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 This paper explores the performance of various object detection 

techniques for autonomous vehicle perception by analyzing classical 

machine learning and recent deep learning models. We evaluate three 

classical methods, including PCA, SIFT, and HOG alongside 

different versions of the SVM classifier, and five deep-learning 

models, including Faster-RCNN, SSD, YOLOv3, YOLOv5, and 

YOLOv9 models using the benchmark INRIA dataset. The 

experimental results show that although classical methods such as 

HOG + Gaussian SVM outperform other classical approaches, they 

are outperformed by deep learning techniques. Furthermore, Classical 

methods have limitations in detecting partially occluded, distant 

objects and complex clothing challenges, while recent deep-learning 

models are more efficient and provide better performance (YOLOv9) 

on these challenges. 
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1. Introduction 

An autonomous car is a vehicle that uses sensors, 

cameras, radars, or a combination of them to travel 

between destinations without human supervision. 

These cars need perception, defined as a 

description of the visual cognition process for the 

vehicle. However, visual cognition is incredibly 

demanding, and this idea is currently one of the 

most significant open problems within the fields of 

autonomous driving, machine learning, robotics, 

and computer vision. Perception technologies are 

divided into two main categories: classical 

machine-learning approaches [5, 7, 17, 19, 20, 44, 

45] and deep-learning computer-vision approaches 

[4, 17, 18, 36, 50, 55]. 

Classical machine learning techniques [7, 17, 19, 

20, 44, 45] use data to find the best solution to a 

particular problem by identifying common features 

in the data associated with the correct response. 

These approaches are limited based on the data 

used to train the system and good performance will 

be achieved if real-world conditions match the 

training data. On the other hand, computer vision 

techniques usually rely on numerical optimization 

to find the best solution. They have a rational 

performance and are typically generalizable across 

various scenarios and conditions. For example, [5, 

45] uses machine learning techniques to extract 

handcrafted HOG features from the input images 

and SVM to classify pedestrians with rectangular 

bounding boxes. 

Most of the recent approaches [4, 50, 54-57] in 

autonomous driving are inspired by deep learning 

architectures such as SSD [26], Faster R-CNN 

[32], and YOLO [32] and achieved superior 

performance in several benchmark datasets [7, 23]. 

Generally, an autonomous perception problem may 

be classification, localization, or object detection. 

In an image classification problem, the algorithm 

decides whether the image is a predefined class or 

not, and the label is only the indicator of the class 

category. On the other hand, in an object detection 

problem, the algorithm predicts the location of the 

object as well as its presence [22]. To change the 

image classification to object detection, many 

works split the image into windows and apply 

image classification in each window.  
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Figure 1. The performances of real-time deep learning 

object detectors on the benchmark COCO dataset. The 

image is taken from [43]. 

 

Then they slide the windows through the image and 

repeat the same procedure. As the method suggests, 

this approach is called Sliding Windows [20]. The 

field of autonomous perception includes many 

challenges. These challenges consist of problems 

in the training set like different poses, low 

resolution for far objects, variable appearance and 

clothing, complex backgrounds, etc. Moreover, 

variations in illumination affect the appearance of 

an object in an image [17, 18, 20]. Changing the 

direction of illumination leads to shifts in the 

location and shape of shadows, changes in 

highlights, and reversal of contrast gradients. In 

addition, partial occlusion as a common problem in 

real-world images is one of the most important 

difficulties in object detection. This issue happens 

when a part of the predefined object is blocked by 

another object. Dollar et al. [8] demonstrated that 

detection performance drops significantly under 

partial occlusion and even more drastically under 

heavy occlusion. 

With the advance of deep learning methods several 

object detectors [3, 18, 49, 52] are proposed that 

achieved good performance in benchmark datasets 

[10, 11, 23]. Some methods benefit from two stages 

of detection as in [33, 51] and some methods [7, 26, 

30] detect the objects in the given image in one 

stage. The Yolo series [2, 21, 30, 31, 41-43] are 

well-known one-stage pipelines that aim to 

perform object detection and localization in a 

single pass through the network. These 

architectures divide the image into a grid of cells 

and predict bounding boxes and class scores 

directly for each cell. Typically, one-stage methods 

are faster and more suitable for real-time 

applications due to their single-pass nature. Figure 

1 compares recent real-time object detection on the 

benchmark MS COCO dataset [23]. 

In this paper, we explore the effect of two methods 

for pedestrian detection using the INRIA 

benchmark dataset [7]. We employ the traditional 

approach, which involves HOG feature extraction 

paired with SVM classification [6], alongside 

modern deep learning techniques like Faster 

RCNN [33], SSD [26], and YOLO [32]. We 

conduct an ablation study by providing quantitative 

and qualitative results and comparing the 

performance of these models and their inference 

time using the standard and commonly used 

evaluation metric, namely Mean Average Precision 

(mAP). The rest of this paper is structured as 

follows: Section 2 provides a literature review of 

related work. Section 3 outlines the utilized 

classical HOG+SVM technique and deep-learning 

YOLOv3 algorithm. Section 4 discusses 

experimental results, and Section 5 concludes the 

paper. 

 

2. Related Work 

In this section, we study different classical and 

deep learning models, discussing the advantages 

and disadvantages of each. Finally, we select the 

two best object detection methods from both fields. 

 

2.1. Classical Methods 

The classical machine learning methods use 

handcrafted features to detect objects in the input 

image. The most well-known algorithms used in 

the classic machine learning approaches are Haar 

Wavelets [39], Scale Invariant Feature Transform 

(SIFT) [25], and Histogram of Oriented Gradients 

(HOG) [7], which are described as follows: 

 

2.1.1. Haar Wavelets 

The Haar Wavelet method applies object detection 

based on Wavelet transformation, which is similar 

to Fourier transforms [29]. The Haar wavelet-based 

cascade framework [39] provides an efficient 

extension to the sliding window approach by 

introducing a degenerate decision tree of 

increasingly complex detector layers in which each 

layer employs a set of non-adaptive Haar wavelet 

features [27]. These features are expressed in 

different scales and locations, comprising 

horizontal and vertical descriptors, corresponding 

tilted features, as well as point detectors. Figure 2 

shows the basic overview of the Haar-Wavelet 

operation. The most important advantage of the 

Haar-Wavelet algorithm is its simple mathematical 

representation and fast evaluation [40]. However, 

it is not suitable for detection in cases where a 

complex background exists [47]. Because 

autonomous perception samples usually consist of 

complex backgrounds, this approach is not selected 

in the paper. 
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Figure 2. Overview of the Haar wavelets [9] 

 

2.1.2. SIFT 

Scale Invariant Feature Transform (SIFT) 

descriptor [25] selects a 16x16 image and then 

divides it into 4 4  windows. Over each of these 4 

windows, a histogram of gradients is computed. 

While computing this histogram, it also performs 

an interpolation between neighboring angles. Once 

all the 4x4 windows are obtained, it uses a 

Gaussian of half the window size, centered at the 

16x16 block to weigh the values in the whole 

16x16 descriptor. Considering the formulation, the 

SIFT algorithm gives separate importance to each 

point of the image. Although successful in many  

cases, [34, 35, 48], it imposes large computational 

time and is unsuitable for autonomous perception. 

If any algorithm can convert the point importance  

to overall image importance, it can outperform 

SIFT, in terms of test time. 

 

2.1.3. HOG 

The Histogram Oriented Gradient (HOG) 

algorithm is a simpler representation of SIFT 

introduced by [7], which is used as a feature 

extraction method for Human and pedestrian 

detection. This method aims to describe an image 

by a set of local histograms. These histograms 

count occurrences of gradient orientation in a local 

part of the image. The difference between HOG 

and SIFT is that contrary to point gradient 

evaluation, HOG uses horizontal and vertical 

gradients similar to edge detection filters. This 

results in a better outline of the object, meaning that 

it captures the gradient structure that is 

characteristic of the human shape, and it proposes 

much less computational complexity. 

 HOG also has several other advantages as well, 

and it is highly generalizable and its features are 

invariant to illumination and local geometrical 

changes, which makes it a suitable person detection 

algorithm [38, 46, 51]. A study in [1, 5] showed 

that HOG has better performance in pedestrian 

detection problems, in terms of both detection and 

accuracy rate when using a linear SVM 

classification. Also, the original paper [7] on HOG 

compared its performance to other feature 

extractors and illustrated that it outperforms all of 

them in terms of miss rate (Figure 3). Due to its 

formulation, HOG can solve specific challenges in 

autonomous perception. This formulation and the 

way it helps to solve those challenges will be 

discussed in the methodology section (see section 

3 for more details). 

Classical machine learning approaches in 

autonomous vehicle (AV) perception and 

pedestrian detection have several limitations. They 

rely on hand-engineered features. These 

approaches often struggle to generalize to new 

environments and scenarios, leading to reduced 

accuracy and robustness. Moreover, they may not 

effectively handle occlusions, variations in lighting 

and weather conditions, and multiple pedestrians 

with diverse poses and orientations. These 

drawbacks underscore the need for more advanced 

and robust techniques, such as deep learning-based 

methods, to enhance performance and reliability. 

 

2.2. Deep Learning Models 

Since the advent of GPUs and computationally 

advanced processors, deep learning models have 

received huge attention in the machine learning 

field. 

 

2.2.1 Convolutional Neural Networks (CNNs) 

A special computer vision-related subcategory of 

these models is Convolutional Neural Networks 

(CNNs). Convolutional Neural Networks (CNNs), 

introduced in [51], are one of the special kinds of 

deep NNs highly suitable for applications related to 

images and videos. Generally, a CNN takes the 

input and calculates the output by optimizing the 

weights of an equation expressed in multiple 

layers. The problem with conventional NNs is that 

when the input size is big, the number of weights 

increases exponentially and the optimization 

problem takes a lot of time to be solved. 

Since the inputs of a computer vision problem are 

image pixels, the input size is usually considerably 

big, and CNNs take a lot of time to converge. 

However, CNN reduces the number of weights by 

applying convolutional layers to the input, and it 

does not differentiate between the image pixels and 

other inputs. In other words, it cannot capture the 

spatial and temporal characteristics of an image or 

a video. On the other hand, CNNs use image-

related filters that can extract the image-related 

features. In each convolutional layer, specific 

kernels/filters are passed through the image, and 

new input is extracted from the original inputs. 

These kernels are chosen based on the problem and 

usually change from simple edge extractors to 

more advanced filters as the input goes through the 

deep learning model. The advanced filters extract 

more complicated features. Different deep learning 

models that are suitable for object detection are 

studied in this paper and eventually, the YOLOv3 

is selected. The advantages and disadvantages of 

each method are mentioned and the rationale 

behind choosing YOLOv3 is discussed. 
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Figure 3. Performance comparison between hog and other classic feature extractors [7]. Best Viewed when zoomed in. 

 

 

2.2.2 R-CNN 

One of the important issues associated with object 

detection with classic methods is the concept of 

sliding a window through the whole image and 

using the classifier for each of those windows. This 

issue makes the test process very time-consuming 

and not practical for real-time implementation. To 

address this issue, the paper in [13] proposed the R-

CNN method. In this approach, instead of 

considering all the windows, 2000 regions of the 

image are chosen and fed as the input vector to the 

CNN; these regions are called “Region Proposals”. 

The output of the feature extraction is then put into 

an SVM classifier (same as classic methods). The 

classifier predicts the width and height of the 

bounding box and the offset value for the center of 

the object concerning the region proposal [14]. 

However, R-CNN object detection has slow 

inference times due to its multi-stage pipeline. This 

makes it unsuitable for real-time applications like 

pedestrian detection and may result in missed 

detections or inaccuracies. 

 

2.2.3 Fast R-CNN 

Several updates have been applied to R-CNN to 

make it a better choice than R-CNN. Instead of 

feeding the 2000 region proposals to the CNN, [12] 

fed the whole image into the convolution part to get 

the whole feature map and then selected the 

sections associated with the region proposals from 

the feature map, after the convolution part. The 

region of interest pooling, which is somehow 

similar to applying the max pooling layer to the 

region proposals, is applied to the dataset and the 

reshaped vector is then fed to the fully connected 

layer. This algorithm is much faster than R-CNN 

because the 2000 convolution operations are 

changed to only one. 

Nevertheless, Fast R-CNN suffers from slow 

inference speed due to its multi-stage pipeline such 

as proposal generation, RoI pooling, and 

classification. This makes it less suitable for real-

time pedestrian detection, where speed is one of the 

important parameters. Additionally, the RoI 

pooling module might struggle with small or 

crowded pedestrians, impacting accuracy. 

 

2.2.4. Faster R-CNN 

Faster R-CNN is a popular object detection 

technique used in many applications. However, the 

selective search algorithm used in this method is 

time-consuming, and the overall test time can be 

reduced by applying another method for finding the 

region proposals. To address this issue, Faster R-

CNN utilized a technique that involves applying 

convolution operation on the whole image instead 

of using a search algorithm for finding the region 

proposals. Another network is also used to give the 

regions as its prediction. 

Although Faster R-CNN outperforms R-CNN in 

terms of inference time and accuracy, it has a trade-

off. The two-stage architecture, involving 

sequential region proposal generation and object 

classification, introduces computational 

complexity. This complexity, coupled with the 

slower performance compared to single-stage 

detectors, particularly hampers its suitability for 

real-time pedestrian detection tasks. 

To achieve a better inference time and higher 

frames per second (FPS), alternative object 

detection approaches such as Single Shot MultiBox 

Detector (SSD) or You Only Look Once (YOLO) 

are proposed and followed by pedestrian detection 

researchers, as they offer faster inference speeds 

and improved performance under challenging 

conditions. 

 

2.2.5 Single Shot MultiBox Detector (SSD) 

The Single Shot MultiBox Detector (SSD) [26] is 

a faster and more efficient object detection 

compared to the Faster R-CNN. Unlike Faster R-
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CNN, SSD detects objects in a single pass and 

eliminates the need for region proposal generation 

and secondary processing. SSD's architecture 

consists of a single stage that predicts object 

locations and classes directly from full images, 

making it highly efficient for real-time 

applications. However, SSD struggles with 

accuracy performance in terms of mAP, 

particularly for occluded and small objects or those 

with complex backgrounds, and requires an 

optimized anchor box. 

 

2.2.6. You Only Look Once (YOLOv1) 

Contrary to previous object detection deep learning 

algorithms, In the YOLO algorithm, all the image 

is passed through a CNN, not part of an image [32].  

On top of that, similar to Faster R-CNN, CNN is 

used only once for determining the bounding boxes 

and their probability. 

The YOLO algorithm redefines the detection 

problem as a single regression problem which 

maps image pixels to bounding boxes and class 

probabilities. It has the following advantages over 

the other well-known detection algorithms: (1) Due 

to the one-time implementation of the classifier, the 

YOLO algorithm is extremely fast and can process 

images at the rate of 45 frames per second. This 

characteristic makes it perfectly suitable for real-

time implementation and online autonomous 

vehicle perception. (2) The YOLO algorithm uses 

the global representation of the image since it takes 

the whole image as the input to the CNN. 

This makes it less sensitive to parts of the image 

that are not important for detection. One of these 

parts is the background. As mentioned in the R-

CNN section, this algorithm sometimes takes 

background patches as the objects. This is because 

only the selected regions are trained in CNN. 

YOLO, on the other hand, is not susceptible to 

trivial parts of the image. Therefore, the challenge 

of complex backgrounds can be solved with this 

method. (3) The YOLO algorithm is highly 

generalizable. Despite other algorithms that use the 

same distribution for training and testing, YOLO 

learns the general representation of each object, not 

along with the data, but contextually. As a result, it 

performs well on unexpected inputs and different 

test environments. Despite the many advantages 

that YOLOv1 has, it has some disadvantages as 

well. Generally, YOLOv1 makes more localization 

errors than Faster R-CNN. Also, each grid cell is 

constrained to predict two bounding boxes and 

only one object. This spatial constraint results in 

the problem that YOLOv1 cannot localize small 

objects. 

 

 
Figure 4. Performance comparison of YOLOv3 with 

other detectors on the benchmark COCO dataset [23]. 

 

Moreover, if the objects are very close to each 

other, this algorithm faces difficulties in dealing 

with them. Additionally, YOLOv1 works well with 

single-scale, meaning that if the training is on small 

objects, it cannot perform well on larger objects 

and vice versa. The mentioned issues may make 

YOLO an inappropriate candidate for this paper 

but these problems were addressed and completely 

solved in the next generations of YOLO algorithm. 

 

2.2.6. YOLOv2 

YOLOv2, also famous as YOLO 9000, uses tricks 

and modifications to solve the issues of the 

previous generation [30]. 

First, batch normalization is applied to the 

convolution layers of YOLOv1. This trick 

increases the mean accuracy precision and removes 

the need for dropouts. It also improves the 

convergence, which then decreases the probability 

of unstable gradients [16]. Second, YOLOv2 uses 

Anchor Boxes for predicting the bounding boxes.  

The difference between this method and the one 

used in YOLOv1 is that, in the previous generation, 

the coordinates of the bounding boxes were 

predicted directly. However, in YOLOv2 the 

offsets of the anchor boxes are predicted. This 

change removes the need for spatial locations and 

improves the accuracy. By the use of anchor boxes, 

the number of predicted boxes changes from 98 to 

1000. Interestingly, instead of hand-picking the 

anchor boxes, different boxes are cross-validated 

using Dimension Clusters. The k-means clustering 

algorithm is used for determining the best set of 

anchor boxes. Third, YOLO 9000 trains with high-

resolution inputs as well, which has the benefit of 

adjusting to the new input resolution and increasing 

the accuracy. Fourth, YOLOv2 uses fined-grained 

features to account for smaller objects. The final 

difference that YOLO 9000 imposes is that it 

exploits multi-scaling training to solve the problem 

of single-scale sensitivity and the different scaling 

challenges in autonomous perception. 
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Figure 5. HOG process. 

 

 

2.2.7. YOLOv3 

The most recent generation of YOLOv3 uses 

approximately the same formulation as YOLOv2 

[31] (see section 3 for more details). YOLOv3 is 

faster than the previous generations. Performance 

comparison of the well-known object detection 

algorithms has been published in the original paper 

of YOLOv3 [31] and it is shown that YOLOv3 has 

better speed and one of the highest mAPs (Figure 

4). Moreover, understanding how it works and the 

problems it can solve showed that, like the 

HOG+SVM method in classic algorithms, 

YOLOv3 can resolve many of the mentioned issues 

in autonomous vehicle perception. Consequently, 

this algorithm is chosen for the deep learning 

implementation. 

It is worth mentioning that there are also other 

recent versions of YOLOS as described in [31, 41-

43]. For a fair comparison with the classical 

approaches, we only compared our results with 

YOLOv3. However, we conducted some 

experiments with other YOLO version models and 

compared their performance with YOLOv3 (See 

Table 1).  

 

3. Methodology 

In this section, we present the classical and deep 

learning algorithms utilized for comparison in the 

evaluation, as discussed in Section 4. For the 

classical method, the proposed method is described 

in Figure 5 and contains multiple sub-modules for 

feature extraction and classification that are 

described as follows: 

 

3.1. The proposed Classical Machine Learning 

Techniques  

In this section, we first provide the process of 

utilizing the classical machine learning approach 

including feature extraction and classification. 

 

3.1.1 HOG 

To obtain a complete descriptor of an infrared 

image, a local histogram of gradients is computed 

according to the following steps: 1) computing 

gradients of the image, 2) building a histogram of 

orientation for each cell and 3) normalizing 

histograms within each block of cells. 

 In the HOG descriptor, the input image is divided 

into small spatial regions (cells), and for each cell, 

a local 1-D histogram of gradient directions or edge 

orientations over the pixels of the cell is 

accumulated. After preprocessing and obtaining 

the 64 128  patch of images, the gradient of each 

image is calculated by passing two one-

dimensional kernels through the image. 

 

3.1.2. Calculating Histogram of Gradients in 

8x8 cells 

Each gradient includes a value and a phase. In this 

step, the image is divided into 8 8  cells and for 

each cell, the histogram of gradients is calculated 

by accumulating votes into bins for each 

orientation. The phases are divided into 9 bins (0 to 

180) and the values for each bin are assembled. If 

the phase of a gradient is between two bins, its 

value is distributed between those bins based on a 

weighted approach. 
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3.1.3. Block Normalization 

Due to the variability in the images, it is necessary 

to normalize cell histograms. They are locally 

normalized, according to the values of the 

neighborhood cell histograms. The normalization 

is done among a group of cells, which is called a 

block. The figure shows the process of HOG 

calculation. 

 

3.1.4. Calculating the HOG feature vector 

According to the following formulation: HOG 

feature vector = 7(horizontal position) * 15 

(vertical position) * 4 (cell) * 9 (histogram bin) = 

3780 feature descriptors are obtained for each 

image in the HOG algorithm. Each 64 × 128 

detection window is represented by 7 × 15 blocks, 

giving a total of 3780 features per detection 

window. These features are then used to train a 

linear SVM classifier [37]. 

HOG formulation makes it one of the best classic 

methods for autonomous perception challenges: 

HOG discretizes the phase space into 9 bins. By 

doing so, slight changes in angle will not lead to a 

different histogram. Therefore, HOG is robust to 

different poses and angle changes. Batch 

normalization makes HOG robust to 

multiplication. In other words, if all the pixel 

values are multiplied by a number, the gradient of 

those values remains the same. This is very useful 

because contrast differences in an image act 

exactly like multiplying some of the values by a 

number. As a result, by being robust to 

multiplication, the HOG is robust to contrast 

change and can solve the illumination challenge in 

autonomous perception. To solve the problem of 

different scales, the image is downsized multiple 

times and the HOG is applied with a constant-size 

sliding window. This way, smaller and bigger 

(closer and further) objects can be detected. A 

variable called HOG-threshold is assigned to 

determine the number of downsizing steps. 

 

3.1.5. SVM Classifier 

In this paper, a set of training images with positive 

and negative samples, are first described by their 

HOG, for learning a decision function. A Support 

Vector Machine classifier (SVM) has been used, 

which is a binary classification algorithm that looks 

for an optimal hyperplane as a decision function in 

a high-dimensional space. Thus, considering one 

has a training data set: , { 1,1}k kx y X   , where 
kx  

is the training examples HOG feature vector and 

ky  is the class label. At first, the method maps 𝑥𝑘 

in a high dimensional space owing to a function  . 

Then, it looks for a decision function of the form: 

( ) ( )f x w x b    and ( )f x  is optimal in the sense 

that it maximizes the distance between the nearest 

point ( )ix  and the hyperplane. The class label of 

𝑥 is then obtained by considering the sign of ( )f x . 

This optimization problem can be turned, in the 

case of the L1 soft-margin SVM classifier 

(misclassified examples are linearly penalized), in 

the following way: 

2

,
1

1
min

2

m

k
w

k

w C





   (1) 

under the constraint  , 1k k kk y f x     The 

solution to this problem is obtained using the 

Lagrangian theory and it is possible to show that 

the vector 𝑤 is of the form: 

 
1

m

k k k

k

w y x 



   (2) 

Where *

i  is the solution to the following quadratic 

optimization problem: 
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 
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             ,
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k

k

m

k l k l k l

k l
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
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
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






 (3) 

subject to 
1

0
m

k k

k

y 


  and ,0 kk C   where 

     , ,k l k lK x x x x   . According to (2) and 

(3), the solution of the SVM problem depends only 

on the Gram Matrix K. Data sets are not always 

linearly separable. In the case of nonlinear datasets, 

we can use kernel functions to paper the dataset 

into a higher dimensional space in which data is 

linearly separable. However, in the case of 

pedestrian detection problems, typical linear SVM 

is sufficient to get a high detection rate. Using the 

kernel function results in a higher detection rate 

and decreased false positives, but it takes more 

computational processing time. 

 

3.2. The Leveraged Deep Learning Techniques 

In this section, we present the utilized deep 

learning techniques for evaluation. We used 

several well-known and recent models to compare 

their performance with classical machine learning 

techniques. As we mentioned in Section 2, two-

stage detectors like Faster R-CNN are not suitable 

for real-time object detection without high 

computation machine equipped with high memory 

GPU. Although the SSD architecture is fast, but it 

does not provide a high accuracy. Different 

versions of YOLO models are available as open 

source and easy to modify, extend, and provide 

better efficiency and good performance. 

Among different versions of YOLO models, the 

recent models (YOLOv8, YOLOv9) performed 
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better in terms of accuracy and efficiency but have 

complex architecture compared to the first YOLO 

generations (YOLOv1 and YOLOv2). In this 

section, we provide a detailed description of 

YOLOv3 and select it as the main pipeline for 

comparison due to its trade-off role in the 

straightforward pipeline and efficient performance 

for a fair comparison with classical methods.  

 

3.2.1 YOLOv3 

The YOLOv3 [31] algorithm is exploited in the 

deep learning section. Since this algorithm works 

in real-time and performs well for multi-class 

detection, other objects are added to the pedestrian 

category. One of the important changes in the 

YOLOv3 is that instead of using SoftMax in the 

fully connected layer, logistic regression is used. 

The advantage of this modification is that it 

produces good results when the classes are not 

mutually exclusive, e.g. when the class labels 

include “pedestrian” and “man”. Additionally, 

YOLOv3 uses a similar feature extraction strategy 

as Feature Pyramid Networks [24]. Three-scale 

predictions are made for each location of the input 

image in grid cells and features are extracted from 

those predictions. This helps even further for 

different-scale classification. 

 Each image is divided into 13 13  grid cells and 

each grid cell is responsible for detecting the 

objects whose center points are located in it. The 

output for each object should be the width and 

height of the box, the center of the box, and the 

probability of the class in the box. Although used 

in classic detection methods, predicting the  ,x y  

location of the box makes the formulation 

unconstrained and unstable [30]. This is because 

the anchor box can be in any section of the image 

regardless of the predicted box location. Instead of 

this formulation, the ground truth is normalized by 

the image width and length, and the top left corner 

of the image and the bounding box prior are 

employed to keep the value between 0 and 1. 

Additionally, a logistic activation function is 

operated on the dimensions to keep the output in 

the range (See Figure 6). These predicted values 

can be found in (4): 

   , , ,w ht t

x x x y y y w w h hb t c b t c b p e b p e        (4) 

In (4), 
wp and 

hp  are the dimensions of the anchor, 

xc and yc  are the top left corner of the dimension of 

the anchor. The grid cell also predicts the 

objectness score for each object, which determines 

the probability of being the selected object (5). To 

avoid multiple detections of an object (a problem 

faced in classic methods), a method called Non-

Max Suppression [28] is applied. 

 
Figure 6. The dimensions and the center of the bounding 

box 

 

In this approach, the prediction with the highest 

objective score is picked and the bounding boxes 

with more than 50%  intersection with it is 

discarded. Considering three scales for each 

location and a total of 80 class categories, the 

prediction output for each image is 

 13 13 3 5 80      . 

 Objectness Pr Obj IoU   (5) 

To account for mutually dependent classes, a 

hierarchical approach is exploited. The conditional  

probability of each class is computed given that an 

object is selected. The global probability of the 

class is calculated using hierarchical propagation. 

For example, given that a pedestrian can be a man,  

woman, or child, the global probability of a 

pedestrian is as follows: 

 

     

   

   

Pr Pr | Pr

Pr | Pr

  Pr | Pr

tl

tl

tl

Ped Ped Man Man IoU

Ped Woman Child IoU

Ped Child Child IoU

  

  

  

 (6) 

Where IoU denotes the intersection over union, and 

lt is true to label in the ground truth. YOLOv3 uses 

the Darknet-53 architecture with 53 convolutional 

layers in its network. With the use of batch 

normalization, overfitting is avoided, and dropout 

methods, in which some of the neurons in the fully 

connected layers are turned off randomly [15], can 

be discarded. Binary class entropy is utilized as the 

loss function, instead of the sum of squared error 

that was previously utilized in YOLOv1. 
 

4. Experimental Results  

In this section, we first introduce the dataset used 

for evaluation. Then, we provide the 

implementation details of the training and 

inference settings of the models. Finally, we 

provide some quantitative and qualitative results to 

compare the classical and deep-learning methods. 
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Table 1. The mean average precision and the test time for 

classic methods. 

Method mAP Average test time (s) 

PCA+SVM 75.23 90.32 

HOG + Linear SVM 79.95 96.12 

HOG + Gaussian SVM 82.0 104.58 

Faster-RCNN 86.23 203.9 

SSD 84.11 31.23 

YOLOv3 86.31 15.61 

YOLOv5 89.78 10.21 

YOLOv8 92.35 9.27 

YOLOv9 96.51 8.96 

 

4.1. INRIA Dataset 

The INRIA Person dataset [7] comprises images 

utilized for pedestrian detection tasks, 

encompassing 614 instances for training and 288 

for testing purposes. This dataset serves as a 

foundational resource in the domain of pedestrian 

detection, facilitating the development and 

evaluation of detection algorithms across varied 

scenarios and conditions. 
 

4.2. Implementation Details  
The training and test procedure is done on an 

Intel(R) Core™ i7-6500U CPU 2.5 GHz. HOG 

Threshold=0.2 has been chosen for feature 

extraction. Cross-validation has been applied to 

find the best C  for the SVM and 1C   has been 

selected. Both linear and Gaussian kernels have 

been tested on the dataset. The linear SVM is 

written in MATLAB without the SVM toolbox and 

for Gaussian SVM, the FITCSVM toolbox is 

utilized. It is worth mentioning that the main goal 

of the manuscript is to evaluate and compare 

different classical machine and deep learning 

methods. The main contribution of the proposed 

method is the presentation of HOG + Gaussian 

SVM. For other methods, we utilize, with minor 

modifications, the models of the researchers 

available from their GitHub pages. 

For YOLOV3 deep learning, a pre-trained model 

of YOLOv3 is used in the DarkNet-53 structure to 

evaluate its performance on the INRIA test set. 

Since YOLOv3 has a good performance on multi-

class label detection, 80 class categories are set for 

the inference. Hence, other objects are added to the 

single-class pedestrian category. For a fair 

comparison, similar to the classic method, the 

inference section is done on the CPU using a 

Ubuntu 18.0 OS. For other YOLO models used in 

the experiments, a pre-trained model on the MS-

COCO dataset is used for evaluation with the same 

setting of YOLOv3 using the statistical setting 

proposed in [53]. 

 

 

Figure 7. HOG+SVM classic method on INRIA dataset. 

 

4.3. Evaluation Metrics 

Mean Average Precision (mAP) is a widely used 

evaluation metric in object detection tasks, 

including pedestrian detection. It provides a 

comprehensive assessment of the precision-recall 

trade-off across different confidence thresholds. In 

this paper, we adopted the same criteria as used in 

[7, 19, 20] for evaluating the performance of the 

models.  
 

4.4. Classical method’s results 

The HOG feature extraction and SVM classifier are 

applied to the INRIA dataset [7]. The choice of this 

dataset is because it contains all the intended 

challenges in autonomous perception. Also, PCA 

feature extraction with SVM classification has 

been utilized to compare the results. A POV 

method determines the number of features to be 

extracted and it selects 83 best pixel values. The 

mean average precision and the average test time is 

shown in Table 1. Also, some of the test samples 

with challenging problems are depicted in Figure 7. 

These problems include illumination, clothing, far 

objects, crowded backgrounds, and different 

scales. Red squares represent the bounding boxes. 

Each object is detected multiple times as the image 

is downsized. This is because non-max suppression 

is not used in the classic method and the issue is 

resolved in deep learning results. As shown, the 

classic method can solve most of the problems but 

struggles to detect far objects, partially occluded 

objects, and objects with complex clothing. These 

missed objects are shown with yellow squares in 

Figure 7. The PCA+SVM has the lowest test time 

since it does not calculate the gradients for each 

grid cell. However, its mAP is considerably lower 

on the INRIA dataset. HOG + Gaussian SVM 

improves the mAP of linear SVM by 4%, but it 
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suffers from very high computational time. 

Generally, HOG + Linear SVM has the best trade-

off between accuracy and computation time and 

therefore, is chosen as the classic method, even 

though the structure of the problem is nonlinear. 

The mean average precision and the test time for 

classic methods. 

4.5. Deep Learning Method’s Results 

To evaluate deep-learning techniques, we utilized 

different two-stage and one-stage object detectors. 

As seen from Table 1, the two-stage Faster R-CNN 

detector provides good performance in terms of 

mAP by achieving (86.23). It outperformed the 

classical methods and surpassed the SSD model. 

However, taking about 204 seconds in the 

inference time shows that it is not efficient for real-

time applications. This is because Faster R-CNN’s 

architecture has multiple stages of processing and 

several detection modules that make it 

computationally expensive and it is not suitable for 

real-time applications. 

On the other hand, the one-stage detector SSD 

model performed better in inference time (~31.23 

seconds) than Faster-RCNN while falling behind 

other YOLO-based deep-learning detectors by 

achieving 84.11% in terms of mAP performance. 

The YOLOv3 algorithm achieved 86.31% mAP. 

The mean test time is 15.61 seconds. Although the 

model is still far from the order of milliseconds and 

real-time implementation, the test time has been 

reduced by a factor of 6.15 compared to classic 

methods. Real-time implementation would be 

achieved if GPU was used. 

More importantly, YOLOv3 can solve partial 

occlusion, far objects, and clothing problems. The 

images from Figure 7 are also represented in Figure 

8 (pedestrians with mentioned challenges are 

shown with yellow squares). From Table 1, it is 

evident that the recent model of YOLOs perform 

better than the previous generations. However, 

these recent models have complicated architecture 

and require extensive computations to achieve 

better performance than the YOLOv3. 

 

5. Conclusions 

In conclusion, our investigation into pedestrian 

detection techniques highlights the effectiveness of  

both classical methods, such as HOG feature 

extraction with SVM classification, and modern 

deep learning approaches like YOLO models. By 

evaluating these methods on the INRIA benchmark 

dataset, we contribute insights into their respective 

strengths and potential applications in real-world 

scenarios. 

 

 

 
Figure 8. Object Detection with YOLOv3. 

HOG+ linear SVM achieved a mean average 

accuracy of 79.95% with a mean average test time 

of 96.12 seconds, effectively addressing various 

challenges in autonomous perception such as 

illumination and scale variations. However, it 

encountered difficulties with samples featuring 

partial occlusion, distant objects, and complex 

clothing, and was unsuitable for real-time 

implementation. Conversely, YOLOv3 

demonstrated a ~ 7% increase in mean average 

precision and a 6.15-fold reduction in test time, 

effectively resolving different challenges. We also 

conducted some experiments on the utilized INRIA  

dataset on recent YOLO models, which 

outperformed the YOLOv3 with a high margin of 

mAP performance. 
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ای بین مقایسه یوسایل نقلیه خودران: مطالعه استنباطاشیاء برای  تشخیصهای بررسی روش

 رویکردهای کلاسیک و یادگیری عمیق

 

 رسول دامنی و اسماعیل سارانی  ،ولی محمد نظرزهی ، *زبیر رئیسی 

 .ایران، چابهار، دانشگاه دریانوردی و علوم دریایی چابهار، مهندسی الکترونیک و مخابرات دریاییگروه 

 05/06/2024 پذیرش؛ 08/04/2024 بازنگری؛ 25/02/2024 ارسال

 چکیده:

های یادگیری ماشین کلاسیک و خودروهای خودران از طریق تحلیل مدل استنباطهای مختلف تشخیص اشیا برای این مقاله به بررسی عملکرد تکنیک

 SVM یکنندهبندیهای مختلفی از طبقهبه همراه نسخه HOG و PCA،SIFT  پردازد. ما سه روش کلاسیک شاملهای یادگیری عمیق اخیر میمدل

 ی استانداردرا با استفاده از مجموعه داده YOLOv9 و  Faster-RCNN ،SSD ،YOLOv3 ،YOLOv5 هایو پنج مدل یادگیری عمیق شامل مدل

INRIA  های کلاسیک ماننددهد که اگرچه روشها نشان میایم. نتایج آزمایشزیابی کردهار HOG + Gaussian SVM های کلاسیک از سایر روش

، نهانپهای کلاسیک در تشخیص اشیای نیمهبر این، روش شوند. علاوههای یادگیری عمیق پشت سر گذاشته میعملکرد بهتری دارند، اما توسط تکنیک

ها کارآمدتر در این چالش (YOLOv9) های یادگیری عمیق اخیرهای مربوط به پوشش پیچیده محدودیت دارند، در حالی که مدلاشیای دور و چالش

 .دهندبوده و عملکرد بهتری ارائه می

 .انیگراد ،هیستوگرام شیب های جهت دار ق،یعمکلاسیک و  یریادگی اده،یعابر پ صیتشخ ،خودران هینقل لهیوس :کلمات کلیدی  

 


