[1] D. Petrakis, D. Margină, K. Tsarouhas, F. Tekos, M. Stan, D. Nikitovic, D. Kouretas, D. A. Spandidos, and A. Tsatsakis, “Obesity ‑ a risk factor for increased COVID‑19 prevalence, severity and lethality (Review),” Molecular medicine reports, vol. 22, no. 1, pp. 9-19, July 2020.
[2] Y. Fang, Y. Nie, and M. Penny, “Transmission dynamics of the COVID‐19 outbreak and effectiveness of government interventions: A data‐driven analysis,” Journal of medical virology,vol. 92, no. 6, pp. 645-659, June 2020.
[3] M. Rafiee, F. Parsaei, S. Rahimi Pordanjani, V. Amiri, and S. Sabour, “A Review on Applicable and Available Paraclinical Methods for Diagnosis of Coronavirus Disease-19,” Arch Iran Med, vol. 23, no. 11, pp. 794-800, 2020.
[4] M. Yüce, E. Filiztekin, and K. G. Özkaya, “COVID-19 diagnosis - A review of current methods,” Biosensors & bioelectronics, vol. 172, pp. 1-15, 2021.
[5] M. Yan, K. Herman, K. Muhammad, N. Aaron, and L. Chuen-Yen, “Review of Current COVID-19 Diagnostics and Opportunities for Further Development,” Frontiers in Medicine, vol. 8, pp. 1-24, 2021.
[6] S. Maurya, and S. Singh, “Time Series Analysis of the Covid-19 Datasets,” in IEEE International Conference for Innovation in Technology (INOCON), 2020. pp. 1-6.
[7] J. Luo, Z. Zhang, Y. Fu, and F. Rao, “Time series prediction of COVID-19 transmission in America using LSTM and XGBoost algorithms,” Results in Physics, vol. 27, pp. 1-9, 2021.
[8] G. Meyerowitz-Katz, and L. Merone, “A systematic review and meta-analysis of published research data on COVID-19 infection fatality rates”, International Journal of Infectious Diseases, vol. 101, pp. 138-148,
2020.
[9] S. I. Jabbar, “Automated analysis of fatality rates for COVID 19 across different countries,” Alexandria Engineering Journal, vol. 60, no. 1, pp. 521-526, 2021.
[10] W. Kong and P. P. Agarwal, “Chest Imaging Appearance of COVID-19 Infection,” Radiology: Cardiothoracic Imaging, vol. 2, no. 1, 2020.
[11] C. M. Bishop, Pattern Recognition and Machine Learning. New York: Springer, 2006.
[12] A. R. Webb and K. D. Copsey, Statistical Pattern Recognition. 3rd ed., West Sussex, United Kingdom: John Wiley & Sons Ltd, 2011.
[13] M. Kantardzic, Data Mining: Concepts, Models, Methods, and Algorithms. 3rd ed. New Jersey: Wiley-IEEE Press, John Wiley & Sons, Inc., 2011.
[14] V. Havlíček, A. D. Córcoles, K. Temme, A. W. Harrow, A. Kandala, J. M. Chow, and J. M. Gambetta, “Supervised learning with quantum-enhanced feature spaces,” Nature, vol. 567, pp. 209-212, 2019.
[15] D. Dell’Aquila and M. Russo, “Automatic classification of nuclear physics data via a Constrained Evolutionary Clustering approach,” Computer Physics Communications, vol. 259, 2021.
[16] M. Bevilacqua, R. Nescatelli, R. Bucci, A. D. Magrì, A. L. Magrì, and F. Marini, “Chemometric classification techniques as a tool for solving problems in analytical chemistry,”
J AOAC Int., vol 97, no. 1, pp. 19-28.
2014.
[17] S. Arish, M. Javaherian, H. Safari, and A. Amiri, “Extraction of active regions and coronal holes from EUV images using the unsupervised segmentation method in the Bayesian framework,” Solar Physics, vol. 291, pp. 1209-1224.
2016.
[18] M. Noori, M. Javaherian, H. Safari, and H. Nadjari, “Statistics of photospheric supergranular cells observed by SDO/HMI,” Advances in Space Research, vol. 64, no. 2, pp. 504-513, 2019.
[19] T. Merembayev, R. Yunussov, and A. Yedilkhan, “Machine Learning Algorithms for Classification Geology Data from Well Logging,” in 14th International Conference on Electronics Computer and Computation (ICECCO), 2018, pp. 206-212.
[20] V. Santucci, F. Santarelli, L. Forti, and S. Spina, “Automatic Classification of Text Complexity,” Appl. Sci., vol. 10, no. 20, 2020.
[21] N. Lotfi, M. Javaherian, B. Kaki, A. H. Darooneh, and H. Safari, “Ultraviolet solar flare signatures in the framework of complex network,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 30, no. 4, 2020.
[22] C. Li, K. Shirahama, M. Grzegorzek, F. Ma, and B. Zhou, “Classification of environmental microorganisms in microscopic images using shape features and support vector machines,” in Proc. IEEE International Conference on Image Processing, 2013, pp. 2435-2439.
[23] I. D. Apostolopoulos, and T. A. Mpesiana, “Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks,” Phys. Eng. Sci. Med., vol. 43, pp. 635-640, 2020.
[24] R. Mohammadi, M. Salehi, H. Ghaffari, A. A. Rohani, and R. Reiazi, “Transfer Learning-Based Automatic Detection of Coronavirus Disease 2019 (COVID-19) from Chest X-ray Images,” J. Biomed. Phys. Eng., vol. 10, no. 5, pp. 559-568, 2020.
[25] D. Singh, V. Kumar, Vaishali, and M. Kaur, “Classification of COVID-19 patients from chest CT images using multi-objective differential evolution-based convolutional neural networks,” European journal of clinical microbiology & infectious diseases: official publication of the European Society of Clinical Microbiology, vol. 39, no. 7, pp. 1379-1389, 2020.
[26] R. A. Al-Falluji, Z. D. Katheeth, and B. Alathari, “Automatic Detection of COVID-19 Using Chest X-Ray Images and Modified ResNet18-Based Convolution Neural Networks,” Computers, Materials & Continua, vol. 66, no. 2, pp. 1301-1313, 2021.
[27] E. F. Ohata, G. M. Bezerra, J. V. S. d. Chagas, A. V. L. Neto, A. B. Albuquerque, V. H. C. d. Albuquerque, and P. P. R. Filho, “Automatic Detection of COVID-19 Infection Using Chest X-Ray Images Through Transfer Learning,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 1, pp. 239-248, 2021.
[28] M. M. Taresh, N. Zhu, T. A. A. Ali, A. S. Hameed, and M. L. Mutar, “Transfer Learning to Detect COVID-19 Automatically from X-Ray
Images Using Convolutional Neural Networks,”
International Journal of Biomedical Imaging, May 2021.
[29] D. Arias-Garzón, J. A. Alzate-Grisales, S. Orozco-Arias, H. B. Arteaga-Arteaga, M. A. Bravo-Ortiz, A. Mora-Rubio, J. M. Saborit-Torres, J. Á. M. Serrano, M. de la Iglesia Vayá, O. Cardona-Morales, and R. Tabares-Soto, “COVID-19 detection in X-ray images using convolutional neural networks,”
Machine Learning with Applications, vol. 6,
2021.
[30] J. Manokaran, F. Zabihollahy, A. Hamilton-Wright, and E. Ukwatta, “Detection of COVID-19 from chest x-ray images using transfer learning,” J Med Imaging (Bellingham), vol. 8, 2021.
[31] A. Badawi and K. Elgazzar, “Detecting Coronavirus from Chest X-rays Using Transfer Learning,” COVID, vol. 1, pp. 403-415, 2021.
[32] A. Sakagianni, G. Feretzakis, D. Kalles, C. Koufopoulou, and V. Kaldis, “Setting up an easy-to-use machine learning pipeline for medical decision support: A case study for COVID-19 diagnosis based on deep learning with CT scans,” Stud Health Technol Inform, vol. 272, pp. 13-16, June 2020.
[33] A. Jaiswal, N. Gianchandani, D. Singh, V. Kumar, and M. Kaur, “Classification of the COVID-19 infected patients using DenseNet201 based deep transfer learning,” Journal of biomolecular structure & dynamics, vol. 39, no. 15, pp. 5682-5689, 2021.
[34] E. Soares, P. Angelov, S. Biaso, M. H. Froes, and D. K. Abe, “(2020) SARS-CoV-2 CT-scan dataset: A large dataset of real patients CT scans for SARS-CoV-2 identification,” MedRxiv, pp. 1-8, 2020.
[35] H. Panwar, P. K. Gupta, M. K. Siddiqui, R. Morales-Menendez, P. Bhardwaj, and V. Singh, “A deep learning and grad-CAM based color visualization approach for fast detection of COVID-19 cases using chest X-ray and CT-scan images,” Chaos Solitons Fractals, vol. 140, 2020.
[36] S. Sharma, “Drawing insights from COVID-19-infected patients using CT scan images and machine learning techniques: a study on 200 patients,” Environmental science and pollution research international, vol. 27, no. 29, pp. 37155-37163, 2020.
[37] V. S. Rohila, N. Gupta, A. Kaul, and D. K. Sharma, “Deep learning assisted COVID-19 detection using full CT-scans,” Internet of Things, vol. 14, 2021.
[38] R. Sarki, K. Ahmed, H. Wang, Y. Zhang, and K. Wang, “Automated detection of COVID-19 through convolutional neural network using chest x-ray images,” PLOS ONE, vol. 17, no. 1, 2022.
[39] X. Li, Y. Zhou, P. Du, G. Lang, M. Xu, and W. Wu, “A deep learning system that generates quantitative CT reports for diagnosing pulmonary tuberculosis. Applied Intelligence, vol. 51, no. 6, pp. 4082-4093, 2021.
[40] Shan, Y. Gao, J. Wang, W. Shi, N. Shi, M. Han, Z. Xue, D. Shen, and Y. Shi, “Abnormal lung quantification in chest CT images of COVID-19 patients with deep learning and its application to severity prediction,” Medical physics, vol. 48, no. 4, pp. 1633-1645, 2021.
[41] S. Sen, S. Saha, S. Chatterjee, S. Mirjalali, and R. Sarkar, “A bi-stage feature selection approach for COVID-19 prediction using chest CT images,” Applied Intelligence, vol. 51, pp. 8985-9000, 2021.
[42] A. Dey, S. Chattopadhyay, P. K. Singh, A. Ahmadian, M. Ferrara, N. Senu, and R. Sarkar, “MRFGRO: a hybrid meta-heuristic feature selection method for screening COVID-19 using deep features,” Scientific Report, vol. 11, pp. 1-15, 2021.
[43] W. M. Shaban, A. H. Rabie, A. I. Saleh, and M. A. Abo-Elsoud, “A new COVID-19 Patients Detection Strategy (CPDS) based on hybrid feature selection and enhanced KNN classifier. Knowledge-based systems, vol. 205, 2020.
[44] R. Ruiz, J. C. Riquelme, and J. S. Aguilar-Ruiz, “Incremental wrapper-based gene selection from microarray data for cancer classification. Pattern Recognition, vol. 39, no. 12, pp. 2383-2392, 2006.
[45] S. A. Bashiri Mosavi, “Applying Cross-Permutation-Based Quad-Hybrid Feature Selection Algorithm on Transient Univariates to Select Optimal Features for Transient Analysis. IEEE Access, vol. 10, pp. 41131-41151, 2022.
[46] P. Bermejo, J. A. Gámez, and J. M. Puerta, “(2009) Incremental wrapper-based subset selection with replacement: An advantageous alternative to sequential forward selection,” in Proc. IEEE Symposium Series on Computational Intelligence and Data Mining (CIDM), Nashville, USA, 2009, pp. 367-374.
[47] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn., vol. 20, pp. 273-297, 1995.
[48] O. L. Mangasarian and E. W. Wild, “Multisurface Proximal Support Vector Classification via Generalized Eigenvalues,”. IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 1, pp. 69-74, 2006.
[49] J. P. Cohen, P. Morrison, and L. Dao, “COVID-19 Image Data Collection,” ArXiv, 2020.
[50] J. P. Cohen, P. Morrison, L. Dao, K. Roth, T. Q. Duong, and M. Ghassemi, “COVID-19 Image Data Collection: Prospective Predictions Are the Future,” ArXiv, 2020.
[51] D. S. Kermany, M. Goldbaum, W. Cai, C. C. S. Valentim, H. Liang, S. L. Baxter, A. McKeown, G. Yang, X. Wu, F. Yan, J. Dong, M. K. Prasadha,
J. Pei, M. Y. L. Ting, J. Zhu, C. Li, S. Hewett, J. Dong, I. Ziyar, A. Shi, and
K. Zhang, “Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning,” Cell, vol. 172, no. 5, pp. 1122-1131, 2018.
[52] V. F. Zernike, “Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode,” Physica, vol. 1, pp. 689-704, 1934.
[53] J. Schwiegerling, “Review of Zernike polynomials and their use in describing the impact of misalignment in optical systems,” in Proc. SPIE 10377, Optical System Alignment, Tolerancing, and Verification XI, 2017.
[54] M. Javaherian, H. Safari, A. Amiri, and S. Ziaei, “Automatic Method for Identifying Photospheric Bright Points and Granules Observed by Sunrise,” Solar Physics, vol. 289, pp. 3969-3983, June 2014.
[55] M. Sadeghi, M., Javaherian, and H. Miraghaei, “Morphological-based Classifications of Radio Galaxies Using Supervised Machine-learning Methods Associated with Image Moments,” The Astronomical Journal, vol. 161, no. 2, pp. 94-102, 2021.
[56] S. A. Bashiri Mosavi, M. Javaherian, M. Sadeghi, and H. Miraghaei, “Modularized Filter-Wrapper Feature Selection Scheme for Finding Optimal Image Moments in Maps of Radio Galaxies,” International Journal of Intelligent Engineering and System, vol. 14, no. 6, pp. 220-233, 2021.
[57] M. R. Ibrahim, S. M. Youssef, and K. M. Fathalla, “(2023) Abnormality detection and intelligent severity assessment of human chest computed tomography scans using deep learning: a case study on SARS-COV-2 assessment,” Journal of Ambient Intelligence and Humanized Computing, vol. 14, 2023.
[58] K. Gupta and V. Bajaj, “Deep learning models-based CT-scan image classification for automated screening of COVID-19,” Biomedical Signal Processing and Control, vol. 80, 2023.