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 Voice Activity Detection (VAD) plays a vital role in various audio 

processing applications, such as speech recognition, speech 

enhancement, telecommunications, satellite phone, and noise 

reduction. The performance of these systems can be enhanced by 

utilizing an accurate VAD method. In this paper, multiresolution Mel-

Frequency Cepstral Coefficients (MRMFCCs), their first and second-

order derivatives (delta and delta2), are extracted from speech signal 

and fed into a deep model. The proposed model begins with 

convolutional layers, which are effective in capturing local features 

and patterns in the data. The captured features are fed into two 

consecutive multi-head self-attention layers. With the help of these 

two layers, the model can selectively focus on the most relevant 

features across the entire input sequence, thus reducing the influence 

of irrelevant noise. The combination of convolutional layers and self-

attention enables the model to capture both local and global context 

within the speech signal. The model concludes with a dense layer for 

classification. To evaluate the proposed model, 15 different noise 

types from the NoiseX-92 corpus have been used to validate the 

proposed method in noisy condition. The experimental results show 

that the proposed framework achieves superior performance 

compared to traditional VAD techniques, even in noisy environments. 

 

Keywords: 
Voice Activity Detection, Self-

Attention Mechanism, Multi-
Resolution Mel-Frequency 
Cepstral Coefficients, Deep 
Learning. 

 

*Corresponding author: 

kh.aghajani@umz.ac.ir (Kh. 

Aghajani). 

1. Introduction 

Voice Activity Detection (VAD) is a vital phase in 

many speech processing-based applications such as 

automatic speech recognition, speech 

enhancement, telecommunications, speech 

encoding, satellite phone, speaker verification, and 

noise reduction systems. As an example, in a 

speaker verification task, non-speech intervals in 

speech files lack speaker information. So, VAD 

can be used to identify active speech segments 

before the feature extraction process [1]. 

The primary aim of VAD is to accurately 

distinguish between speech/non-speech segments 

in an audio signal, especially in noisy 

environments. It determines the 

starting/terminating points of active speech which 

significantly enhances the performance of 

subsequent processing stages.  

Traditional VAD methods were based on heuristic 

methods or simple machine learning approaches 

using handcrafted features, such as short time 

energy level [2,3], zero-crossing rate [3], spectral 

information [4], Mel frequency cepstral 

coefficients (MFCC) [5], Cochleagrams [6], and 

wavelet energy [7,8]. These methods were very 

simple and computationally efficient but usually 

failed in challenging noisy environments. To 

improve the robustness of such methods, statistical 

model-based approaches, such as Gaussian 

Mixture Models (GMM) [9,10,11] and Hidden 

Markov Models (HMM) [12,13], were introduced 

to model speech and noise features using an 

appropriate probabilistic model. In [14], the 

statistical characteristics of the sub-band temporal 

envelope and the sub-band long-term signal 
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variability are computed. By combining the two 

features the VAD decision according to the fusion 

decision has been made. In total, the traditional 

methods struggle in noisy environments, leading to 

reduced accuracy in detecting speech. These 

techniques typically rely on fixed thresholds or 

assumptions about signal distribution, making 

them less adaptable to varying noise conditions. 

These days, the use of deep learning tools has 

brought significant progress in VADs, as in many 

other speech processing applications. In [15, 16, 6], 

taking into account multiple hand-crafted features, 

a deep multi-layered perceptron model has been 

used to detect the active area of the audio signals.   

Various combinations of Convolutional neural 

networks (CNNs), recurrent neural networks 

(RNNs), and dense networks, have been used for 

VAD. They show promising results compared to 

traditional approaches due to their superior feature 

extraction and classification capabilities. Jung et al. 

have proposed a method called self-adaptive soft 

VAD which incorporates a deep neural network 

(DNN)-based VAD into a deep speaker embedding 

system [17].  

In [18, 19, and 20], by considering Log-Mel energy 

spectrogram as an input to CNN layers followed by 

a dense layer, detection has been performed. 

Vecchiotti et al. have presented a CNN-based 

model for joint speech detection and speaker 

localization according to Log-Mel and GCC-

PHAT information [21].  

In [22], a combination of the CNN-based method 

and the MLP is used for VAD. In this method, the 

input signal is passed through Conv1D layers, then 

the extracted feature-map is concatenated to some 

handcrafted extracted features, and finally, after 

passing through a dense layer, the conclusion is 

made. In [23], the aim is improving VAD in noisy 

conditions. Their proposed method was a 

combination of CNN model and a De-noising 

Auto-encoder (DAE), by considering acoustic 

features and their delta features in noisy conditions. 

Wilkinson and Niesler proposed an end-to-end 

architecture consisting of both convolutional 

neural network and bidirectional long short-term 

memory (Bi-LSTM) for voice activity detection 

[24]. They utilized sequences of 32×32 

spectrogram images as input to the model. Similar 

to [24], the combination of CNN and LSTM has 

been used in [25, 26, and 27] to detect active speech 

area. In [26], a method called CLDNN 

(Convolutional, Long Short-Term Memory, Deep 

Neural Networks) has been introduced. The raw 

waveform has been considered as the model’s input 

instead of Log-Mel features. They came to the 

conclusion that by using CNNs, better features can 

be extracted from raw data than other features such 

as Log-Mel. Jia et al. proposed a method called 

MagicNet incorporating the MobileNet and gated 

recurrent neural network (GRU) [28]. To reduce 

the number of parameters, the CNN layers are 

constructed with 1D depth-wise separable 

convolutions and a residual architecture. In [29], 

three features—Mel-frequency Cepstral 

Coefficients (MFCC), log filter banks, and spectral 

subband centroid—are extracted, fused, and fed 

into a classifier comprising three Recurrent Neural 

Networks (RNNs) with 256 neurons each and a 

fully connected layer with two neurons. 

In [30], the VAD decision was derived from a 

simple Long Short-Term Memory (LSTM) 

network trained on auditory speech features, 

including energy, zero-crossing rate (ZCR), and 

13th-order Mel Frequency Cepstral Coefficients 

(MFCC). In [31], a combination of Convolutional 

Neural Network followed by a Self-Attention (SA) 

Encoder has been proposed. Their proposed 

method was capable of processing the entire signal 

at once. In [32], with the aim of reducing the 

computational complexity of speaker diarization, 

the attention system of a speaker embedding 

extractor has been established as a weakly 

supervised VAD model. 

In this paper, a novel VAD method that utilizes 

multiresolution Mel-Frequency Cepstral 

Coefficients has been proposed. This approach 

captures speech characteristics at multiple 

resolutions, ensuring a more detailed 

representation of the signal. To achieve robustness 

across noisy conditions, a deep model 

incorporating convolutional layers, followed by 

two multi-head attention layers is proposed. 

Convolutional layers can effectively extract spatial 

features from the input audio signals. Moreover, 

multi-head attention mechanism can enhance the 

model's ability to focus on relevant features. It can 

help the model to dynamically prioritize important 

features, especially in noisy environments, where 

distinguishing speech from noise is crucial. Finally, 

a dense layer performs the classification task. The 

proposed framework is evaluated considering 15 

different noise types from the NoiseX-92 corpus, 

demonstrating its robustness and effectiveness in 

various noisy environments. 

 

 

 

 



Deep Learning Approach for Robust Voice Activity Detection 

339 

 

 

With the proposed method, VAD is enhanced in 

terms of robustness and adaptability, especially in 

noisy environments. This makes it well-suited for 

various real-world applications. In 

telecommunications, it reduces the transmission of 

silence and conserves bandwidth by accurately 

detecting speech segments. In rescue operations, it 

can be crucial for detecting human voices amidst 

noise. For individuals with hearing impairments, 

the system can improve speech quality by filtering 

out noise. Lastly, it can enhance the performance 

of intelligent voice-command systems by 

distinguishing speech in noisy environments. 

The rest of this paper is organized as follows: 

Section 2 describes the proposed framework, 

Section 3 presents the experimental results, and 

Section 4 concludes the paper with a conclusion. 

 

2. Proposed method 

In this research, a 3D audio image is generated by 

extracting multiresolution Mel-Frequency Cepstral 

Coefficients (MRMFCCs) along with their first and 

second-order derivatives from the speech signal. 

The use of MRMFCCs allows the model to capture 

detailed frequency variations at multiple 

resolutions, making it robust in noisy conditions.  

The obtained audio images are fed into a deep 

CNN-based model. The model architecture 

combines convolutional layers for efficient feature 

extraction with self-attention layers to capture 

long-range temporal dependencies, which are 

crucial for distinguishing speech from noise. The 

integration of CNNs with attention mechanisms 

enhances the model's ability to focus on the most 

relevant features, ensuring accurate detection 

across varying noise environments. This choice of 

architecture was motivated by the need for a model 

that can generalize well to diverse acoustic 

conditions, offering improved noise robustness and 

speech-non-speech discrimination. To evaluate the 

proposed method under real-world conditions, data 

augmentation using different noise types has been 

performed. The proposed framework is detailed 

below. 

 

2.1. Data generation  

To develop and validate the proposed framework, 

the TIMIT dataset has been employed [33]. This 

dataset is a widely used speech corpus designed for 

acoustic-phonetic analysis and speech recognition 

research. It consists of 630 speakers from 8 

different dialect regions in the United States, with 

each speaker reading up to 10 phonetically rich 

sentences. The dataset provides a balanced and 

diverse range of speech samples in terms of speaker 

accent, gender, and speaking style, making it 

suitable for speech-related tasks such as Voice 

Activity Detection (VAD). All audio files were 

sampled at 16 kHz. 

 

Figure 1. (a) Sample noisy speech signal. (b), (c), and (d) are MRMFCCs, delta MRMFCCs, and delta2 MRMFCCs, respectively. 

In each channel, bands 1 to 40, 41 to 80, and 81 to 120 are dedicated to high resolution, medium resolution, and low resolution 

coefficients, respectively. 
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Figure 2. The architecture of the proposed model along 

with the input/output dimensions of each layer. 

 

The dataset is originally divided into TRAIN and 

TEST subsets. It has different speakers in the 

training and test sets. The training set consists of 

462 speakers (3696 utterances), and the test set 

contains 168 different speakers (1,344 utterances). 

This split ensures that the models trained on the 

training set do not encounter the same speakers in 

the test set.  

Since the original speech signals are clean, ground 

truth labels for VAD are derived using an energy-

based method. It was observed that the obtained 

labels for the original speech data are unbalanced 

(most of the frames are active speech frames). This 

can pose problems in training the model. To 

balance the labels in the training set, silent sections 

are inserted into the original speech signals at 

random positions. Here, we insert a total of 8000 

zero values which, based on the sampling rate, 

corresponds to approximately half a second of 

silence. 

Moreover, to improve model robustness in real-

world conditions, we augment the training data by 

adding noise. In order to simulate unpredictable 

real-world scenarios, random noise from the 

NoiseX-92 corpus is added to the clean speech 

signals [34]. NoiseX-92 contains various types of 

real-world noises, such as: White noise, Babble 

noise, volvo noise, Factory noise, Buccaneer noise, 

leopard noise. For augmenting training samples, 

for each original speech corpus, 2 types of noise 

between these noises have been randomly selected 

and for each noise, a random SNR belonging to the 

range of -5dB to 30dB has been randomly picked. 

In other words, for every speech sample, 2 new 

samples have been created by adding noise to it. 

This leads to create a diverse set of noise 

conditions. 

 
2.2. MRMFCC Feature Extraction  

In this research, Multi-resolution Mel-Frequency 

Cepstral Coefficients are extracted from the speech 

signal. The concept of multi-resolution, previously 

applied to cochleogram features in [35, 36], is 

employed here for the MFCC feature. This 

approach captures the spectral characteristics of 

speech signals at different resolutions. Specifically, 

three different window lengths are used to extract 

MFCCs from the speech signal.  

The primary advantage of using Multi-resolution 

MFCCs is their ability to capture both fine-grained 

and coarse-grained spectral information. 

Traditional single-resolution MFCCs may not fully 

capture the variability of the speech signal, 

especially in noisy environments. Multi-resolution 

MFCCs extract features at multiple time scales: 

shorter windows capture fine-grained spectral 

variations, while longer windows capture more 

smoothed, coarse patterns. This enables the system 

to detect both rapid changes and more stable, long-

term characteristics in the signal, resulting in a 

more comprehensive and noise-resilient feature 

representation. 

Here, highest resolution features are obtained by 

extracting MFCCs using the smallest window 

length (25ms) and its hop size (5ms). 

Subsequently, the window length is doubled for the 

medium resolution, and doubled again for the 

lowest resolution. Here, the starting points of the 

two low resolution windows are aligned by the 

starting points of the high resolution windows. The 

MFCCs extracted at each resolution are 

concatenated to form a 1D vector for each high 

resolution frame, yielding a rich and detailed 

spectral representation.  

To capture dynamic changes in the spectral 

features, the first- and second-order temporal 

derivatives, known as delta MRMFCCs and delta-

delta MRMFCCs, are computed respectively. 

Utilizing these two features is common in speech 
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processing applications, especially in VAD in 

which the distinction between speech and non-

speech often depends on how the spectral features 

change [37, 38]. These derivatives help the model 

to detect the presence of speech even in situations 

where spectral features alone are not sufficient.  

The obtained derivatives, along with the original 

MRMFCCs, form a three-dimensional 

representation for each frame. Considering the 

whole speech signal, the input F×3P×3 image is 

obtained, where F is the frame number, and P is the 

number of MFCCs extracted from each window 

(frame).  

An example of a three-second speech signal (300 

overlapping frames) along with its MRMFCC 

image is shown in Figure 1. In this figure, the P is 

considered 40. Each channel is displayed 

separately in figures (1.b), (1.c), and (1.d). In each 

channel, bands 1 to 40, 41 to 80, and 81 to 120 are 

dedicated to high resolution, medium resolution, 

and low resolution coefficients, respectively. 

Including both fine- and coarse-grained spectral 

details can help enhance the robustness and 

accuracy of the voice activity detection model in 

diverse acoustic environments.  

 

2.3. Model Architecture  

The proposed model, illustrated in Figure 2, 

incorporates convolutional and self-attention 

layers, using MRMFCCs as an input image with 

dimensions F×3P×3. In this context, F represents 

the frame number, and 3P results from 

concatenating P MFCCs extracted from each three 

resolution window. The three channels correspond 

to the MRMFCCs, delta MRMFCCs, and delta-

delta MRMFCCs.  

The proposed model, shown in Figure 2, includes a 

series of four convolutional layers, with the first 

three followed by an average pooling layer. For the 

convolutional layers, the filter number and kernel 

size are set to 32 and 3×3, respectively. To reduce 

computational complexity, the pool size of the 

pooling layers is set to 1×2. This reduces the 

dimensionality of the feature maps along the 

MRMFCC axis while preserving the temporal 

dimension. The output of the last convolutional 

layer is reshaped to a dimension of F×(32.3P/8), 

preserving the temporal dimension and flattening 

the feature maps.  

To capture long-range dependencies and temporal 

relationships within the extracted features, two 

self-attention layers are utilized. Here, multi-head 

self-attention layers have been employed. This 

approach allows the model to focus on different 

parts of the sequence simultaneously. The 

mathematical description of the multi-head self-

attention mechanism is as follows [39]. 

Given the input sequence 
*F DX R  (here, F  is 

the frame number,
3

32.
8

P
D = ), queriesQ  , keys

K , and valuesV are obtained using linear 

transformations as: 

, ,Q K VQ XW K XW V XW= = =  
(1) 

 In which, , , kD d

Q K VW W W R    are weight 

matrices, and kd   is the dimension of the queries 

and keys. 

For each attention head, the attention weight is 

obtained by applying softmax function on the 

scaled dot-product of the queries and the keys as 

[39]: 

( , , ) max( )

T
QK

Attention Q K V soft V
d

k

=  

(2) 

 
The output of the multi-head attention is obtained 

by concatenating the outputs of h head as: 

 

( , , ) ( , ..., )1MultiHead Q K V concat head head WOh
=  (3) 

Where each ( , , ),i i i ihead Attention Q K V=  and 

khd D

OW R    is an output weight matrix. 

 Before and after the multi-head attention layers, 

layer normalization is utilized to stabilize and 

normalize the inputs using the following equation: 

( ) .
x

LayerNorm x

 

 

−
= +

+
 

(4) 

Where,   and   denote the mean and standard 

deviation of the input, and   and    are learnable 

parameters. In the proposed model two multi-head 

self-attention layers are used, each with 4 heads 

( 4)h = and a key dimension of 64 ( 64)kd =  . 

With this approach, the proposed model can 

capture diverse patterns and relationships across 

the temporal dimension of the input sequence. The 

model ended by a dense layer with a sigmoid 

activation function. Each node is a probability 

value indicating the presence of speech activity. 

Notably, the weights of the dense layer are shared 

across each frame, ensuring that the model treats 

each frame consistently. 

Using self-attention increases the model's 

complexity. As can be seen in figure 2, one self-

attention layer includes approximately 492,000 

trainable parameters (984,000 for the two layers 

used).  
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To manage this complexity while maintaining 

proper accuracy, we used the minimum number of 

filters (32) in the CNN layers and incorporated 

pooling layers to reduce the size of the feature map. 

This lightweight CNN design allows for the 

inclusion of self-attention without significantly 

increasing the model's computational cost. 

 

3. Experimental Results 

To train the model, as mentioned in Section 2.1, 

training samples are generated from the 

TIMIT/TRAIN data. Briefly, the data generation 

process includes adding silence at random 

positions in the clean signal, extracting the VAD 

label with the help of an energy-based method from 

the clean signal, and adding noise to the signal 

(random type and SNR). By repeating this 

operation three times, adequate samples are 

generated to train the model. Moreover, the length 

of the training and test samples is considered to be 

three seconds. Accordingly, signals with a longer 

length are truncated, and in signals with a shorter 

length, silence is added at the end of the clean 

signal (before adding noise). MRMFCC images of 

each signal are created by considering windows of 

25 milliseconds length and 10 milliseconds hop 

size. According to the signal length, window size, 

sampling rate, and number of MFCCs, the size of 

the obtained images is 300×120×3. 

The proposed model is trained in 15 epochs using 

Adam's optimization algorithm with the learning 

rate of 0.0001. Binary cross-entropy is used as the 

loss function. All processes are conducted on a 

laptop with an Intel(R) Core(TM) i7-7700HQ CPU 

@ 2.80GHz processor, 16 GB of RAM, and a 

GeForce GTX 1070 GPU with 8 GB of memory.  

 In figure 3, the graphs of loss and accuracy of the 

train and validation sets are shown over the epochs. 

It is worth noting that the validation set contains 

200 test samples. As seen in the figure, the loss 

decreases over time. After 15 epochs, the 

validation error slightly becomes higher than the 

training error, suggesting that 15 epochs of training 

may be sufficient. 

According to the number of original samples and 

the augmented ones (13800 samples in total), the 

training time is 13 minutes per epoch with a batch 

size of 50. By considering 15 epochs for training, 

the process of training takes approximately 3 and a 

quarter hours. 

The evaluation of the proposed VAD is conducted 

using the TIMIT\TEST data. The speech signals 

are clean so an energy-based VAD is employed to 

generate the ground truth labels. To evaluate the 

robustness of the proposed framework, each speech 

signal is contaminated by an additive noise corpus. 

The noise type is randomly specified from the 

NoiseX-92 corpus, which consists of 15 noise types 

such as babble, Volvo, pink, etc. The experiments 

are conducted across various Signal-to-Noise 

Ratios (SNRs) from the set {-10, -5, 0, 5, 10, 15, 

20, 25, 30} dB. Figure 4 shows an example of the 

experiment. Figure 4.a shows the original signal. 

Figures 4.b-4.d show three noisy signals which are 

obtained by adding the original signal with three 

different types of noise (babble, destroyer 

operation, and factory) at different SNRs. For each 

noisy signal, the ground truth VAD, the output 

from the proposed VAD model, and the VAD 

result after applying thresholding are depicted. As 

can be seen, the results demonstrate the robustness 

of the proposed framework under various noisy 

conditions.  

The precision, recall, and accuracy are computed to 

evaluate the proposed VAD under varying noise 

conditions for each SNR level. These metrics 

provide a comprehensive view of the model's 

ability to correctly discriminant speech and non-

speech segments. 

These criteria are computed using following 

equations: 

True Positives
Precision

True Positives False Positives
=

+
 

(5) 

True Positives
recall

True Positives False Negatives
=

+
 

(6) 

True Positives True negatives
accuracy

Number of Detection

+
=  

(7) 

SNR(dB) P. M. P.M without 

attention layers 

GMM 

Clustering [11] 

CNN- 

LSTM[26] 

ACAM-

LSTM[40] 

Precision% Recall% Accuracy% Accuracy% Accuracy% Accuracy% Accuracy% 

-10 73.66 68.41 82.73 78.1 -- 78.81 78.93 

-5 80.63 85.21 88.18 83.6 63.4 79.87 83.46 

0 90.29 93.89 93.74 89.1 77.8 85.51 88.59 

5 94.01 95.34 95.97 91.1 84.4 88.74 90.82 

10 94.73 95.58 96.56 91.5 92.6 89.18 91.13 

15 96.23 96.66 97.35 93.8 95.42 90.79 93.01 

20 97.23 96.97 97.85 95.0 97.3 91.49 94.24 

25 97.81 97.05 98.07 95.8 -- 93.86 95.63 

30 97.87 97.24 98.16 96.1 -- 94.85 96.37 

 Table 1. Comparative analysis of accuracy across various methods. 
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After performing the tests in each SNR, the 

mentioned criteria are calculated according to the 

proposed method and reported in Table 1. As can 

be seen, at lower SNR levels, such as -10 dB and -

5 dB, the precision and recall values indicate the 

model’s capability to maintain a reasonable 

balance between false positives and false 

negatives, even in noisy environments.  

As the SNR increases, the model's performance 

improves significantly, with precision reaching 

97.87% and recall 97.24% at 30 dB, demonstrating 

its robustness and high accuracy (98.16%) under 

clearer conditions. These metrics highlight the 

model’s ability to detect speech effectively across 

a wide range of noise conditions, showcasing its 

adaptability and strong generalization to real-world 

scenarios where noise is variable.  

Also, the accuracy of the proposed method has 

been compared with the approaches presented in 

[26,40,11].  

• In [26], the proposed method is based on 

CNN-LSTM-dense architecture fed with the 

raw waveform. It begins with a frequency 

convolution layer followed by non-

overlapping max pooling along the frequency 

axis. The output is then passed through several 

LSTM layers and one fully connected DNN 

layer before predicting two output targets.   

• In [40], an adaptive contextual attention 

model (ACAM) along with LSTM-based 

attention approach has been utilized for voice 

activity detection. It employs a recurrent 

attention model that processes multiple input 

frames, focusing on the most crucial ones for 

classification. Its architecture consists of a 

decoder, attention mechanism, encoder, core 

network, and classifier. 

• In [11], the proposed method utilizes 

clustering in the spectro-temporal domain. By 

applying Gaussian mixture models and WK-

means clustering, the method reduces 

dimensionality and uses cluster attributes and 

energy levels to effectively distinguish 

between speech and silence. 

In these three methods, TIMIT database has been 

used for evaluation. The accuracies of these 

method in the presence of noises similar to the 

noises used in this paper has been reported at 

different SNR levels and is shown in Table 1 along 

with the accuracy of the proposed method. In 

addition, to check the effect of attention layers, we 

have allocated a separate column in the table under 

the title of the “proposed method without attention 

layers”. 

Table 1 indicates that although the three selected 

methods are relatively robust in noisy conditions, 

the proposed method demonstrates superior 

accuracy. Also, the use of attention layers could 

improve the accuracy by almost 4-5%. 

Finally, to further assess the effectiveness of the 

proposed method under varying noise levels, a final 

experiment was conducted by grouping the tests 

into three SNR ranges: -10 to 0 dB, 0 to 10 dB, and 

10 to 20 dB. Precision-recall curves were plotted 

for each range instead of individual SNR levels to 

avoid overcrowding in the graphs, providing a 

clearer and more interpretable representation of the 

model’s performance across these SNR intervals. 

This approach allows us to evaluate the robustness 

of the method effectively across distinct noise 

environments. Figure 5 presents the precision-

recall curves and confusion matrices across 

different SNR levels. As shown in this figure, the 

proposed method demonstrates resilience to noise 

by maintaining high accuracy with low false 

positive (FP) and false negative (FN) rates. 

 

 

 

 

 

Figure 3. Training and validation loss and accuracy over epochs. 
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Figure 4. (a) Original speech signal. (b), (c), And (d) are noisy versions of (a), obtained by adding it with babble noise 

(SNR=7.6 dB), destroyer operations noise (SNR=7.9 dB), and factory noise (SNR= 5.6 dB), respectively. For each noisy 

signal, the corresponding ground truth VAD, model output, and thresholded VAD result are depicted. For better intuition 

and to avoid overlapping lines, the values of the ground truth VAD, model output, and thresholded VAD result have been 

scaled by 0.2, 0.22, and 0.25, respectively. 
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4. Conclusion  

In this paper, a VAD method based on deep 

learning is proposed. In this method, a three-

dimensional image of the audio signal is generated 

by concatenating MFCCs at three resolutions and 

considering their first and second derivatives in 

time. The proposed deep model consists of four 

convolutional layers, followed by two attention 

layers, and finally a dense layer. The training 

samples are created by adding noise to the clean 

data from the TIMIT/TRAIN dataset. For testing, 

the clean corpus, belonging to TMIT/TEST is 

combined with noise, and the model's accuracy is 

calculated for each SNR value. The accuracy of the 

proposed method is then compared with two recent 

state-of-the-art methods. The results demonstrate 

an improvement in accuracy of the proposed 

method compared to the other two methods. 

However, the model may face challenges in 

handling low-energy speech segments or speech 

under extreme noise conditions, where the 

distinction between speech and non-speech 

becomes more ambiguous. Future work could 

focus on improving the model's performance by 

exploring alternative feature extraction methods 

like wavelet transforms, evaluating other model 

architectures and, finally, optimizing the model for 

real-time deployment on low-power devices. 
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 .1403سال  ،دوره دوازدهم، شماره سوم ،کاویمجله هوش مصنوعی و داده                                                                                                        آقاجانی

 

-selfو  شبکه های کانولوشن ترکیبمقاوم:  نواحی فعال گفتار صیتشخ یبرا قیعم یریادگی کردیرو

attention استفاده از با MFCC با وضوح چندگانه  

 

 *خدیجه آقاجانی

 .، بابلسر، ایرانمهندسی، دانشگاه مازندرانگروه مهندسی کامپیوتر، دانشکده فنی 

 02/11/2024 پذیرش؛ 02/10/2024 بازنگری؛ 27/07/2024 ارسال

 چکیده:

شخ شخ یدر برنامه ها یاتینقش ح( VAD)نواحی فعال گفتار  صیت صدا مانند ت و  یگفتار، مخابرات، تلفن ماهواره ا تیگفتار، تقو صیمختلف پردازش 

 وحپسترال با فرکانس مل با وضک بیمقاله، ضرا نیداد. در ا شیافزا قیدق VADتوان با استفاده از روش  یها را م ستمیس نیدارد. عملکرد ا زیکاهش نو

مدل  .شتتوندیم وارد قیمدل عم کیگفتار استتتخراش شتتده و به  گنالی(، از ستت2(، مشتتتقات مرت ه اول و دوم آن ا )دلتا و دلتاMRMFCCsچندگانه )

به  استخراش شده یها یژگیها مؤثر هستند. ودر داده یمحل یو الگوها هایژگیو استخراشدر این ساختار  .شودیآغاز م یکانولوشن یهاهیبا لا یشن ادیپ

سر وارد م یمتوال هیدو لا  یورود یوالدر کل ت هایژگیو نیترمرت ط یبر رو یبه طور انتخاب تواندیمدل م ه،یدو لا نیشوند. با کمک ا یخود توجه چند 

و هم  یمحل ویژگی های  تا هم ستتتازدیکانولوشتتتنال و توجه به خود، مدل را قادر م یهاهیاز لا ی ی. ترکمی یابدکاهش  زینو اثر نیتمرکز کند، بنابرا

سری س سرا سی قرار دهدگفتار  گنالیرا در  سد یبندط قه یمتراکم برا هیلا کیبا ن ایتا  یشن ادیمدل پ .مورد برر سر هی. لابه انت ا می ر  هتوجه چند 

 ،یشن ادیمدل پ یابیارز ی. برابخشدیب  ود م، یورود یژگیمرت ط در نقشه و یهایژگیتمرکز بر و یمدل برا ییتوانا شیرا با افزا یکل صیعملکرد تشخ

ست. نتا NoiseX-92 کرهیمختلف از پ زینوع نو 15از  شده ا ستفاده  شان م یتجرب جیا  یسنت یهاکیبا تکن سهیدر مقا یشن ادیکه چارچوب پ دهدین

VADدارد. ب تریپر سر و صدا، عملکرد  یهاطیدر مح ی، حت  

 .قیعم یریادگیپسترال فرکانس مل با وضوح چندگانه، ک بیتوجه به خود، ضرا سمیمکان ،گفتارنواحی فعال  صیتشخ :کلمات کلیدی

 


