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 This paper presents a novel approach to image segmentation through 

multilevel thresholding, leveraging the speed and precision of the 

technique. The proposed algorithm, based on the Grey Wolf 

Optimizer (GWO), integrates Darwinian principles to address the 

common stagnation issue in metaheuristic algorithms, which often 

results in local optima and premature convergence. The search agents 

are efficiently steered across the search space by a dual mechanism of 

encouragement and punishment employed by our strategy, thereby 

curtailing computational time. This is implemented by segmenting the 

population into distinct groups, each tasked with discovering superior 

solutions. To validate the algorithm’s efficacy, 9 test images from the 

Pascal VOC dataset were selected, and the renowned energy curve 

method was employed for verification. Additionally, Kapur entropy 

was utilized to gauge the algorithm’s performance. The method was 

benchmarked against four disparate search algorithms, and its 

dominance was underscored by achieving the best outcomes in 20 out 

of 27 cases for image segmentation. The experimental findings 

collectively affirm that the Darwinian Grey Wolf Optimizer (DGWO) 

stands as a formidable instrument for multilevel thresholding. 
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1. Introduction 

Multilevel thresholding has gained popularity as an 

effective segmentation method for extracting 

significant objects from images. Multilevel 

thresholding approaches are generally divided into 

these categories: parametric and non-parametric 

methods. The parametric approach utilizes 

statistical parameters from multiple classes, which 

can be time-intensive and heavily reliant on initial 

conditions. Non-parametric methods directly 

optimize criteria for threshold estimation, avoiding 

assumptions about data distribution. Figure 1 

provides a summary of these techniques as 

documented in the literature. Fuzzy clustering is a 

special way of grouping image pixels together 

based on their shades of gray. The Expectation 

Maximization (EM) algorithm, a density-based 

unsupervised method, seeks the maximum 

likelihood estimates of parameters from a dataset 

[1]. Edge detection addresses image segmentation 

by identifying and linking edges or pixels between 

regions with abrupt intensity changes, forming 

closed object boundaries [2].  

 

Figure 1. Classification of segmentation algorithms. 
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A variety of thresholding techniques inspired by 

natural phenomena have been explored, including 

those based on krill herds [3], thermal exchanges 

[4] and human cognition [5]. However, these 

nature-inspired algorithms often converge on 

suboptimal solutions, particularly in high-

dimensional spaces, and require carefully 

calibrated parameters to function effectively. The 

Grey Wolf Optimizer (GWO) is a notable natural-

inspired method characterized by its minimal 

control parameters and rapid convergence, making 

it well-suited for complex problems. A primary 

limitation of the GWO is its lack of adaptability to 

specific problem conditions. To address this 

shortcoming, some researchers have refined the 

classical GWO [6] or integrated it with other 

metaheuristic algorithms [7]. Furthering the review 

of literature, Erwin and Yuningsih applied GWO 

for segmenting retinal blood vessels [8], and 

Khairuzzaman and Chaudhury developed a GWO-

based multilevel image thresholding technique [9]. 

This paper first establishes the foundation by 

covering the multilevel thresholding problem, 

explaining energy curves and the Kapur criterion 

(Section 2). Section 3 then details the Grey Wolf 

Optimizer. Building on this groundwork, a novel 

Darwinian Grey Wolf Optimizer (DGWO) is 

introduced for optimal threshold determination 

(Section 3). The efficacy of DGWO is evaluated in 

Section 4. For comparison, the performance of four 

established methods – Modified Snake Optimizer 

(MSO) [10], Snow Ablation Optimizer (SAO) [11], 

improved Salp Swarm Algorithm (SDSSA) [12], 

enhanced Whale Optimization Algorithm 

(CVWOA) [13]– is assessed on benchmark images 

using the energy curve. 

 

2. Fundamental Concept 

2.1. Image Thresholding 

In image segmentation, a technique called 

multilevel thresholding can be used to divide a 

grayscale image 𝐼 into distinct regions 1t  . This 

is achieved by identifying thresholds t that 

correspond to the image's intensity levels L. 

  0 1( , ) 0 ( , ) 1R g x y I g x y t      

(1)  

  ( , ) ( , ) 1K KR g x y I t g x y L      

Each pixel in the image, denoted by ( , )g x y , has 

an intensity value. We define ( 1,..., )it i K  as the 

threshold values, where K is the total number of 

thresholds used.  

 

 

2.2. Basic Theory of Energy Curve 

For a given intensity level, 𝑙, a binary image is 

created with the same dimensions m n  as the 

original image. The elements of lB  are defined as: 

 ,1 ,1l ijB b i m j n      where if 

( , ) 1g x y  , then 1ijb  ; Otherwise, 1ijb   . 

Another matrix, called C, is created with all ones. 

This means every element in C (represented as ijc ) 

has a value of 1, regardless of its position ( , )i j

within the matrix. energy function helps us 

understand how important it is to consider the 

brightness level l when processing the image: 

(2)  
21 1 , ij

m n

L ij pq ij pq

i j p q N

E c c b b
  

    

The matrix C is defined with all elements set to one 

( 1ijc   for all i and j) to ensure a non-negative 

energy condition 0LE  .  

 

2.3. Kapur Method 

In image segmentation, the Kapur method utilizes 

entropy to create histograms with well-defined 

peaks for each class [14]. Let's delve into the 

formulation of the multilevel thresholding 

problem: 

Maximize 0

0

( ,..., )
K

K i

i

f t t H


   

Where 

 

1 11 1

0 0

0 00 0

ln ,
t t

i i
i

i i

p p
H p

 

 

 

     

(3)  

 

1 1

ln ,
K K

L L
i i

K K i

i t i tK K

p p
H p

 

 

 

     

Where ip  denotes the probability of intensity i.  

 

3. The Proposed Algorithm 

Grey Wolf Optimizer (GWO) is a simple natural-

inspired method introduced in 2014 [15]. The 

implementation of GWO can be summarized as 

follows: Assume that N individuals have randomly 

initialized positions in a K-dimensional space. 

(4) 

1 11 1

1

K

N N NK

x x x

X

x x x

   
   

 
   
      

 

Within the group, the three most successful wolves 

(alpha, beta, and delta) are identified through 

competition. The remaining wolves follow the lead 
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of these top performers to improve their own 

performance as described below: 

 

(5) . ( ) ( )pD C x t x t   

(6) ( 1) ( ) .px t x t A D    

Where t is the iteration, ( )px t is the location of the 

prey, A and C  are identified as: 

(7-a) 12 .A a r a   

  (7-b) 22C r  

In these equations, 1r  and 2r  are random numbers 

drawn from (0,1)U and a  is decreased from 2 to 

0. In every iteration, ,  and  are determined by 

the fitness calculation and omega wolves are 

update their positions as 

(8-a) 1.D C x x    

(8-b) 2.D C x x    

(8-c) 3.D C x x    

(9-a) 1 1.x x A D    

(9-b) 2 2.x x A D    

(9-c) 3 3.x x A D    

(10) 
1 2 3

1
( 1) ( )

3
x t x x x     

This research proposes a Darwinian Grey Wolf 

Optimizer (DGWO) for multilevel thresholding, 

addressing the challenge of balancing exploration 

(finding new possibilities) and exploitation 

(refining promising areas) to avoid getting stuck in 

sub-optimal solutions. Inspired by Darwinian 

theory's "survival of the fittest," DGWO employs a 

parameter called STAGNANCY. STAGNANCY 

tracks how long a group of wolves (algorithm 

elements) fails to improve. If stagnation exceeds a 

limit, the group is penalized by losing a member, 

similar to a wolf pack struggling in a bad hunting 

ground. By eliminating the least effective member, 

the group is encouraged to explore new areas. 

Notably, the stagnation counter isn't reset to zero 

after this penalty but is assigned a specific value (to 

be determined) to prevent immediate relapse. 

(11) 
max 1

1
1

C

kill

stagnancy SC
N

 
  

 
 

This process considers two factors: a maximum 

allowed time period where groups aren't making 

progress 
max

CSC , and the number of individuals 

removed from a low-performing group killN .If this 

group is confined to local areas, it may become 

stagnant there. Therefore, stagnancy is not reset to 

zero but is set according to Equation (11). A lower 

stagnancy value encourages reinforcement of the 

random search, while a higher value may result in 

time wasted on searching within local areas. 

Equation (11) represents a moderate degree of 

success as proposed in the referenced study [16]. 

Evolutionary principles inspired by Darwinian 

theory improve computational efficiency and 

reduce runtime execution. This is achieved by 

allowing the algorithm to escape sub-optimal 

regions. If a group gets stuck on a decent solution, 

the search there stops. Instead, a new group starts 

searching in a different area. This helps the 

algorithm explore the whole problem space, 

making it more diverse. Figure 2 illustrates the 

main steps of the DGWO algorithm in a flowchart. 

To begin, a population of N randomly generated 

solution vectors is created by Eq. (12). Each 

solution vector has K dimensions. 

(12)  min max minlx L L L rand     

The algorithm initializes solutions by assigning a 

random value between 0 and 1 to each individual. 

minL and maxL  define the valid range for image 

gray levels (excluding 0 and 255 to avoid 

unnecessary exploration). Each initial solution's 

fitness is then evaluated. The algorithm defines 

control parameters like maximum iterations, 

allowable group size range, and a stagnation 

threshold. Finally, the algorithm divides the 

population into groups and runs them concurrently 

on the same search space, improving search 

efficiency and convergence speed.  

Several groups, acting like miniature GWOs, work 

together to find the absolute best solution (Global 

optimum). To prevent them from getting stuck in 

areas that aren't as good (sub-optimal regions), a 

system is in place. Each group member's 

performance (fitness) is assessed, and the best 

position discovered by a group is designated as 

𝐺𝑟𝑜𝑢𝑝𝐵𝑒𝑠𝑡. A new position in K-dimensional 

space at generation t will be represented as 

1...
t t t

i i iKX x x    , generated by Eq. (12). Next, it is 

checked if the solutions are valid (feasible). If a 

position falls outside the designated range, a 

specific mapping procedure will be applied to bring 

it back within bounds by Eq. (13). Fitness of all 

individuals is continuously measured. 
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(13) 

1

0

0 0

1,...,

t

ip

t t t

ip ip ip

t

ip

L x L

x x x L

x

p K

 


  
 



 

If a group finds a better position, it remains active 

(stagnancy stays at zero) and its best solution 

GroupBest  is updated. Active groups under a 

population limit can add a new randomly generated 

member. Likewise, active groups within a group 

limit are rewarded with the ability to form a new 

group. This new group inherits half its members 

from the successful group and the rest are random, 

promoting exploration around promising areas 

[16]. Conversely, failing groups that can't improve 

their best solution are penalized by removing the 

least fit member.  

The DGWO algorithm iteratively refines a 

population of groups, deleting those that get stuck 

in suboptimal solutions ("local optima") and 

replacing them with new groups based on 

successful ones. All groups are evaluated in each 

iteration, adding or removing members as needed, 

until a stopping criterion like a maximum number 

of iterations or a good enough solution (acceptable 

fitness) is met. The details of this process are 

further explained in pseudocode format in Figure 3. 

 

4. Experimental Results 

To assess the performance of the proposed 

algorithms, four well-established search algorithms 

were implemented on the test images selected from 

the Pascal VOC dataset [17], as presented in Figure 

4. These algorithms, namely SAO, MSO, CVWOA 

and SDSSA, were chosen due to their documented 

effectiveness in image segmentation tasks. Figure 

5 illustrates the corresponding energy curves of the 

test images. 

For comparison of efficiency and solution accuracy 

across the different methods, Kapur entropy was 

chosen as the metric. The algorithms were 

implemented in MATLAB on a system with an i7 

2.5 GHz CPU, 8 GB RAM, and Windows 10 (64-

bit). The performance of the search algorithms was 

evaluated using the energy curve of the benchmark 

images, the obtained threshold values, mean fitness 

function, and PSNR, SSIM, and FSIM metrics. To 

clarify, Peak Signal-to-Noise Ratio (PSNR) is 

defined as 

(14-a)  20log 255PSNR RMSE  

(14-b)  
,

2

,

( , ) ( , )
M N

i j

RMSE I i j I i j MN   

 

 

 
Figure 2. Flowchart of the proposed DGWO. 
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Start 

Set parameters: 

Iteration, initial group population, minimum group 

population, maximum group population, initial group      

number, minimum group number, maximum group 

number, STAGNANCY,  
first population: 

Generate Random Initial Population according Eq. (11) 

Divide population to initial group number 

Find the best solution within a group (GroupBest) 

While iter<iter_maximum 

      Get current group 

      For j=1:group_number 

Update individuals location according Eq. (10) 

Correct infeasible solution according Eq. (13) 

Calculate fitness and update GroupBest 

Create a new particle if possible 

Create a new group if possible 

Eliminate worst particle 

Eliminate inefficient group 

Calculate fitness and update GroupBest and 

STAGNANCY 

     end 

end 

identify Best GroupBest 

Stop 
Figure 3. Pseudo code of the proposed DGWO. 

 
       a)                                b)                         c)                                                    

 
        d)                            e)                                f)                      

 
                g)                             h)                                i)  

Figure 4. Benchmark Images from Pascal Voc dataset 

(a) Image 1, (b) Image 2, (c) Image 3, (d) Image 4 

(e) Image 5, (f) Image 6, (g) Image 7, (h) Image 8 

(i) Image 9. 

 

M and N represent the dimensions (width and 

height) of the test image. The original image is 

denoted as ( , )I i j  and the segmented image as 

( , )I i j . Root Mean Squared Error (RMSE) 

measures the difference between the original and 

segmented images. The Structural Similarity Index 

Measure (SSIM) describes how similar the original 

and segmented images are, defined as 

(15) 
   

  
1 2

2 2 2 2

1 2

2 2I I II

I I I I

c c
SSIM

c c

  

   

 

 

 


   
 

The Feature Similarity Index (FSIM) is defined in 

[18] and depends on several statistical properties of 

the images I  and I  . These properties include the 

means  of each image, their respective variances

 , and the covariance between them II  . 

Additionally, constants 1c  and 2c  are incorporated 

to account for variations in pixel values. 

(16) 

( ) ( )

( )

L m

x

m

x

S x PC x

FSIM
PC x









 

In this equation, Ω represents the entire image. 

( )LS x stands for the similarity parameter, and 

( )mPC x refers to the phase consistency. These 

terms are calculated as 

(17-a) 1 2( ) max( ( ), ( ))mPC x PC x PC x  

(17-b)    ( ) ( ) ( )L PC GS x S x S x
 

  

(17-c) 
1 2 1

2 2

1 2 1

2 ( ) ( )
( )

( ) ( )
PC

PC x PC x T
S x

PC x PC x T

 


 
 

(17-d) 
1 2 2

2 2

1 2 2

2 ( ) ( )
( )

( ) ( )
G

G x G x T
S x

G x G x T

 


 
 

1( )PC x and 2 ( )PC x  are the phase consistency of 

two image blocks. Meanwhile, 1, ,T  , and 2T  are 

constant parameters used in the segmentation 

process. Generally, higher values of PSNR, SSIM, 

or FSIM indicate better image segmentation 

quality. These metrics tend to increase with stricter 

thresholds (higher threshold values) as the 

segmentation becomes more precise, focusing on 

capturing only the most relevant details. 

Table 1 details the control parameters used by the 

introduced methods. These parameters were 

chosen based on the original research papers and 

fine-tuned through a trial-and-error process. To 

ensure consistency across algorithms, the initial 

population for all search methods is selected from 

a uniform distribution between 0 and 255. The 

objective is to identify the optimal threshold values 

for segmenting the image into four, eight, and 

twelve levels. To facilitate a fair comparison, all 

algorithms are run with 100 iterations and a 

population size of 100. Kapur entropy serves as the 

objective function in this experiment. It allows us 

to evaluate the algorithms' ability to escape sub-

optimal solutions, a key factor for effective image 

segmentation. 

The following tables (Tables 2 to 5) present the 

segmentation results obtained using Kapur's 
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method with different threshold values (K = 4, 8, 

and 12). The tables show the average fitness score 

(averaged over 30 runs of each algorithm) and 

other data associated with the best solution found 

in these runs.  

 
                a)                              b)                            c) 

 
                d)                             e)                             f) 

 
                 g)                             h)                            i) 

Figure 5. Analysis of energy curves for selected images. 

(a Image 1, (b) Image 2, (c) Image 3, (d) Image 4 

(e) Image 5, (f) Image 6, (g) Image 7, (h) Image 8 

(i) Image 9. 
 

The analysis of the tables shows that DGWO 

outperforms other algorithms in all metrics, 

including PSNR, SSIM, FSIM, and the mean 

objective function. DGWO performed very well on 

test images, achieving the best rank on 20 out of the 

27 in terms of mean fitness. In terms of PSNR, 

DGWO achieved the highest rank with 12 values. 

Notably, the effectiveness of alternative search 

methods diminishes as the thresholding size 

increases. These algorithms become trapped in 

local optima, hindering their ability to identify 

optimal threshold values. Conversely, DGWO 

consistently achieves superior objective function 

values across 30 runs. This success stems from its 

efficient exploration and exploitation of the search 

space, surpassing other algorithms in this 

capability. Therefore, DGWO, when combined 

with the Kapur method, establishes itself as a 

highly effective approach for image multi-level 

thresholding. Its strength lies in its ability to avoid 

exploration of irrelevant areas and effectively 

manage the diversity of its search agents. Figure 6 

illustrates the segmentation results for Test Image 

1, providing a better visual comparison between 

algorithms. Figure 7 depicts the convergence 

curves for test images processed using the Kapur 

method with a single run and 100 iterations. These 

curves demonstrate that DGWO generally achieves 

superior performance and converges more rapidly 

compared to other algorithms. This behavior 

suggests that DGWO is adept at locating optimal 

points within the search space. 

 
Table 1. Search algorithm controls. 

algorithm parameters 

MSO 
1

0.5initial c   

2
0.05initial c   

3
2initial c   

0.2Runtime s  

30MaxRuntime s  

SAO 0.35 0.6M to  

1
0.4   

2
0.9   

SDSSA 1k   

0
0v   

CVWOA 2 0a to  

4Seed   

DGWO [1, 4]number of groups range   

[7,13]group population range   

max 2stagnancy   

 
Table 2. Mean fitness comparison of algorithms with 

Kapur's entropy. 
img K CVWOA MSO SAO SDSSA DGWO 

1 4 19.401 19.412 19.385 19.419 19.421 

8 28.881 29.643 29.641 29.777 29.781 

12 38.118 37.772 38.407 37.571 38.386 

2 4 19.542 19.524 19.430 19.541 19.543 

8 29.692 29.832 29.774 29.805 29.921 

12 38.170 37.853 38.053 37.772 38.143 

3 4 19.428 19.397 19.295 19.431 19.432 

8 29.592 29.506 29.753 29.812 29.937 

12 38.145 37.678 38.354 37.910 38.400 

4 4 19.261 19.270 19.182 19.280 19.280 

8 29.472 29.456 29.127 29.486 29.577 

12 37.790 37.270 37.323 37.480 37.844 

5 4 19.452 19.458 19.412 19.469 19.472 

8 29.872 29.716 29.434 29.761 29.930 

12 37.269 37.836 38.143 37.711 38.143 

6 4 19.292 19.268 19.025 19.293 19.294 

8 29.764 29.535 29.638 29.592 29.716 

12 37.376 37.338 37.634 37.995 38.141 

7 4 19.307 19.282 19.172 19.306 19.308 

8 29.872 29.610 29.579 29.795 29.750 

12 37.546 37.913 37.360 37.773 38.383 

8 4 19.266 19.281 19.251 19.288 19.288 

8 29.471 29.460 29.275 29.378 29.560 

12 37.836 37.224 38.024 37.795 37.686 

9 4 19.225 19.338 19.299 19.344 19.346 

8 29.684 29.505 29.607 29.568 29.680 

12 38.215 37.408 38.184 37.622 38.251 
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Table 3. PSNR evaluation of various algorithms for multi-

level thresholding with Kapur's method. 
img K CVWOA MSO SAO SDSSA DGWO 

1 4 19.73 19.77 19.13 19.73 19.74 

8 19.78 23.49 22.58 24.64 23.17 

12 26.36 26.53 27.12 26.55 27.12 

2 4 19.70 19.68 19.67 19.72 19.73 

8 23.82 24.49 22.83 24.40 24.75 

12 27.73 24.15 26.46 26.40 27.90 

3 4 18.11 18.16 18.33 18.19 18.19 

8 23.67 22.39 22.54 21.85 22.89 

12 26.95 26.46 27.27 26.59 26.83 

4 4 17.14 17.38 16.44 17.28 17.29 

8 24.55 24.10 20.39 24.04 23.83 

12 26.69 26.98 25.18 25.40 27.70 

5 4 18.34 18.62 17.31 18.47 18.34 

8 23.53 23.84 23.32 23.32 23.87 

12 24.56 25.99 26.27 23.71 26.48 

6 4 19.32 18.92 14.98 19.42 19.35 

8 23.12 24.84 22.72 24.67 23.37 

12 23.49 27.20 26.77 26.91 28.19 

7 4 18.22 18.21 15.91 18.26 18.38 

8 24.11 23.32 23.18 24.09 23.99 

12 24.54 25.64 26.71 24.91 26.75 

8 4 19.51 18.70 18.85 18.96 18.85 

8 22.83 23.73 23.99 22.83 24.42 

12 27.68 24.31 27.78 27.24 26.25 

9 4 18.18 18.49 18.26 18.69 18.67 

8 23.49 22.90 23.55 22.83 23.45 

12 26.43 25.69 26.77 25.35 26.78 

 
Table 4. SSIM evaluation of various algorithms for multi-

level thresholding with Kapur's method. 
img K CVWOA MSO SAO SDSSA DGWO 

1 4 0.812 0.804 0.773 0.814 0.813 

8 0.862 0.874 0.880 0.876 0.885 

12 0.919 0.908 0.918 0.912 0.918 

2 4 0.524 0.529 0.525 0.525 0.522 

8 0.755 0.729 0.601 0.722 0.728 

12 0.842 0.622 0.789 0.803 0.906 

3 4 0.870 0.872 0.821 0.869 0.869 

8 0.921 0.903 0.920 0.923 0.924 

12 0.940 0.935 0.938 0.937 0.938 

4 4 0.682 0.683 0.702 0.676 0.677 

8 0.840 0.830 0.844 0.853 0.867 

12 0.879 0.891 0.879 0.887 0.886 

5 4 0.772 0.770 0.701 0.763 0.754 

8 0.872 0.884 0.887 0.878 0.883 

12 0.893 0.906 0.908 0.873 0.929 

6 4 0.722 0.716 0.486 0.727 0.730 

8 0.820 0.853 0.807 0.854 0.825 

12 0.797 0.881 0.894 0.889 0.911 

7 4 0.705 0.739 0.581 0.700 0.711 

8 0.851 0.842 0.851 0.854 0.852 

12 0.862 0.875 0.897 0.862 0.887 

8 4 0.658 0.606 0.628 0.622 0.612 

8 0.763 0.807 0.860 0.839 0.852 

12 0.896 0.865 0.897 0.884 0.892 

9 4 0.700 0.701 0.695 0.708 0.708 

8 0.864 0.839 0.851 0.847 0.865 

12 0.916 0.909 0.925 0.900 0.926 

 
 

 

 

Table 5. FSIM evaluation of various algorithms for multi-

level thresholding with Kapur's method. 
img K CVWOA MSO SAO SDSSA DGWO 

1 4 0.814 0.817 0.797 0.817 0.818 

8 0.862 0.880 0.878 0.882 0.880 

12 0.917 0.909 0.920 0.909 0.919 

2 4 0.800 0.804 0.796 0.800 0.800 

8 0.884 0.900 0.874 0.889 0.897 

12 0.930 0.907 0.925 0.917 0.945 

3 4 0.836 0.834 0.800 0.834 0.834 

8 0.902 0.874 0.898 0.902 0.904 

12 0.923 0.923 0.923 0.922 0.926 

4 4 0.771 0.776 0.776 0.773 0.773 

8 0.887 0.880 0.879 0.897 0.902 

12 0.919 0.922 0.911 0.919 0.934 

5 4 0.844 0.846 0.818 0.843 0.839 

8 0.916 0.922 0.917 0.915 0.920 

12 0.924 0.944 0.950 0.916 0.949 

6 4 0.766 0.761 0.616 0.764 0.764 

8 0.847 0.871 0.837 0.872 0.854 

12 0.827 0.895 0.908 0.913 0.927 

7 4 0.738 0.767 0.671 0.733 0.742 

8 0.868 0.861 0.864 0.868 0.872 

12 0.876 0.889 0.904 0.894 0.905 

8 4 0.793 0.771 0.772 0.777 0.777 

8 0.854 0.876 0.891 0.882 0.894 

12 0.926 0.892 0.932 0.926 0.912 

9 4 0.805 0.825 0.833 0.829 0.829 

8 0.921 0.910 0.921 0.917 0.922 

12 0.957 0.938 0.958 0.947 0.960 

 

 
                     a) CVWOA                       b) MSO 

 
                      c) SAO                            d) SDSSA 

 
                                           e) DWGO 

Figure 6. The comparison of segmentation results: Test 1, 

based on Kapur method (level = 8). 
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Execution time is considered in this section, and 

the studied algorithms are compared based on 

speed performance. Figure 8 demonstrates the time 

results calculated for each algorithm. Here's the 

ranking of algorithms by processing time (fastest to 

slowest): SDSSA, MSO, DWGO, CVWOA and 

SAO. DGWO obtained the third rank among five 

algorithms, indicating that it has a relatively 

acceptable computation time for solving problems. 

 
                     a) Test 1                               b) Test 2 

 
                       c) Test 3                              d) Test 4 

 
                          e) Test 5                           f) Test 6 

 
                       g) Test 7                            h) Test 8 

 
i) Test 9                                                                                                        

Figure 7. Convergence of Kapur's entropy-based 

thresholding (level 8). 

 

The analysis proceeds by examining natural-

inspired algorithms on fifteen functions of CEC 

2017 dataset [19]. Various optimization 

benchmarks are tested to assess the algorithms' 

robustness. To review the definition of 1F to 15F
functions, refer to [19]. With a population size of 

50 and 30 independent runs, the results are 

displayed in Table 6. Table 6 reveals DGWO's 

excellent performance on 8 of 15 values and its 

ability to deliver good solutions in most cases. This 

suggests DGWO searches areas with superior 

sensitivity compared to other classical algorithms, 

leading to faster convergence to the global 

optimum. This advantage likely stems from a well-

organized exploration mechanism that prevents 

individuals from getting trapped in local optima. 

 

 
Figure 8. Comparison of execution times for common 

algorithms. 

 
Table 6. mean fitness results of running various algorithms 

for 30 times on CEC 2017 benchmark functions  15D   

func CVWOA MSO SAO SDSSA DGWO 

F1 3.78E+05 3.54E+05 1.37E+05 2.99E+05 1.91E+05 
F2 1.80E+03 1.85E+03 1.63E+03 2.34E+03 1.72E+03 

F3 2.44E+04 3.49E+04 2.27E+04 3.82E+04 2.03E+04 

F4 1.15E+03 7.13E+02 9.72E+02 7.92E+02 5.92E+02 

F5 6.00E+02 1.22E+03 7.12E+02 9.06E+02 6.55E+02 

F6 1.25E+03 1.60E+03 1.11E+03 1.64E+03 8.63E+02 

F7 1.24E+03 1.45E+03 1.69E+03 1.40E+03 8.79E+02 

F8 2.72E+03 3.77E+03 3.22E+03 2.62E+03 1.98E+03 

F9 2.82E+03 6.52E+03 4.97E+03 5.21E+03 3.66E+03 

F10 3.97E+03 2.95E+03 2.84E+03 2.57E+03 2.02E+03 

F11 1.40E+06 1.12E+06 1.31E+06 1.43E+06 7.54E+05 

F12 1.25E+06 9.85E+05 1.34E+06 1.18E+06 8.69E+05 

F13 2.85E+03 3.37E+03 1.73E+03 3.41E+03 1.99E+03 
F14 1.76E+04 2.65E+04 3.27E+04 1.56E+04 1.66E+04 

F15 2.70E+05 5.45E+05 3.29E+05 3.10E+05 2.92E+05 

 

5. Conclusion 

This study introduces a novel image segmentation 

algorithm for object-based MPEG-4 coding, 

combining the Grey Wolf Optimizer (GWO) with 

Darwinian theory concepts. By incorporating 

natural selection, the algorithm enhances 

population diversity. Utilizing the Kapur method, 

results are presented for three threshold values over 

30 runs. Darwinian theory guides the search 

strategy within the search space, optimizing the 

movement of search agents towards the optimal 

solution. This combined approach (DGWO) is 
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applied to benchmark images, demonstrating 

significant improvements in objective function, 

PSNR, SSIM, and FSIM criteria compared to 

recent heuristic search methods. Future research 

will explore applying DGWO to other applications, 

such as feature selection, to evaluate its 

effectiveness in finding optimal solutions. 
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 چکیده:

حل  یبرا ،یشنهادیپ تمیالگوردر . کندیارائه م سریع و دقیق یچندسطح یگذارآستانه با استفاده از ریتصو یبندبخش  یبرا دیجد کردیرو کیمقاله  نیا

 و( GWO) یگرگ خاکستر الگوریتم شود، یزودرس م ییو همگرا یمحل نهیبهگیر افتادن در نقاط که منجر به  ،یفراابتکار یهاتمیدر الگور جیرا مشکل

و در  شوندمیجستجو به کار گرفته  یبه طور موثر در فضا هیو تنب قیدوگانه تشو سمیمکان کیتوسط  . عوامل جستجوشده استادغام  ینیاصول دارو

برتر را  یهاحلکشف راه فهیکه هر کدام وظ شودیمجزا انجام م یهاگروه هب تیجمع یبندمیامر با تقس نی. اکندپیدا میکاهش  یزمان محاسبات جهینت

ارائه  یانرژ یمنحن نتایج براساسانتخاب شد و  Pascal Voc دیتاستاز مجموعه  یشیآزما ریتصو 9 تم،یالگور ییکارا یاعتبارسنج یدارند. برابرعهده 

متفاوت محک زده شد و  یجستجو تمیروش با چهار الگور نیاستفاده شد. ا پیشنهادی تمیالگور ردسنجش عملک یبرا Kapur یاز آنتروپ همچنین. شد

 الگوریتمکه  کنندیم دییدر مجموع تأ یتجرب یهاافتهی. اثبات شد ریتصو یبندبخش یمورد برا 27مورد از  20در  جینتا نیبه بهتر یابیآن با دست یبرتر

 .باشدیم یچندسطح یگذارآستانه یقدرتمند برا یاربه عنوان ابز (DGWO) ینیدارو یگرگ خاکستر

 .بندی تصویر، الگوریتم گرگ خاکستری، قانون داروینیآستانه گذاری چندسطحی، بخش :کلمات کلیدی

 


