Journal of Artificial Intelligence and Data Mining (JAIDM), X(X): XXX-XXX, XXXX

Journal of Artificial Intelligence and Data Mining (JAIDM)

Journal homepage: http://jad.shahroodut.ac.ir

Shahrood University of
Technology

Research paper

Enhancing Image Segmentation with Darwinian Grey Wolf Optimizer:
A Novel Multilevel Thresholding Approach

Ehsan Ehsaeyan”

Electrical Engineering Department, Sirjan University of Technology, Sirjan, Iran.

Article Info

Abstract

Avrticle History:
Received 30 April 2024
Revised 07 August 2024

This paper presents a novel approach to image segmentation through
multilevel thresholding, leveraging the speed and precision of the
technique. The proposed algorithm, based on the Grey Wolf

Accepted 22 August 2024 Optimizer (GWO), integrates Darwinian principles to address the

common stagnation issue in metaheuristic algorithms, which often
results in local optima and premature convergence. The search agents
are efficiently steered across the search space by a dual mechanism of
encouragement and punishment employed by our strategy, thereby
curtailing computational time. This is implemented by segmenting the
population into distinct groups, each tasked with discovering superior

solutions. To validate the algorithm’s efficacy, 9 test images from the
Eﬁ;’;ge:?@ngii:_gmech cir aUth‘()E Pascal VOC dataset were selected, and the renowned energy curve
Ehsaeian)_ ! s ' method was employed for verification. Additionally, Kapur entropy
was utilized to gauge the algorithm’s performance. The method was
benchmarked against four disparate search algorithms, and its
dominance was underscored by achieving the best outcomes in 20 out
of 27 cases for image segmentation. The experimental findings
collectively affirm that the Darwinian Grey Wolf Optimizer (DGWO)
stands as a formidable instrument for multilevel thresholding.
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1. Introduction

Multilevel thresholding has gained popularity as an
effective segmentation method for extracting
significant objects from images. Multilevel
thresholding approaches are generally divided into

by identifying and linking edges or pixels between
regions with abrupt intensity changes, forming
closed object boundaries [2].

N . _ . image
these categories: parametr_lc and non paramgtnc T
methods. The parametric approach utilizes techniques

statistical parameters from multiple classes, which
can be time-intensive and heavily reliant on initial
conditions. Non-parametric methods directly
optimize criteria for threshold estimation, avoiding
assumptions about data distribution. Figure 1
provides a summary of these techniques as
documented in the literature. Fuzzy clustering is a
special way of grouping image pixels together
based on their shades of gray. The Expectation
Maximization (EM) algorithm, a density-based
unsupervised method, seeks the maximum
likelihood estimates of parameters from a dataset
[1]. Edge detection addresses image segmentation

1
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fuzzy clustering edge detection
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Figure 1. Classification of segmentation algorithms.
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A variety of thresholding techniques inspired by
natural phenomena have been explored, including
those based on krill herds [3], thermal exchanges
[4] and human cognition [5]. However, these
nature-inspired algorithms often converge on
suboptimal  solutions, particularly in high-
dimensional spaces, and require carefully
calibrated parameters to function effectively. The
Grey Wolf Optimizer (GWO) is a notable natural-
inspired method characterized by its minimal
control parameters and rapid convergence, making
it well-suited for complex problems. A primary
limitation of the GWO is its lack of adaptability to
specific problem conditions. To address this
shortcoming, some researchers have refined the
classical GWO [6] or integrated it with other
metaheuristic algorithms [7]. Furthering the review
of literature, Erwin and Yuningsih applied GWO
for segmenting retinal blood vessels [8], and
Khairuzzaman and Chaudhury developed a GWO-
based multilevel image thresholding technique [9].
This paper first establishes the foundation by
covering the multilevel thresholding problem,
explaining energy curves and the Kapur criterion
(Section 2). Section 3 then details the Grey Wolf
Optimizer. Building on this groundwork, a novel
Darwinian Grey Wolf Optimizer (DGWO) is
introduced for optimal threshold determination
(Section 3). The efficacy of DGWO is evaluated in
Section 4. For comparison, the performance of four
established methods — Modified Snake Optimizer
(MSO) [10], Snow Ablation Optimizer (SAO) [11],
improved Salp Swarm Algorithm (SDSSA) [12],
enhanced Whale  Optimization  Algorithm
(CVWOA) [13]-is assessed on benchmark images
using the energy curve.

2. Fundamental Concept

2.1. Image Thresholding

In image segmentation, a technique called
multilevel thresholding can be used to divide a
grayscale image I into distinct regions t+1. This
is achieved by identifying thresholds t that
correspond to the image's intensity levels L.

2.2. BASIC THEORY OF ENERGY CURVE

For a given intensity level, [, a binary image is
created with the same dimensions mxn as the
original image. The elements of B, are defined as:

B, ={b;,1<i<m,1< j<n| where if
g(x,y) >1, then bij =1; Otherwise, bij =-1.
Another matrix, called C, is created with all ones.
This means every element in C (represented asc; )

has a value of 1, regardless of its position (i, j)

within the matrix. energy function helps us
understand how important it is to consider the

brightness level | when processing the image:

E. :ZZ Z (Cijcpq _bijbpq) (2)

i=1 j=1 p,geN?
The matrix C is defined with all elements set to one
(c; =1 for all i and j) to ensure a non-negative

energy condition E, >0.

2.3. KAPUR METHOD

In image segmentation, the Kapur method utilizes
entropy to create histograms with well-defined
peaks for each class [14]. Let's delve into the
formulation of the multilevel thresholding
problem:

Maximize f(t,,...,t,)=> H,

Where
(3)

Where p, denotes the probability of intensity i.

3. The Proposed Algorithm

Grey Wolf Optimizer (GWO) is a simple natural-
inspired method introduced in 2014 [15]. The
implementation of GWO can be summarized as
follows: Assume that N individuals have randomly

Ry ={g(xy)elo<g(xy) <t -1 follows: Assume that N individuals

. (1) initialized positions in a K-dimensional space.
X, g Xk

X=[i]=| t " (@)

Xy Xni o Xk

Within the group, the three most successful wolves
(alpha, beta, and delta) are identified through
competition. The remaining wolves follow the lead
of these top performers to improve their own
performance as described below:

R ={g(x.y) ety <g(x,y)<L-1
Each pixel in the image, denoted by g(Xx,y), has
an intensity value. We define t; (i=1,...,K) asthe

threshold values, where K is the total number of
thresholds used.
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D =[Cx, (t)-x(t)| (5)

X(t—1) =%, (t)—AD (6)
Where t is the iteration, X (t) is the location of the
prey, Aand C are identified as:

2arf -a (7-a)

2

A

(@]}
Il
N

(7-b)

In these equations, I, and [, are random numbers
drawn from U (0,1)and a is decreased from 2 to
0. In every iteration, «, f and ¢ are determined by

the fitness calculation and omega wolves are
update their positions as

D, =|C,%, -] (8-a)
D, =|C,x, —x (8-b)
D; =|Cs%; —X| (8-c)
%, =%, -A.D, (9-a)
%, =X, —A,.D, (9-b)
X, = X; — A.D, (9-c)
X(t+1) :%(7(1+>?2+>‘(3) (10)

This research proposes a Darwinian Grey Wolf
Optimizer (DGWOQO) for multilevel thresholding,
addressing the challenge of balancing exploration
(finding new possibilities) and exploitation
(refining promising areas) to avoid getting stuck in
sub-optimal solutions. Inspired by Darwinian
theory's "survival of the fittest,” DGWO employs a
parameter called STAGNANCY. STAGNANCY
tracks how long a group of wolves (algorithm
elements) fails to improve. If stagnation exceeds a
limit, the group is penalized by losing a member,
similar to a wolf pack struggling in a bad hunting
ground. By eliminating the least effective member,
the group is encouraged to explore new areas.
Notably, the stagnation counter isn't reset to zero
after this penalty but is assigned a specific value (to
be determined) to prevent immediate relapse.

stagnancy = SC™ {1— 1 } (11)
NkiII +1

This process considers two factors: a maximum
allowed time period where groups aren't making
progress SC.™, and the number of individuals
removed from a low-performing group N, .If this

group is confined to local areas, it may become
stagnant there. Therefore, stagnancy is not reset to

=

zero but is set according to Equation (11). A lower
stagnancy value encourages reinforcement of the
random search, while a higher value may result in
time wasted on searching within local areas.
Equation (11) represents a moderate degree of
success as proposed in the referenced study [16].
Evolutionary principles inspired by Darwinian
theory improve computational efficiency and
reduce runtime execution. This is achieved by
allowing the algorithm to escape sub-optimal
regions. If a group gets stuck on a decent solution,
the search there stops. Instead, a new group starts
searching in a different area. This helps the
algorithm explore the whole problem space,
making it more diverse. Figure 2 illustrates the
main steps of the DGWO algorithm in a flowchart.
To begin, a population of N randomly generated
solution vectors is created by Eg. (12). Each
solution vector has K dimensions.

= I‘min +(Lmax - I‘min)x rand (12)
The algorithm initializes solutions by assigning a
random value between 0 and 1 to each individual.

L.,and L, define the valid range for image

gray levels (excluding 0 and 255 to avoid
unnecessary exploration). Each initial solution's
fitness is then evaluated. The algorithm defines
control parameters like maximum iterations,
allowable group size range, and a stagnation
threshold. Finally, the algorithm divides the
population into groups and runs them concurrently
on the same search space, improving search
efficiency and convergence speed.

Several groups, acting like miniature GWQs, work
together to find the absolute best solution (Global
optimum). To prevent them from getting stuck in
areas that aren't as good (sub-optimal regions), a
system is in place. Each group member's
performance (fitness) is assessed, and the best
position discovered by a group is designated as
GroupBest. A new position in K-dimensional
space at generation t will be represented as

X! = [xitl_,_xi‘K] , generated by Eq. (12). Next, it is

checked if the solutions are valid (feasible). If a
position falls outside the designated range, a
specific mapping procedure will be applied to bring
it back within bounds by Eq. (13). Fitness of all
individuals is continuously measured.

L-1 X >L
Xt =4 Xt 0<x <L
ip ip p 2
0 Xip <0 (23)
p=1..K
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If a group finds a better position, it remains active
(stagnancy stays at zero) and its best solution
GroupBest is updated. Active groups under a

population limit can add a new randomly generated
member. Likewise, active groups within a group
limit are rewarded with the ability to form a new
group. This new group inherits half its members
from the successful group and the rest are random,
promoting exploration around promising areas
[16]. Conversely, failing groups that can't improve
their best solution are penalized by removing the
least fit member.

The DGWO algorithm iteratively refines a
population of groups, deleting those that get stuck
in suboptimal solutions ("local optima™) and
replacing them with new groups based on
successful ones. All groups are evaluated in each
iteration, adding or removing members as needed,
until a stopping criterion like a maximum number
of iterations or a good enough solution (acceptable
fitness) is met. The details of this process are
further explained in pseudocode format in Figure 3.

4. EXPERIMENTAL RESULTS

To assess the performance of the proposed
algorithms, four well-established search algorithms
were implemented on the test images selected from
the Pascal VOC dataset [17], as presented in Figure
4. These algorithms, namely SAO, MSO, CVWOA
and SDSSA, were chosen due to their documented
effectiveness in image segmentation tasks. Figure
5 illustrates the corresponding energy curves of the
test images.

For comparison of efficiency and solution accuracy
across the different methods, Kapur entropy was
chosen as the metric. The algorithms were
implemented in MATLAB on a system with an i7
2.5 GHz CPU, 8 GB RAM, and Windows 10 (64-
bit). The performance of the search algorithms was
evaluated using the energy curve of the benchmark
images, the obtained threshold values, mean fitness
function, and PSNR, SSIM, and FSIM metrics. To
clarify, Peak Signal-to-Noise Ratio (PSNR) is
defined as

PSNR = 20l0g (255/RMSE) (34-3)

RMSE :\/M'_N(l(i, -1, j))z/MN (14-b)
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Figure 2. Flowchart of the proposed DGWO.
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Start
Set parameters:
Iteration, initial group population, minimum group
population, maximum group population, initial group
number, minimum group number, maximum group
number, STAGNANCY,
first population:
Generate Random Initial Population according Eq. (11)
Divide population to initial group number
Find the best solution within a group (GroupBest)
While iter<iter_maximum
Get current group
For j=1:group_number
Update individuals location according Eq. (10)
Correct infeasible solution according Eq. (13)
Calculate fitness and update GroupBest
Create a new particle if possible
Create a new group if possible
Eliminate worst particle
Eliminate inefficient group
Calculate fitness and update GroupBest and
STAGNANCY
end
end
identify Best GroupBest
Stop
Figure 3. Pseudo code of the proposed DGWO.

9 h) i)
Figure 4. Benchmark Images from Pascal VVoc dataset
(a) Image 1, (b) Image 2, (c) Image 3, (d) Image 4
(e) Image 5, (f) Image 6, (g) Image 7, (h) Image 8
(i) Image 9.

M and N represent the dimensions (width and
height) of the test image. The original image is
denoted as (i, j) and the segmented image as
I'(i, j). Root Mean Squared Error (RMSE)
measures the difference between the original and
segmented images. The Structural Similarity Index
Measure (SSIM) describes how similar the original
and segmented images are, defined as

(2/u|/ul' +C1)(26||' +C2)

(,u|2+y|2,+cl)(0'|2+0',2,+cz)

The Feature Similarity Index (FSIM) is defined in
[18] and depends on several statistical properties of
the images | and |'. These properties include the
means u of each image, their respective variances

o, and the covariance between themo,,. .

SSIM =

(45)

Additionally, constants ¢, and ¢, are incorporated
to account for variations in pixel values.

D SL(X)PC,(x)
FSIM = X< Z PC_ () (56)

XeQ
In this equation, Q represents the entire image.

S, (X)stands for the similarity parameter, and

PC, (x) refers to the phase consistency. These
terms are calculated as

PC,,(x) = max(PC,(x), PC,(x)) (67-a)

S, () =[Sec (0] [Ss ()] (17-b)
_ 2PC,(X)x PC,(X)+T,

Sec ()= PCZ(X)x PC2(x) +T, (17-¢)
_2G,(X)xG,(X) +T,

3 ()= G2 xGE (0 T, (77-d)

PC,(x) and PC,(x) are the phase consistency of

two image blocks. Meanwhile, «, #,T,,and T, are

constant parameters used in the segmentation
process. Generally, higher values of PSNR, SSIM,
or FSIM indicate better image segmentation
quality. These metrics tend to increase with stricter
thresholds (higher threshold values) as the
segmentation becomes more precise, focusing on
capturing only the most relevant details.

Table 1 details the control parameters used by the
introduced methods. These parameters were
chosen based on the original research papers and
fine-tuned through a trial-and-error process. To
ensure consistency across algorithms, the initial
population for all search methods is selected from
a uniform distribution between 0 and 255. The
objective is to identify the optimal threshold values
for segmenting the image into four, eight, and
twelve levels. To facilitate a fair comparison, all
algorithms are run with 100 iterations and a
population size of 100. Kapur entropy serves as the
objective function in this experiment. It allows us
to evaluate the algorithms' ability to escape sub-
optimal solutions, a key factor for effective image
segmentation.

The following tables (Tables 2 to 5) present the
segmentation results obtained using Kapur's
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method with different threshold values (K = 4, 8,
and 12). The tables show the average fitness score
(averaged over 30 runs of each algorithm) and
other data associated with the best solution found
in these runs.

U U
B B
B o B o

]

a5 1M 255
i)
Figure 5. Analysis of energy curves for selected images.
(a Image 1, (b) Image 2, (c) Image 3, (d) Image 4
(e) Image 5, (f) Image 6, (g) Image 7, (h) Image 8
(i) Image 9.

The analysis of the tables shows that DGWO
outperforms other algorithms in all metrics,
including PSNR, SSIM, FSIM, and the mean
objective function. DGWO performed very well on
test images, achieving the best rank on 20 out of the
27 in terms of mean fitness. In terms of PSNR,
DGWO achieved the highest rank with 12 values.
Notably, the effectiveness of alternative search
methods diminishes as the thresholding size
increases. These algorithms become trapped in
local optima, hindering their ability to identify
optimal threshold values. Conversely, DGWO
consistently achieves superior objective function
values across 30 runs. This success stems from its
efficient exploration and exploitation of the search
space, surpassing other algorithms in this
capability. Therefore, DGWO, when combined
with the Kapur method, establishes itself as a
highly effective approach for image multi-level
thresholding. Its strength lies in its ability to avoid
exploration of irrelevant areas and effectively
manage the diversity of its search agents. Figure 6
illustrates the segmentation results for Test Image
1, providing a better visual comparison between
algorithms. Figure 7 depicts the convergence
curves for test images processed using the Kapur
method with a single run and 100 iterations. These

curves demonstrate that DGWO generally achieves
superior performance and converges more rapidly
compared to other algorithms. This behavior
suggests that DGWO is adept at locating optimal
points within the search space.

Table 1. Search algorithm controls.

algorithm parameters
MSo initial ¢, = 0.5
initial ¢, = 0.05
initial ¢, = 2
Runtime =0.2s
MaxRuntime =30s
SAO M =0.35t00.6
B, =04
B, =09
SDSSA k=1
vV, =0
CVWOA a=2to0
Seed =4
DGWO number of groups range = [1, 4]

group population range =[7,13]
max stagnancy = 2

Table 2. Mean fitness comparison of algorithms with
Kapur's entropy.

img K CVWOA MSO SAO SDSSA DGWO
1 4 19401 19412 19385 19419 19.421
8 28.881 29.643 29.641 29.777  29.781

12 38118  37.772 38407 37571 38386

2 4 19542 19524 19430 19541  19.543
8 29.692 29.832 1 29.774 29.805 29.921

12 38170 37.853 38.053 37.772  38.143

3 4 19428 19397 19.295 19431  19.432
8 29.592 29.506 29.753 29.812  29.937

12 38.145 37.678 38.354 37.910  38.400

4 4 19261 19270 19.182 19.280  19.280
8 29.472 29.456  29.127 29.486  29.577

12 37.790 37.270 37.323 37480 37.844

5 4 19452 19458 19412 19469  19.472
8  29.872 29.716 29.434 29.761  29.930

12 37269 37.836 38.143 37.711  38.143

6 4 19.292 19.268 19.025 19.293  19.294
8 29.764 29535 29.638 29.592  29.716

12 37.376 37.338 37.634 37.995 38.141

7 4 19307 19.282 19172 19.306  19.308
8 29.872 29.610 29.579 29.795  29.750

12 37.546 37913 37.360 37.773  38.383

8 4 19.266 19.281 19.251 19.288  19.288
8 29.471 29.460 29.275 29.378  29.560

12 37.836 37.224 38.024 37.795  37.686

9 4 19.225 19.338 19.299 19.344  19.346
8 29.684 29.505 29.607 29.568  29.680

12 38215 37408 38.184 37.622 38.251
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Table 3. PSNR evaluation of various algorithms for multi- Table 5. FSIM evaluation of various algorithms for multi-
level thresholding with Kapur's method. level thresholding with Kapur's method.

img K CVWOA MSO SAO SDSSA DGWO img K CVWOA MSO SAO SDSSA DGWO
1 4 19.73 19.77 19.13 19.73 19.74 1 4 0.814 0.817 0.797 0.817 0.818
8 19.78 2349 2258 2464 23.17 8 0.862 0.880 0.878 0.882 0.880

12 26.36 2653 27.12 2655 27.12 12 0.917 0.909 0.920  0.909 0.919

2 4 19.70 19.68 19.67 19.72 19.73 2 4 0.800 0.804 0.796 0.800 0.800
8 23.82 2449 22.83 24.40 24.75 8 0.884 0.900 0.874 0.889 0.897

12 27.73 2415 26.46  26.40 27.90 12 0.930 0.907 0.925 0917 0.945

3 4 18.11 18.16 18.33 1819 18.19 3 4 0.836 0.834 0.800 0.834 0.834
8 23.67 2239 2254 2185 22.89 8 0.902 0.874 0.898  0.902 0.904

12 26.95 26.46 27.27 26.59 26.83 12 0.923 0.923 0.923 0.922 0.926

4 4 17.14 17.38 16.44 17.28 17.29 4 4 0.771 0.776  0.776 0.773 0.773
8 24.55 2410 20.39  24.04 23.83 8 0.887 0.880 0.879  0.897 0.902

12 26.69 26.98 2518  25.40 27.70 12 0.919 0922 0911 0919 0.934

5 4 18.34 18.62 17.31 18.47 18.34 5 4 0.844 0.846 0.818 0.843 0.839
8 23.53 23.84 2332 23.32 23.87 8 0.916 0.922 0.917 0.915 0.920

12 24.56 2599 26.27 2371 26.48 12 0.924 0.944 0950 0.916 0.949

6 4 19.32 18.92 1498 19.42 19.35 6 4 0.766 0.761 0.616 0.764 0.764
8 23.12 24.84 2272 24.67 23.37 8 0.847 0.871 0.837 0.872 0.854

12 23.49 2720 26.77 26.91 28.19 12 0.827 0.895 0.908 0.913 0.927

7 4 18.22 18.21 1591 1826 18.38 7 4 0.738 0.767 0.671  0.733 0.742
8 2411 2332 23.18 24.09 23.99 8 0.868 0.861 0.864 0.868 0.872

12 24,54 25.64 26.71 2491 26.75 12 0.876 0.889 0.904 0.894 0.905

8 4 19.51 18.70 1885  18.96 18.85 8 4 0.793 0771 0772  0.777 0.777
8 22.83 23.73  23.99 22.83 24.42 8 0.854 0.876  0.891 0.882 0.894

12 27.68 2431 2778 27.24 26.25 12 0.926 0.892 0932 0.926 0.912

9 4 18.18 18.49 18.26 18.69 18.67 9 4 0.805 0.825 0.833 0.829 0.829
8 23.49 2290 2355 22.83 23.45 8 0.921 0.910 0.921 0.917 0.922

12 26.43 25.69 26.77 25.35 26.78 12 0.957 0.938 0.958 0.947 0.960

Table 4. SSIM evaluation of various algorithms for multi-
level thresholding with Kapur's method.
img K CVWOA MSO SAO SDSSA DGWO
1 4 0.812 0.804 0.773 0.814 0.813
8 0.862 0.874 0.880 0.876 0.885
12 0.919 0.908 0.918  0.912 0.918
2 4 0524 0529 0525 0525 0522
8 0.755 0.729 0.601 0.722 0.728
12 0.842 0.622 0.789  0.803 0.906
3 4 0.870 0.872 0.821  0.869 0.869
8 0.921 0.903 0.920 0.923 0.924
12 0.940 0.935 0938 0.937 0.938
4 4 0.682 0.683 0.702  0.676 0.677
8 0.840 0.830 0.844  0.853 0.867
12 0.879 0.891 0.879  0.887 0.886
5 4 0772 0770 0701 0763  0.754
8 0.872 0.884 0.887 0.878 0.883
12 0.893 0.906 0.908 0.873 0.929
6 4 0722 0716 0486 0.727 0.730
8 0.820 0.853 0.807  0.854 0.825
12 0.797 0.881 0.894  0.889 0.911
7 4 0705 0739 0581 0700  0.711
8 0.851 0.842 0.851 0.854 0.852
12 0.862 0.875 0.897 0.862 0.887 >
8 4 0.658 0606 0.628 0622 0612 —h— - l
8 0.763 0.807 0.860  0.839 0.852 | -
12 0.896 0.865 0.897 0.884 0.892
9 4 0.700 0.701 0.695 0.708 0.708
8 0.864 0.839 0.851  0.847 0.865
12 0.916 0.909 0925  0.900 0.926

e) DWGO
Figure 6. The comparison of segmentation results: Test 1,
based on Kapur method (level = 8).
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Execution time is considered in this section, and
the studied algorithms are compared based on
speed performance. Figure 8 demonstrates the time
results calculated for each algorithm. Here's the
ranking of algorithms by processing time (fastest to
slowest): SDSSA, MSO, DWGO, CVWOA and
SAO. DGWO obtained the third rank among five
algorithms, indicating that it has a relatively
acceptable computation time for solving problems.
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Figure 7. Convergence of Kapur's entropy-based
thresholding (level 8).

The analysis proceeds by examining natural-
inspired algorithms on fifteen functions of CEC
2017 dataset [19]. Various optimization

benchmarks are tested to assess the algorithms'
robustness. To review the definition of F1to F15
functions, refer to [19]. With a population size of
50 and 30 independent runs, the results are
displayed in Table 6. Table 6 reveals DGWO's
excellent performance on 8 of 15 values and its
ability to deliver good solutions in most cases. This
suggests DGWO searches areas with superior
sensitivity compared to other classical algorithms,
leading to faster convergence to the global
optimum. This advantage likely stems from a well-
organized exploration mechanism that prevents
individuals from getting trapped in local optima.
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Figure 8. Comparison of execution times for common
algorithms.

Table 6. mean fitness results of running various algorithms
for 30 times on CEC 2017 benchmark functions (D =15)

func CVWOA MSO SAO SDSSA  DGWO

F1 3.78E+05 3.54E+05 1.37E+05 2.99E+05 1.91E+05
F2 1.80E+03 1.85E+03 1.63E+03 2.34E+03 1.72E+03
F3 2.44E+04 3.49E+04 2.27E+04 3.82E+04 2.03E+04
F4 1.15E+03 7.13E+02 9.72E+02 7.92E+02 5.92E+02
F5 6.00E+02 1.22E+03 7.12E+02 9.06E+02 6.55E+02
F6 1.25E+03 1.60E+03 1.11E+03 1.64E+03 8.63E+02
F7 124E+03 145E+03 1.69E+03 1.40E+03 8.79E+02
F8 2.72E+03 3.77E+03 3.22E+03 2.62E+03 1.98E+03
F9 282E+03 6.52E+03 4.97E+03 5.21E+03 3.66E+03
F10 3.97E+03 2.95E+03 2.84E+03 2.57E+03 2.02E+03
F11 1.40E+06 1.12E+06 1.31E+06 1.43E+06 7.54E+05
F12 1.25E+06 9.85E+05 1.34E+06 1.18E+06 8.69E+05
F13 2.85E+03 3.37E+03 1.73E+03 3.41E+03 1.99E+03
F14 1.76E+04 2.65E+04 3.27E+04 1.56E+04 1.66E+04
F15 2.70E+05 5.45E+05 3.29E+05 3.10E+05 2.92E+05

5. CONCLUSION

This study introduces a novel image segmentation
algorithm for object-based MPEG-4 coding,
combining the Grey Wolf Optimizer (GWO) with
Darwinian theory concepts. By incorporating
natural selection, the algorithm enhances
population diversity. Utilizing the Kapur method,
results are presented for three threshold values over
30 runs. Darwinian theory guides the search
strategy within the search space, optimizing the
movement of search agents towards the optimal
solution. This combined approach (DGWO) is
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applied to benchmark images, demonstrating
significant improvements in objective function,
PSNR, SSIM, and FSIM criteria compared to
recent heuristic search methods. Future research
will explore applying DGWO to other applications,
such as feature selection, to evaluate its
effectiveness in finding optimal solutions.
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