datasets obtained after applying the 

above settings to all datasets. 

 

4.2. Parameter optimization of proposed 

perceptron  
The available data was randomly distributed in 

three subsets, with 55% being used for training, 

15% for validation, and 30% for testing. The 

optimization process was executed using only  

Table 1. Benchmark datasets overview. 

Datasets 

A
b

b
r
e
v
ia

ti
o

n
 

#
 o

f 
sa

m
p

le
s 

#
 o

f 
in

p
u

ts
 

#
 o

f 
C

la
ss

es
 

Car Evaluation CE 1728 6 2BC* 

Breast Cancer BCR 286 9 2BC 

Chess (KR vs. 

KP) 
CRP 3196 36 2BC 

Clave Direction** CD 10800 16 2BC 

4-Connect** C4 67557 42 2BC 

Congressional 

Voting 

Recording 

CVR 435 16 2BC 

Dermatology DRM 366 33 2BC 

Hayes Roth HR 160 33 2BC 

HIV HIV 6590 33 2BC 

Lymphography LYM 148 18 2BC 

*BC: 'Binary Classification' problem 
**These datasets are not involved in the optimization 

procedure. 

 

training and validation. The parameters required to 

optimize the proposed perceptron are: 1) 

±weight_range (WR) related to the initial weight of 

the connections, 2) the number of epochs, 3) 

learning_rate (LR) and 4) the initial value of the 

transmission parameter (T). The mean and standard 

deviation (SD) were calculated for all datasets. 

Table 2 displays the results.  

Table 2. Mean and standard deviations obtained for the 

proposed perceptron. 

Parameters 
Optimal Values 

(Mean ± SD) 

Learning-Rate (LR) 

p = 1 0.09 ± 0.16 (0.01) 

p = 2 0.1 ± 0.16 (0.01) 

p = 3 0.02 ± 0.03 (0.01) 

p = 4 0.18 ± 0.24 (0.01) 

Epochs 

p = 1 167 ± 122 (0) 

p = 2 200 ± 100 (0) 

p = 3 256 ± 113 (0) 

p = 4 189 ± 89 (0) 

Weight-Range (WR) 

p = 1 0.6 ± 1.7 (0) 

p = 2 6.1 ± 2.2 

p = 3 5 ± 3.5 

p = 4 6.1 ± 2.2 

T 

p = 1 0 

p = 2 36.7 ± 33.5 

p = 3 0 

p = 4 31.1 ± 30.6 
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Considering that in reality, some parameters are 

unable to have a negative or decimal value, so to 

prevent negative numbers and decimals, the 

standard deviation values were replaced by 

numbers in parentheses during the implementation 

of the proposed model. 

In the final training of the proposed perceptron, the 

parameters will be initialized based on the normal 

distribution using the optimal values obtained for 

them. 
 

4.3. Complexity analysis of proposed perceptron 

Our next task is to evaluate the memory required to 

keep up the mapping table and the proposed 

perceptron structure, as well as the time required to 

train the proposed model. To assess the complexity 

of time and memory in the proposed model more 

effectively, we have compared the complexity of it 

with that found in the single perceptron neural 

network that is based on one-hot encoding and the 

single perceptron neural network is built on integer 

encoding. Two metrics were used to measure the 

complexity of these three models: 1) The total 

amount of the lookup table's size (LUT) and the 

size of the network (SON), 2) The approximate 

time that model training will take per epoch. 

During this phase, the Train and Validation sets, 

which make up 70% of the total data, carried out 

the model training process, and the testing of the 

models was done by the Test set. Table 3 displays 

the total amount of training and testing data, both 

individually and per class. The first and third 

columns are related to 'positive' data, while the 

second and fourth columns are related to 'negative' 

data. It is evident that the data for each class is 

distributed equally in both Train and Test sets. 

The total amount of memory required for the DS 

dataset with N samples and n categorical features 

can be calculated by using the following formulas. 
 

mod

mod

(mod ) ( )

( )

el

el

Space el Space LUT

Space SON




 (13) 

 

So, it can be concluded: 

1 1

( ) (1 )
n n

j j

j j

Space OHP d d
 

     (14) 

1

( ) (1 )
n

j

j

Space INP n d


    (15) 

1

(Pr ) 1
n

j

j

Space oposed d


   (16) 

 

Where, the Space is the approximate total memory 

required for various models, INP refers to integer 

encoding based perceptron, OHP refers to one-hot 

encoding based perceptron and Proposed refers to 

proposed perceptron in this paper. According to 

equals (14-16), we can draw a conclusion: 

 
(Pr ) ( ) ( )Space oposed Space INP Space OHP   (17) 

 

The Space column in the table 3 displays practical 

evidence of equal 17. It is evident that across all 

datasets, the proposed perceptron demonstrates a 

lower memory requirement compared to the 

traditional OHP and INP models.  

To facilitate a more comprehensive analysis of 

these findings, the percentage change in memory 

usage of the proposed model relative to the OHP 

and INP models is computed using the following 

formula, with the results illustrated in chart 1. 
 

Pr

Re ( , Pr )

100
A oposed

A

Percentage Of Space duction A oposed

Space Space

Space

  


 

 (18) 

The findings indicate that the proposed model 

reduces memory consumption by an average of 

49% compared to the OHP model and 23% 

compared to the INP model. This reduction allows 

for the application of the proposed model in 

environments with limited memory.  

Furthermore, the correlation coefficient between 

the 'space' column of the proposed model and the 

number of samples is 0.2, while the correlation 

coefficient between the 'space' column of the 

proposed model and the number of features 

(inputs) is 0.8. This indicates that memory 

consumption tends to increase with the number of 

features, regardless of their cardinality. In contrast, 

it appears that memory consumption is largely 

independent of the number of samples present in 

the dataset. Consequently, the proposed model is 

particularly suitable for datasets containing a large 

number of data. 

To determine the approximate time needed for 

training the model, we calculated in practical the 

model training time for each epoch. In the 'Training 

Time' column of the table 3, you can see the results 

of this metric in centisecond (
210 sec ). You can 

observe that the proposed model is more effective 

in managing a dataset with numerous samples. For 

datasets with a low number of samples, the INP 

models perform better than others.  

In order to gain a clearer insight into the results 

achieved, the percentage change in training 

duration of the proposed model, in comparison to 

the OHP and INP models, is calculated using the 

following formula, with the results illustrated in 

chart 2. 
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Table 3. Table of data distribution in the Train and Test datasets, comparing the memory requirements of each model and 

the time required to train each model per epoch. 
D

a
ta

se
ts

 Class Distribution in 

Train Data (70%) 

Class Distribution in 

Test Data (30%) 
Space (Memory Unit) Training Time per Epoch ( *10-2 Sec ) 

Class: 0 Class: 1 Class: 0 Class: 1 OHP INP 
Proposed 

perceptron 
OHP INP 

Proposed Perceptron 

p=1 p=2 p=3 p=4 Avg 

CE 
856 

(70.8 %) 

353 

(29.2 %) 

354 

(68.2 %) 

165 

(31.8 %) 
42 28 22 6.58 3.88 4.17 4.56 4.69 4.8 4.56 

BCR 
137 

(68.5%) 

63 

(31.5 %) 

64 

(74.4 %) 

22 

(25.6 %) 
87 53 44 0.54 0.31 0.89 0.98 0.97 1.03 0.97 

CRP 
1061 

(47.4 %) 

1176 

(52.6 %) 

466 

(48.5 %) 

493 

(51.5 %) 
145 109 73 122 24.2 34.3 39.2 37.1 40.6 37.8 

CD 
4261 

(56.3 %) 
3299 

(43.7 %) 
1831 

(56.5 %) 
1409 

(43.5 %) 
65 49 33 683 147 72.5 78.1 77.2 81.1 77.2 

C4 
16114 

(34 %) 

31175 

(66 %) 

6970 

(34.4 %) 

13268 

(65.6 %) 
253 169 127 

11.3
 
104 

4.9 
 
104 

1.6
 

104 

1.6
 

104 

1.7
 

104 

1.6
 

104 

1.6
 

104 

CVR 
188 

(61.8 %) 

116 

(38.2 %) 

79 

(60.3 %) 

52 

(39.7 %) 
97 65 49 1.01 0.60 2.33 2.59 2.53 2.73 2.55 

DRM 
130 

(50.7 %) 

126 

(49.3 %) 

52 

(47.2 %) 

58 

(52.8 %) 
379 224 190 1.58 0.7 3.76 4.33 4.04 4.39 4.13 

HR 
36 

(39.1 %) 
56 

(60.9 %) 
15 

(37.5 %) 
25 

(62.5 %) 
295 153 148 0.28 0.11 0.32 0.36 0.35 0.37 0.35 

HIV 
3685 

(79.8 %) 

928 

(20.2 %) 

1545 

(78.1 %) 

432 

(21.9 %) 
321 169 161 

1.3 
 
103 

34.0 6.42 6.4 7.16 7 6.75 

LY

M 

44 

(44.4 %) 

55 

(55.6 %) 

17 

(39.5 %) 

26 

(60.5 %) 
119 78 60 0.23 0.13 0.75 0.84 0.81 0.87 0.82 

 

 

Chart 1. Percentage of memory consumption reduction in the proposed model compared to OHP model and INP model. 
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Chart 2. Percentage of training time reduction in the proposed model compare to models OHP and INP.
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  


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 (19) 

A negative percentage of change in relation to the 

OHP or INP model indicates that the OHP or INP 

model has successfully shortened the training time 

relative to the proposed model. 

Chart 2 clearly demonstrates that for datasets with 

more than 1000 samples, the proposed model 

exhibits an average improvement in training time 

of 76.6% compared to the OHP model and 32.5% 

compared to the INP model. In addition, chart 2 

illustrates that the training duration of the proposed 

model was significantly less than that of both 

comparison models when applied to the CD, C4, 

and HIV datasets, which contain the largest number 

of samples. Consequently, it can be inferred that 

the proposed model is more efficient in terms of 

training time for large datasets.  

Moreover, the correlation coefficient for the 

'Training Time' column of the proposed model in 

relation to the number of samples is 1.0, while the 

correlation coefficient with respect to the number 

of features (inputs) is measured at 0.5. This 

observation indicates a relatively strong direct 

relationship between training time and the number 

of features, as well as a perfect positive correlation 

with the number of samples. 

In general, it can be said that the proposed model 

appears to be more effective than the other two 

models when dealing with big data due to its 

smaller space and faster training time.  
 

4.4. Performance evaluation of proposed model 

The proposed perceptron was compared with other 

methods including multilayer perceptron (MLPs) 

using one-hot encoding for all the categorical [21], 

naive Bayes (NB) classifiers [22], support vector 

machines (SVMs) with Gaussian kernel function 

[23], random forest trees (RFTs) [24], radial basis 

function network (RBF) [25] and categorical radial 

basis function network (CRBF) [9]. We employ 

both the accuracy (ACC) and the Matthews 

correlation coefficient (MCC) [26] in the analysis 

that follows. Table 4 display the comparison based 

on ACC.  

Table 4 shows that the CRBF model performs the 

best, followed by the OHP and the proposed 

perceptron (𝑝 = 2) models, respectively. CRBF 

and the proposed perceptron, with p values of 1 and 

2, perform best in terms of the number of the 

maximum accuracy in all dataset.  

Considering the cosine similarity between 

accuracy vector of each model and the vector of 

goal. the CRBF and OHP models have been the 

first to have a similarity value of 0.996. 
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Table 4. Performance comparison using the accuracy (ACC) between the proposed model and the other models. 

  Accuracy (%) 

 Model 

Proposed perceptron 

OHP INP 
CRBF 

[9] 

MLP 

[21] 

SVM 

[23] 

NB 

[22] 

RFTs 

[24] 

ERBF 

[25] 
Goal 

p = 1 p = 2 p = 3 p = 4 

D
a

ta
se

ts
 

CE 94.99 94.41 95.37 90.75 93.44 71.86 97 96 95 87 96 91 100 

BCR 77.90 75.58 76.74 80.23 79 76.74 75 70 76 72 70 71 100 

CRP 96.24 95.3 93.43 70.69 95.41 94.68 99 98 98 86 98 81 100 

CD 86.60 87.82 66.57 81.85 87.65 87.5 82 84 83 78 81 81 100 

C4 76.46 77.9 68.69 74.54 79.2 66.2 83 80 76 73 80 69 100 

CVR 97.7 99.23 98.47 98.47 97.7 96.18 100 99 98 97 99 100 100 

DRM 100 97.27 98.18 94.54 95.45 100 97 95 95 95 96 96 100 

HR 75 80 80 65 75 55 86 80 79 82 82 76 100 

HIV 79.26 79.26 79.26 78.14 93.01 78.14 93 93 82 91 90 83 100 

LYM 95.34 93.02 86.04 83.72 86.04 86.04 82 80 78 78 77 68 100 

Mean (±SD) 
87.9 

(±10) 

88.0 

(±9) 

84.3 

(±12) 

83.6 

(±10) 

88.2 

(±8) 

81.2 

(±14) 

89.4 

(±9) 

87.5 

(±10) 

86 

(±9) 

83.9 

(±9) 

86.9 

(±10) 

81.6 

(±11) 
100 

No. of Max 2 1 0 1 1 1 5 0 0 0 0 0 10 

Cosine to 
Goal 

0.994 0.995 0.991 0.994 0.996 0.986 0.996 0.994 0.995 0.995 0.994 0.992 +1 

 

 

The proposed perceptron, with a value of 0.995, 

and others have the second performance rating.  

In general, it can be concluded that models based 

on categorical data (CRBF, the proposed 

perceptron) perform better than models based on 

numeric data in terms of accuracy. 
 

5. Conclusion  

This article introduces a single-layer perceptron 

model that is based on categorical inputs. Instead 

of mapping categorical inputs to numeric space, the 

model directly uses them. This model implicitly 

encodes the input in the weight matrix.  

According to the experiments conducted, it can be 

observed that the proposed perceptron performs 

better than the other models, in terms of memory 

consumption. In addition, the training time of a 

dataset with a large number of samples will be 

faster. Furthermore, the proposed perceptron 

model outperformed previous models in terms of 

accuracy. 

The results present that in a specific case, the 

proposed perceptron performs similarly to the one-

hot encoding perceptron, but with a lower memory 

usage and less training time. However, for datasets 

that contain low cardinality features, it is more 

effective to use mapping-based models such as 

OHP and INP.  

Due to the observed low accuracy of the proposed 

model across certain datasets, it is recommended 

that the initial weighting process be conducted with 

intention, and the weights of the proposed model 

be adjusted using other optimization functions, 

such as Adam. 

Considering the benefits of the proposed model, we 

suggest that neural network-based model such as 

MLP, RNN and LSTM be considered and 

developed in the future based on the proposed 

model. Additionally, the proposed model can be 

applied to other datasets that include qualitative 

features in a range of discipline, such as healthcare, 

architecture, industrial sectors, and educational 

contexts.  
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 ایهای دستهبندی دادهساختاری جدید برای پرسپترون جهت طبقه

 

 *زادهمحمد قاسم و نژادفریبا تقی

 کامپیوتر، دانشکده مهندسی کامپیوتر، دانشگاه یزد، یزد، ایران.گروه 

 30/11/2024 پذیرش؛ 05/11/2024 بازنگری؛ 26/08/2024 ارسال

 چکیده:

صنوعی یکی از مدلشبکه صبی م ستفاده میهای ع ست که از مقادیر عددی به عنوان ورودی ا شین ا کند. این مقاله یک مدل های مهم در یادگیری ما

سپترون تک ستهلایه جدید و مبتنی بر ورودیپر ستهای را ارائه میهای د شنهادی، به هر مقدار د شی در مجموعه داده آموموجود ای دهد. در مدل پی ز

صاص می ستهیک وزن قابل آموزش اخت ستفاده از بردار وزن مربوط به مقادیر د برای ارزیابی  شود.بندی میطبقهای موجود در آن یابد. داده ورودی با ا

ستفاده کرده 10عملکرد مدل پیشنهادی از  شبکهایم و عملکرد آن را با دیگر مدلمجموعه داده ا شامل  شین  شین بردار های عصهای یادگیری ما بی، ما

شتیبان، طبقه سه کردهپ صادفی مقای ساده و جنگل ت ست آمده به ازای تمام مجموعه دادهبند بیز  صرفی در میزان ها، ایم. با توجه به نتایج به د حافظه م

نمونه،  1000های بزرگتر از ونههایی دارای توداد نمهای مبنا بوده اسننت. بوهوه، سننرعت آموزش برای مجموعه دادهکمتر از مدل %36مدل پیشنننهادی 

 های یادگیری اشین است. بهبود داشته است. دقت مدل پیشنهادی نیز قابل مقایسه با دیگر مدل 54.5%

 بندی دودویی.ای، داده غیرعددی طبقهشبکه عصبی، داده کیفی، داده دسته :کلمات کلیدی

 


