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1. Introduction

CORONAVIRUS 2019 (COVID-19) is generally
known as a disease with acute

One way of analyzing COVID-19 is to exploit X-ray and computed
tomography (CT) images of the patients' chests. Employing data
mining technigques on chest images can provide significant
improvements in the diagnosis of COVID-19. However, in feature
space learning of chest images, there exists a large number of features
that affect COVID-19 identification performance negatively. In this
work, we aim to design the dual hybrid partial-oriented feature
selection scheme (DHPFSS) for selecting optimal features to achieve
high-performance COVID-19 prediction. First, by applying the
Zernike function to the data, moments of healthy chest images and
infected ones were extracted. After Zernike moments (ZMs)
segmentation, subsets of ZMs (SZMs!") are entered into the DHPFSS
to select SZMst"-specific optimal ZMs (OZMs®"). The DHPFSS
consists of the filter phase and dual incremental wrapper mechanisms
(IWMs), namely incremental wrapper subset selection (IWSS) and
IWSS with replacement (IWSSr). Each IWM is fed by ZMs sorted by
filter mechanism. The dual IWMs of DHPFSS are accompanied with
the support vector machine (SVM) and twin SVM (TWSVM)
classifiers equipped with radial basis function kernel as SYMIWSSTWSVM
and SYMIWSSI™WSYM hlocks. After selecting OZMs!™", the efficacy of
the union of OZMs!" is evaluated based on the cross-validation
technique. The obtained results manifested that the proposed
framework has accuracies of 98.66%, 94.33%, and 94.82% for
COVID-19 prediction on COVID-19 image data (CID) including
ICID, 2CID, and 3CID respectively, which can improve the accurate
diagnosis of illness in an emergency or the absence of a specialist.

monarchical crowns in electron microscope

respiratory images [2]. The higher death rate of COVID-19

symptoms [1]. Since the coronavirus disease has
become one of the dominant infections and the
ongoing pandemic during the last two years, lots
of research has been carried out to recognize its
characteristics.  COVID-19,  with  higher
transmission potential, belongs to a large family
of viruses whose shape is very similar to

motivated numerous attempts to develop new
methods of coronavirus diagnosis [3-5] and
analyze both related time series [6, 7] and fatality
rate [8, 9]. One of the standard diagnostic methods
is using medical X-ray chest images. Pulmonary
involvement and lung damages in COVID-19
patients make abnormal patterns in X-ray chest
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data differ from healthy chest images [10]. Even
for specialists, it is hard to diagnose this disease
from images in some cases. Sometimes, health
centers cannot correctly diagnose the disease due
to the lack of specialists, necessitating automatic
methods to detect anomalies and accurately
identify patterns. New techniques must also be
applicable in a short period with a beneficial
treatment procedure.

Because of the applicability of pattern recognition
methods in data mining [11-13], there are many
papers that exploit various classification
approaches in different fields [14-22]. The
significance of pattern recognition methods in
health care surveys leads to the publishing of
many scientific articles for discriminating
COVID-19 X-ray images from healthy. In a
method developed by [23], more than 96% of X-
ray images' classification accuracy was achieved
by using transfer learning with convolutional
neural networks. Many predictive models have
been proposed in the field of automatic COVID-
19 disease in X-ray and CT images: Visual
Geometry Group (VGG)-16, VGG-19,
MobileNet, and InceptionResNetV2 pre-trained
models with accuracy more than 90% [24], multi-
objective differential evolution method in
convolutional neural networks ([25]), ResNet18
convolution neural networks with accuracy more
than 96.73% [26], transfer learning with different
classifiers leading to more than 96% accuracy for
F1-score [27], fine-tuned deep learning algorithms
to X-ray images, with the triple accuracy metrics
more than 96% [28], VGG19 and U-Net with
accuracy of around 97% [29], model based on
averaging, normalization, dense, and classification
layers with the overall accuracy about 92% [30],
coupling. the image  processing-oriented
techniques and deep learning  models
(DenseNet201, VGG16, and VGG19) with an
accuracy of about 95.5% [31]. Some other
exploited different classification methods with
accuracies of more than 88% are cloud version of
Google Auto Machine Learning platforms [32],
DenseNet201 [33], explainable deep learning
approach  [34], Grad-CAM based color
visualization approach [35], CNN-based ResNet
architecture with using Grad-Cam [36], and
residual network-based ReCOV-101 [37]. Other
related similar works about the classification of
X-ray images can be found in [38], [39], and [40].
Among supervised and unsupervised methods for
classifying X-ray images, the feature selection
scheme (FSS) is employed as an efficient tool to
increase the accuracy of the segregation and
reduce the temporal expenses. [41] developed the
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two-stage procedure including the filter phase and
optimization step for FSS. At first, two filtering
algorithms (Mutual Information and Relief-F) are
used to assign an order to feature attributes. For
instance, a meta-heuristic technique (Dragonfly
algorithm) is employed to optimize the selected
features obtained from the filter phase presented
by [41]. In this FS-based COVID-19 predictive
models, applying FSS on multivariate features set
in the form of one individual window (OIW) leads
to neglecting features discarded by survived ones
according to FSS modules. Regarding the
partitioned-based OIW, we can prevail the defeat
of OIW in the multi-window analysis. In the other
related work, a hybrid model was proposed to
detect lungs infected by COVID-19 in CT scan
images [42]. This study involved two phases of
recognition based on GoogleNet and ResNet18
methods and a meta-heuristic feature selection
technique rooted in the Manta Ray Foraging-
based Golden Ratio Optimizer. In these steps,
some features are extracted from X-ray chest
images using a convolutional neural network in
the framework of deep learning, and then the most
significant features are selected as final subsets to
increase classification accuracies. In this article,
the train-test procedures are rooted in
conventional approaches that require precise
determination of parameters (weight and bias)
leading to a hard fine-tuning mechanism. It may
not solve the problem of size- and type-
independent COVID-19 status prediction vis-a-vis
class labeling of new COVID-19 variants.

For solving this concern, the number of learning
parameters can be extremely high in the case of
using hyperplane-based models. Such a developed
mechanism promises high generalization capacity
in COVID-19 prediction during different variants.
Another feature selection method consisting of
both fast and accurate selection stages was
proposed by [43]. They obtained the maximum
accuracy by applying an enhanced K-nearest
neighbor (KNN) classifier to the tested item for
segregating the qualified neighbors based on their
degree of closeness and strength. In this paper, a
hybrid nested multi-level scheme has been
introduced in response to vertical design
approaches; however, the procedure is exploited
by a lazy learner in data classification which can
be promoted to the strong learners like support
vector machine (SVM) and twin SVM (TWSVM).
Having a glance at a few past FSS-based COVID-
19 studies shows that designing a comprehensive
hybrid scheme for selecting relevant features have
remained the most significant concern for timely-
accurate COVID-19 prediction.
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Figure 1. The overall framework of FSS-oriented COVID-19 recognition based on DHPFSS.

Ignoring the polyhedral learning strategy (PLS)
leads to labeling optimal-blurred features as
redundant. Using vertically one-sided FSS omits
the surviving optimal ones involved in
recognizing the intrinsic relevance among
features. Moreover, proposed FSS in previous
studies is applied to COVID-19 multivariate point
data in a whole-manner exacerbating sacrificing
the optimal-blurred features. Hence, applying PLS
to image data based on the partial-oriented
strategy can be beneficial in precisely measuring
the information rate shared between features per
segment.

Summarizing key features and performance
metrics of some learning methods (feature
selection-classifier-based learning  methods
(FSCLM) and classifier-based learning methods
(CLM)) for COVID-19 prediction is given in
Table 1. The key contributions of this paper to
address arisen concerns in FSS-based COVID-19
disease analysis are summarized as follows:

e Selecting optimal features based on the
novel feature selection algorithm called
dual  hybrid partial-oriented  FSS
(DHPFESS) for high-performance COVID-
19 recognition is on the agenda of this
study. This scheme is designed by
information-theoretic criteria and

hyperplane-based learning models in the
form of dual incremental mechanisms.

e The DHPFSS is applied to the high-
dimensional COVID-19 dataset to be
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fragmented into the subsets of Zernike
moments (SZMs!"). By exerting the
DHPFSS per SZM, the SZMs"-specific
optimal ZMs (OZMs*™) are extracted. The
partial view in FSS causes to survive the
optimal-blurred moments and promotes
the generalization capacity of the learning
model in COVID-19 recognition.

e We compared the classification
performance of the DHPFSS-based
method in COVID-19 prediction with
other models.

The rest of the article is organized as follows: the
description of the proposed hybrid feature
selection algorithm is given in Section 2. The
experimental results of applying the proposed
framework to the COVID-19 dataset and
comparing it with other methods are discussed in
Section 3. The concluding remarks are interpreted
in Section 4.

2. Proposed method: Dual Hybrid Partial-
Oriented Feature Selection Scheme (DHPFSS)
The visual summary of the proposed framework
mounted on DHPFSS for COVID-19 disease
analysis is depicted in Figure 1. As seen in Figure
1, in the first step, we gather four types of chest
images on COVID-19 grouped based on X-ray
and CT scans. Next, we applied the Zernike
function to each COVID-19 image data (CID) for
extracting the Zernike moments (ZMs) of ones.
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Table 1. Summarizing key features and performance metrics of some learning methods (feature selection-
classifier-based learning methods (FSCLM) and classifier-based learning methods (CLM)) for COVID-19 prediction.

Refs. key features of FSCM
and CM for COVID-19

prediction

Prediction rates

Specific limitations of the method

FSCLM type: Filter phase
(Mutual Information and Relief-
F) and Dragonfly algorithm for
feature selection and support
vector machine (SVM) for data
classification

[41]

98.39% for SARS-
CoV-2 CT images
(called 2CID in our

paper).

The lack of polyhedral learning strategy (PLS) causes a
risk of incorrectly labeling certain features as redundant
or unnecessary. This is because without the
comprehensive view provided by PLS, valuable features
that may appear blurred or less clear in isolation could be
mistakenly identified as unimportant. On the other hand,
the obtained results are related to the feature selection
and data classification process of VCID. The proposed
method is not applied to the CID and 3CID (x-ray
images). Such a learning scenario can cause problems in
the classification of X-ray images.

FSCLM type: Hybrid
meta-heuristic  FS  algorithm
(Manta Ray Foraging) based
Golden Ratio Optimizer
(MRFGRO) and SVM,
multilayer perceptron (MLP),
and extreme learning machines
(ELMs) for data classification

[42]

99.42% accuracy for
SARS-COV-2 CT
images (called *CID in
our paper).

The vertically one-sided FSS is a limited approach that
might miss crucial information about the underlying
relationships between features. A more sophisticated
feature selection method is needed to capture this
"intrinsic relevance" among features. On the other hand,
the obtained results are related to the feature selection
and data classification process of *CID. The proposed
method is not applied to the !CID and 3CID (x-ray
images). Such a learning scenario can cause problems in
the classification of X-ray images.

CLM type: Classification of the
COVID-19 infected patients
using DenseNet201 based deep
transfer learning

[33]

91.Ye% for SARS-
CoV-2 CT images
(called 2CID in our
paper).

In [33], only deep transfer learning has been used for
COVID-19 prediction. The train-test processing based on
this method in the presence of high-dimensional feature
space of COVID data increases the complexity of
calculations. Also, the obtained results are related to the
feature selection and data classification process of CID?
The proposed method is not applied to the CID! and CID®
(x-ray images). Such a learning scenario without
discarding the redundant features in features space can
cause problems in the classification of X-ray images.

[38] CLM COVID-19
prediction based on

convolutional neural network

type:

93.5% for the covid
chest x-ray dataset and
covidl9 x-ray dataset
(called 'CID and *CID

Applying convolutional neural networks (CNNs) on
COVID-19 prediction without discarding irrelevant data
from feature space causes these features to participate in
the feature mapping process and consequently negatively

respectively

paper).

in

our affect the accuracy of a CNN-based classification model.

* COVID-19 image data (CID)

After obtaining ZMs per CID ('CID®™;1<i<3),
as a preprocessing step, based on the importance
of geometric functions (GFs) in the orthogonal
polynomials, the normalized magnitude values of
ZMs derived from GFs are categorized into the
pivotal ZMs (pZMs), secondary ZMs (sZMs), and
minor ZMs (mZMs). The pZMs of 'CID*™™
('CIDP?™) directly enter into the predictive model
without feeding them to DHPFSS. The sZMs of
'CID?™ ('CID**™) are fed to the proposed feature
selection algorithms to select the most relevant
moments (MRMSs) of 'CIDS™™, In terms of mZMs
of 'CID™* (ICID™™), due to the weak role of
existing GFs in this bundle for reconstructing
images reflected in the low magnitude value of
mZMs, the mZMs will not play a role in the
learning scenario including the feature selection
process and predictive model. In the second step
of the proposed framework (See figure 1), we
introduce a new hybrid feature selection algorithm
called DHPFSS formed by the single filter phase
(SFP) and dual incremental wrapper mechanisms.
First, 'CID*?™* are entered into SFP equipped with
symmetric uncertainty (SU) measure to rank the

196

features according to the relevance rate (RR)
between feature and class label. It is worth noting
that for deep recognition of the intrinsic
relationships between features and surviving the
features (called optimal-blurred features) that are
sacrificed with a slight difference in indices (e.g.,
RR in the filter phase and prediction accuracy in
the wrapper phase) than the other features in the
whole-manner strategy (‘CID*™® are entered into
the filter phase or wrapper phase in the whole-
manner), 'CID*™ are fragmented into m subsets

(partial-manner strategy). Hence, each /CIDS?MS

(Ranked k™ subset of 'CID-specific sSZMs;
1<k <m, 1<i<3) is entered into the filter phase

separately, and then ranked CIDSZMS ( iRanksZVs)

are fed to the integrated dual incremental wrapper
phases (IDIWPs) including incremental wrapper-
based mechanisms and  hyperplane-based
classifiers called SVMIWSSTWSVM and
SYMIWSSI™sSVM - plocks. After selecting the

MRMs per /[CID*MS based on dual incremental

wrapper mechanisms  (IWMs) and  dual
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MRMs

hyperplane-based  classifiers  (/CIDSZMS

IWMSCIassifiers
T sZMsMRMs i sZMsMRMs i sZMsMRMs
'[kCIDl\NSSSVM ) kCIDIWSSTWSVM | kCIDIWSSrSVM )

the union-intersection

i I sZMsVRMs ])
k wssrTwsvm 1/

t- UIO I' d i(:lDSZ'\/'SMRMS
operations (UIOs) are applied | IWMClassifiers

finding the optimal moments (OMs) of 'CIDSZMs

for

. OM: H OM:
('CID™™ ). After selecting 'CID™MS™ | the

- i OMS 1 - -
union of 'CIDS*™™ and 'CID?™s is introduced as

the final optimal moments of 'cID?MS

i~y ZMs™OMS : .
('CID ). In the third step, the efficacy of

DHPFSS-based  'cID™ ™™ in  COVID-19

analysis is evaluated by the cross-validation test.
Furthermore, we compare our proposed
framework with other learning models on
COVID-19 recognition.  According to Figure 2,
samples of 'CID (1% sample of 'CID to N* sample
of 'CID) are entered into the Zernike function. The
Zernike moments (ZMs) per sample of 'CID
depend on the importance of GFs in the
orthogonal polynomials. Thus, the normalized
magnitude values of ZMs derived from GFs is
recorded in three formats, namely 'CIDP*™,
'ICIDS™s and 'CID™Ms (See figure 2; 'CIDP?Ms:
green face, 'CID**™: blue face, and 'CID™M: red
face). From three bundles of the ZMs per sample,
only 'CID**™® (medium importance) of samples are
fed to the feature selection algorithm to select
optimal-blurred moments. In terms of the rest
bundles, 'CIDP™* goes straight to the next step
(predictive model) without feeding to the feature
selection algorithm and 'CID™M* are excluded
from all learning scenarios (feature selection
scheme and predictive model). After extracting
XACIDMS per sample ('CID?™ to MCIDS?™), we
gathered them in the forms of sZM; to sZM.
Before applying DHPFSS on the 'CID**Ms-based
dataset, the 'CID**™ is fragmented into the m
segments (See figure 2; e.g., purple-faced
segment, orange-faced segment, and pink-faced
segment enclosed by dashed circles). Next, each

subset (J/CID®MS: 1<k<m) is entered into the

filter phase as the first step of DHPFSS (See
figure 2, filter funnel). Based on information
theory concepts in the filter phase, the relevancy
rate (RR) of features available in each segment is

calculated, and the ranked features (,/Ranks?™*)

per segment (/CIDS?M®) are obtained. In the next
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step of the proposed FSS, the pair (/CIDS?MS,

JRanks?Ms) is fed to the wrapper phase of the

DHPFSS (See figure 2; e.g., purple-face square,
orange-face square, and pink-face square), which
consists of IDWIBs accompanied by
SVMIWSSTWSYM g SYMIWSSrTWSVM  plocks. For

each pair (,/CIDS?™S | \IRankS2Ms), for example, in
the left spiral of the incremental wrapper phase
(LSIWP), the MRMs via SYM]WSS™SVM  gre

obtained (See figure 2; e.g., purple-face star,
orange-face star, and pink-face star). Next, the

intersection between all pairs
i~y SZMsMRMS szZMsMRMs (.
(kCIDIWSSSVM /KCID ecmwsv ) is calculated (See

figure 2, e.g., the intersection between two purple-
face stars, the intersection between two orange-
face stars, and the intersection between two pink-
face stars). Then, the union operation is exerted on
intersected results to achieve the optimal moments
derived from LSIWP (LSIWP®™s), Such a

scenario for each pair (,/CIDM®  JRankS2M*) is

conducted on the right spiral of the incremental
wrapper phase based on SYMIWSSTWSYM  tg
achieve RSIWP®™s,  Finally, the union of
LSIWPOMs  and  RSIWPOMs  js  obtained

asicIpsZMs™ | Regardless of the explanations

raised for the overall summary of DHPFSS (See
figure 2) mentioned in the previous paragraph, the
pseudocode of DHPFSS is shown in Table 2.
According to Table 2, the main body of DHPFSS
is mounted on trilateral calculations, namely filter
phase (RR analysis), incremental wrapper
mechanisms (IWMs), and union-intersection
operations (Ul0Os). After applying the preliminary
steps (See Lines 2-5 of Table 2) including
specifying the type of ZMs of 'CID?* (pivotal
ZMs, secondary ZMs (sZMs), and minor ZMs)
and the feature fragmentation on 'CIDS*™ the
feature ranking is conducted based on RR analysis

to obtain ,/CIDS?MS specific [Rank*2™® (See Line 7

of Table 2). Next, the pair (,/cID?Ms, iRanksZ¥s)

is entered into IWSS and IWSSr mechanisms
(Lines 8 and 9) in twice manner. The two
hyperplane-based classifiers (SVM and TWSVM)
are situated on branches of IWSS and IWSSr trees
for conducting the learning procedures. After

MRMs

selecting MRMs per [CIDS?Ms (kiCIDfVZVI\'\A/lSSCIassifiers)

based on SYMIWSSTWSVYM gng SYMI\WSSTWSYM  the

[ sZMsMRMs
k CI DIWMSCIassifiers

arrays, namely S"VSSand S'WSS" (Lines 10-14).

is recorded in the double structure
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The S™WSS and S'WSS' contain two columns named
R! and R?, which R?! of S"SS related to SYMIWSS

: MRM:
results (k'CIDISVZV'\S";SVMS), R2 of SWSS related to

A MRMs
TWSVMIWSS results (k'CIDISVZV’\S"SSTWSVM ), R of S'wssr

related to SYMIWSST results (,/CIDZMS" ), and
K="= wssrsv
R? of SWSS' related to TWSVMIWSSr results

: MRMs .
(k'CIDISVZV'\S"SSrTWSVM ). Finally, the records of S'Wss

and S'WSS gre entered into the UIOs to extract the
optimal moments of 'CIDS*™® called icjpsZMs

OMs

For further details on the filter and IWMs phases,
refer to Sections 2.1 to0 2.2.

2.1.  Incremental Mechanisms
(IWMs)

2.1.1. IWSS

In the proposed FSS, we utilized the IWSS
mechanism [44] as a part of the IWMs. This
method is an optimal incremental approach based
on the combination of features, leading to higher
accuracy in the feature selection process. The
outputs of the embedded filter and wrapper phase
determine the incremental process of IWSS for
selecting optimal features. According to the
relevancy ratio (RR) in the filter phase, features are
arranged in descending order. The empty position
in the arrangement is assigned to the selected
feature (fn: feature with the highest rank in RR) in
the first increment. The selected feature is then fed
to the classification learner (CL) as an input. The
prediction accuracy of fu (*(fr)) is calculated to
identify the candidate features’ subset (CFS) during
the TTP process. The design of the CFS-based
classifier is updated as ~°(fn1, fr) in the second
increment by joining the other feature with the next
highest rank (RR (fi2)) in the arrangement. If the
classifier’s efficiency with components of friand fiz
shows better performance than with just of fy, the
third increment (joining fis) will include both
previous ones; otherwise, the component fi is
removed. This process is repeated for fis and all
remaining components to achieve the highest
efficiency in the CFS-based model. The process of
selecting OTFs during the IWSS process is
illustrated in Figure 3 (left).

Wrapper

2.1.2. IWSSr

The IWSSr [46] algorithm (extended IWSS) is
utilized as for the second incremental wrapper
mechanism in the DHPFSS. The output of the
filter and wrapper method relies on IWSS, where
the concept of arranging RRs is applied for
features in the first increment. Similar to the
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previous item, fu is chosen as CSF, and A«(f,) is
determined by CL trained with fyi. After joining fn,
to the CSF in the second increment, there are two
scenarios. In the first case, fni is removed, and the
CSF is rebuilt by fr. In the second case, both fiy
and fn, are inputted to the CL model. Here, the
code calculates both Ac(fy) and A(fna, fro) in this
step. Figure 3 (right) provide the detailed
explanations of the IWSSr procedure.

2.2. Integrated Dual
Phases (IDIWPs)

The IWSS and IWSSr are considered as the
optimal incremental approaches based on the
combination of features, leading to higher
accuracy in the feature selection process. The
outputs of the embedded filter and wrapper phase
(SVM and TWSVM) determine the incremental
process of IWSS and IWSSr for selecting optimal
features. By injecting the results of the single
filter phase into dual IWMs, the train-test
procedures are triggered on leaves (nodes) of
IWSS and IWSSr trees via varied kernelized
hyperplane-based  classifiers  (SVM  and
TWSVM). Ignoring the incremental spirit of
IWSS and IWSSr algorithms causes the features
selected by the filter phase to directly enter into
the classifiers as wrappers (vertically integrated
view/ solid view) and the obtained result is
reported as the classification accuracy without
giving a chance to share other features in the
classification problem. However, IWSS-and
IWSSr-specific replacement mechanisms in the
constitute candidate feature subset caused the
wrapper phase (SVM and TWSVM) to
continuously face a changing feature space (based
on the IWSS and IWSSr policies in adding
features to the leaves of trees) and report the
classification accuracy resulting from changes in a
candidate feature subset. In such circumstances,
IWSS and IWSSr can populate the candidate
feature subsets with features that may even have a
low SU rate, but these features increase the
prediction accuracy. Hence, IWSS and IWSSr are
the pivot mechanisms in the proposed learning
model. The IDWIBs in DHPFSS are formed based
on LSIWP and RSIWP (See figure 2, wrapper
phase), wherein LSIWP and RSIWP contain
SYMIWSSTWSYM gnd SYMIWSSrTWSYM respectively.
By injecting the results of the single filter phase
into dual IWMs, the train-test procedures are
triggered on leaves (nodes) of IWSS and IWSSr
trees via varied hyperplane-based classifiers
(SVM and TWSVM). Generally, in the LSIWP,
the FSS-based learning scenario is based on

Incremental Wrapper
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ICIDSZMS, IRanks2M

SZMs i SZMs
|WSS[k - er ] and 1wssleCID™Y (Ranke]

TWSVM RBF

CleZMs i RanksZMs]
RBF

In respect of RSIWP, IWSSr[k , and

[kCIDsZMs |RanksZM]
IWSSrTWSVNI RBE .
FSS-based learning procedures on IDIWPs, UIOs
are conducted based on the obtained results. The
detailed descriptions of the filter and incremental
wrapper models of DHPFSS are elaborated in the
following subsections.

After completing the

2.2.1. Single Filter Phase (SFP) in DHPFSS
Relevancy ratio (RR): In the filter phase of the
proposed FSS, the amount of information shared

between sZMs of JCIDS?MS and the target class is

calculated via triple information theory-based
tools namely, entropy, conditional entropy, and
mutual information (MI). These tools are
interlaced in the form of symmetrical uncertainty
(SU) index. The SU is adopted to measure the
relevance between the feature and the class label.
The average normalized interaction gains of
feature f, every other feature, and the class label
are calculated to reflect the interaction of feature f
with other features in the feature set F. The SU
metric normalizes M1 by scaling its range to [0,1].
SU of variables X and Y is defined based on Ml
which is a technique to measure the relevance
between two random variables. If X and Y are two
features, then MI (X; Y) measures how much
information feature X contains about feature Y. If
X'is a feature and Y is a class label, then MI (X; Y)
measures how much information feature X
contains about the class label Y. The SU index,
defined as:

MI(/CID™’;C)

SU (/D™ c)—2 )

H(/CID®™') 4 H(C)
where j in szms! reflects the j‘h_ moments of
sZMs set, and C is the target class of 'CID**™, The
H(D) in (1) is called entropy and expressed as:
H(D)=-> p(d)log p(d) @
deD
where D is a discrete random variable,
and p(d)=Pr{D=d} is a probability density
function.

Mutual information (MI) in (1) is as follow:

@)

H(JCIDSMy _H(icips?™s’ | c)
H(CID?™ ¢y in (3) s
conditional entropy and expressed as follows:

MI(JCIDSZMS’ - g =

where called
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(4)
> D p(x.0)log p(x|c)

i i
xXe k|C|DSZMs ceC

H (kiCIDSZMS] |C) - _

2.2.2. Support Vector-based Wrappers in
IDIWPs
2.2.2.1. SVM
The mathematical classification model designed
based on the idea of maximizing the margin
between binary classes was introduced by [47].
This robust supervised method was named SVM,
one of the applicable and efficient machine
learning algorithms. According to the structural-
risk minimization, linearly separable data in
feature space can be grouped in binary or multi-
class sets using hard or soft margin in SVM. On
the other hand, data sets with a nonlinear
distribution in feature space would be separated
by using kernel functions. In fact, the aim of SVM
is to find a hyperplane (decision boundary)
between data sets and then maximize the margin
between two parallel hyperplanes as large as
possible to achieve the highest accuracy. For the
general case that we deal with nonlinearly
separable data sets, the kernel (K) is embedded in
the optimization formulation as follows:

®)

zzal ajyiy K, X)) - Zak

i=1l j=1

[
0<e;<C, D gy =0, i,j=1..,

j=1
The function K has the principal role in making
data sets linearly separable by mapping them from
the original space to the high-dimensional feature
space. The radial basis function (RBF) [47] is
used K(x,x') in (5) and defined as follows:

* .
a =arg min,

"2
K(x,x") =exp [—M] (6)
20
The squared Euclidean distance || x—x'||> in (6)

calculates the distance between two data points.
The separating hyperplane with the maximum
margin can be attained by solving the following
problem:

f(X)=Sgn{zaiyiK(Xi,X)+b}

ies

b= iz Yi — ZaJyJK(xJ,x)

Ies

U]
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2.2.2.2. TWSVM

According to the idea proposed in the SVM, we
are able to construct the structural-risk
minimization problem with the condition of using
nonparallel hyperplanes for separating data sets.
In this case, the distance between data sets
becomes larger and causes a reduction in the
classification error. Roughly speaking, in binary
data classification, each hyperplane takes the
closest distance from the samples of a class and
the farthest distance from another one. The idea of
constructing this type of learning model is
primarily introduced in the generalized proximal
eigenvalue support vector machine (GEPSVM)
[47], and then developed with a new skeleton as
TWSVM [48]. To find the equations of
nonparallel hyperplanes, one can solve the
following optimization problems:

1
min = || Pw +epby [* +cie," g
wy,by,q 2

®)
st. —(Qw +edy)+g=>ep, q=0
.1
min = || Qw, +e5by 2 +cp8;"
Wvazvq?-
st. (Pw, +eb,)+g=e, q=0 )

where ¢; and c; are used as the regularization
parameters, and e; and e; are arrays with element
values of one. Using the Karush—Kuhn-Tucker
(KKT) conditions and the Lagrangian method in
(10) and (11), we can achieve the following dual
form of optimization problems:

dual rywsvMt . max{e) a —%aTG(HT H) G} (10)

dalrywsym 2 . max{e] v —%WT PQ'Q) Py} (11)

A general approach for solving this type of
equations in terms of o and w is quadratic
programming. So, the solution to problems
appears as arrays [w®, w@] and parameters [b®,
b®@] for the following nonparallel hyperplanes:
XTw® +p® =0 and xTw +p@ =0 (12)
For linearly separable data, the class labels of

features are determined by planes held in the
following relations:

Class x = arg, min ‘xT w4 p¥

;v=12 (13)

In the case of dealing with nonlinearly separable
data, we need to insert K in equations to obtain the
equations of nonparallel hyperplanes [48]:

K',cTu® +b® =0 and K(x™,cTu@ +p@ =0  (14)
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where T =[A B]", and K denotes the RBF kernel
(See Equation (6)). Finally, to find [u® b®]" and
[uU® Db@]", the following dual optimization
problems must be solved:

(15)

KTwsvMm!: min 1||(K(A,CT)u(1)+e1b<1) I? +cie, q
u® p® g2

st. —(K(B,CT )u(l) +e2b(1))+q ey, 020
(16)

. 1
A, 5| (K(B,CT)u® +e,b@ |? +cpe"q

KTwsvm?
u
st. (K(A,CT)u(z)+elb(2))+qzel, q=0
The proposed method works in the framework of
robust information theory based on a novel
approach concerning dual incremental
mechanisms equipped with hyperplane-based
classifiers has high compatibility with high-
dimensional datasets and different types of new
variants. The hyperplane-based approach like
SVM and TWSVM is the best option that
maximizes predictive accuracy without overfitting
training data. In the case of SVM, it employs a
separating hyperplane with low structural risk in
the classification of data and is not linearly
separable in feature space. Furthermore, by
applying the proper kernel, we can increase the
generalization capacity of the learning model
(optimal matching between transient samples). On
the other hand, TWSVM which is decorated by
the spirit of the SVM into a new skeleton caused
each hyperplane to take the closest distance from
the samples of a class and the farthest distance
from another one. TWSVM formulation causes
that to be more able to construct the structural-risk
minimization problem with the condition of using
nonparallel hyperplanes for separating data sets.
TWSVM helps the distance between data sets
become larger and reduces the classification error.
Taking into cognizance the above-mentioned
points, motivated us to utilize SVM and TWSVM
as the basic classifiers in wrapper mechanisms
situated on the proposed FSS.
According to what was discussed above, the
computational cost of the DHPFSS accompanied
by IWMs and hyperplane-based predictive models
can be approximated by analyzing main functions.
The most expensive cases of operating IWSS and
IWSSr have the complexities of O(n) and O(n?),
respectively. In the presence of the SVM and
TWSVM within the IWMs tree, the complexities
are O(n®) and O(2x(n/2)%), respectively. Hence,
IWSSSVMTWSVM  and  [WSSrSYMITWSYM  haye  the
complexities of O(max{(nxn?), (nx2x(n/2)%)})
and O(max{(n?xn3), (nx2x(n/2)%)}), respectively.
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Table 2. The pseudocode of the DHPFSS.

Main body of DHPFSS

Input: igpszMs; {1<i<3,1<k <m}.

Output: Optimal moments of /CIDSZMS (ig)psZMs™ ),

(1) fori=1to3 /I three Covid-19 image data

(2)  'CIDPMs = [HCIDPAMs, ZiC|IDPPMs, | NICIDPZMS]; // No participate in feature selection process.

(3) 'CID¥Ms = [¥ICIDZMs, 2iCIDs2Ms . NICIDs?MS]; // participate in feature selection process.

(4) 'CID"™Ms = [HiCIDmZMs, 2"CID”‘ZMS, ..., ICID™™s]; // No participate in the feature selection process.
6)  [jcip®™s, jcips™s, ..., icipsZMs | =feature fragmentation (CID2Ms),

6) for k=1 to m // m=number of subset of 'CIDSZMS (Jcips?Ms;1<k<m)

@ JRanks2Ms = sort [calculate relevancy rate (RR) of kiCIDSZMS];
®) |C|DsZMsMRMS WSS (kiRanksZMs , kiCIDSZMS, SVMFREF); kiCIDsZMsLWV\F:S“i'/SM = IWSS (kiRanksZMs ’ kiCIDSZMSy TWSVMFREF);
) '¢|DISVZV“S/'S s = 1WSST (| [Ranks2Ms | ic|psZMs SVMPRER); 'CIDISVZV"S"SS oy = TWSSK ([ [Ranks?Ms, ic|psZMs, TWSVMRS);
10)  ifk=l
IWSS— R ZMsMRMS o, zMsMRMs IWSSr— ol ZMsMRMS o0 L szMsMRMS
(11) SWSS=struct (k, 'RY, 'C|D5 SSSVM ,'R%, 'C'D,SWSSSTWSVM ); SWSS=struct (k, 'R*, 'C|D|5WS§ swm ¢ R el ISWS;TWSVM );
(12) else
(13)  S"S(end)=struct (k, RY, JOIDZUCIE R?, oDV I ) SMS(end+T)struct (K, RY, |JCIDEMEICIE  RE, Jip M LS,
(14) end
(15) end

(16) // union-intersection operations (UlOs)
(17) UIOSIWSS: [(SIWSS (1) Rl) n (SIWSS (1) RZ)] U [(SIWSS (2) Rl) n (SIWSS (2) RZ)] U..uU [(SIWSS (m) Rl) n (SIWSS (m) RZ)]’
(18) UlOSIWSSr: [(SIWSSr (1) Rl) n (SIWSSr (1) RZ)] U [(SIWSSr (2) Rl) n (SIWSSr (2) RZ)] U..uU [(SIWSSr (m) Rl) n (SIWSSr (m) RZ)],

(19) iCIDZM™ = (UIOS™S) U (UIOs™ssY;
(20) end

Function: IWSSr (RZMs, Data, Learning Model).

(1) Sel= 'Ranks?Ms {1}; // first moments 'Ranks2M array (feature with highest SU insert in Sel).

(2) AccSel=PerEval ([Data] NSel with C ,Learning model); // C: [target class] nx1; N:number of sample of ‘CID, PerEval: Performance Evaluation.

(3) for v=2to length (,/Rank?M)

(4) OptFea= T ;
(5) for r=1to length (Sel)
(6) Sel“™=updatee'® (copy(Sel), swap(Sel{r}, ,JRankZMS {v}));

(7). AccSel“™= PerEval ([Data ] o temp ;i ¢ - Learning Model);

(8) if (AccSel*™>AccSel)

(9) OptFea=swap (Sel{r}, ,JRank?™s {v});
(10) Acc= AccSel®m;

(11) end

(12) end

(13)  Sel*™=update>>** (copy(Sel), add (,'Ranks2Ms {v}));
(14)  AccSel“™=PerEval ([ Data] o temp i ¢ » Learning model);

(15) if (AccSel®>AccSel)
(16)  OptFea=Sel™™;

(17)  AccSel=AccSel®*;
(18) end

(19) if (OptFea != null)

(20) update (Sel, OptFea);
(21) end

(22) end

(23) return Sel

Function: IWSS (RZMs, Data, Learning Model).

(1) Sel= 'Ranks?™s {1};  AccSel=PerEval ([Data] o i c - Leamning Model);

(2) forv=2to length (,'Ranks?™s);  Sel“™=add (copy(Sel), /Rank?Ms {v});
(3)  AccSel*™=PerEval ([ Data |

(4) if (AccSel*™™>AccSel)

(5)  add (Sel, JRank*™™s {v});
(6)  AccSel=AccSel™™;

(7) end

(8) end

(9) return Sel;

mxSel®MP it ¢+ Learning Model);
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Figure 3. The IWSS (Left) & IWSSr (Right) algorithms [45].

Due to the complexity of the TWSVM being four
times smaller than the SVM, we found that the
complexities of IWSSSVMTWSVM and
IWSSHSYMITWSYM — are - O(n*) and  O(n®),
respectively. So, in the worst case, the DHPFSS
has the complexity of order O(n®).

3. Experimental Design

3.1. Description of Datasets

For our purposes, we used three dataset of chest
images including lungs infected by COVID-19
and healthy ones. The Kaggle team has provided
two links for two different data sets that are
distinguished by the terms COVID-19 X-ray
dataset(*CID:https://www.kaggle.com/khoongwei
hao/covid19-xray-dataset-train-test-sets) and
sarscov2 CT scan dataset (CID%
https://www.kaggle.com/datasets/plameneduardo/
sarscov2-ctscan-dataset), respectively. The reader
can find a repository provided by [49] that
gathered normal chest X-ray images and COVID-
19 cases [49, 50]. A vast amount of data images
containing CT scans of chests infected and non-
infected by SARS-CoV-2 have been arranged in
the second link. These images belonged to
patients hospitalized in Sao Paulo, Brazil [35].
The third set was collected from Github. The third
dataset (3CID: https://github.com/ieee8023/covid-
chestxray-dataset) provides the chest X-ray and
CT scan images of normal lungs and abnormal

ones infected by viral or bacterial pneumonia such
as COVID-19, MERS, SARS, and ARDS. More
details of datasets can be found in [38] and [51].
For dataset?® (CID, °CID), the number of 300
images belonged to infected lungs; and the
remaining 300 images related to healthy ones are
used for the learning scenario. In dataset! (*CID),
the number of 74 images belonged to infected
lungs, and the number of 74 images belonged to
healthy ones are fed to the learning models.

3.2. Zernike Moments (ZMs)

Among various functions (Hu, Legendre, etc.), the
ZMs are a more common way of describing an
image. The Zernike polynomials, firstly
introduced by Frits Zernike [52], are widely used
in optics and image processing [53]. They are
described in two-dimensional polar coordinates
(p,0) forming a complete set of polynomials.
The orthogonality of Zernike moments over the
interior of a unit circle, p<1(See figure 4),
dictates that each moment is unique [52]. The
Zernike polynomials are defined as [54]:

Vs (0,6) = Rg (p) exp(it6) €)
(s—Ith/2

ey 4 (s=)! -2 (18)
2 2

where s and t are integers indicating the order and
repetition numbers of functions, respectively.
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Mapping an image to a circle
with the radius of unity.

!

Zernike polynomials with

I
The oscillatory structure of
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Figure 4. This schematic shows how an image is mapped to a circle and illustrates the oscillatory behavior of
Zernike functions (with arbitrary s and t values based on Equations 17 and 18). The bottom portion highlights
the extraction of 528 features from the image using Zernike moments based on Equation 22.

These parameters must satisfy the
constraints0<|t|<s, and s—|t| is even. The
image intensity function in the polar coordinates
F(p,8) can be expressed in terms of the Zernike

polynomials as follows [55]:
S,

up S
F(p.0)=Y. > Zs;Vs (p,0)
s=01t=0
where Z, is the ZMs that can be obtained as:

[[ V& 0.0 (p.0)p0 pd0
p<l

(19)

s+l

Zsy = > (20)

Moreover, the orthogonality property of the

Zernike polynomials is expressed as:
1

2z _—

[0 Vv papdo =5, g6, (21)
0

where V* indicates the complex conjugate of V,

and the symbol & denotes the Kronecker delta

function. One may ask why we use the ZMs for

describing an image. As seen in Eg. (1), the

Zernike function is intrinsically rotation invariant

because of the nature of the exponential Fourier

term [54, 56]. Moreover, we can make each image

scale and translation invariant by putting the

target (here, the chest) within a square

(Preprocessing step). Then, this surrounded square

is mapped to the unit circle [54, 55].

The relation for finding the number of Zernike

moments (NZMs) is as follows:

204

s=s,

NZMs = w

(s+1) = 5

s=0
Using least reconstruction error has revealed that
the optimum order number of Zernike is Sy=31
[54, 56]. So, the NZMs is obtained to be 528 (See
Figure 4), and the original image can be
reconstructed from pair of (s, t). For each image,
the number of features equals to NZMs carrying
the information of the image. For example, the
first dataset of the Github repository (°CID),
figure 5 shows the magnitude values of ZMs for
healthy (figure 5 (2)) and infected (figure 5 (b))
chest data with their reconstructed images,
respectively.

(22)

3.3. Selecting FOMs per 'CIDs?Ms

By categorizing ZMs per 'CID?™s (1<i<3) in the
form of triple set moments namely ('CIDPZMs,
ICIDs?Ms, and 'CID™#™s), and following the partial-
manner strategy through applying fragmentation
function on ICID**™ in  k  bundles

(leips™™s:1<k<m) (For more details refer to

Section 2), the preprocessing steps in our
proposed framework is completed. In terms of
categorizing the sZMs based on the importance of
GFs in the orthogonal polynomials, the first 20
ZMs were selected from 528 ZMs as 'CIDPZMs,
ZMs 21 to 220 are labeled as'CIDs2™s, and the rest
of the ZMs are considered as 'CID™?Ms,
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(a) Original X-ray images of healthy chest (left column), their normalized magnitude values of ZMs with 528
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(b) Original X-ray chest images infected by COVID-19 (left column), their normalized magnitude values of ZMs
with 528 features (middle column), and their reconstructed images from ZMs mapped on unit circle (last column).

Figure 5. The magnitude values of ZMs for healthy (a) and infected (b) chest data (3CID) with their reconstructed images.

An important point to note is that only 'CIDs?Ms
enter into the feature selection process (‘CIDP?Ms
enter directly into the predictive model without
FSS-based learning, 'CID?™s enter into the feature
selection process, and survived features are fed to
the predictive model, and 'CID™s is not involved
in any of the learning scenarios). Also, based on
partial-manner feature selection, we fragmented
the 'CID*?™s into 20 segments (m=20) wherein
there are 10 sZMs are in each segment (Segment®:
sZMs 21:30, Segment sZMs 31:40, ...,
Segment?®: sZMs 201:210, Segment®: sZMs
211:220). After conducting the preliminary steps,
selecting the 'CID**Ms-specific FOMs set is called
ICIDs?Ms, DHPFSS is applied to each 'CIDs*Ms
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discussed in this section. According to Figure 2, in
the first step of DHPFSS, each [CIDS*MS of
'CIDs?Ms enters into the filter phase. Hence, the SU
amounts of moments per /CIDS?MS of 'ICID¥M are

calculated based on RR analysis. Taking into
consideration the formulations (See (1) to (4))
about the filter phase elaborated in Section 2.2.1,
for example, the SU amounts of moments related

to 3CID*MS (3: the first dataset from Github

repository; 11: segment 11 of 3CIDS*M®) based on
(1), is analyzed. Based on SU values of ,cips?s,

all moments (10 moments) in {3CIDS*MS have the
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same SU value (0.2007). After calculating the SU
amount of [CIDS?MS (for i=1:3, calculating the
SU value of moments per segment (totally 20
segments)) and sorting the SU value of /CIDS?MS

in descending order called ,/Ranks?Ms (for i=1:3,

sorting the SU value of moments per segment
(totally 20 segments)), the pair

(CID¥?Ms | Ranks?Ms) are fed to the IDIWPS
including SYMIWSS™SYM and SVMWSSrTWSYM,
The obtained MRMs of /[CIDS*™S hased on the

IWMs-based learning model embedded in the
LSIWP (SVMIWSSTWSVM) and RSIWP
(SVMIWSSr“NSVM) are saved in quad sets namely,

| szMsM i szMsM sZMsMRMs
CID|WSSSVM ) kCIDlwssTWSVM ) k I IWSSrSYM 1
and ICIDISVZ\;!SS e (Se€ Lines 10-14 of Table 2).

By applying the IDIWPs (LSIWP and RSIWP) of
DHPFSS on /CIDS?MS | the survived MRMs in the
form of dual structure arrays namely IWSS-based

MRMs

struct (S"SS: 'C|DISVZV“S"SSSVM and (CIDS e o )
MRMs
and IWSSr-based struct (S'Wss": 'CIDISVZV';"Ss oy and

i szmsM
C DIWSS TWSVM

example, Table 3 shows the obtained MRMs of
JCIDSMS  (the first dataset from Kaggle

repository; all segment k=1:20) based on
SYMIWSS™WSYM (column 1 and column 2) and
SYMIWSSI™SYM - (column 3 and column 4). In

terms of selected MRMs of JCIDS*M® (sZMs-

based second segment of first dataset), by
applying IWSSSYM and IWSS™SYM (LSIWP) on

JcIDSEMS | the %lDSzMSfVi:“ (sZMs:{31, 32, 33};

) are given in Tables 3 to 6. For

100%) and 1CIDSZ'\S/'SSTWSVM (sZMs:{31, 38}: 90%)

are obtained, respectively (See second row;
column 1 and column 2 of Table 3). Also, the
extracted MRMs of JCIDS*MS based on RSIWP

are lCIDIS\i/'\S/'SS o (SZMs:{31, 32, 33}; 100%) and

JoiDsMs 0, (sZMs:{32}: 90%) (See second

row; columns 3 and 4 in Table 3). For example,
by applying the IWSSr™sYM |earning model on
15CIDS®™s | Figure 6 shows the tree growing of
IWSSI™SYM  for  selecting the MRMs of
15CIDSMS (node 30: sZMs={171, 174, 175, 180};
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Accuracy: 90.24%). In the train-test procedure,
the Accuracy (Acc) metric (23) is used for
performance evaluation of the learning scenario.
Also, the optimal pair of learning parameters,
namely C (parameter of classifiers) and o
(parameter of RBF kernel) (See Equation (24)) are
selected for reporting the high Acc value in each
iteration of IWMs. For example, Acc variations in
the optimal node (node 30) via fine-tuning on
learning parameters are shown in Figure 6.

Accuracy (Acc) = (TP +TN)/(TP +TN + FP + FN)

P:Covid sample; T : predicted correctly (23)
N :NonCovid sample; F : predicted incorrectly
c=2"1i=041,..,15
svM RBF | Twsvm RBF _l
O':2J | j:—5,—4,...,15 (24)

After selecting the quad-MRMs sets (two arrays
related to the IWSS-based results (S'VSS struct)
and two arrays related to the IWSSr-based results

(S™WSS' struct)) per segment of 'CIDSZMS

(CIDS?™S) relying on IDIWPs of DHPFSS, the
UIOs (See Table 3; Line 17-19) is conducted
ons™sS and  sWSST for selecting 'cipsZMs™™

Table 6 shows the 'CIDS?MS-specific OMs
obtained by UIOs situated in IDIWPs (See figure
2). After extracting the 3cIDsZMs™ | the pZMs
per 'CID?MS (The first 20 ZMs) were not included

in the feature selection process due to retrieved
procedure of the high importance GFs in the

orthogonal polynomials, i.e., 'CID?MS-specific
pZMs combined with 'CIDS?MS -specific OMs
icID PZMs iciDsZMs™™ ) The
obtained results are considered as final optimal
moments of 'CID?MS called icip?s™" which are

shown in Table 6. 'CID?s-specific FOMs is used
for COVID-19 prediction in the next section.

(union of and

3.4. COVID-19 Prediction via 1:3¢yp#ms""

After extracting 'cIDZMs -specific FOMs based on

DHPFSS, the efficacy of obtained FOMs per
COVID-19 dataset (See Table 6) in achieving high
performance COVID-19 prediction is addressed in
this section. The performance evaluation of
survived FOMs per dataset is done based on the
conducting 10-fold cross-validation technique.
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Table 3. The obtained MRMs of 'CID*™s based on IDIWPs (LSIWP (SVMIWSSTWSVM) RSIWP (SYMIWSSrTWSVMY),

1~y SZMsMRMs 1C|DsZMsMRMS 1C|DsZMsMRM5 1~y SZMsMRMS

Segment wssS™ - pre Acc, K wss™eM ; Pre. Acc. KT wssr v ; Pre. Acc. K iwssr e ; Pre. Acc.
k=1 sZMs:{21, 22}; 100% sZMs:{21, 22, 23}; 90% sZMs:{21, 22}; 100% sZMs:{24}; 92.50%
k=2 sZMs:{31, 32, 33}; 100% sZMs:{31, 38}: 90% sZMs:{31, 32, 33}; 100% sZMs:{32}; 90%
k=3 sZMs:{41, 42}; 100% sZMs:{41, 42, 44, 50}; 92.50% sZMs:{41, 42}; 100% sZMs:{42, 47%}; 92.50%
k=4 sZMs:{51, 53}; 100% sZMs:{51, 60}: 87.50% sZMs:{51, 53}; 100% sZMs:{55}; 92.50%
k=5 sZMs:{61, 62}; 100% sZMs:{61, 62, 65}; 95% sZMs:{61, 62}; 100% sZMs:{61, 62}; 92.50%
k=6 sZMs:{71, 76, 77}; 100% sZMs:{71, 80}: 90% sZMs:{76, 77}; 100% sZMs:{71, 80}; 90%
k=7 sZMs:{81, 83}; 100% sZMs:{81}; 82.50% sZMs:{81, 83}; 100% sZMs:{81}; 82.50%
k=8 sZMs:{91, 92, 93}; 100% sZMs:{91, 92, 94}: 90% sZMs:{91, 92, 93}; 100% sZMs:{91, 92, 94}; 92.50%
k=9 sZMs:{101, 103, 104}; 100%  sZMs:{101, 102, 103, 104, 105}; 92.50% sZMs:{103, 104, 105}; 100% sZMs:{102, 105}; 87.50%
k=10  szZMs:{111, 112}; 100% sZMs:{111}: 90% sZMs:{111, 112}; 100% sZMs:{111}; 90%
k=11 sZMs:{121, 124, 125}; 100%  sZMs:{121, 122, 124}; 90% sZMs:{121, 125}; 100% sZMs:{122, 124}; 90%
k=12  szZMs:{131, 132, 133}; 100% sZMs:{131}: 87.50% sZMs:{132, 133}; 100% sZMs:{133}; 90%
k=13 sZMs:{141, 145}; 100% sZMs:{141, 142, 143}; 95% sZMs:{141, 145}; 100% sZMs:{141, 143, 144}; 97.50%
k=14 sZMs:{151, 152}; 100% sZMs:{151, 153}: 92.50% sZMs:{151, 152}; 100% sZMs:{154, 155}; 90%
k=15 sZMs:{161, 162}; 100% sZMs:{161, 162, 164, 170}; 90% sZMs:{161, 162}; 100% sZMs:{161, 162, 166}; 90%
k=16 sZMs:{171, 173, 174}; 100%  sZMs:{171, 172}: 85% sZMs:{171, 173, 174%}; 100% sZMs:{172, 174}; 87.50%
k=17 sZMs:{181, 182, 183}; 100%  sZMs:{181, 182, 189}; 87.50% sZMs:{182, 183}; 100% sZMs:{182}; 85%
k=18 sZMs:{191, 192, 193}; 100%  sZMs:{191, 194, 195, 196, 199}: 90% sZMs:{191, 192, 193}; 100% sZMs:{195, 197, 199}; 90%
k=19 sZMs:{201, 203, 204}; 100% sZMs:{201, 203}; 90% sZMs:{202, 205, 206, }; 100% sZMs:{201, 203}; 90%
k=20 sZMs:{211, 212, 213}; 100% sZMs:{211, 212, 214}: 87.50% sZMs:{211, 212, 213}; 100%  sZMs:{212}; 85%

IWMs

; 1: the first dataset from Kaggle repository (*CID)

Table 4. The obtained MRM:s of 2CID*Ms based on IDIWPs (LSIWP (SVMIWSSTWSVM) RSIWP (SYMIWSSrTWsVMy),

sZMsMRMs 2~y SZMsMRMS 2 psZMsMMe 2~y SZMsMRMS

Segment Iwss*™ . pre Acc. IwWss™™ . pre Acc, wssr®™ . pre Acc. wssrTS™ . pre Ace,
k=1 sZMs:{21, 22}; 100% sZMs:{21, 22}; 95.23% sZMs:{21, 22}; 100% sZMs:{21, 22}; 95.23%
k=2 sZMs:{31}; 71.42% sZMs:{31, 34, 35, 38}; 85.71% sZMs:{37}; 80.95% sZMs:{31, 37}; 95.23%
k=3 sZMs:{41, 42, 46%}; 71.42% sZMs:{41, 42, 47%}; 85.71% sZMs:{45}; 80.95% sZMs:{42, 48}; 85.71%
k=4 sZMs:{51}; 71.42% sZMs:{51, 54, 59}; 80.95% sZMs:{59 }; 90.47% sZMs:{54, 59, 60}; 90.47%
k=5 sZMs:{61, 62}; 57.14% sZMs:{61, 62, 64, 65, 67, 68}; 80.95%  sZMs:{63}; 90.47% sZMs:{63}; 95.23%
k=6 sZMs:{71, 74, 78}; 66.66% sZMs:{71, 77, 78}: 85.71% sZMs:{71, 74, 78}; 66.66%  sZMs:{77}; 76.19%
k=7 sZMs:{81, 83}; 66.66% sZMs:{81, 82, 83, 84, 88, 89}; 90.47 %  sZMs:{83, 90 }; 85.71% sZMs:{83, 85}; 85.71%
k=8 sZMs:{91, 92}; 71.42% sZMs:{91, 92}: 76.19% sZMs:{92, 94}; 76.19% sZMs:{91, 96}; 80.95%
k=9 sZMs:{101}; 66.66% sZMs:{101, 104}; 57.14% SZMs:{104}; 71.42% sZMs:{103, 105}; 76.19%
k=10 sZMs:{111, 117}; 61.90% sZMs:{111, 112}: 76.19% sZMs:{119}; 71.42% sZMs:{111, 112}; 76.19%
k=11 sZMs:{121}; 85.71% sZMs:{121, 128%}; 80.95% sZMs:{121}; 85.71% sZMs:{121, 128}; 80.95%
k=12 sZMs:{131, 137}; 76.19% sZMs:{131, 132}: 52.38% sZMs:{136, 137}; 90.47% sZMs:{135, 139}; 85.71%
k=13 sZMs:{141, 142}; 57.14% sZMs:{141, 142, 143}; 76.19% sZMs:{142}; 80.95% sZMs:{141, 142, 143}; 76.19%
k=14 szZMs:{151, 153, 157, 158}; 80.95% sZMs:{151, 152, 156}: 66.66% sZMs:{153, 156}; 80.95%  sZMs:{151, 156}; 85.71%
k=15 sZMs:{161, 164}; 71.42% sZMs:{161, 162}; 61.90% sZMs:{169, 170}; 85.71% sZMs:{162}; 76.19%
k=16 sZMs:{171, 172, 175}; 61.90% sZMs:{171, 172, 174, 179}: 71.42% sZMs:{175, 180}; 80.95% sZMs:{180}; 85.71%
k=17 sZMs:{181, 182, 187}; 71.42% sZMs:{181, 182}; 80.95% sZMs:{182, 189}; 90.47% sZMs:{182, 185}; 90.47%
k=18 sZMs:{191, 192}; 80.95% sZMs:{191, 192, 193}: 80.95% sZMs:{191, 193}; 85.71% sZMs:{191, 193}; 80.95%
k=19 sZMs:{201, 205}; 66.66% sZMs:{201, 202}; 66.66% sZMs:{205, 207}; 80.95% sZMs:{208, 209}; 85.71%
k=20 sZMs:{211, 212}; 71.42% sZMs:{211, 213}: 71.42% sZMs:{212, 213}; 76.19% sZMs:{213}; 76.19%

MRMs
kZCIDSZMS

IWMSCESEE . o- the second dataset from Kaggle repository (%CID)
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Table 5. The obtained MRMs of 3CID*?s based on IDIWPs (LSIWP (SYMIWSSTWSVM) RSIWP (SYMIWSSrTWsVMY),

k3C SZMSMRMS Ig SZMSMRMS EC | DSZMSMRMS ECIDSZMSMRMS

Segment wssS™ - pre, Acc. Iwss™™ - pre Acc. wssr™ - pre. Acc. wssr ™™ - pre Acc.

k=1 sZMs:{21, 29}; 85.36% sZMs:{21, 22, 30}; 80.48% sZMs:{21, 29%}; 85.36% sZMs:{21, 24, 27}; 85.36%

k=2 sZMs:{31, 32, 33}; 85.36% sZMs:{31, 35, 39}: 82.92% sZMs:{31, 32, 33}; 85.36%  sZMs:{31, 35, 39}; 82.92%

k=3 sZMs:{41}; 90.24% sZMs:{41, 49}; 92.68% sZMs:{41}; 90.24% sZMs:{41, 49}; 92.68%

k=4 sZMs:{51, 52, 53}; 78.04% sZMs:{51, 53, 54, 55, 60}: 85.36% sZMs:{52, 53, 55}; 82.92%  sZMs:{54, 60}; 85.36%

k=5 sZMs:{61, 65, 66}; 73.17% sZMs:{61, 63, 65, 66, 67, 68}; 85.36% sZMs:{65, 66}; 78.04% sZMs:{62, 68, 70}; 82.92%

k=6 sZMs:{71}; 78.04% sZMs:{71, 72}: 82.92% sZMs:{71}; 78.04% sZMs:{71, 77}; 85.36%

k=7 sZMs:{81, 82, 89}; 70.73% sZMs:{81, 82, 83}; 78.04 % sZMs:{83, 90 }; 75.60% sZMs:{82, 83, 85}; 82.92%

k=8 sZMs:{91, 93}; 82.92% sZMs:{91}: 78.04% sZMs:{93, 97}; 85.36% sZMs:{91}; 78.04%

k=9 sZMs:{101, 103, 104, sZMs:{101, 103, 104, 105, sZMs:{101, 104}; 82.92% sZMs:{103, 104, 105}; 82.92%
105}; 85.36% , 106}; 85.36%

k=10 sZMs:{111, 112, 117}; 78.04% szZMs:{111, 112, 113, 115, sZMs:{111, 113}; 80.48% sZMs:{111, 115, 118}; 87.80%

, 119}; 85.36%

k=11 sZMs:{121, 123, 124, sZMs:{121, 124}, 85.36% sZMs:{121, 124, 128}; 85.36% sZMs:{121, 124}; 85.36%
126}; 85.36%

k=12 sZMs:{131, 132, 136}; 82.92% sZMs:{131, 132, 133, 136}: 85.36%  sZMs:{132, 139}; 82.92% sZMs:{133, 136, 139}; 90.24%

k=13 sZMs:{141, 142, 150}; 85.36% sZMs:{141, 142, 143, 144}; 82.92%  sZMs:{142, 143}; 87.80% sZMs:{142, 143, 148}; 87.80%

k=14 sZMs:{151, 160}; 78.04% sZMs:{151, 152, 155}: 78.04% sZMs:{158}; 82.92% sZMs:{151, 155, 160}; 87.80%

k=15 sZMs:{161, 165, 167}; 80.48% sZMs:{161, 167}; 78.04% sZMs:{167%}; 82.92% sZMs:{161, 167}; 78.04%

k=16 sZMs{171,173}; 78.04% sZMs:{171, 174, 175, 180}: 87.80% sZMs:{173, 175, 178}; 85.36% sZMs:{171, 174, 175, 180}; 90.24%

k=17 sZMs:{181, 182}; 80.48% sZMs:{181, 182, 187}; 85.36% sZMs:{188, 90}; 90.24% sZMs:{182, 183}; 85.36%

k=18 sZMs:{191, 192, 193}; 80.48% sZMs:{191, 192, 194}: 85.36% sZMs:{193, 195}; 87.80% sZMs:{191, 193, 196}; 87.80%

k=19 sZMs:{201, 206, 208}; 82.92% sZMs:{201, 203, 207}; 80.48% sZMs:{206, 208}; 87.80% sZMs:{208, 210}; 82.92%

k=20 sZMs:{211, 212, 215, sZMs:{211, 212, 215, 218}: 85.36%  sZMs:{211, 215, 217}; 85.36% sZMs:{212, 219}; 82.92%
219}, 85.36%

Ec[DSZMSMRMS

IWMsCEE - 3 the third dataset from Github repository (3CID)

. R MRM
Table 6. The obtained OMs per ICIDsZMs via applying UIOs on || CIDSZMS - Fone

|WMSCIassifiers and FOMS per iCIDZMS ( iCIDZMS

The Obtained OMs Per 'CID™: via Appling UIOs on | CIDSZMS™ "
k IWMSCIassifiers

. OMs
l4c | DSZMS

| nput (sIWSS; SIWSSI’)

1
[120

MRMs MRMs

1 SZMs sZMs MRMs
,120CID ey Icip )1 Ic
120 WSS TWSVM 1:20 IWSSrSYM 1:20

CIDSZMSMRMS

ZMs
ID®
1wssSvM

1
IwssrTWSM sZMs: {21, 22, 31, 32, 41, 42, 51, 61, 62, 71, 81, 91, 92,

101, 103, 104, 105, 111, 121, 124, 131, 133, 141, 151, 161,
162, 171, 174, 181, 182, 191, 201, 203, 211, 212}

2 sZMs 2 szMsMRMs - o sZMsMRMs
[120CID 4 ccsvm +120C1ID G s 5 1:20C1D

MRMs MRMs

2 sZMs
,120CID
IwssrSvM * 120 IWSSrTWSVM]

IWSS IWS

sZMs: {21, 22, 31, 37, 41, 42, 51, 59, 61:68, 71, 77, 78,
81:84, 88, 89, 91, 92, 111, 112, 121, 131, 137, 141, 142,
143, 151, 153, 156:158, 161, 164, 171, 172, 174, 180:182,
191:193, 211, 213}

3 sZMs 3 sZMs .3 SZMs
[120CID - csvm + 1:20CID °  rwsvm 3 1:20C1D

MRMs MRMs MRMs MRMs

3 sZMs
].‘20CI D TWSVM ]

WSS WSS IwWssrsvM IWSSr

sZMs: {21, 31, 41, 51, 53, 61, 65, 66, 71, 81: 83, 91, 101,
103:105, 111, 112, 121, 124, 131, 132, 136, 139, 141, 142,
143, 151, 161, 167, 171, 175, 181, 182, 191:193, 201, 208,

211, 215}
R A FOM:
The Final Optimal Moments (FOMs) per 'CID?™s ('CIDZMS s)

. FOMs
1.4C| DZMS

Input

OM
[1C|DsZMs S, 1C|DpZMs] 1CIDZMSFOMS

:{1:20, 21, 22, 31, 32, 41, 42, 51, 61, 62, 71, 81, 91, 92, 101,
103, 104, 105, 111, 121, 124, 131, 133, 141, 151, 161,
162, 171, 174, 181, 182, 191, 201, 203, 211, 212}

OMs

2C|DZM5
1 {1:20, 21, 22, 31, 37, 41, 42, 51, 59, 61:68, 71, 77, 78, 81:84,
88.89, 91,92, 111, 112, 121, 131, 137, 141, 142, 143,
151, 153, 156:158, 161, 164, 171, 172, 174, 180:182,
191:193, 211, 213}
OMs
[3C|DSZMS , 3C|DpZMs] SCIDZMSFOMS

1 {1:20, 21, 31, 41, 51, 53, 61, 65, 66, 71, 81: 83, 91, 101,
103:105, 111, 112, 121, 124, 131, 132, 136, 139, 141,
142, 143, 151, 161, 167, 171, 175, 181, 182, 191:193,
201, 208, 211, 215}
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Figure 6. Structure of IWSSr tree in selecting MRMs of 1gCIDSZ'VIs based on IWSSrTWSYM with
regarding Acc variations in optimal node (node 30).
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The SVM classifier is used for the train-test
procedure running for each fold. Also, for finding
the optimal values among learning parameters,
namely (C, o), we conducted train-test procedures

per fold based on setting C as {C = 2 li=0,..,15}

and o as{o =2 | j =-5,...,15}. The classification
metrics for evaluating the performance of the
proposed framework in predicting COVID-19
status per dataset are accuracy
(Acc=(TP+TN)/(TP+TN+FP+FN)), sensitivity
(True-Positive Rate (TPR)=TP/(TP+FN)), and
Specificity  (True-Negative  Rate  (TNR)=
TN/(TN+FP)). Taking into cognizance points

Accuracy

5 8 8 3 2 8 8 8 3

Accuracy
£ 8 3 8 8
e 8 8 3 3 8 B 3 3

o

7.

Accuracy

15

(Z», o e T 041\

(Fold 8)

Accuracy

regarding requirements of train-test procedures for
COVID-19 prediction, the values of triple indices
in COVID-19 prediction (Acc, TPR, and TNR)
per dataset in each fold are shown in Table 7. By
setting the different values for learning
parameters, the maximum value of Acc among
Acc variations is captured per fold. These values
are recorded in Table 7. Furthermore, according
to the maximum Acc per fold, TPR and TNR
values corresponding to the maximum Acc value
are also shown in each fold. For more clarity, the
Acc variations of fold?, fold®, fold®, fold®, fold?®,
and fold® related to using FOMs of 2CID in
COVID-19 prediction are depicted in Figure 7.

Accuracy
B

R

0 &

(Fold 3)

Accuracy

(Fold 9)

Figure 7. Acc variations based on learning parameters in some folds (fold 2 3 5 6 8.9) for COVID-19
prediction based on FOMs of 2CID.
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Table 7. Results of COVID-19 prediction based on selected FOMs per datasets.

10-fold cross validation

Classifier Dataset

Max(Acc.) per fold based on fine-tuning on C and ¢
Accuracy [TPR/TNR]

fold 1

fold 2 fold 3 fold 4

100

[100 / 100]

93.33 93.33
[100/87.5] [100/ 87.5]

100
[100/ 100]

fold 5

fold 6 fold 7 fold 8

CID 100

[100 / 100]

100 100
[100 / 100] [100 / 100]

100
[100 / 100]

SVMRBF

fold 9 fold 10

[100 / 100]

100 100

[100/ 100]

Mean(measure) of folds: Accuracy [TPR/TNR]

98.66 [100/97.5]

fold 1

fold 2 fold 3 fold 4

90
[96.67 /

96.66 96.66 95
83.33] [93.33/100] [96.67/96.67] [93.33/96.67]

fold 5

fold 6 fold 7 fold 8

95
[96.67 /

’CID
SVMRBF

96.25
[92.5/ 10C

93.33 91.66 95

93.33] [90/96.67] [93.33/90]  [93.33/96.67]

fold 9 fold 10

[96.67 / 96.67]

96.66 93.33

[90/ 96.67]

Mean(measure) of folds: Accuracy [TPR/TNR]

94.33 [94 / 94.66]

fold 1

fold 2 fold 3 fold 4

91.66

[93.33/90]

91.66 95 96.66
[93.33/90] [93.33/96.67] [93.33/100]

fold5

fold 6 fold 7 fold 8

CID 95

SVMRBF

[96.67 /93.33] [100/93.33]

96.66 96.66 98.33
[96.67 / 96.67] [100/96.67]

fold 9 fold 10

95 91.66
[100 / 90] [86.67 / 96.67]

Mean(measure) of folds: Accuracy [TPR/ TNR]

94.82[95.33/ 94.33]

Table 8. Comparison of methods.

Methods Dataset Accuracy (%)
Our proposed method ICID 98.66
Our proposed method °CID 94.33
Our proposed method 3CID 94.82

Jaiswal et al. [33] ’CID 96.25
Soares et al. [34] °CID 97.38
Sarki et al. [38] ICID 93.5
Sarki et al. [38] 3CID 93.5
Sen et al. [41] 2CID 98.39
Dey et al. [42] °CID 99.5
Ibrahim et al. [57] ’CID 97.59
Gupta et al. [58] °CID 98.91

3.5. Comparison of Experimental Methods:
DPHFSS Vs. Other Methods in COVID-19
Prediction

It seems that the difference between a code and
the other ones is its ability to compete with the
most accuracies obtained in the optimal
classifications. Of course, the flexibility of an
algorithm to cope with different types of data has
not to be ignored. In this section, we recount the
results of some previous works focused on the

same data sets that we used in this study.
Reference [38] have used the first and third
datasets (!CID and °3CID) and achieved a
maximum  accuracy of 93.5%. Among
performances of classifications published in valid
journals about accuracies of the developed
algorithms in the second type of our dataset
SARS-CoV-2-CT (*CID) [33, 34, 57, 58], the
highest accuracy belonged to [58] with the value
of 98.91%; on the other hand, the lowest accuracy
value 96.25% belongs to [33]. As we mentioned
in the section Introduction, two surveys employed
the feature selection technique in their methods
[41, 42].

The maximum accuracy of a method introduced in
[41] reaches 98.39% in the 2CID. Reference [42]
obtained accuracies of their proposed algorithm
about 99.5% for 2CID. In our feature selection-
based approach, for each one of the three datasets,
the classifier can reach the accuracies of 98.66%,
94.33%, and 94.82%, respectively. As seen in
Table 8, the proposed approach (DHPFSS) has
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better performance than other techniques in 'CID-
and 3CID-based COVID-19 prediction. For more
information about comparison results refer to
Table 8.

4. Conclusions and Future Work

We developed an automated multi-level method
based on image moments and a feature selection
approach for classifying normal chest images and
infected ones. Our supervised algorithm was
applied to three different image sets comprising
infected (by bacterial and viral pneumonia such as
COVID-19) and non-infected (healthy) chest X-
ray and CT scan images.

In this method, a robust approach of Zernike
polynomials was employed to extract image
moments. These long series of moments can be
reversed to the original image because they
convey image information. Then, a novel feature
selection approach was added to the algorithm to
extract optimal features from a series of image
moments. In this procedure named DHPFSS, we
employed the filter phase and dual incremental
wrapper mechanisms. Thus, we exploited
incremental wrapper subset selection (IWSS) and
IWSS with replacement (IWSSr) to optimize the
algorithm. The SVM and TWSVM classifiers
with RBF kernel are involved in the classification
process.

According to the obtained accuracy metric, we
achieved a higher classification accuracy of
98.66% in CID data classification. Also, the
results show more than 94% accuracy in 2CID and
3CID data classification. Furthermore, comparing
the output of our selection algorithm with
previous ones demonstrates reliability and
flexibility of our method in the face of different
types of data. Another advantage of this method is
its  mathematical  robustness in  solving
classification problems. Generally, the potential
impact of the proposed method on real-world
COVID-19 diagnosis workflows is related to
compacting the high-dimensional space of the
COVID-19 dataset and its ability to run in the
presence of computers with low processing
power.

The high-dimensional space increases the
prediction time of the patient's coronavirus disease
and delays the treatment process. Hence,
compacting the feature space for selecting the
most relevant features in COVID-19 diagnosis
based on the proposed method, decreases
computational complexity and brings the timely
and accurate diagnosis of illness in an emergency
or the absence of a specialist. On the other hand,
considering the substantial costs of equipping
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computers with high processing power (e.g., high
graphics processing units (GPUs)) and the
potential lack of accessibility to such systems in
medical and treatment centers, our proposed
approach is more practical. Unlike methods reliant
on feature extraction and deep learning, which
demand the most powerful computers, our
proposed feature selection scheme enables high-
performance COVID-19 prediction even with
limited processing systems (in terms of hardware
and software). In future work, the authors will
work on the proposed technique to extend its
ability to classify different brain tumor and breast
cancers.
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