

Journal of Artificial Intelligence and Data Mining (JAIDM), x(x): xxx-xxx, xxxx

Shahrood University of

Technology

Journal of Artificial Intelligence and Data Mining (JAIDM)
Journal homepage: http://jad.shahroodut.ac.ir

 Research paper

Exploring Object Detection Methods for Autonomous Vehicles

Perception: A Comparative Study of Classical and Deep Learning

Approaches

Zobeir Raisi*, ValiMohammad Nazarzehi, Rasoul Damani, and Esmaeil Sarani

Electrical Engineering Department, Faculty of Marine Engineering, Chabahar Maritime University, Chabahar, Iran.

Article Info Abstract

Article History:
Received 25 February 2024

Revised 08 April 2024
Accepted 05 June 2024

DOI:10.22044/jadm.2024.14241.2529

 This paper explores the performance of various object detection

techniques for autonomous vehicle perception by analyzing classical

machine learning and recent deep learning models. We evaluate three

classical methods, including PCA, SIFT, and HOG alongside

different versions of the SVM classifier, and five deep-learning

models, including Faster-RCNN, SSD, YOLOv3, YOLOv5, and

YOLOv9 models using the benchmark INRIA dataset. The

experimental results show that although classical methods such as

HOG + Gaussian SVM outperform other classical approaches, they

are outperformed by deep learning techniques. Furthermore, Classical

methods have limitations in detecting partially occluded, distant

objects and complex clothing challenges, while recent deep-learning

models are more efficient and provide better performance (YOLOv9)

on these challenges.

Keywords:
Vehicle Perception, Pedestrian

Detection, Deep learning,

classical Machine Learning,

Histogram of Oriented, Gradients.

*Corresponding author:

zobeir.raisi@cmu.ac.ir (Z. Raisi).

1. Introduction

An autonomous car is a vehicle that uses sensors,

cameras, radars, or a combination of them to travel

between destinations without human supervision.

These cars need perception, defined as a

description of the visual cognition process for the

vehicle. However, visual cognition is incredibly

demanding, and this idea is currently one of the

most significant open problems within the fields of

autonomous driving, machine learning, robotics,

and computer vision. Perception technologies are

divided into two main categories: classical

machine-learning approaches [5, 7, 17, 19, 20, 44,

45] and deep-learning computer-vision approaches

[4, 17, 18, 36, 50, 55].

Classical machine learning techniques [7, 17, 19,

20, 44, 45] use data to find the best solution to a

particular problem by identifying common features

in the data associated with the correct response.

These approaches are limited based on the data

used to train the system and good performance will

be achieved if real-world conditions match the

training data. On the other hand, computer vision

techniques usually rely on numerical optimization

to find the best solution. They have a rational

performance and are typically generalizable across

various scenarios and conditions. For example, [5,

45] uses machine learning techniques to extract

handcrafted HOG features from the input images

and SVM to classify pedestrians with rectangular

bounding boxes.

Most of the recent approaches [4, 50, 54-57] in

autonomous driving are inspired by deep learning

architectures such as SSD [26], Faster R-CNN

[32], and YOLO [32] and achieved superior

performance in several benchmark datasets [7, 23].

Generally, an autonomous perception problem may

be classification, localization, or object detection.

In an image classification problem, the algorithm

decides whether the image is a predefined class or

not, and the label is only the indicator of the class

category. On the other hand, in an object detection

problem, the algorithm predicts the location of the

object as well as its presence [22]. To change the

image classification to object detection, many

works split the image into windows and apply

image classification in each window.

mailto:zobeir.raisi@cmu.ac.ir

Raisi et al./ Journal of AI and Data Mining, x(x): xxx-xxx, xxxx

Figure 1. The performances of real-time deep learning

object detectors on the benchmark COCO dataset. The

image is taken from [43].

Then they slide the windows through the image and

repeat the same procedure. As the method suggests,

this approach is called Sliding Windows [20]. The

field of autonomous perception includes many

challenges. These challenges consist of problems

in the training set like different poses, low

resolution for far objects, variable appearance and

clothing, complex backgrounds, etc. Moreover,

variations in illumination affect the appearance of

an object in an image [17, 18, 20]. Changing the

direction of illumination leads to shifts in the

location and shape of shadows, changes in

highlights, and reversal of contrast gradients. In

addition, partial occlusion as a common problem in

real-world images is one of the most important

difficulties in object detection. This issue happens

when a part of the predefined object is blocked by

another object. Dollar et al. [8] demonstrated that

detection performance drops significantly under

partial occlusion and even more drastically under

heavy occlusion.

With the advance of deep learning methods several

object detectors [3, 18, 49, 52] are proposed that

achieved good performance in benchmark datasets

[10, 11, 23]. Some methods benefit from two stages

of detection as in [33, 51] and some methods [7, 26,

30] detect the objects in the given image in one

stage. The Yolo series [2, 21, 30, 31, 41-43] are

well-known one-stage pipelines that aim to

perform object detection and localization in a

single pass through the network. These

architectures divide the image into a grid of cells

and predict bounding boxes and class scores

directly for each cell. Typically, one-stage methods

are faster and more suitable for real-time

applications due to their single-pass nature. Figure

1 compares recent real-time object detection on the

benchmark MS COCO dataset [23].

In this paper, we explore the effect of two methods

for pedestrian detection using the INRIA

benchmark dataset [7]. We employ the traditional

approach, which involves HOG feature extraction

paired with SVM classification [6], alongside

modern deep learning techniques like Faster

RCNN [33], SSD [26], and YOLO [32]. We

conduct an ablation study by providing quantitative

and qualitative results and comparing the

performance of these models and their inference

time using the standard and commonly used

evaluation metric, namely Mean Average Precision

(mAP). The rest of this paper is structured as

follows: Section 2 provides a literature review of

related work. Section 3 outlines the utilized

classical HOG+SVM technique and deep-learning

YOLOv3 algorithm. Section 4 discusses

experimental results, and Section 5 concludes the

paper.

2. Related Work

In this section, we study different classical and

deep learning models, discussing the advantages

and disadvantages of each. Finally, we select the

two best object detection methods from both fields.

2.1. Classical Methods

The classical machine learning methods use

handcrafted features to detect objects in the input

image. The most well-known algorithms used in

the classic machine learning approaches are Haar

Wavelets [39], Scale Invariant Feature Transform

(SIFT) [25], and Histogram of Oriented Gradients

(HOG) [7], which are described as follows:

2.1.1. Haar Wavelets

The Haar Wavelet method applies object detection

based on Wavelet transformation, which is similar

to Fourier transforms [29]. The Haar wavelet-based

cascade framework [39] provides an efficient

extension to the sliding window approach by

introducing a degenerate decision tree of

increasingly complex detector layers in which each

layer employs a set of non-adaptive Haar wavelet

features [27]. These features are expressed in

different scales and locations, comprising

horizontal and vertical descriptors, corresponding

tilted features, as well as point detectors. Figure 2

shows the basic overview of the Haar-Wavelet

operation. The most important advantage of the

Haar-Wavelet algorithm is its simple mathematical

representation and fast evaluation [40]. However,

it is not suitable for detection in cases where a

complex background exists [47]. Because

autonomous perception samples usually consist of

complex backgrounds, this approach is not selected

in the paper.

Exploring Object Detection Methods for Autonomous Vehicles Perception…

Figure 2. Overview of the Haar wavelets [9]

2.1.2. SIFT

Scale Invariant Feature Transform (SIFT)

descriptor [25] selects a 16x16 image and then

divides it into 4 4 windows. Over each of these 4

windows, a histogram of gradients is computed.

While computing this histogram, it also performs

an interpolation between neighboring angles. Once

all the 4x4 windows are obtained, it uses a

Gaussian of half the window size, centered at the

16x16 block to weigh the values in the whole

16x16 descriptor. Considering the formulation, the

SIFT algorithm gives separate importance to each

point of the image. Although successful in many

cases, [34, 35, 48], it imposes large computational

time and is unsuitable for autonomous perception.

If any algorithm can convert the point importance

to overall image importance, it can outperform

SIFT, in terms of test time.

2.1.3. HOG

The Histogram Oriented Gradient (HOG)

algorithm is a simpler representation of SIFT

introduced by [7], which is used as a feature

extraction method for Human and pedestrian

detection. This method aims to describe an image

by a set of local histograms. These histograms

count occurrences of gradient orientation in a local

part of the image. The difference between HOG

and SIFT is that contrary to point gradient

evaluation, HOG uses horizontal and vertical

gradients similar to edge detection filters. This

results in a better outline of the object, meaning that

it captures the gradient structure that is

characteristic of the human shape, and it proposes

much less computational complexity.

 HOG also has several other advantages as well,

and it is highly generalizable and its features are

invariant to illumination and local geometrical

changes, which makes it a suitable person detection

algorithm [38, 46, 51]. A study in [1, 5] showed

that HOG has better performance in pedestrian

detection problems, in terms of both detection and

accuracy rate when using a linear SVM

classification. Also, the original paper [7] on HOG

compared its performance to other feature

extractors and illustrated that it outperforms all of

them in terms of miss rate (Figure 3). Due to its

formulation, HOG can solve specific challenges in

autonomous perception. This formulation and the

way it helps to solve those challenges will be

discussed in the methodology section (see section

3 for more details).

Classical machine learning approaches in

autonomous vehicle (AV) perception and

pedestrian detection have several limitations. They

rely on hand-engineered features. These

approaches often struggle to generalize to new

environments and scenarios, leading to reduced

accuracy and robustness. Moreover, they may not

effectively handle occlusions, variations in lighting

and weather conditions, and multiple pedestrians

with diverse poses and orientations. These

drawbacks underscore the need for more advanced

and robust techniques, such as deep learning-based

methods, to enhance performance and reliability.

2.2. Deep Learning Models

Since the advent of GPUs and computationally

advanced processors, deep learning models have

received huge attention in the machine learning

field.

2.2.1 Convolutional Neural Networks (CNNs)

A special computer vision-related subcategory of

these models is Convolutional Neural Networks

(CNNs). Convolutional Neural Networks (CNNs),

introduced in [51], are one of the special kinds of

deep NNs highly suitable for applications related to

images and videos. Generally, a CNN takes the

input and calculates the output by optimizing the

weights of an equation expressed in multiple

layers. The problem with conventional NNs is that

when the input size is big, the number of weights

increases exponentially and the optimization

problem takes a lot of time to be solved.

Since the inputs of a computer vision problem are

image pixels, the input size is usually considerably

big, and CNNs take a lot of time to converge.

However, CNN reduces the number of weights by

applying convolutional layers to the input, and it

does not differentiate between the image pixels and

other inputs. In other words, it cannot capture the

spatial and temporal characteristics of an image or

a video. On the other hand, CNNs use image-

related filters that can extract the image-related

features. In each convolutional layer, specific

kernels/filters are passed through the image, and

new input is extracted from the original inputs.

These kernels are chosen based on the problem and

usually change from simple edge extractors to

more advanced filters as the input goes through the

deep learning model. The advanced filters extract

more complicated features. Different deep learning

models that are suitable for object detection are

studied in this paper and eventually, the YOLOv3

is selected. The advantages and disadvantages of

each method are mentioned and the rationale

behind choosing YOLOv3 is discussed.

Raisi et al./ Journal of AI and Data Mining, x(x): xxx-xxx, xxxx

Figure 3. Performance comparison between hog and other classic feature extractors [7]. Best Viewed when zoomed in.

2.2.2 R-CNN

One of the important issues associated with object

detection with classic methods is the concept of

sliding a window through the whole image and

using the classifier for each of those windows. This

issue makes the test process very time-consuming

and not practical for real-time implementation. To

address this issue, the paper in [13] proposed the R-

CNN method. In this approach, instead of

considering all the windows, 2000 regions of the

image are chosen and fed as the input vector to the

CNN; these regions are called “Region Proposals”.

The output of the feature extraction is then put into

an SVM classifier (same as classic methods). The

classifier predicts the width and height of the

bounding box and the offset value for the center of

the object concerning the region proposal [14].

However, R-CNN object detection has slow

inference times due to its multi-stage pipeline. This

makes it unsuitable for real-time applications like

pedestrian detection and may result in missed

detections or inaccuracies.

2.2.3 Fast R-CNN

Several updates have been applied to R-CNN to

make it a better choice than R-CNN. Instead of

feeding the 2000 region proposals to the CNN, [12]

fed the whole image into the convolution part to get

the whole feature map and then selected the

sections associated with the region proposals from

the feature map, after the convolution part. The

region of interest pooling, which is somehow

similar to applying the max pooling layer to the

region proposals, is applied to the dataset and the

reshaped vector is then fed to the fully connected

layer. This algorithm is much faster than R-CNN

because the 2000 convolution operations are

changed to only one.

Nevertheless, Fast R-CNN suffers from slow

inference speed due to its multi-stage pipeline such

as proposal generation, RoI pooling, and

classification. This makes it less suitable for real-

time pedestrian detection, where speed is one of the

important parameters. Additionally, the RoI

pooling module might struggle with small or

crowded pedestrians, impacting accuracy.

2.2.4. Faster R-CNN

Faster R-CNN is a popular object detection

technique used in many applications. However, the

selective search algorithm used in this method is

time-consuming, and the overall test time can be

reduced by applying another method for finding the

region proposals. To address this issue, Faster R-

CNN utilized a technique that involves applying

convolution operation on the whole image instead

of using a search algorithm for finding the region

proposals. Another network is also used to give the

regions as its prediction.

Although Faster R-CNN outperforms R-CNN in

terms of inference time and accuracy, it has a trade-

off. The two-stage architecture, involving

sequential region proposal generation and object

classification, introduces computational

complexity. This complexity, coupled with the

slower performance compared to single-stage

detectors, particularly hampers its suitability for

real-time pedestrian detection tasks.

To achieve a better inference time and higher

frames per second (FPS), alternative object

detection approaches such as Single Shot MultiBox

Detector (SSD) or You Only Look Once (YOLO)

are proposed and followed by pedestrian detection

researchers, as they offer faster inference speeds

and improved performance under challenging

conditions.

2.2.5 Single Shot MultiBox Detector (SSD)

The Single Shot MultiBox Detector (SSD) [26] is

a faster and more efficient object detection

compared to the Faster R-CNN. Unlike Faster R-

Raisi et al./ Journal of AI and Data Mining, x(x): xxx-xxx, xxxx

CNN, SSD detects objects in a single pass and

eliminates the need for region proposal generation

and secondary processing. SSD's architecture

consists of a single stage that predicts object

locations and classes directly from full images,

making it highly efficient for real-time

applications. However, SSD struggles with

accuracy performance in terms of mAP,

particularly for occluded and small objects or those

with complex backgrounds, and requires an

optimized anchor box.

2.2.6. You Only Look Once (YOLOv1)

Contrary to previous object detection deep learning

algorithms, In the YOLO algorithm, all the image

is passed through a CNN, not part of an image [32].

On top of that, similar to Faster R-CNN, CNN is

used only once for determining the bounding boxes

and their probability.

The YOLO algorithm redefines the detection

problem as a single regression problem which

maps image pixels to bounding boxes and class

probabilities. It has the following advantages over

the other well-known detection algorithms: (1) Due

to the one-time implementation of the classifier, the

YOLO algorithm is extremely fast and can process

images at the rate of 45 frames per second. This

characteristic makes it perfectly suitable for real-

time implementation and online autonomous

vehicle perception. (2) The YOLO algorithm uses

the global representation of the image since it takes

the whole image as the input to the CNN.

This makes it less sensitive to parts of the image

that are not important for detection. One of these

parts is the background. As mentioned in the R-

CNN section, this algorithm sometimes takes

background patches as the objects. This is because

only the selected regions are trained in CNN.

YOLO, on the other hand, is not susceptible to

trivial parts of the image. Therefore, the challenge

of complex backgrounds can be solved with this

method. (3) The YOLO algorithm is highly

generalizable. Despite other algorithms that use the

same distribution for training and testing, YOLO

learns the general representation of each object, not

along with the data, but contextually. As a result, it

performs well on unexpected inputs and different

test environments. Despite the many advantages

that YOLOv1 has, it has some disadvantages as

well. Generally, YOLOv1 makes more localization

errors than Faster R-CNN. Also, each grid cell is

constrained to predict two bounding boxes and

only one object. This spatial constraint results in

the problem that YOLOv1 cannot localize small

objects.

Figure 4. Performance comparison of YOLOv3 with

other detectors on the benchmark COCO dataset [23].

Moreover, if the objects are very close to each

other, this algorithm faces difficulties in dealing

with them. Additionally, YOLOv1 works well with

single-scale, meaning that if the training is on small

objects, it cannot perform well on larger objects

and vice versa. The mentioned issues may make

YOLO an inappropriate candidate for this paper

but these problems were addressed and completely

solved in the next generations of YOLO algorithm.

2.2.6. YOLOv2

YOLOv2, also famous as YOLO 9000, uses tricks

and modifications to solve the issues of the

previous generation [30].

First, batch normalization is applied to the

convolution layers of YOLOv1. This trick

increases the mean accuracy precision and removes

the need for dropouts. It also improves the

convergence, which then decreases the probability

of unstable gradients [16]. Second, YOLOv2 uses

Anchor Boxes for predicting the bounding boxes.

The difference between this method and the one

used in YOLOv1 is that, in the previous generation,

the coordinates of the bounding boxes were

predicted directly. However, in YOLOv2 the

offsets of the anchor boxes are predicted. This

change removes the need for spatial locations and

improves the accuracy. By the use of anchor boxes,

the number of predicted boxes changes from 98 to

1000. Interestingly, instead of hand-picking the

anchor boxes, different boxes are cross-validated

using Dimension Clusters. The k-means clustering

algorithm is used for determining the best set of

anchor boxes. Third, YOLO 9000 trains with high-

resolution inputs as well, which has the benefit of

adjusting to the new input resolution and increasing

the accuracy. Fourth, YOLOv2 uses fined-grained

features to account for smaller objects. The final

difference that YOLO 9000 imposes is that it

exploits multi-scaling training to solve the problem

of single-scale sensitivity and the different scaling

challenges in autonomous perception.

Exploring Object Detection Methods for Autonomous Vehicles Perception…

Figure 5. HOG process.

2.2.7. YOLOv3

The most recent generation of YOLOv3 uses

approximately the same formulation as YOLOv2

[31] (see section 3 for more details). YOLOv3 is

faster than the previous generations. Performance

comparison of the well-known object detection

algorithms has been published in the original paper

of YOLOv3 [31] and it is shown that YOLOv3 has

better speed and one of the highest mAPs (Figure

4). Moreover, understanding how it works and the

problems it can solve showed that, like the

HOG+SVM method in classic algorithms,

YOLOv3 can resolve many of the mentioned issues

in autonomous vehicle perception. Consequently,

this algorithm is chosen for the deep learning

implementation.

It is worth mentioning that there are also other

recent versions of YOLOS as described in [31, 41-

43]. For a fair comparison with the classical

approaches, we only compared our results with

YOLOv3. However, we conducted some

experiments with other YOLO version models and

compared their performance with YOLOv3 (See

Table 1).

3. Methodology

In this section, we present the classical and deep

learning algorithms utilized for comparison in the

evaluation, as discussed in Section 4. For the

classical method, the proposed method is described

in Figure 5 and contains multiple sub-modules for

feature extraction and classification that are

described as follows:

3.1. The proposed Classical Machine Learning

Techniques

In this section, we first provide the process of

utilizing the classical machine learning approach

including feature extraction and classification.

3.1.1 HOG

To obtain a complete descriptor of an infrared

image, a local histogram of gradients is computed

according to the following steps: 1) computing

gradients of the image, 2) building a histogram of

orientation for each cell and 3) normalizing

histograms within each block of cells.

 In the HOG descriptor, the input image is divided

into small spatial regions (cells), and for each cell,

a local 1-D histogram of gradient directions or edge

orientations over the pixels of the cell is

accumulated. After preprocessing and obtaining

the 64 128 patch of images, the gradient of each

image is calculated by passing two one-

dimensional kernels through the image.

3.1.2. Calculating Histogram of Gradients in

8x8 cells

Each gradient includes a value and a phase. In this

step, the image is divided into 8 8 cells and for

each cell, the histogram of gradients is calculated

by accumulating votes into bins for each

orientation. The phases are divided into 9 bins (0 to

180) and the values for each bin are assembled. If

the phase of a gradient is between two bins, its

value is distributed between those bins based on a

weighted approach.

Raisi et al./ Journal of AI and Data Mining, x(x): xxx-xxx, xxxx

3.1.3. Block Normalization

Due to the variability in the images, it is necessary

to normalize cell histograms. They are locally

normalized, according to the values of the

neighborhood cell histograms. The normalization

is done among a group of cells, which is called a

block. The figure shows the process of HOG

calculation.

3.1.4. Calculating the HOG feature vector

According to the following formulation: HOG

feature vector = 7(horizontal position) * 15

(vertical position) * 4 (cell) * 9 (histogram bin) =

3780 feature descriptors are obtained for each

image in the HOG algorithm. Each 64 × 128

detection window is represented by 7 × 15 blocks,

giving a total of 3780 features per detection

window. These features are then used to train a

linear SVM classifier [37].

HOG formulation makes it one of the best classic

methods for autonomous perception challenges:

HOG discretizes the phase space into 9 bins. By

doing so, slight changes in angle will not lead to a

different histogram. Therefore, HOG is robust to

different poses and angle changes. Batch

normalization makes HOG robust to

multiplication. In other words, if all the pixel

values are multiplied by a number, the gradient of

those values remains the same. This is very useful

because contrast differences in an image act

exactly like multiplying some of the values by a

number. As a result, by being robust to

multiplication, the HOG is robust to contrast

change and can solve the illumination challenge in

autonomous perception. To solve the problem of

different scales, the image is downsized multiple

times and the HOG is applied with a constant-size

sliding window. This way, smaller and bigger

(closer and further) objects can be detected. A

variable called HOG-threshold is assigned to

determine the number of downsizing steps.

3.1.5. SVM Classifier

In this paper, a set of training images with positive

and negative samples, are first described by their

HOG, for learning a decision function. A Support

Vector Machine classifier (SVM) has been used,

which is a binary classification algorithm that looks

for an optimal hyperplane as a decision function in

a high-dimensional space. Thus, considering one

has a training data set: , { 1,1}k kx y X , where
kx

is the training examples HOG feature vector and

ky is the class label. At first, the method maps 𝑥𝑘

in a high dimensional space owing to a function .

Then, it looks for a decision function of the form:

() ()f x w x b and ()f x is optimal in the sense

that it maximizes the distance between the nearest

point ()ix and the hyperplane. The class label of

𝑥 is then obtained by considering the sign of ()f x .

This optimization problem can be turned, in the

case of the L1 soft-margin SVM classifier

(misclassified examples are linearly penalized), in

the following way:

2

,
1

1
min

2

m

k
w

k

w C

 (1)

under the constraint , 1k k kk y f x The

solution to this problem is obtained using the

Lagrangian theory and it is possible to show that

the vector 𝑤 is of the form:

1

m

k k k

k

w y x

 (2)

Where *

i is the solution to the following quadratic

optimization problem:

1

,

max

1
 ,

2

m

k

k

m

k l k l k l

k l

W

y y K x x

 (3)

subject to
1

0
m

k k

k

y

 and ,0 kk C where

 , ,k l k lK x x x x . According to (2) and

(3), the solution of the SVM problem depends only

on the Gram Matrix K. Data sets are not always

linearly separable. In the case of nonlinear datasets,

we can use kernel functions to paper the dataset

into a higher dimensional space in which data is

linearly separable. However, in the case of

pedestrian detection problems, typical linear SVM

is sufficient to get a high detection rate. Using the

kernel function results in a higher detection rate

and decreased false positives, but it takes more

computational processing time.

3.2. The Leveraged Deep Learning Techniques

In this section, we present the utilized deep

learning techniques for evaluation. We used

several well-known and recent models to compare

their performance with classical machine learning

techniques. As we mentioned in Section 2, two-

stage detectors like Faster R-CNN are not suitable

for real-time object detection without high

computation machine equipped with high memory

GPU. Although the SSD architecture is fast, but it

does not provide a high accuracy. Different

versions of YOLO models are available as open

source and easy to modify, extend, and provide

better efficiency and good performance.

Among different versions of YOLO models, the

recent models (YOLOv8, YOLOv9) performed

Exploring Object Detection Methods for Autonomous Vehicles Perception…

better in terms of accuracy and efficiency but have

complex architecture compared to the first YOLO

generations (YOLOv1 and YOLOv2). In this

section, we provide a detailed description of

YOLOv3 and select it as the main pipeline for

comparison due to its trade-off role in the

straightforward pipeline and efficient performance

for a fair comparison with classical methods.

3.2.1 YOLOv3

The YOLOv3 [31] algorithm is exploited in the

deep learning section. Since this algorithm works

in real-time and performs well for multi-class

detection, other objects are added to the pedestrian

category. One of the important changes in the

YOLOv3 is that instead of using SoftMax in the

fully connected layer, logistic regression is used.

The advantage of this modification is that it

produces good results when the classes are not

mutually exclusive, e.g. when the class labels

include “pedestrian” and “man”. Additionally,

YOLOv3 uses a similar feature extraction strategy

as Feature Pyramid Networks [24]. Three-scale

predictions are made for each location of the input

image in grid cells and features are extracted from

those predictions. This helps even further for

different-scale classification.

 Each image is divided into 13 13 grid cells and

each grid cell is responsible for detecting the

objects whose center points are located in it. The

output for each object should be the width and

height of the box, the center of the box, and the

probability of the class in the box. Although used

in classic detection methods, predicting the ,x y

location of the box makes the formulation

unconstrained and unstable [30]. This is because

the anchor box can be in any section of the image

regardless of the predicted box location. Instead of

this formulation, the ground truth is normalized by

the image width and length, and the top left corner

of the image and the bounding box prior are

employed to keep the value between 0 and 1.

Additionally, a logistic activation function is

operated on the dimensions to keep the output in

the range (See Figure 6). These predicted values

can be found in (4):

 , , ,w ht t

x x x y y y w w h hb t c b t c b p e b p e (4)

In (4),
wp and

hp are the dimensions of the anchor,

xc and yc are the top left corner of the dimension of

the anchor. The grid cell also predicts the

objectness score for each object, which determines

the probability of being the selected object (5). To

avoid multiple detections of an object (a problem

faced in classic methods), a method called Non-

Max Suppression [28] is applied.

Figure 6. The dimensions and the center of the bounding

box

In this approach, the prediction with the highest

objective score is picked and the bounding boxes

with more than 50% intersection with it is

discarded. Considering three scales for each

location and a total of 80 class categories, the

prediction output for each image is

 13 13 3 5 80 .

 Objectness Pr Obj IoU (5)

To account for mutually dependent classes, a

hierarchical approach is exploited. The conditional

probability of each class is computed given that an

object is selected. The global probability of the

class is calculated using hierarchical propagation.

For example, given that a pedestrian can be a man,

woman, or child, the global probability of a

pedestrian is as follows:

Pr Pr | Pr

Pr | Pr

 Pr | Pr

tl

tl

tl

Ped Ped Man Man IoU

Ped Woman Child IoU

Ped Child Child IoU

 (6)

Where IoU denotes the intersection over union, and

lt is true to label in the ground truth. YOLOv3 uses

the Darknet-53 architecture with 53 convolutional

layers in its network. With the use of batch

normalization, overfitting is avoided, and dropout

methods, in which some of the neurons in the fully

connected layers are turned off randomly [15], can

be discarded. Binary class entropy is utilized as the

loss function, instead of the sum of squared error

that was previously utilized in YOLOv1.

4. Experimental Results

In this section, we first introduce the dataset used

for evaluation. Then, we provide the

implementation details of the training and

inference settings of the models. Finally, we

provide some quantitative and qualitative results to

compare the classical and deep-learning methods.

Raisi et al./ Journal of AI and Data Mining, x(x): xxx-xxx, xxxx

Table 1. The mean average precision and the test time for

classic methods.

Method mAP Average test time (s)

PCA+SVM 75.23 90.32

HOG + Linear SVM 79.95 96.12

HOG + Gaussian SVM 82.0 104.58

Faster-RCNN 86.23 203.9

SSD 84.11 31.23

YOLOv3 86.31 15.61

YOLOv5 89.78 10.21

YOLOv8 92.35 9.27

YOLOv9 96.51 8.96

4.1. INRIA Dataset

The INRIA Person dataset [7] comprises images

utilized for pedestrian detection tasks,

encompassing 614 instances for training and 288

for testing purposes. This dataset serves as a

foundational resource in the domain of pedestrian

detection, facilitating the development and

evaluation of detection algorithms across varied

scenarios and conditions.

4.2. Implementation Details
The training and test procedure is done on an

Intel(R) Core™ i7-6500U CPU 2.5 GHz. HOG

Threshold=0.2 has been chosen for feature

extraction. Cross-validation has been applied to

find the best C for the SVM and 1C has been

selected. Both linear and Gaussian kernels have

been tested on the dataset. The linear SVM is

written in MATLAB without the SVM toolbox and

for Gaussian SVM, the FITCSVM toolbox is

utilized. It is worth mentioning that the main goal

of the manuscript is to evaluate and compare

different classical machine and deep learning

methods. The main contribution of the proposed

method is the presentation of HOG + Gaussian

SVM. For other methods, we utilize, with minor

modifications, the models of the researchers

available from their GitHub pages.

For YOLOV3 deep learning, a pre-trained model

of YOLOv3 is used in the DarkNet-53 structure to

evaluate its performance on the INRIA test set.

Since YOLOv3 has a good performance on multi-

class label detection, 80 class categories are set for

the inference. Hence, other objects are added to the

single-class pedestrian category. For a fair

comparison, similar to the classic method, the

inference section is done on the CPU using a

Ubuntu 18.0 OS. For other YOLO models used in

the experiments, a pre-trained model on the MS-

COCO dataset is used for evaluation with the same

setting of YOLOv3 using the statistical setting

proposed in [53].

Figure 7. HOG+SVM classic method on INRIA dataset.

4.3. Evaluation Metrics

Mean Average Precision (mAP) is a widely used

evaluation metric in object detection tasks,

including pedestrian detection. It provides a

comprehensive assessment of the precision-recall

trade-off across different confidence thresholds. In

this paper, we adopted the same criteria as used in

[7, 19, 20] for evaluating the performance of the

models.

4.4. Classical method’s results

The HOG feature extraction and SVM classifier are

applied to the INRIA dataset [7]. The choice of this

dataset is because it contains all the intended

challenges in autonomous perception. Also, PCA

feature extraction with SVM classification has

been utilized to compare the results. A POV

method determines the number of features to be

extracted and it selects 83 best pixel values. The

mean average precision and the average test time is

shown in Table 1. Also, some of the test samples

with challenging problems are depicted in Figure 7.

These problems include illumination, clothing, far

objects, crowded backgrounds, and different

scales. Red squares represent the bounding boxes.

Each object is detected multiple times as the image

is downsized. This is because non-max suppression

is not used in the classic method and the issue is

resolved in deep learning results. As shown, the

classic method can solve most of the problems but

struggles to detect far objects, partially occluded

objects, and objects with complex clothing. These

missed objects are shown with yellow squares in

Figure 7. The PCA+SVM has the lowest test time

since it does not calculate the gradients for each

grid cell. However, its mAP is considerably lower

on the INRIA dataset. HOG + Gaussian SVM

improves the mAP of linear SVM by 4%, but it

Exploring Object Detection Methods for Autonomous Vehicles Perception…

suffers from very high computational time.

Generally, HOG + Linear SVM has the best trade-

off between accuracy and computation time and

therefore, is chosen as the classic method, even

though the structure of the problem is nonlinear.

The mean average precision and the test time for

classic methods.

4.5. Deep Learning Method’s Results

To evaluate deep-learning techniques, we utilized

different two-stage and one-stage object detectors.

As seen from Table 1, the two-stage Faster R-CNN

detector provides good performance in terms of

mAP by achieving (86.23). It outperformed the

classical methods and surpassed the SSD model.

However, taking about 204 seconds in the

inference time shows that it is not efficient for real-

time applications. This is because Faster R-CNN’s

architecture has multiple stages of processing and

several detection modules that make it

computationally expensive and it is not suitable for

real-time applications.

On the other hand, the one-stage detector SSD

model performed better in inference time (~31.23

seconds) than Faster-RCNN while falling behind

other YOLO-based deep-learning detectors by

achieving 84.11% in terms of mAP performance.

The YOLOv3 algorithm achieved 86.31% mAP.

The mean test time is 15.61 seconds. Although the

model is still far from the order of milliseconds and

real-time implementation, the test time has been

reduced by a factor of 6.15 compared to classic

methods. Real-time implementation would be

achieved if GPU was used.

More importantly, YOLOv3 can solve partial

occlusion, far objects, and clothing problems. The

images from Figure 7 are also represented in Figure

8 (pedestrians with mentioned challenges are

shown with yellow squares). From Table 1, it is

evident that the recent model of YOLOs perform

better than the previous generations. However,

these recent models have complicated architecture

and require extensive computations to achieve

better performance than the YOLOv3.

5. Conclusions

In conclusion, our investigation into pedestrian

detection techniques highlights the effectiveness of

both classical methods, such as HOG feature

extraction with SVM classification, and modern

deep learning approaches like YOLO models. By

evaluating these methods on the INRIA benchmark

dataset, we contribute insights into their respective

strengths and potential applications in real-world

scenarios.

Figure 8. Object Detection with YOLOv3.

HOG+ linear SVM achieved a mean average

accuracy of 79.95% with a mean average test time

of 96.12 seconds, effectively addressing various

challenges in autonomous perception such as

illumination and scale variations. However, it

encountered difficulties with samples featuring

partial occlusion, distant objects, and complex

clothing, and was unsuitable for real-time

implementation. Conversely, YOLOv3

demonstrated a ~ 7% increase in mean average

precision and a 6.15-fold reduction in test time,

effectively resolving different challenges. We also

conducted some experiments on the utilized INRIA

dataset on recent YOLO models, which

outperformed the YOLOv3 with a high margin of

mAP performance.

References
[1] T. Barbu, “Pedestrian detection and tracking using

temporal differencing and HOG features,” Computers &

Electrical Engineering, Vol. 40, No. 4, pp. 1072–1079,

2014, doi:10.1016/j.compeleceng.2013.12.004.

[2] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao,

“YOLOv4: Optimal speed and accuracy of object

detection,” arXiv preprint arXiv:2004.10934, 2020, doi:

https://doi.org/10.48550/arXiv.2004.10934.

[3] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A.

Kirillov, and S. Zagoruyko, “End-to-end object

detection with transformers,” in European Conference

on Computer Vision, pp. 213–229. Springer, 2020, doi:

10.1007/978-3-030-58452-8_13.

[4] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-

view 3D object detection network for autonomous

driving,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 1907–

1915, Honolulu, HI, USA, 2017, doi:

10.1109/CVPR.2017.691.

[5] Z. Chen, K. Chen, and J. Chen, “Vehicle and

pedestrian detection using support vector machine and

https://doi.org/10.48550/arXiv.2004.10934
https://doi.org/10.48550/arXiv.2004.10934

Raisi et al./ Journal of AI and Data Mining, x(x): xxx-xxx, xxxx

histogram of oriented gradient features,” in 2013

International Conference on Computer Sciences and

Applications, pp. 365–368, Wuhan, China, IEEE, 2013,

doi: 10.1109/CSA.2013.92.

[6] C. Cortes and V. Vapnik, “Support-vector

networks,” Machine Learning, Vol. 20, pp. 273–297,

1995.

[7] N. Dalal and B. Triggs, “Histograms of oriented

gradients for human detection,” in 2005 IEEE Computer

Society Conference on Computer Vision and Pattern

Recognition (CVPR’05), pp. 886–893, San Diego, CA,

USA, IEEE, 2005, doi: 10.1109/CVPR.2005.177.

[8] P. Dollar, C. Wojek, B. Schiele, and P. Perona,

“Pedestrian detection: A benchmark,” in 2009 IEEE

Conference on Computer Vision and Pattern

Recognition, pp. 304–311, Miami, FL, USA, IEEE,

2009, doi: 10.1109/CVPR.2009.5206631.

[9] M. Enzweiler and D. M. Gavrila, “Monocular

pedestrian detection: Survey and experiments,” IEEE

Transactions on Pattern Analysis and Machine

Intelligence, Vol. 31, No. 12, pp. 2179–2195, Dec. 2009,

doi: 10.1109/TPAMI.2008.260.

[10] A. Ess, B. Leibe, and L. Van Gool, “Depth and

appearance for mobile scene analysis,” in 2007 IEEE

11th International Conference on Computer Vision, pp.

1–8, Rio de Janeiro, Brazil, IEEE, 2007, doi:

10.1109/ICCV.2007.4409092.

[11] M. Everingham, L. Van Gool, C. K. I. Williams, J.

Winn, and A. Zisserman, “The Pascal Visual Object

Classes (VOC) challenge,” International Journal of

Computer Vision, Vol. 88, pp. 303–338, 2010, doi:

10.1007/s11263-009-0275-4.

[12] R. Girshick, “Fast R-CNN,” in 2015 IEEE

International Conference on Computer Vision (ICCV),

pp. 1440–1448, Santiago, Chile, IEEE, 2015, doi:

10.1109/ICCV.2015.169.

[13] R. Girshick, J. Donahue, T. Darrell, and J. Malik,

“Rich feature hierarchies for accurate object detection

and semantic segmentation,” in 2014 IEEE Conference

on Computer Vision and Pattern Recognition, pp. 580–

587, Columbus, OH, USA, IEEE, 2014,

doi:10.1109/CVPR.2014.81.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial

pyramid pooling in deep convolutional networks for

visual recognition,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol. 37, No. 9, pp.

1904–1916, Sept. 2015, doi:

10.1109/TPAMI.2015.2389824.

[15] G. E. Hinton, N. Srivastava, A. Krizhevsky, I.

Sutskever, and R. R. Salakhutdinov, “Improving neural

networks by preventing co-adaptation of feature

detectors,” arXiv preprint arXiv:1207.0580, 2012.

Available: https://arxiv.org/pdf/1207.0580.

[16] S. Ioffe and C. Szegedy, “Batch normalization:

Accelerating deep network training by reducing internal

covariate shift,” in International Conference on

Machine Learning, pp. 448–456, PMLR, 2015.

[17] C. Janiesch, P. Zschech, and K. Heinrich, “Machine

learning and deep learning,” Electronic Markets, Vol.

31, No. 3, pp. 685–695, 2021, doi: 10.1007/s12525-021-

00475-2.

[18] R. Kaur and S. Singh, “A comprehensive review of

object detection with deep learning,” Digital Signal

Processing, Vol. 132, p. 103812, 2023, doi:

10.1016/j.dsp.2022.103812.

[19] T. Kobayashi, A. Hidaka, and T. Kurita, “Selection

of histograms of oriented gradient features for

pedestrian detection,” in Neural Information

Processing: 14th International Conference, ICONIP

2007, Kitakyushu, Japan, November 13-16, 2007,

Revised Selected Papers, Part II 14, pp. 598–607,

Springer, 2008, doi: 10.1007/978-3-540-69162-4_62.

[20] K. Lei and Y. Luo, “A new pedestrian detection

method based on histogram of oriented gradients and

support vector data description,” in Electronics,

Communications and Networks, IOS Press, 2024, pp.

333–342.

[21] C. Li, L. Li, H. Jiang, K. Weng, Y. Geng, L. Li, Z.

Ke, Q. Li, M. Cheng, W. Nie, et al., “YOLOv6: A

single-stage object detection framework for industrial

applications,” arXiv preprint arXiv:2209.02976, 2022,

doi: https://doi.org/10.48550/arXiv.2209.02976.

[22] J. Li, X. Liang, S. Shen, T. Xu, J. Feng, and S. Yan,

“Scale-aware Fast R-CNN for pedestrian detection,”

IEEE Transactions on Multimedia, Vol. 20, No. 4, pp.

985–996, April 2018, doi:

10.1109/TMM.2017.2759508.

[23] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P.

Perona, D. Ramanan, P. Dollar, and C. L. Zitnick,

“Microsoft COCO: Common objects in context,” in

Computer Vision–ECCV 2014: 13th European

Conference, Zurich, Switzerland, September 6-12, 2014,

Proceedings, Part V 13, pp. 740–755, Springer, 2014.

[24] T.-Y. Lin, P. Dollar, R. Girshick, K. He, B.

Hariharan, and S. Belongie, “Feature pyramid networks

for object detection,” in 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pp.

936–944, Honolulu, HI, USA, IEEE, 2017, doi:

10.1109/CVPR.2017.106.

[25] T. Lindeberg, “Scale-invariant feature transform,”

2012. Available: https://www.diva-

portal.org/smash/record.jsf?pid=diva2:480321.

[26] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S.

Reed, C.-Y. Fu, and A. C. Berg, “SSD: Single shot

multibox detector,” in Computer Vision–ECCV 2016:

14th European Conference, Amsterdam, The

Netherlands, October 11–14, 2016, Proceedings, Part I

14, pp. 21–37, Springer, 2016.

[27] A. Mohan, C. Papageorgiou, and T. Poggio,

“Example-based object detection in images by

components,” IEEE Transactions on Pattern Analysis

https://arxiv.org/pdf/1207.0580
https://doi.org/10.48550/arXiv.2209.02976
https://www.diva-portal.org/smash/record.jsf?pid=diva2:480321
https://www.diva-portal.org/smash/record.jsf?pid=diva2:480321

Exploring Object Detection Methods for Autonomous Vehicles Perception…

and Machine Intelligence, Vol. 23, No. 4, pp. 349–361,

April 2001, doi: 10.1109/34.917571.

[28] A. Neubeck and L. Van Gool, “Efficient non-

maximum suppression,” in 18th International

Conference on Pattern Recognition (ICPR'06), pp. 850–

855, Hong Kong, China, IEEE, 2006, doi:

10.1109/ICPR.2006.479.

[29] C. P. Papageorgiou, M. Oren, and T. Poggio, “A

general framework for object detection,” in Sixth

International Conference on Computer Vision (IEEE

Cat. No.98CH36271), pp. 555–562, Bombay, India,

IEEE, 1998, doi: 10.1109/ICCV.1998.710772.

[30] J. Redmon and A. Farhadi, “YOLO9000: Better,

faster, stronger,” in 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 6517–

6525, Honolulu, HI, USA, IEEE, 2017, doi:

10.1109/CVPR.2017.690.

[31] J. Redmon and A. Farhadi, “YOLOv3: An

incremental improvement,” arXiv preprint

arXiv:1804.02767, 2018. Available:

https://doi.org/10.48550/arXiv.1804.02767.

[32] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi,

“You only look once: Unified, real-time object

detection,” in 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 779–788,

Las Vegas, NV, USA, IEEE, 2016, doi:

10.1109/CVPR.2016.91.

[33] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-

CNN: Towards real-time object detection with region

proposal networks,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol. 39, No. 6, pp.

1137–1149, June 2017, doi:

10.1109/TPAMI.2016.2577031.

[34] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski,

“ORB: An efficient alternative to SIFT or SURF,” in

2011 International Conference on Computer Vision, pp.

2564–2571, Barcelona, Spain, IEEE, 2011, doi:

10.1109/ICCV.2011.6126544.

[35] P. Scovanner, S. Ali, and M. Shah, “A 3-

dimensional SIFT descriptor and its application to action

recognition,” in Proceedings of the 15th ACM

International Conference on Multimedia (MM '07), pp.

357–360, Association for Computing Machinery, New

York, NY, USA, 2007, doi: 10.1145/1291233.1291311.

[36] C. Shorten and T. M. Khoshgoftaar, “A survey on

image data augmentation for deep learning,” Journal of

Big Data, Vol. 6, No. 1, pp. 1–48, 2019, doi:

10.1186/s40537-019-0197-0.

[37] F. Suard, A. Rakotomamonjy, A. Bensrhair, and A.

Broggi, “Pedestrian detection using infrared images and

histograms of oriented gradients,” in 2006 IEEE

Intelligent Vehicles Symposium, pp. 206–212, Meguro-

Ku, Japan, IEEE, 2006, doi:

10.1109/IVS.2006.1689629.

[38] F. Suard, A. Rakotomamonjy, A. Bensrhair, and A.

Broggi, “Pedestrian detection using infrared images and

histograms of oriented gradients,” in 2006 IEEE

Intelligent Vehicles Symposium, pp. 206–212, Meguro-

Ku, Japan, IEEE, 2006, doi:

10.1109/IVS.2006.1689629.

[39] P. Viola, M. Jones, and D. Snow, “Detecting

pedestrians using patterns of motion and appearance,” in

Proceedings Ninth IEEE International Conference on

Computer Vision, pp. 734–741, vol. 2, Nice, France,

2003, doi: 10.1109/ICCV.2003.1238422.

[40] P. Viola, M. Jones, and D. Snow, “Detecting

pedestrians using patterns of motion and appearance,” in

Proceedings Ninth IEEE International Conference on

Computer Vision, pp. 734–741, vol. 2, Nice, France,

2003, doi: 10.1109/ICCV.2003.1238422.

[41] J. Reis, D. Dillon, J. Kupec, J. Hong, and A.

Daoudi, “Real-time flying object detection with

YOLOv8,” arXiv preprint arXiv:2305.09972, 2023.

Available: https://doi.org/10.48550/arXiv.2305.09972.

[42] C.-Y. Wang, I.-H. Yeh, and H.-Y. M. Liao, “You

only learn one representation: A unified network for

multiple tasks,” arXiv preprint arXiv:2105.04206, 2021.

Available: https://doi.org/10.48550/arXiv.2105.04206.

[43] C.-Y. Wang, I.-H. Yeh, and H.-Y. M. Liao,

“YOLOv9: Learning what you want to learn using

programmable gradient information,” arXiv preprint

arXiv:2402.13616, 2024. Available:

https://doi.org/10.48550/arXiv.2402.13616.

[44] T. Watanabe, S. Ito, and K. Yokoi, “Cooccurrence

histograms of oriented gradients for pedestrian

detection,” in Advances in Image and Video

Technology: Third Pacific Rim Symposium, PSIVT

2009, Tokyo, Japan, January 13-16, 2009. Proceedings

3, pp. 37–47, Springer, 2009, doi: 10.1007/978-3-540-

92957-4_4.

[45] G. Xu, X. Wu, L. Liu, and Z. Wu, “Real-time

pedestrian detection based on edge factor and histogram

of oriented gradient,” in 2011 IEEE International

Conference on Information and Automation, pp. 384–

389, Shenzhen, China, IEEE, 2011, doi:

10.1109/ICINFA.2011.5949022.

[46] Y. Yamauchi, H. Fujiyoshi, B.-W. Hwang, and T.

Kanade, “People detection based on co-occurrence of

appearance and spatiotemporal features,” in 2008 19th

International Conference on Pattern Recognition, pp.

1–4, Tampa, FL, USA, IEEE, 2008, doi:

10.1109/ICPR.2008.4761809.

[47] S. Yao, S. Pan, T. Wang, C. Zheng, W. Shen, and

Y. Chong, “A new pedestrian detection method based on

combined HOG and LSS features,” Neurocomputing,

Vol. 151, pp. 1006–1014, 2015, doi:

10.1016/j.neucom.2014.08.080.

[48] W.-L. Zhao and C.-W. Ngo, “Flip-invariant SIFT

for copy and object detection,” IEEE Transactions on

Image Processing, Vol. 22, No. 3, pp. 980–991, March

2013, doi: 10.1109/TIP.2012.2226043.

https://doi.org/10.48550/arXiv.1804.02767
https://doi.org/10.48550/arXiv.1804.02767
https://doi.org/10.48550/arXiv.2305.09972
https://doi.org/10.48550/arXiv.2105.04206
https://doi.org/10.48550/arXiv.2402.13616
https://doi.org/10.48550/arXiv.2402.13616

Raisi et al./ Journal of AI and Data Mining, x(x): xxx-xxx, xxxx

[49] Z.-Q. Zhao, P. Zheng, S.-T. Xu, and X. Wu, “Object

detection with deep learning: A review,” IEEE

Transactions on Neural Networks and Learning

Systems, Vol. 30, No. 11, pp. 3212–3232, Nov. 2019,

doi: 10.1109/TNNLS.2018.2876865.

[50] C. Zhou and J. Yuan, “Multi-label learning of part

detectors for heavily occluded pedestrian detection,” in

2017 IEEE International Conference on Computer

Vision (ICCV), pp. 3506–3515, Venice, Italy, IEEE,

2017, doi: 10.1109/ICCV.2017.377.

[51] Q. Zhu, M.-C. Yeh, K.-T. Cheng, and S. Avidan,

“Fast human detection using a cascade of histograms of

oriented gradients,” in 2006 IEEE Computer Society

Conference on Computer Vision and Pattern

Recognition (CVPR'06), pp. 1491–1498, New York,

NY, USA, IEEE, 2006, doi: 10.1109/CVPR.2006.119.

[52] X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai,

“Deformable DETR: Deformable transformers for end-

to-end object detection,” arXiv preprint

arXiv:2010.04159, 2020. Available:

https://doi.org/10.48550/arXiv.2010.04159.

[53] M.-W. Li, R.-Z. Xu, Z.-Y. Yang, W.-C. Hong, X.

An, and Y.-H. Yeh, “Optimization approach of berth-

quay crane-truck allocation by the tide, environment and

uncertainty factors based on chaos quantum adaptive

seagull optimization algorithm,” Applied Soft

Computing, Vol. 152, p. 111197, 2024, doi:

10.1016/j.asoc.2023.111197.

[54] S. Grigorescu, B. Trasnea, T. Cocias, and G.

Macesanu, “A survey of deep learning techniques for

autonomous driving,” Journal of Field Robotics, Vol.

37, No. 3, pp. 362–386, 2020.

[55] V. Bharilya and N. Kumar, “Machine learning for

autonomous vehicle's trajectory prediction: A

comprehensive survey, challenges, and future research

directions,” Vehicular Communications, 2024, p.

100733, doi: 10.1016/j.vehcom.2024.100733.

[56] S. M. Ghazali and Y. Baleghi, “Pedestrian detection

in infrared outdoor images based on atmospheric

situation estimation,” Journal of AI and Data Mining,

Vol. 7, No. 1, pp. 1–16, 2019, doi:

10.22044/jadm.2018.5742.1696.

[57] M. Nasehi, M. Ashourian, and H. Emami, “Vehicle

type, color and speed detection implementation by

integrating VGG neural network and YOLO algorithm

utilizing Raspberry Pi hardware,” Journal of AI and

Data Mining, Vol. 10, No. 4, pp. 579–588, 2022, doi:

10.22044/jadm.2022.11915.2338.

https://doi.org/10.48550/arXiv.2010.04159
https://doi.org/10.48550/arXiv.2010.04159

 .x x x xسال ،xشماره ،کاویمجله هوش مصنوعی و داده و همکاران رئیسی

ای بین مقایسه یوسایل نقلیه خودران: مطالعه استنباطاشیاء برای تشخیصهای بررسی روش

 رویکردهای کلاسیک و یادگیری عمیق

 و اسماعیل سارانی رسول دامنی ،ولی محمد نظرزهی ، *زبیر رئیسی

 .ایران، چابهار، دانشگاه دریانوردی و علوم دریایی چابهار، گروه مهندسی الکترونیک و مخابرات دریایی

 05/06/2024 پذیرش؛ 08/04/2024 بازنگری؛ 25/02/2024 ارسال

 چکیده:

های یادگیری ماشین کلاسیک و خودروهای خودران از طریق تحلیل مدل استنباطهای مختلف تشخیص اشیا برای این مقاله به بررسی عملکرد تکنیک

 SVM یکنندهبندیهای مختلفی از طبقهبه همراه نسخه HOG و PCA،SIFT پردازد. ما سه روش کلاسیک شاملهای یادگیری عمیق اخیر میمدل

 ی استانداردرا با استفاده از مجموعه داده YOLOv9 و Faster-RCNN ،SSD ،YOLOv3 ،YOLOv5 هایو پنج مدل یادگیری عمیق شامل مدل

INRIA های کلاسیک ماننددهد که اگرچه روشها نشان میایم. نتایج آزمایشزیابی کردهار HOG + Gaussian SVM های کلاسیک از سایر روش

، نهانپهای کلاسیک در تشخیص اشیای نیمهبر این، روش شوند. علاوههای یادگیری عمیق پشت سر گذاشته میعملکرد بهتری دارند، اما توسط تکنیک

ها کارآمدتر در این چالش (YOLOv9) های یادگیری عمیق اخیرهای مربوط به پوشش پیچیده محدودیت دارند، در حالی که مدلاشیای دور و چالش

 .دهندبوده و عملکرد بهتری ارائه می

 .انیگراد ،هیستوگرام شیب های جهت دار ق،یعمکلاسیک و یریادگی اده،یعابر پ صیتشخ ،خودران هینقل لهیوس :کلمات کلیدی

