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 This study proposes a high-level design and configuration for an 

intelligent dual (hybrid and private) blockchain-based system. The 

configuration includes the type of network, level of decentralization, 

nodes, and roles, block structure information, authority control, and 

smart contracts and intended to address the two main categories of 

challenges –operation management and data management– through 

three intelligent modules across the pandemic stages. In the pre-

hospital stage, an intelligent infection prediction system is proposed 

that utilizes in-house data to address the lack of a simple, efficient, 

agile, and low-cost screening method for identifying potentially 

infected individuals promptly and preventing the overload of patients 

entering hospitals. In the in-hospital stage, an intelligent prediction 

system is proposed to predict infection severity and hospital Length 

of Stay (LoS) to identify high-risk patients, prioritize them for 

receiving care services, and facilitate better resource allocation. In the 

post-hospital stage, an intelligent prediction system is proposed to 

predict the reinfection and readmission rates, to help reduce the 

burden on the healthcare system and provide personalized care and 

follow-up for higher-risk patients. In addition, the distribution of 

limited Personal protective equipment (PPE) is made fair using 

private blockchain (BC) and smart contracts. These modules were 

developed using Python and utilized to evaluate the performance of 

state-of-the-art machine learning (ML) techniques through 10-fold 

cross-validation at each stage. The most critical features were plotted 

and analyzed using SHapely Adaptive exPlanations (SHAP). Finally, 

we explored the implications of our system for both research and 

practice and provided recommendations for future enhancements. 
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1. Introduction 

Biological disasters have become a global threat 

over the last century, causing severe health and 

socioeconomic impacts that surpass other types of 

disasters [1]. Disaster management aims to 

mitigate hazard effects, provide adequate 

assistance to the affected population, and enable 

prompt and effective recovery [2]. Unlike other 

disasters, pandemics are a unique type of natural 

disaster that have global impacts and long-term 

economic consequences that cross national 

boundaries. This necessitates an interdisciplinary 

and intersectoral approach to integrated systems 

that assist health, economic, and social 

perspectives, and balance the conflicting objectives 

among these domains. Furthermore, the dynamic 
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nature of a pandemic requires real-time data 

collection and analysis to inform decision making 

and response efforts. 

During a pandemic, the data needed to answer 

questions varies by stage [3]. For instance, in the 

pre-pandemic stage, there is a limited number of 

infections that focus on gathering data on 

epidemiological parameters. As the pandemic 

progresses, tracking the virus spread, monitoring 

healthcare capacity, and assessing vaccination 

campaign efficacy by gathering more data will 

become possible. These data can help inform 

public health strategies and interventions, thereby 

allowing authorities to make informed decisions. 

Additionally, analyzing the data collected 

throughout the pandemic can provide valuable 

insights into the long-term effects of the virus and 

guide future preparedness efforts. 

A new coronavirus emerged in Wuhan, China, in 

December 2019, caused by the novel "Severe 

Acute Respiratory Syndrome Coronavirus 2, " 

which was later named COVID-19 by the World 

Health Organization (WHO) in February 2020. 

This epidemic quickly spread from China to other 

countries, and in less than three months after the 

outbreak started, the disease became a global 

pandemic [4]. The COVID-19 sudden outbreak 

imposes an overwhelming burden on countries’ 

medical systems through a surge in the need for 

hospital beds and a lack of medical equipment [5, 

6] and has opened a new opportunity for extensive 

research in various fields. 

Figure 1 presents three stages that a patient with 

COVID-19 may encounter during the pandemic, 

beginning with the pre-hospital stage. At this initial 

stage, the patient may exhibit symptoms of the 

disease and undergo screening tests. If test results 

are positive or inconclusive, the patient may be 

referred to a hospital for further diagnosis and 

treatment. If the indicators suggest that 

hospitalization is necessary, the patient may be 

assigned to one of five levels of hospitalization 

based on the severity of the disease. Following the 

completion of treatment and discharge from the 

hospital, the patient enters the post-hospital stage, 

during which recovery is monitored. During this 

stage, the patient may face the risk of readmission 

to the hospital due to complications or relapse or 

may fully recover and subsequently contract the 

virus again at a later time. 

 

Our research is motivated by the existence of two 

significant categories of challenges in the 

management of COVID-19 pandemic, which are 

applicable to the management of other pandemics 

in general. Table 1 provides a summary of the 

challenges identified in the literature and their 

corresponding proposed solutions. The first 

category of challenges relates to the operation 

management of the pandemic response. In the pre-

hospital stage, the main challenge is the lack of a 

simple, efficient, agile, and low-cost screening 

method to identify potentially infected people. This 

is due to the intrinsic characteristics of the 

coronavirus including high infection rates [7], 

different virus mutations [8], and the possibility of 

reinfection [9], which necessitate such a system. 

The lack of early diagnosis results in an increase in 

hospitalized patients and subsequently puts 

pressure on the healthcare system [10, 11]. 

Moreover, overlap of the initial symptoms of this 

disease with those of other common illnesses 

complicates this problem [12]. At the beginning of  

the pandemic, the lack of test-kit, the time-

consuming diagnosis and the need for specialized 

Abbreviation: UOB: Under Observation, GU: General Unit, ICU: Intensive Care Unit, INT: Intubated, IHM: In-Hospital Mortality 

Pre-hospital 

 
GU ICU UOB INT IHM 

Hospital 

In-hospital Post-hospital 

Readmission Suspected 

people 

Possible Reinfection 

Discharging Going to the hospital 

Figure 1. Scope of our study  
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laboratories limited the use of these kits use in the 

COVID-19 pandemic [13]. It is beneficial to have 

a publicly accessible online system that 

intentionally directs individuals to appropriate 

facilities during the early stages of an outbreak by 

examining the symptoms and medical histories of 

those who are suspected of having COVID-19. 

 As evidence, a recent study showed that different 

pre-hospital pathways of COVID-19 patients have 

a significant impact on risk factors that could affect 

the outcomes of hospitalizations, resuscitations, 

and deaths [14]. In the in-hospital stage, the main 

challenge is the inability to anticipate the risks 

associated with disease severity and LoS in the 

hospital. This reduces the possibility of devising a 

suitable treatment plan and lowers the 

preparedness of decision-making centers in the 

event of hospital admission surges. Therefore, a 

system for allocating limited resources to patients 

is needed to monitor patients and allocate them 

based on relevant indicators, which in turn can help 

reduce mortality [15]. In the post-hospital stage, 

the main challenge is the lack of a tracing system 

for discharged patients in terms of symptoms and 

disease improvement processes, especially for 

those at higher risk. The uncertainty of immunity 

levels [16] and the potential for reinfection with 

this disease [17] exacerbate this issue. The lack of 

such a system reduces the effectiveness of 

treatment plans and impedes the collection and 

analysis of data on the long-term effects and 

outcomes of COVID-19. This hinders the 

development of evidence-based guidelines and 

policies for the management and prevention of 

COVID-19. Additionally, the frequency and types 

of post-COVID symptoms, the risk factors and 

outcomes associated with post-COVID symptoms, 

such as return to emergency services, hospital 

readmission, post-discharge death and preventive 

and rehabilitative strategies for post COVID-19 

patients are the most important inputs for macro 

policies in the control and management of 

epidemics. Therefore, the scope of designing a 

system that addresses the management of the 

COVID-19 pandemic extends beyond hospital 

monitoring and encompasses the period following 

discharge and subsequent follow-ups. 

The effective utilization of PPE by hospitals on the 

frontlines of pandemics and continuous exposure 

to infectious diseases is crucial for preventing and 

controlling the spread of viruses. The COVID-19 

pandemic highlighted the importance of PPE, as 

many countries have reported a shortage of PPE in 

hospitals due to the absence of a reliable system to 

provide accurate data on the demand and supply of 

PPE. In some instances, medical professionals 

were forced to use tape to mend torn masks to avoid 

contracting COVID-19 [18]. BCT can facilitate 

verifiable payment settlements to ensure that the 

PPE quota allocated by Ministry of Health and 

Medical Education (MOHE) reaches the end 

customer. To promote transparency in the PPE 

supply network, the BC can propose the use of a 

private BC and smart contract that involves all 

relevant parties, including consumers, 

manufacturers, and distributors. 

The second category of challenges during the 

COVID-19 pandemic concerns data management, 

which involves the collection, maintenance, and 

sharing of COVID-19 data. Traditional systems 

have limitations, such as a single point of failure 

[19] and a lack of data security and privacy [20, 

21]. Moreover, the inaccurate statistics of patients 

at the onset of the pandemic [22] highlight the need 

for data sharing [23] and transparency [24] to 

support the research community and the 

governments in making appropriate policies to 

cope with the unprecedented demand for 

information and knowledge [23]. Therefore, it is 

vital to adopt new technologies that enable secure 

and collaborative data sharing among various 

stakeholders, such as governments, 

epidemiologists, researchers, bioengineers, 

funding agencies, and physicians. This can 

facilitate the development of vaccines, drugs, 

procedures, treatment methods, and effective 

Table 1. Main COVID-19 pandemic management 

challenges 

Category Challenge 

description 

Response to challenge 

Operation management  

Pre-hospital 

stage 

Lack of agile and 

low-cost screening 

Intelligent infection prediction 

with in-house data  

In-hospital 

stage 

Risk assessment 

and limited 

resource 

allocating 

Intelligent prediction of 

Severity and LoS  

Post-hospital 

stage 

Possible 

reinfection and 

readmission  

Intelligent prediction of 

reinfection and readmission  

All stages  Lack of PPE 

during pandemics 

Private BC, virtual coin and 

smart contracts  

Data management 

Accuracy Fragmented 

patient’s data 

Using BC to integrate 

automatically fragmented data 

Security Confirmed data 

breaches 

Cryptographic principles of 

BC 

Transparency Complicated 

process to access 

data legally 

Control mechanisms and 

encryptions of BC 

Traceability Patient pathway 

tracing 

Irreversible transactions of BC 

Immutability Fake data Tamper proofed transactions 

of BC 

Auditability Unverifiable data Consensus mechanism in BC 

Accessibility Vulnerability to 

single point of 

failure 

Decentralized P2P network 

structure, Smart contract 

functionality 
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prevention and treatment strategies for COVID-19 

[25, 26]. However, traditional healthcare data 

management systems face significant challenges in 

ensuring privacy, security, immutability, 

transparency, traceability, auditing, data 

authenticity, flexible access, and trust [27]. Many 

of these systems rely on a centralized architecture, 

which organizes data in a hierarchical structure and 

stores it in a central repository [19]. This makes 

them vulnerable to the single point of failure risk in 

case of natural disasters [28]. To alleviate the 

pressure on the health and treatment system and 

provide optimal care for patients, it is essential to 

implement systems that can enable early, efficient, 

and prognostic diagnosis of COVID-19. These 

systems should also respect data confidentiality 

and provide data on the patient's condition to the 

relevant parties. Furthermore, robust and 

intelligent systems and collaboration among 

various stakeholders can ensure accurate and 

timely dissemination of knowledge. This can assist 

the data users, such as researchers, doctors, and 

policymakers, in devising and applying effective 

solutions for the prevention and treatment of 

COVID-19. 

The main objective of this study is to tackle the 

challenges mentioned above and to design and 

configure a high-level system based on BCT and 

AI, named BlockCOV. This system aims to support 

the pre-hospital screening of potential patients, 

predict the severity and LoS of hospitalized 

patients, and trace discharged patients to predict the 

reinfection and readmission rates. This research 

endeavors to advance the field of application of 

expert system by examining the potential 

applications of BC and ML technologies in 

pandemic management. It is expected that the 

results of this research will facilitate the utilization 

of the proposed system in future pandemics. To 

achieve this objective, this study addresses the 

following questions. 

RQ1: How can a system be designed and 

configured to assist at different stages of the 

COVID-19 pandemic? 

RQ2: How can BC and ML technologies be 

utilized to assist in the management of the COVID-

19 pandemic? 

RQ3: What are the main demographics, 

symptoms, and comorbidities used to predict 

infection? 

RQ4: What are the main demographics, 

symptoms, and comorbidities used to predict 

severity? 

RQ5: What are the main risk factors to predict LoS 

in hospitalized patients?  

This research seeks to expand the knowledge of the 

predictive risk factors for COVID-19 infection, 

severity, and LoS in hospitals, with a particular 

focus on Iran. 

The structure of this paper is as follows: Section 2 

reviews the literature on AI, BCT, and COVID-19, 

providing a brief overview of related works and an 

introduction to BC and its fundamental properties. 

Section 3 constitutes the core of our study, where 

the proposed BC-based system design and 

deployment process are detailed. This section also 

analyzes the suitability of BC for COVID-19 

pandemic management through a decision model, 

delving into the conceptual model, network 

architecture, and configurations of BlockCOV. 

Section 4 presents the implementation of 

intelligent recommendation modules, along with 

the results and analysis of experiments, addressing 

research questions RQ3 to RQ5. Section 5 

discusses the findings and implications of this 

study, offering conclusions and potential directions 

for future research. 

 

2. Literature Review 

2.1. AI and COVID-19 

Intelligent systems, including AI and ML-

algorithms, have been widely applied and 

evaluated in various domains [29-32], specifically 

in healthcare [33, 34]. This is evidenced by the 

publication of approximately 80 review paper on 

this topic since 2020. AI techniques play a 

significant role in the early-stage screening [35] 

and rapid diagnosis (pre-hospital) [36, 37], severity 

classification (in-hospital) [38, 39], LoS 

prediction, and tracing (post-hospital) [40] of 

COVID-19 patients. Moreover, they can support 

public health professionals in making complex 

decisions [41].  

 

2.2. AI and Pre-hospital Stage  

In the pre-hospital stage, an effective screening 

scheme leads to the rapid diagnosis of COVID-19, 

thereby reducing the burden on healthcare systems. 

Most previous models were based on clinical data 

and thus were not effective for the rapid screening 

of COVID-19 in the general population. In the 

literature, COVID-19 infection prediction models 

have used different input data such as 

demographic, X-ray [38], CT scans [39, 42-46], 

symptoms [47], laboratory tests [48, 49], 

comorbidities and/or a combination of these 

features [35, 50]. However, each prediction method 

has its drawbacks. For example, CT-based models 

require expensive equipment and professional 

staff, expose patients to unnecessary irradiation 
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[51], and result in overwhelming use of the limited 

resources of the health system.  

Our study focused on the use of in-house and self-

reportable data to predict COVID-19 infection. 

This involves the use of demographic data, 

symptoms, and comorbidities, which are non-

clinical data, as input features for the prediction 

model. Few studies have addressed this, but they 

are essential for the frontline response to COVID-

19. Guhathakurata et al. [52] used a Support Vector 

Machine (SVM) model to predict COVID-19 

infection based on 16 symptom-related features. 

They reported a high accuracy of 98.73, but their 

study had some limitations. For example, they did 

not include demographic variables, describe how 

they trained and tested the SVM model, explain 

how they chose the hyperparameters, and used a 

small and imbalanced dataset for the symptom 

data. These factors may affect the validity and 

reliability of the SVM model. In a related study, 

Guhathakurata et al. in a subsequent paper [53] 

attempted to improve the previous study by 

expanding the coverage of the input features for 

COVID-19 prediction. They employed artificial 

neural networks (ANNs) based on demographic 

data (four features), symptoms (nine features) and 

comorbidities (three features) to diagnose COVID-

19. They used a dataset of approximately 10,000 

samples, and reported that the long short-term 

memory (LSTM) model achieved the highest 

accuracy of 98.9. However, their approach is a 

black-box method that lacks transparency, 

interpretability, and explainability for users and 

stakeholders. Malik et al. [54] applied five ML 

algorithms using demographic and symptom data 

to diagnose COVID-19 in patients. They found that 

Naive Bayes (NB) and Decision Tree (DT) were 

the best performing methods, achieving an 

accuracy of 93.70 each. However, their study was 

limited by the use of a small and imbalanced 

dataset that may not capture the variability of 

COVID-19 symptoms or characteristics of the 

general population. 

 

2.3. AI and In-hospital Stage 

From the perspective of the COVID-19 pandemic, 

two criteria are crucial for the hospital utilization 

of COVID-19 patients. The first criterion is the 

prediction of COVID-19 severity. In the literature, 

the assessment of COVID-19 severity has 

employed several methods [55], which can be 

compared into two dimensions based on the type of 

variables used and the definition of severity. In this 

study, we utilized demographic data, symptoms, 

and comorbidities, as they are more agile and 

useful for rapid responses to the pandemic. Other 

types of data, such as electronic medical records 

(EMR), laboratory tests, imaging, prescriptions, 

and vital signs, may also be employed, but they are 

more time-consuming and less conducive to 

prompt interventions. The second dimension 

encompasses three main definitions of severity: 

those established by national or global health 

organizations like WHO or Centers for Disease 

Control (CDC), research groups, prior 

publications, or a combination of different clinical 

events. Defining the severity of COVID-19 and its 

associated risks is crucial for proactive clinical 

decision-making and resource allocation [56]. 

However, this definition is not fixed, but evolves 

over the course of the pandemic. Therefore, we 

used clinical events as the severity degree, and it 

will be discussed in section 3.2.2. Such prediction 

models can facilitate the stratification of patients 

based on their risk level and inform decisions on 

whether outpatient treatment is adequate or 

hospital admission is warranted. Moreover, high-

risk patients can benefit from more advanced and 

expensive diagnostic tests, such as chest CT, 

instead of conventional X-rays, or a more extensive 

blood count.  

The second criterion for hospital utilization of 

COVID-19 patients is their LoS of COVID-19 

patients in the hospital. The LoS criterion 

determines how long a patient with COVID-19 

must stay in the hospital and when they can safely 

be discharged. This is measured as the total 

duration of the patient's hospitalization over a 

specific time frame, which includes all consecutive 

admissions and discharges. 

According to the current literature, LoS models can 

be broadly categorized into two main types: 

classification models and regression models. The 

former is typically employed to forecast 

categorical results, while the latter predict 

numerical values. Numerous studies have used ML 

algorithms to predict survival and calculate the LoS 

of patients [57]. According to Ebinger et al. [58], 

the LoS of COVID-19 patients was predicted by 

three ML models trained on the EHRs of 966 

patients from a large US academic and medical 

center, with an accuracy of 0.765. In the ICU of 

Saudi Arabia, the Random Forest model achieved 

the highest accuracy (94.16) in predicting the LoS 

of COVID-19 patients, as reported in a previous 

study [59]. Another study in Iran compared seven 

ML techniques and found that the SVM algorithm 

performed best on the laboratory data of 1225 

COVID-19 patients, with an average accuracy of 

99.5, average specificity of 99.7, and average 

sensitivity of 99.4 [60]. A systematic study 

revealed that factors such as age, sex, and chronic 
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comorbidities, such as hypertension and diabetes, 

had a significant impact on the risk of death and 

LoS in COVID-19 patients [61]. In [62, 63], a data-

driven methodology using ML algorithms was 

used to predict the LoS of admission for COVID-

19 patients. In this study, we applied ML 

algorithms to predict LoS, determined the most 

important features, and compared them to those in 

previous studies. 

 

2.4. AI and Post-hospital Stage 

There are many studies on the role of AI in the 

COVID-19 pandemic, and we refer the reader to 

the latest related review articles. [64-74]. 

 

2.5. Intelligent BC and COVID-19 

Blockchain technology (BCT) originated from 

virtual currency transactions [75] and diversified 

its applications in various fields. In recent years, 

the health sector has attracted attention, 

particularly due to the growing interest in BC-

enabled programs, which have altered its direction 

[76-80]. Given rapid advancements in healthcare, 

the industry has recognized BC as a flexible 

technology with potential benefits [81, 82]. The 

medical community's adoption of innovative 

methods at the intersection of healthcare and BC 

has led to a focus on identifying the root causes of 

the current healthcare systems and exploring 

potential solutions based on BCT. This has resulted 

in numerous countries’ dedicated efforts towards 

transforming the entire healthcare ecosystem. For 

example, IBM Watson agreed to a two-year 

contract with the US Food and Drug 

Administration to implement BCT to securely 

share patient data [83]. The US Centers for Disease 

Control and Prevention are also testing BC 

capabilities, such as time-stamping, peer-to-peer 

reporting, and feature processing, for real-time 

detection of disease outbreaks [84].  

Recent studies have explored the use of BC in 

information management systems [85], especially 

in the healthcare context [27, 86, 87]. One of the 

most serious challenges in healthcare is data 

management, which faces problems such as lack of 

diagnostic data, interoperability, and inability to 

maintain confidentiality and security of patient 

health records [20, 21]. BCT offers a promising 

solution for these challenges by enabling secure 

and transparent data management. As a result, 

proposed solutions have been created to address the 

shortcomings of healthcare information technology 

systems in both the public and private sectors. For 

instance, Stafford et al. [88] claimed that 

organizations that adopt BC can ensure rapid 

interoperability between healthcare, user-centered 

medical research, and the prevention and detection 

of counterfeit drugs. BC can also help increase the 

accuracy of disease diagnoses in cases where 

security and privacy are challenging for the 

healthcare systems [89]. 

Literature on intelligent systems often concentrates 

on limited stages of pandemic management. 

Studies [90, 91] have proposed a system design that 

utilizes BC, AI, and drones to control the spread of 

COVID-19. The system capitalizes on the benefits 

of BC, such as security, transparency, and 

decentralization, to ensure the dependability and 

reliability of data collected by drones. AI is 

integrated to provide drones with image 

processing, face recognition, and object detection 

capabilities. The system also employs AI to 

analyze data and offers real-time feedback and 

guidance to authorities and the public. Another 

study [92] presented a communication scheme that 

leverages BC and AI to enable multiswarm drones 

to address COVID-19 situations. Study [93] 

proposed a smart healthcare system that integrates 

BC and AI to monitor and detect COVID-19 in 

biomedical images. This system can be used for 

self-testing, diagnosis, and data sharing. It employs 

deep learning models to analyze chest X-ray 

images and classify them as COVID-19 positive or 

negative. The system also utilizes BCT to store and 

verify diagnosis results and patient information. 

Some research on COVID-19 pandemic 

management aims to monitor patients who are in 

the hospital or in isolation using BC and ML 

methods. For example, [94] presented a framework 

of oxygen level monitoring and severity 

calculation for COVID-19 patients using a private 

BC on Hyperledger Fabric. The study also uses AI 

to analyze the oxygen saturation data and generate 

a severity score and a probabilistic decision of 

being a COVID-19 patient. Similarly, [95] 

employed AI to analyze the blood oxygen 

saturation data and generate a severity score and a 

probabilistic diagnosis of COVID-19. The paper 

also utilized BC to store and verify the diagnosis 

results and patient information in a secure and 

decentralized manner. 

 

2.6 BC and Its Fundamental Properties 

BC, a distributed database or ledger, is an append-

only store of time-stamped transactions maintained 

across many machines (nodes) in a peer-to-peer 

network. The BC structure consists of a linked list 

of blocks that contain an ordered set of 

transactions. The connection between a block and 

its predecessor is often secured using 

cryptographic hashing. Figure 2 shows the overall 

structure of BC. BC gathers transactional data and 
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stores them in blocks. Once a block is full, the data 

is encrypted to produce a hash, which is a 

hexadecimal number. The hash is then added to the 

header of the next block and encrypted with the 

other data in the block. Consequently, a chain of 

connected blocks is produced. Next, transactions 

follow a specific process depending on the BC 

nodes involved. BC nodes are users with different 

roles across the BC network, for example, to 

initiate or validate a transaction. Typically, the 

transaction is sent to the network and waits until the 

miner nodes pick it up and the mining process 

starts. User nodes are responsible for verifying the 

transactions in the chain. The process of agreeing 

with the validity of transactions in the chain is 

called consensus. Many consensus algorithms have 

been proposed in the literature, each with unique 

performance and security features [96, 97]. BCT 

has several characteristics that make it highly 

prevalent. Each of these characteristics is briefly 

explored below: 

 

2.6.1. Decentralization 
Decentralization is a process in which power and 

authority are distributed away from a centralized 

place or authority, allowing everyone in the 

network to access data and conduct transactions 

directly with end-users without the need for a 

trusted third party. This is in contrast to a 

centralized network, where all transactions are 

handled by a centrally trusted authority, making it 

easier for hackers to tamper with data on a single 

node and limiting access to transaction history only 

to registered individuals. BCT uses 

decentralization principles to address these issues 

and improve data security. 

 

2.6.2. Transparency and Privacy 

BC is a Distributed Ledger Technology (DLT), 

characterized by its decentralized and secure 

nature. It comprises a distributed database shared 

among nodes in a peer-to-peer network. Each node 

maintains a copy of the BC ledger, which is 

updated as it continues to complete its network-

wide responsibility to validate transactions. 

Transparency is an essential characteristic of BCT 

because every transaction is visible to every node 

in the network. However, the use of pseudonyms in 

BC transactions ensures that the privacy of the user 

is protected even if the transaction is made using a 

public address. In other words, the real identity of 

the user remains concealed, whereas the 

transaction history is transparent and visible to all 

nodes in the network. 

 

2.6.3. Immutability 

BC offers a framework for measuring truth [98]. 

Immutability, a fundamental characteristic of BC, 

refers to its capacity to maintain a permanent, 

irrevocable, and unchangeable history of 

transactions. This property has the potential to 

enhance the trustworthiness and reliability of data 

that companies use and exchange on a daily basis 

while also streamlining the auditing process. The 

irreversible nature of BC transactions is due to the 

hashing process of the blocks in the chain. The 

hashing process of a new block always 

incorporates metadata from the hash results of the 

preceding block. It is impossible to manipulate or 

delete data after it has been validated and placed in 

the BC because subsequent blocks in the chain 

would reject the attempted modification owing to 

invalid hashes. In other words, if data is tampered 

with, the BC will fail, and the cause will be 

obvious. This property is not observed in 

traditional databases, where information can be 

easily updated or erased. 

 

2.6.4. Peer to Peer Network 

The peer-to-peer network property in BC is a key 

characteristic that enables direct interaction and 

data transmission between nodes or participants in 

the BC network without reliance on a central 

authority or intermediary. This property is critical 

for the decentralization, distribution, and security 

of BC networks. Additionally, it enhances the 

scalability, performance, and robustness of the 

network by accommodating a large volume of 

transactions and nodes without impeding the 

system speed or reliability. The realization of the 

peer-to-peer network property in the BC is 

achieved through the use of cryptographic 

protocols, consensus algorithms, and distributed 

ledger technology, which guarantees the validity, 

integrity, and immutability of the data stored and 

exchanged on the BC. 

 

2.6.5. Distributed Ledger 

A distributed ledger is a characteristic of a BC that 

enables data to be stored and synchronized across 
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multiple nodes or computers in a network. Each 

node maintains a copy of the ledger that records 

transactions, such as the exchange of assets or data, 

among the network participants. This enhances the 

transparency, security, and decentralization of the 

ledger, as no single authority or intermediary can 

control or manipulate data. BC is a specific form of 

DLT, but not all distributed ledgers follow the BC 

model. BC is a specific form of DLT, but not all 

distributed ledgers follow the BC model. BC 

employs a data structure that links transactions in 

chronological order using cryptographic hashes. 

This ensures the immutability of the ledger, as any 

alteration in one block would invalidate the hashes 

of subsequent blocks. Other forms of distributed 

ledgers can adopt different data structures or 

consensus mechanisms to achieve comparable 

objectives. 

 

2.6.6. Irreversibility 

Irreversibility is a property in which a process, 

once it occurs, cannot be reversed. Hashing is a 

complex process that generates a unique fixed-

length output for any input that cannot be inverted. 

For example, a private key cannot be generated by 

using a public key. Furthermore, a small change in 

the input can result in a completely different 

output. Therefore, minor modifications are not an 

option for this system. To compromise the 

network, it is necessary to alter every piece of data 

stored at every node. Moreover, because the hash 

function is one-way, it is impossible to reconstruct 

the original data from the hash results. Therefore, 

to modify or erase a transaction in the BC, all 

subsequent blocks must be changed, which is 

practically impossible because of the high 

computational power and consensus required. 

 

2.6.7. Anonymity 

Anonymity means that the real identity of the user 

is hidden from the public, whereas the transaction 

history is transparent and visible to all nodes in the 

network. Anonymity is achieved by employing 

pseudonymous addresses, which are unique strings 

of characters that represent a user's identity in the 

BC. These addresses are generated through 

cryptographic processes and are not directly linked 

to a person's real-world identity. As a result, users 

can conduct transactions without disclosing their 

personal information or revealing their true 

identities. However, anonymity is not absolute on 

the BC, as advanced techniques can be used to trace 

transactions and infer the identity of users. For 

example, some BC networks use proof-of-work 

algorithms that require users to reveal their public 

keys, which can be used to track their activities. 

Some BC networks use zero-knowledge proof 

systems, which enable verification without 

disclosing data, to enhance user anonymity. 

 

2.6.8. Auditability 

Auditability is a characteristic of the BC that 

enables the data stored in the BC to be tamper-

resistant and verifiable. This ensures that 

transactions recorded in the BC are transparent, 

traceable, and accountable. Auditability is 

achieved by using cryptographic techniques, such 

as digital signatures, hashes, and proofs, to link 

transactions in chronological order and prevent any 

unauthorized changes. Auditability also allows 

network participants to verify the validity and 

integrity of data without relying on a central 

authority or intermediary. Auditability is one of the 

main advantages of using BCT in various 

applications, such as financial services, public 

registries, provenance, and regulation. Audits can 

take different forms depending on their purpose 

and scope. They may include financial audits, 

compliance and regulatory audits, or any 

combination thereof, and BCT can facilitate any of 

them. In the BC, a digital distributed ledger records 

and validates all transactions that occur in a 

network using a digital timestamp. Consequently, 

past records can be audited and traced by accessing 

any node in the network [99]. 

 

3. Proposed Method 

Figure 3 illustrates the idealized process and steps 

for designing and deploying a BC-based system.  

This involves describing the problem statement 

and requirements in Sections 1 and 2, by an 

evaluation of the suitability of BC and a 

presentation of high-level conceptual design and 

BC configuration. However, the detailed design of 

the BC and its development, testing, and 

deployment are not the focus of this study (Steps 

5–7). While a platform has been selected for this 

research among the existing ones, some design 

Figure 3. A proposed blockchain-based system 

design and deployment process 
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parameters are not mentioned here, as they are 

dependent on the platform chosen which is 

explaned in Section 3.3. 

 

3.1. BC Suitability 

The initial consideration in determining whether to 

implement a BC-based solution to tackle a 

particular problem is to evaluate the 

appropriateness of employing the BC. A recent 

study [100] revealed that 62% of the share of BC 

suitability in BC evaluation studies highlights the 

significance of this evaluation step. Given the 

intricate internal structure of BC and its numerous 

configurations and variants [101], it is crucial to 

assess whether the BC aligns with the requirements 

and characteristics of the specific use case [102]. 

Although a wide range of BCs have emerged since 

the introduction of Bitcoin in 2008 [75], there are 

few models available in the literature to guide the 

evaluation of BC suitability for use cases. 

Consequently, there is limited knowledge and 

many common misconceptions in this area [103]. 

Existing approaches that assist decision-makers in 

adopting BC are divided into three main categories: 

decision flowcharts, conceptual frameworks, and 

decision models [100]. Decision flowcharts consist 

of a series of questions that help the user obtain a 

recommended decision based on the fundamentals 

of BCT. These flowcharts can be used efficiently 

by decision makers from various backgrounds and 

do not require an in-depth technical understanding 

of BCT. By reviewing the literature on the 

suitability of BC, 15 papers were found. The 

primary outcomes of these decision-making 

flowcharts are Yes or No answers regarding the 

suitability of the BC [104-107], determining the 

type of BC [108-112] and alternative solutions to 

BC such as Central Database, Shared Central 

Database, Distributed DB, or Distributed Ledger 

[102, 113-115]. The series of inquiries utilized in 

these flowcharts encompasses a spectrum of topics, 

ranging from the fundamental properties of BC to 

more technical aspects, such as consensus 

algorithms and on-chain vs. off-chain strategies. In 

this study, we were inspired by two of the most 

cited works, Wüst et al. [102] and Lo et al. [109], 

and we proposed a customized COVID-19 decision 

flowchart. Figure 4. shows the flowchart and Table 

2 provides questions and answers to evaluate the 

suitability of applying BC to the COVID-19 

pandemic problem. 

Table 2. BC suitability inquiries 

No. Answers 

1 Yes. To analyze the patients’ data in the three stages of the pandemic, including screening, hospitalization, and follow-up after 

discharge, it is necessary to store the patients’ pathways throughout the treatment process so that the patient can be tracked 

effectively and securely whether an individual state infected or not needs to be stored. If data storage is not required, BC will 
not provide any additional benefits to the existing technical solutions. 

2 Yes. Multiple parties involve in the COVID-19 pandemic. The BC network includes participants from various sectors and roles 

such as primary care centers, public and private hospitals, laboratories, patients, physicians, research institutes, government 

authorities, and the MOHE. These participants can read and/or write data on the BC depending on their permissions and 
responsibilities. 

3 No. There is no need for an entity such as the government or the MOHE to execute a certain operation or alter the policy or 

configuration of an operation. 

4 Yes. All writers on the BC have unique identifications. Primary and secondary care facilities are assigned a unique ID and every 
individual, including physicians and patients, has a unique National Code. If a system requires only a single writer, a BC will 

not offer any extra assurances compared to a conventional database, which would likely be a more suitable choice, especially 

from a performance perspective. 

5 No. Not all writers on the BC are necessarily trusted, as they may have different incentives, interests, and perspectives. 

6 Yes. The trusted authority that verifies and provides data and information on the BC is distributed among multiple nodes and is 

not controlled by a single entity. A decentralized trusted authority does not rely on a single point of trust or failure, but uses a 
network of nodes that can validate and verify the data using cryptographic techniques. 

7 Yes. The operation of the BC system is distributed among multiple nodes. A decentralized operation does not rely on a single 

point of control or failure but uses a network of nodes that can execute and process transactions on the BC. 

8 Yes. Immutability ensures that the data stored in the BC network cannot be altered or tampered with by any malicious actor, and 
prevents data misuse or political censorship. Immutability can enhance the trustworthiness and transparency of the data, which 

can be useful for adopting appropriate policies against various pandemics, such as tracking the spread of the virus, verifying test 

results, allocating medical resources, and monitoring the patient’s condition and progress. 

9 No. It does not require a high performance, such as PayPal. However, BC may not reach the same level of performance as 

centralized systems such as PayPal, advancements in technology and optimization techniques can help improve its scalability 

and speed over time.  
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3.2. BC Configuration 

Since the advent of bitcoin, many configurations 

and variants have emerged [101]. Therefore, it is 

essential to consider systematically the features 

and configurations of BCs and their impact on 

quality attributes for the entire system that is to be 

designed. We have categorized the configurations 

of BC-based system into the following categories: 

a) level of decentralization and Authority control, 

b) Network participants’ definition, c) block 

structure, d) smart contracts. 

 

3.2.1. Level of Decentralization and Authority 

Control 

In the BC, decentralization refers to the transfer of 

supervision and decision-making from a 

centralized organization to a distributed network. 

Decentralized networks aim to reduce the degree of 

trust that participants need to place in each other 

and prevent their ability to exercise authority or 

command over each other in ways that degrade the 

efficiency of the network. Depending on the level 

of decentralization required, there are four types of 

BCs. 

 

Public BC: It operates on open-source principles. 

It allows anyone to join and participate in the 

network as a user, developer, or community 

member, without imposing any barriers to entry. 

The participants collectively maintain the integrity 

and validity of the ledger, which records all 

transactions and state changes. A public BC is 

transparent, as every participant can access and 

verify the transaction history and the current state 

of the ledger. It is also decentralized as no central 

authority or intermediary controls or regulates the 

network. Moreover, a public BC is inclusive and 

resilient because it enables global participation and 

resists censorship and shutdown. Well-known 

examples of public BCs are Bitcoin and Ethereum. 

 

Private BC: It is a private asset of an organization 

or individual. Unlike the public BC, a central 

administrator manages all critical aspects of the 
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network. Participants can join such a private 

network through authentic and verified invitations. 

Validation is also necessary, either by the network 

operator(s) or a clearly defined set of protocol rules 

implemented by the network. Unlike public BCs, 

private BCs do not disclose transactions or related 

information to the public. The most popular private 

BC platform is Hyperledger Fabric.  

Consortium BC: It is governed by a selected 

group of participants (e.g., several organizations) 

that form a consortium or federation. These BCs 

are semi-decentralized and involve multiple 

organizations working together. They allow each 

organization to have a representative node that 

participates in the consensus process. The main 

advantage of this type of BC over a private BC is 

that it relies on (and is managed by) multiple 

organizations instead of one. Users in a consortium 

can operate or run a node, conduct transactions, and 

audit the BC. The most popular consortium BC 

platform is Ripple. 

 

Hybrid BC: This type of BC combines the 

advantages of other types of BCs to address their 

limitations and provides an effective solution for 

reliable data sharing, access management, etc. A 

hybrid BC is a DL that balances controlled access 

and freedom. The hybrid BC architecture is 

characterized by the fact that it is not open to 

everyone, but still offers BC features such as 

integrity, transparency, and security. The most 

popular hybrid BC platform is Dragonchain. 

BlockCOV has two separate BCs: a hybrid BC for 

managing pandemic-related data and a private BC 

for the fair distribution of PPE. The participants in 

the BC network are referred to as nodes and are 

responsible for ensuring the accuracy and 

reliability of the data stored in the BC throughout 

the pandemic. In general, each BC has three types 

of nodes with distinct functions. 

Full nodes are vital in decentralized BC networks 

because they store and verify the entire public data 

of a BC. They authenticate and store every block 

but only retain recent data. Full nodes support the 

network by validating blocks and verifying public 

blocks and states. By contrast, light nodes are 

designed for devices with limited capacity, such as 

embedded devices or mobile phones, and only store 

a block header that confirms the validity of 

previous transactions. The block header contains 

important information such as a timestamp and a 

unique number (nonce). However, archive nodes 

store the entire history of a BC, including all 

previous states. They have a snapshot of the BC 

ecosystem in each block since its creation. Table 3 

presents the proposed entities, node types, and 

roles in the BlockCOV ecosystem. A schematic of 

the theoretical framework and its constituent 

elements is shown in Figure 5. 

It is essential that all three types of nodes be 

included in the BlockCOV network. The MOHE in 

both BCs serves as an authority node, functioning 

as a master node that controls access and grants 

permissions to other nodes seeking access to the 

network. Additionally, MOHE can operate as a 

validator node that ratifies transactions and blocks 

within the network. As an authority node, MOHE 

is expected to store the complete transaction 

history of the network. MOHE is responsible for 

authenticating the nodes and acting as an authority 

node, which means that it simultaneously functions 

as a full and archive node. This node can quickly 

retrieve data from a database. Deciding the number 

of archive nodes required has some tradeoff 

between implementation cost and the feasible level 

of fraud and attacks, and is not covered in this 

study.  

The second node type comprises participant nodes 

that upload data to the network. These nodes 

include primary healthcare providers, hospitals, 

and individuals, and they function as full nodes 

capable of sending and receiving transactions on 

the network and verifying the validity of 

transactions and blocks. Participant nodes also 

possess the ability to join and leave private 

Table 3. Participants in BlockCOV network 
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subnetworks within the network. To access the 

network, these full nodes require a public key and 

private key combination. These nodes sign the 

information records they upload using their private 

keys, and BlockCOV uses this signature to confirm 

that the information is submitted by authorized 

nodes within the network. In addition to managing 

user accounts, MOHE assumes a supervisory role 

in reviewing records submitted by network 

members. If there are any issues with the data, 

MOHE investigates the associated members. 

During the pre-hospital stage, the screening data 

serve as the primary input to the BC network and 

can be transmitted to the network by both primary 

healthcare providers and individuals who have 

already been authenticated for online screening in 

the form of self-screening. At the in-hospital stage, 

private and public hospitals submit treatment 

process data to the BC network. The details of the 

required data are discussed in Section 3.3. 

Additionally, in the post-hospital stage, patients 

send their follow-up data after being discharged 

from hospitals, enabling tracing of their conditions. 

These follow-ups can be reminded by the smart 

contract-based notification of the BlockCOV. 

The third type of node in the network is a light 

node. Light nodes are a type of node that are 

available for public use by individuals, research 

centers, and insurance companies. These nodes are 

designed for viewing transactions only upon 

request to the MOHE and synchronizing with the 

latest state of the network. Despite their limited 

functionality, light nodes are also able to 

participate in the transaction validation process 

within the network. Unlike full nodes, light nodes 

do not require authorization to access the network 

and can join without requesting permission. Their 

primary role is to verify the data blocks of other 

users, ensuring the integrity and accuracy of the 

information being shared. Insurance companies, 

research centers, and individuals are light nodes 

that do not require sending data to the BC network 

but can be responsible for validating transactions in 

the network.  

For the fair distribution of PPE, we propose a 

private BC architecture characterized by a limited 

scope of transactions. Specifically, the only 

transactions permitted on this BC are those 

involving the transfer of amounts between 

consumers and distributors, as well as between 

distributors and manufacturers. This topic is further 

discussed in Section 3.4.3. For the COVID-19 

management network, we propose a hybrid BC 

architecture that combines a public BC with a 

private BC to address the challenges mentioned in 

Table 1. We can store and verify both public and 

private data on the network depending on the type 

and source of the data. For example, we can store 

and verify basic information such as patient name, 

national code, sex, and age on a private BC, as 

these data are sensitive and personal and should not 

be exposed to the public. Encryption can be used to 

protect data from unauthorized access and 

disclosure and hashing can be used to check their 

integrity and validity. Smart contracts can also be 

used to control the access and visibility of data by 

defining the rules and policies of the network. Only 

authorized participants such as the MOHE, primary 

health providers, and hospitals can access and 

decrypt the data. On the other hand, we can store 

and verify the symptoms, comorbidities, clinical 

data, dates and times of admission and discharge, 

and follow-up data on the public BC, as these data 

are useful and relevant to the public interest and 

can help with the screening, monitoring, and 

tracing of COVID-19. Digital signatures can be 

used to verify the identity and authenticity of data 

sources, and consensus protocols can be used to 

secure and verify transactions and data in the 

network. Anyone can access and validate these 

data, but only authenticated participants, such as 

primary health centers, hospitals, and patients, can 

send them to the network. Therefore, the hybrid BC 

is chosen because it provides transparency and trust 

for public health data and transactions, which can 

improve the awareness and compliance of people 

and authorities. It allows for the selective 

disclosure and access control of private health data 

and transactions, which can protect the privacy and 

confidentiality of patients and organizations.  

It enables faster and cheaper transactions and data 

processing, as the private BC can reduce the 

network congestion and transaction fees of the 

public BC. 

The proposed modules are designed and applied to 

provide suggestions and recommendations for use, 

and are comprised of three modules, as depicted in 

Figure 5(c). These modules include infection 

prediction, severity and LoS prediction, reinfection 

and readmission rate prediction. These modules are 

implemented using a ML model and trained using 

historical data available on the BC. The input data 

for these modules is sourced from three separate 

data chains (Figure 5e) namely, the screening, 

monitoring, and tracing chains, maintained by the 

participants in the network. In the screening chain, 

individuals who are suspected of having COVID-

19 are screened and, if necessary, referred to a 

hospital for further investigation. In the monitoring 

chain, patients who require more care are 

hospitalized, monitored, and provided with 
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medical equipment, based on the severity of their 

illness and hospital LoS. In the tracing chain, 

patients who have been discharged from the 

hospital are followed-up. Stakeholders in the 

network use smart contracts to add or query 

information records. These smart contracts can be 

deployed in the BlockCOV system and are 

compatible with the XDC EVM BC. The details of 

each chain are as follows.  
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3.2.2. Screening Chain 

The objective of screening is to identify, diagnose, 

isolate, and treat cases of COVID-19 in its early 

stages. Figure 6 illustrates the screening chain 

process, which consists of two stages: 

remote/online screening and clinical screening. 

Due to the rapid and extensive transmission of the 

pandemic virus at an early stage, it is recommended 

that initial remote screening be conducted. 

Individuals can use online systems, application 

programs, or dedicated call centers to undergo 

COVID-19 screening. Upon completion of the 

questionnaire, the individual's data, including 

demographics, symptoms, comorbidities, and 

history of close contact with infected individuals, 

are recorded in the system. Based on this 

information, if an individual is predicted to have 

COVID-19, their severity will be predicted. If they 

belong to the high-risk group, they will be referred 

to hospitals for clinical screening. Following the 

clinical procedure, the final diagnosis will be 

uploaded to the system. Depending on the patient's 

condition, they may be hospitalized, quarantined, 

or advised to rest at home. Hospitalized patients 

enter the second chain. 

 

3.2.3. Monitoring Chain  
The monitoring chain comprises two types of 

entries: those referred from the previous chain, and 

those who go directly to the hospital. From a 

pandemic management perspective, the purpose of 

the monitoring chain is to predict severity and LoS 

to prepare appropriate treatment plans and resource 

allocation. The severity of COVID-19 is 

determined using clinical event data as criteria, as 

defined in Table 4 and depicted in Figure 7. This 

process begins with the date and time of admission 

to the hospital until discharge or IHM. Discharged 

patients then enter the third chain of the BlockCOV 

system. 

3.2.4. Tracing Chain 

Individuals discharged from the previous chain 

enter this chain. Figure 8 presents the possible post-

hospital outcomes for patients who are treated for 

COVID-19, which can be categorized into four 

states: out-of-hospital mortality (OHM), 

reinfection (ACD), readmission due to 

incomplete recovery (path ABF), and 

readmission after complete recovery 

(ACDEF). We focused on readmission 

and reinfection, as these are crucial factors to be 

considered in pandemic management. These 

outcomes can influence the effectiveness and cost-

effectiveness of public health interventions and 

policies aimed at reducing the burden and severity 

of COVID-19 [116]. The risk of reinfection and 

readmission due to COVID-19 poses a significant 

challenge to the healthcare system, as it can lead to 

an increased demand for critical resources such as 

hospital beds, ventilators, and personal protective 

equipment. This strain on the healthcare system can 

compromise the quality of care, increase the risk of 

virus transmission, and make it more difficult to 

implement effective containment and mitigation 

strategies such as testing, tracing, isolation, and 

vaccination. Therefore, it is essential to closely 

trace and report these outcomes, and utilize data 

and evidence to inform and improve COVID-19 

prevention and management policies and 

strategies. 

 
Table 4. Clinical events and definitions 

Event Included? Definition 

OUT No Patients who are diagnosed with COVID-

19 through a positive PCR test or exhibit 
symptoms suggestive of the disease, yet do 

not require hospitalization or intensive 

care, are typically referred to as 
outpatients. These individuals are typically 

discharged from the hospital within a few 

hours of their initial visit. This event was 
not included in our study. 

UOB Yes Another outpatient status in this condition, 

the patient stays in the hospital but as an 
outpatient, which means that the patient 

has a condition that healthcare providers 

want to monitor to see if the patient 

requires inpatient admission. 

GU Yes This refers to the admission of a patient to 

a general unit and does not require 
intensive care or other specialized services. 

ICU Yes This refers to the admission of a patient 

who requires intensive care services. 
INT Yes Intubation admission means the patient 

requires intubation to deliver oxygen to the 

lungs or mechanical ventilation to help the 
patient breathe by providing positive 

pressure to the lungs 

IHM Yes This is defined as an encounter with a 
discharge status of death or in-hospital 

mortality. 

 

3.3. Block Structure Information  
One of the emerging BC platforms, XDC, which 

has gained significant recognition [117], serves as 

the system design framework in our study. As a 

pioneering hybrid BC, XDC facilitates fast, secure, 

and cost-effective transactions to establish hybrid 

relay bridges and attain spontaneous block finality, 

thereby enhancing transaction security and 

fostering transparency among stakeholders. XDC 

employs a consensus algorithm known as DPoS, 

which is a delegated proof-of-stake mechanism 

that designates network validators by means of 

coin-holders delegating their votes. XDC stands 



An Intelligent Blockchain-Based System Configuration for Screening, Monitoring, and Tracing of Pandemics 

out for its exceptional energy efficiency, 

surpassing the energy consumption of PoW mining 

by a factor of ten and improving upon the energy 

efficiency of PoS mechanisms [118]. In 

contemporary BC systems, the duty of constructing 

blocks has been delegated to the chosen platform, 

leaving aside the role of miners as previously 

observed in older BC architectures. This research 

focuses solely on block information. The blocks in 

our proposed architecture primarily comprise three 

types of transactions, which are loaded by primary 

healthcare, individuals, or hospitals. Figures 9 and 

10 depict the arrangement of data fields and 

structures within block transactions. Each 

transaction contains five fundamental data 

elements, including the time stamp, sender, 

recipient, amount, and content of data records. The 

sender, one of the three primary entities in the BC 

network, is identified through the timestamp and 

the transaction time. At present, the receiver and 

amount fields are set to NULL, and the records are 

stored in the "data" field. The records are organized 

in a hashed table structure, similar to a dictionary 

that contains unique keys and their corresponding 

values. The keys to these hash tables represent 

various classes and records, such as screening, 

hospital monitoring, and follow-up. The values of 

these hash tables are objects that consist of record 

information and other nested objects. In a hash 

table format, the records can be stored in an 

unformatted manner within the BC. 
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3.4. Smart Contracts in BlockCOV 

Smart contracts, which are self-executable codes 

deployed on a BC, automatically execute when 

triggered [119]. These contracts can be used to 

build trust in a no-trust contractual environment 

and enforce terms and conditions when certain 

conditions are met [120]. Proposed for the 

administration of the COVID-19 pandemic on the 

XDC platform-based BC is the use of smart 

contracts to further implement the monitoring 

function [121]. Smart contracts offer the advantage 

of executing exactly as planned, without the 

possibility of failure, censorship, fraud, or third-

party interference. The XDC platform facilitates 

the creation and deployment of decentralized apps 

(dApps) with a runtime that can execute smart 

contract code, making it simple for developers. Our 

COVID-19 pandemic management system on the 

BC can autonomously monitor system status and 

provide inquiry features by developing suitable 

smart contracts. 

3.4.1 COVID-19 Inquiry 

The process of obtaining information regarding 

individuals' infection records in BlockCOV is 

carried out through the utilization of query 

functions and smart contracts, as shown in Figure 

11(a), and can be accomplished in two ways. If the 

individual seeking the information is the patient, 

the query will display comprehensive data such as 

the date and name of screening, hospitalization 

center, and post-discharge follow-up data. 

However, if the inquiry is being made by a light 

node, such as a transportation ticket issuing center, 

the query will only display the individual's most 

recent infection status and the date of the infection. 

3.4.2 COVID-19 Follow-up 

During the pandemic stages, pre- and post-hospital 

notification systems can assist in pandemic agile 

intervention. At the pre-hospital stage, some 

individuals have suspicious symptoms, but they are 

not severe enough to visit the screening or 

healthcare centers. Sending notification messages 

to invite these individuals to perform online 

screening is useful. These discriminations are made 

either through online self-screening or through 

healthcare call centers. The second place that needs 

notification is the follow-up process after patient 

discharge from the hospital, where the patient's 

condition must be monitored. Regular short-term 

symptomatic monitoring contributes to patient 

recovery. In addition, the possibility of reinfection 

with COVID-19 can be monitored. This 

notification system can be properly managed by 

utilizing the BlockCOV described in this study, 

combined with smart contracts. MOHE must 

execute a detect () function called by the web 

middleware, as shown in Figure 11(b). This 

function is used to query the list of people that need 

to be considered, as mentioned above. A 

notification is broadcast to the network and its 

status is updated by the follow-up function of 

F/U_Notify (). If after a certain period of time 

follow-up is not done by the person to whom the 

notification is sent, the call center function is 

executed, which is followed up by phone and then 

publishes the information on the network using the 

add function. 

 

3.4.3. BlockCoin 

The pandemic's significant obstacle was PPE's 

increased demand, causing severe shortages, 

primarily affecting frontline workers and medical 

staff. Various factors, such as stockpiling, panic 

buying, and misuse, had a profound impact on the 

supply chain, putting numerous lives in jeopardy 

[122]. Typically, purchasers of PPE such as 

hospitals acquire these products from distributors, 

who in turn pay manufacturers in cash for the PPE. 

The utilization of a virtual currency is 

indispensable for the effective facilitation of value 

exchanges within the BlockCOV ecosystem. The 

XRC20 token standard delineates the prerequisites 

for implementing token contracts on XDC 

networks, encompassing the requisite functions 

and events. Figure 12 (a) depicts the functions and 

events of XRC20 token. Traditional transactions 

involve the exchange of cash among 

manufacturers, distributors, and hospitals. 

However, the introduction of the XRC20 interface 

presents an alternative method of conducting 

payments through the transfer of token balances. 

Our proposed design envisions the utilization of 

XDC coins to replace cash transactions between 

manufacturers and distributors, as well as between 

the distributor and the hospital. The XDC coin is 

always set at a 1:1 conversion ratio with legal 

tender, ensuring that its value is equivalent to that 

of legal money. The process begins with consumers 

logging into the web middleware (Figure 12(b)) 

and purchasing the necessary PPE from the 

distributor.  

Upon the completion of a successful sale, the 

BlockCOV system prompts the execution of the 

pay() function to finalize the transaction. The pay() 
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function initially calls the TransferFrom() function 

to transfer the BlockCoin from the consumer's 

address to the distributor's address, with the 

amount of BlockCoin being equivalent to the 

selling price of the PPE to the end user (e.g., 20 

BlockCoins). This is followed by a second 

invocation of the TransferFrom() function, which 

transfers the BlockCoin from the distributor's 

address to the manufacturer's address. In this 

instance, the amount of BlockCoin transferred is 

the selling price less the distributor's income (e.g., 

3 BlockCoins), and the manufacturer's income is 

the remaining XDC coins (e.g., 17 BlockCoins). 

4. Evaluation Results 

BlockCOV incorporates three intelligent 

suggestion modules: infection prediction, severity 

and LoS prediction, and reinfection and 

readmission predictions. The development of this 

intelligent prediction system was guided by 

CRISP-DM methodology [123], which took 19 

months because of the difficulty in accessing 

government data. This highlights the challenges 

faced when developing data-driven intelligent 

systems, particularly when working with sensitive 

and confidential data. Three integrated datasets are 

required to implement proposed modules: 

screening dataset, hospital admission dataset, and 

reinfection/readmission tracing dataset for 

discharged patients. Data were collected from 117 

public and private hospitals in Iran between 

February 1, 2020, and September 30, 2020. Figure 

13 shows the flow of raw data and its preprocessing 

across different pandemic stages. From a total of 

201,911 rows of raw data obtained, 66,143 clean 

records were entered into the infection prediction 

module. Among 18,740 patients admitted to the 

hospital, only 8,639 rows of data provided suitable 

conditions for use in the second module. 

Unfortunately, post-hospital tracing data are not 

systematically available for HIS in Iran. The model 

behind the third module is explained in Section 

3.2.3. However, we were unable to implement this 

part because of a lack of data. The cleaned datasets 

applied in state-of-the-art classifiers were selected 

based on a literature review. The hyperparameters 

of these classifiers were tuned using a grid search 

and the models were built using Python. The 

accuracies of the models were compared, and the 

most important features at each stage were 

determined using SHapely Adaptive explanations. 

 

4.1. Infection Prediction Module  In this module, our goal is to achieve an accurate 

prediction of COVID-19 infection based on 

Figure 11. (a) Flow of COVID-19 infection query (b) Flow of COVID-19 follow up notification 
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nonclinical data using ML classification 

algorithms. We conducted a comprehensive review 

of the literature, both generally and in the context 

of COVID-19, and selected 11 state-of-the-art 

classification algorithms for the analysis. The 

dataset used in this study consisted of 66,143 

records, including one target variable and 38 input 

features such as basic information (6), symptoms 

(17), semi-clinical data (1), and comorbidities (14). 

A detailed description of these features and the 

dataset characteristics is provided in Appendix A1. 

To fine-tune hyperparameters of the classifiers, we 

used a Grid Search. The hyperparameter names and 

tuned values are given in Appendix A2. We applied 

the classifiers to the dataset using Python software 

and evaluated their accuracy scores through 10-

fold cross-validation. The results, which can be 

found in Table 5, indicate that XGBoost achieved 

the highest accuracy of 73.94%. 

Figure 14 shows the absolute SHAP values for the 

top 20 factors that influence the outcome. In 

respond the RQ3, the SHAP values suggest that 

“contact with infected people” is the most critical 

factor in predicting COVID-19 infection, with a 

substantial impact on the model output. The second 

and third most important features are “cough” and 

“age,” respectively, which also have moderate 

impacts on the model output. These features reflect 

the common symptoms and risk factors of COVID-

19, as cough is a frequent sign of respiratory 

infection, and older age is associated with higher 

mortality and severity of COVID-19. Other 

features with weak impacts on the model output 

include “muscle pain,” “fever,” “cardiovascular 

disease,” “PO2,” “respiratory disease,” “cancer,” 

“male,” “diabetes,” “kidney disorders,” 

“anorexia,” “headache,” “stomach,” “loss of 

consciousness,” “nausea,” “diarrhea,” and “drug 

addiction.” These features represent either less 

common or mild symptoms of COVID-19 or 

underlying comorbidities that may increase 

susceptibility or complications of COVID-19. On 

the other hand, the sum of 21 other features has a 

weak impact on the model output, indicating that 

these features are either irrelevant or protective 

against COVID-19 infection. These features may 

include demographics, symptoms, and 

comorbidities that are not directly associated with 

COVID-19. 

 

4.2. Severity and LoS Prediction Module 

The infected people can be referred to hospitals for 

further measures. If a patient's condition is such 

that they need to be hospitalized, there must be a 

mechanism to predict the severity and LoS of the 

disease. The data collected from BlockCOV can 

enable the prediction of LoS and the risk level of 

severity by providing the date and time of start and 

end of receiving services in the hospital. 

In this section, we present the results of our 

experiments for predicting the severity and LoS of 

COVID-19 using 11 state-of-the-art machine-

learning algorithms. In this module, only 

hospitalized patients were included, and their 

infection with COVID-19 was concluded based on 

the final diagnosis at the end of the treatment based 

on clinical investigation. We used a cleaned dataset 

of 8,639 patients with various symptoms and 

comorbidities and classified them into five 

categories: UOB (41.38%), GU (36.75%), ICU 

(0.59%), INT (1.41%), and DD (19.86%). A 

detailed description of these features and the 

dataset characteristics is provided in Appendix A3. 

To fine-tune hyperparameters of the classifiers, we 

used a Grid Search. The hyperparameter names and 

tuned values are given in Appendix A4. 

We applied the ML algorithms to train and test our 

models on oversampled data and used a 10-fold 

cross-validation technique to evaluate the 

performance of each algorithm. The results of the 

cross-validation are presented in Table 6. 

As shown in Table 6, the XGBoost algorithm 

achieved a high mean accuracy performance of 

74.81% among the other algorithms and has 

superior performance over the other methods. 

From the above results, we can conclude that the 

XGBoost algorithm is the most effective and robust 

method for predicting the severity of COVID-19 

using the selected features. These methods can 

provide valuable insights and guidance for clinical 

decision-making and the management of the 

pandemic. 

Figure 15 shows a chart of the top 20 most 

important features based on SHAP values towards 

outputs for predicting COVID-19 severity in 

hospitalized patients. These features include the 

various symptoms, risk factors, and comorbidities 

of COVID-19. This reveals that some features are 

more important for predicting certain outputs than 

others are. The top six features are “Age,” 

“Respiratory distress,” “contact with infected 

people”, “PO2,” “Cough,” “Fever”. In response 

to RQ4, these features are deemed to be the most 

relevant for predicting the severity of COVID-19 

in hospitalized patients. We also observed that 

some features had different impacts on different 

classes. For example, “Age,” “Respiratory 

distress,” and “diabetes” are the most important 

features for predicting the most severe outcomes 

(ICU, INT, and DD), whereas PO2, “contact with 

infected people,” and “fever” are the most 

important features for predicting less severe 
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outcomes (UOB and GN). Some features, such as 

“cough,” “muscle pain,” and “sex,” are important 

for predicting all classes but with different degrees 

of impact. Our analysis revealed the complex 

relationship between the features and classes and 

provided insights into the factors that influence 

COVID-19 severity in hospitalized patients. 

From a hospital administration perspective, LoS 

negatively impacts bed turnover rates, impedes the 

efficient flow of patients, and results in bed 

shortages, which complicates both the strategic and 

operational management of the hospital [124]. As 

illustrated in Figure 13, 8,639 cleaned IDs were 

utilized to predict the LoS. The LoS distributions 

are detailed in Appendix A5. The LoS was divided 

into 13 classes and XGBoost model was trained 

and tested using a 10-fold cross-validation, and 

achieved an accuracy of 77.31%. Table 7 presents 

the performance of each LoS class. The 

performance of each LoS class was evaluated using 

precision, recall, f1-score, and support metrics. The 

results showed that the XGBoost model performed 

well for most classes, especially for the extreme 

classes (0, 1, 2, 14-17, and 18+), which had high 

precision and recall values. In response to RQ5, 

figure 16 shows a chart of the top 10 most 

important features based on SHAP values towards 

outputs for predicting LoS. 

 

 

 

 

 

 

 

 

Table 5. Accuracy score (%) of classifiers using 10-fold cross-validation for infection prediction 

K AdaBoost XGBoost LR LDA DT RF ETC NB KNN QDA SVC 

1 68.88 65.67 66.48 67.71 65.21 71.99 65.47 66.49 66.36 67.91 65.59 

2 67.74 65.79 69.09 68.25 67.46 71.19 66.45 65.69 68.56 68.02 65.59 

3 68.58 67.29 67.93 69.54 68.22 70.45 69.08 65.03 69.29 68.56 65.57 

4 71.92 71.95 71.38 71.15 71.59 73.18 70.76 70.01 70.63 69.80 65.59 

5 77.37 77.53 76.87 76.51 76.68 71.49 76.22 76.19 74.99 75.16 65.59 

6 79.95 79.98 79.59 79.67 78.87 72.98 78.51 79.38 77.21 76.23 65.60 

7 75.63 75.48 74.78 74.80 74.91 75.77 74.75 75.08 75.59 72.2 65.60 

8 78.64 78.85 77.80 77.82 78.35 74.65 77.92 78.35 75.92 74.75 65.60 

9 74.25 74.44 72.48 72.33 73.09 72.79 72.38 71.42 73.03 75.22 65.60 

10 76.42 76.43 74.33 74.35 75.84 73.15 75.8 73.61 74.74 72.14 65.60 

AVG 73.94 73.34 73.07 73.21 73.02 72.76 72.73 72.13 72.63 72.00 65.59 

Abbreviations: AdaBoost: Adaptive Boosting, XGBoost: Extreme Gradient Boosting LR: Logistic Regression, LDA: 
Linear Discriminant Analysis, DT: Decision Tree, RF: Random Forest, ETC: Extra Trees Classifier, NB: Naïve 

Bayesians, KNN: K-Nearest Neighbors, QDA: Quadratic Discriminant Analysis, SVC: Support Vector Machines 

66,143 (IDs) 8,639 (IDs) N/A 

Cleaned IDs in Pre-
hospital stage 

201,911 (IDs) 18,740 (IDs) 6,923 (IDs) 

Cleaned IDs in In-

Hospital stage 

Cleaned IDs in post-

Hospital stage 

Figure 13. The flow of raw and cleaned data used in proposed intelligent modules 
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Table 6. Accuracy score (%) of classifiers using 10-fold cross-validation. 

K XGBoost KNN SVC RF MLP DT ETC AdaBoost NB LR LDA 

1 63.87 64.43 61.58 58.46 60.23 60.01 61.07 49.83 50.84 47.37 46.87 

2 75.84 72.82 73.15 71.49 71.25 72.26 74.38 62.70 53.69 56.88 54.75 

3 72.76 71.36 71.31 67.03 68.68 70.30 70.86 63.37 53.64 54.53 54.92 

4 70.75 71.09 69.74 67.10 68.46 67.73 67.28 60.18 53.80 53.41 52.52 

5 73.15 72.60 72.37 67.99 71.64 69.85 70.30 61.24 53.52 52.68 52.85 

6 79.07 75.38 76.94 72.72 76.78 73.92 73.53 65.92 56.63 55.96 55.29 

7 79.02 75.27 75.21 72.22 73.92 74.22 72.36 65.70 58.37 51.20 51.54 

8 79.46 74.26 75.38 78.94 74.65 72.52 71.74 64.07 54.78 50.59 50.64 

9 77.17 76.72 73.48 78.46 73.87 71.80 71.46 61.89 54.62 51.26 51.32 

10 77.00 78.79 70.79 85.25 71.63 71.85 67.66 59.82 47.90 46.45 46.89 

AVG 74.81 73.27 72.00 71.97 71.11 70.45 70.06 61.47 53.78 52.03 51.76 

Abbreviation: MLP: Multi-Layer Perceptron 

 

  

Figure 14. Graph of AdaBoost SHAP 

feature importance 

Figure 15. Graph of XGBoost SHAP 

feature importance. 

Figure 16. Graph of XGBoost SHAP feature importance. 

Table 7. XGBoost classification performance 

LoS (in days) Precision Recall F1-score 

[0] 85.8% 84.6% 85.2% 

[1] 93.1% 83.5% 88.1% 

[2] 92.3% 75.3% 82.9% 

[3] 83.8% 75.0% 79.2% 

[4] 67.3% 82.5% 74.2% 

[5] 67.0% 79.6% 72.8% 

[6] 67.2% 75.5% 71.1% 

[7] 76.2% 72.0% 74.0% 

[8] 78.9% 71.3% 74.9% 

[9-10] 80.3% 71.6% 75.7% 

[11-13] 81.2% 77.8% 79.5% 

[14-17] 91.1% 70.0% 79.2% 

[18+] 82.6% 81.1% 81.8% 

ACC   77.3% 

MAVG 80.5% 76.9% 78.3% 

WAVG 78.1% 77.0% 77.2% 
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5. Discussion 

5.1. Main Findings  

Prior research on pandemic management systems 

can typically be assessed in terms of data privacy, 

security, and efficiency in data sharing or the 

purpose and roles of these systems in assisting with 

pandemic management. For instance, a study by 

[125] utilized AI and BCT to focus on contact 

tracing as a crucial aspect of pandemic control. 

Their proposed system comprised three integrated 

modules that addressed contact tracing, COVID-19 

status recording to serve as a digital pass, and the 

prevention of infected and suspected users from 

accessing public places. Additionally, their system 

categorized zones based on infection levels to help 

users avoid highly contaminated areas. While 

contact tracing has proven to be an efficient 

strategy in fighting COVID-19, quickly screening 

individuals in the early stages of an outbreak is 

crucial to preventing the overload of treatment 

systems. They used BC as a secure and transparent 

platform for storing and sharing the data related to 

the pandemic, such as the infection status, the 

contact history, the public places access.  

The significance of appropriate modeling as a 

determining factor in pandemic decision-making is 

widely recognized, yet there remains a dearth of 

pertinent research in this domain. However, our 

proposed system addresses this issue by proposing 

non-clinical infection prediction without the need 

for individuals to visit a screening center or rely on 

in-house data. While our model's accuracy may not 

rival those relying on images to detect COVID-19, 

it is worth noting that systems utilizing clinical data 

are often characterized by their lack of agility, high 

costs, and limited practical implications during the 

early stages of a pandemic. For instance, in [126], 

deep learning was employed to develop a novel 

architecture for identifying the virus in radiological 

images, achieving an accuracy of 96% in 

classifying COVID-19 images. 

The spread of misinformation is a significant 

problem that has detrimental impacts on 

individuals, public health, and governments 

worldwide [127]. Caceres et al. [128] highlighted 

the challenges of misinformation in the era of 

social media and its potential to undermine efforts 

to address public health crises. BCT has the 

potential to store and verify data in a decentralized 

and distributed manner, without relying on a 

central authority or intermediary. By incorporating 

BC into the COVID-19 pandemic management 

network, it may be possible to prevent 

misinformation by providing secure and 

transparent means of tracking and sharing data 

related to various stages of the pandemic. This 

technology also offers a collaborative and 

participatory platform for MOHE, hospitals, 

patients, individuals, research centers, and other 

stakeholders involved in pandemic management, 

including health workers, policymakers, 

researchers, and the public. This can lead to 

improved communication and coordination among 

stakeholders and sectors as well as increased 

transparency and accountability in decision-

making processes. In addition, it encourages the 

creation and dissemination of accurate and reliable 

information that adheres to community-driven 

standards and norms for pandemic management. 

 

When discussing pandemic management, it is 

essential to consider three distinct stages. Table 8 

presents a comparison of related works. Nine 

studies were selected and compared across several 

aspects, including the pandemic stage covered, 

dataset type and size, intelligent system 

proposition, agility method usage and performance 

indicators. Although numerous papers are related 

to our study, we selected a representative sample to 

illustrate how our work differs from others.  

Contrary to our work, most studies focus on a 

single stage. For example, in the in-hospital stage, 

a recent review study [55] identified 314 eligible 

articles. Of these, 152 (48.4%) presented mortality 

as the outcome, 66 (21.0%) focused on severity 

and/or critical illness, 35 (11.1%) combined ICU 

admission and mortality, 17 (5.4%) assessed ICU 

admission only, 6 (1.9%) examined mechanical 

ventilation only, and 38 (12.1%) assessed multiple 

combined outcomes. 

According to Table 8, Studies [33] and [44] 

focused solely on the pre-hospital stage, with 

datasets containing 4,434 and 5,434 records, 

respectively, compared to our dataset of 66,143 

records. Variations in data collection methods and 

reporting standards across regions further 

complicate the comparison and aggregation of 

COVID-19 data. Additionally, the limited 

availability of large datasets hinders 

comprehensive analysis and modeling of the 

pandemic. While there is no consensus in the 

literature regarding a sufficient number of samples 

[34], small-sample studies are more susceptible to 

minor analytical errors, resulting in false-negative 

results [35, 36]. Researchers are advised to conduct 

large-scale studies to produce statistically realistic 

effects due to their higher statistical power. Results 
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from large studies are statistically more reliable 

than those from small studies because of the 

reduced risk of increased effect size and lower 

Type I error [37]. 

Our literature review categorizes self-reportable 

input features into three main groups: basic 

information (demographic data), symptoms, and 

past or current diseases. The extent to which these 

features are covered in each study is a key 

difference between this and previous studies. For 

example, [33] used only one demographic variable, 

whereas our work utilized six basic variables. In 

another comparison, [33] considered only one 

past/current disease, while our model included 

fourteen items. 

Studies [129] and [63] focused only on the in-

hospital stage to predict the severity of mortality, 

ICU admission, and mortality, respectively. In 

contrast, our model categorizes in-hospital risk into 

five levels: UOB, GU, ICU, INT, and IHM. 

Despite the uncertainties in COVID-19 data, our 

model achieved suitable performance indicators 

(74.81% accuracy in the pre-hospital stage and 

77.3% accuracy in the in-hospital stage) relative to 

studies using the same dataset. 

The second part of our comparison focuses on 

studies that propose intelligent systems for 

managing COVID-19. Although the number of 

such papers is limited, three notable instances are 

presented in Table 8. Research on intelligent 

systems often concentrates on specific stages of 

pandemic management. For instance, studies [90, 

91] have introduced a system design that BC, AI, 

and drones to control the spread of COVID-19. 

This system leverages the advantages of BC, such 

as enhanced security, transparency, and 

decentralization, to ensure the reliability and 

integrity of data collected by drones. AI is 

incorporated to equip drones with capabilities such 

as image processing, face recognition, and object 

detection. Additionally, AI is utilized to analyze 

the data and provide real-time feedback and 

guidance to both authorities and the public. 

Another study [92] proposed a communication 

framework that combines BC and AI to enable 

multiswarm drones to address COVID-19 

scenarios. Study [93] introduced a smart healthcare 

system that integrates BC and AI to monitor and 

detect COVID-19 in biomedical images. This 

system facilitates self-testing, diagnosis, and data 

sharing by employing deep learning models to 

analyze chest X-ray images and classify them as 

either COVID-19 positive or negative. 

Furthermore, the system utilizes blockchain 

technology to store and verify diagnostic results 

and patient information.  

5.2. Implications for Research and Practice 

The proposed BlockCOV has implications for 

research in healthcare, information systems, and 

Artificial Intelligence. First, we did not delve into 

some technical BC designs, such as determining 

the TPS, on-chain vs. off-chain data strategy, its 

Table 8.   Comparison of related COVID-19 research papers 

Ref. Year 

Scope 

Description 
Pre-h. In-h. Pos-h. 

Propose 

system 

Agile 

method 

[130] 2021    No No Only focused on post-hospital stage of pandemic 

[131] 2021    No No Only focused on post-hospital stage of pandemic 

[129] 2022    No No 
AUC=0.975. Only mortality and ICU admission severity level 
are considered. Clinical data are used that are not agile approach.  

[63] 2023    No No 
AUC= 0.84. Only Mortality severity level and LoS are 

considered. Small dataset (1,291 records). 

[44] 2022    No Yes 

AUC= 0.98. Unreal dataset, small dataset (5,434), Only one 

demographics, 8 symptoms, 5 past/current disease are 

considered. 

[33] 2022    No Yes 
AUC= 0.65. Small dataset (4,434 records), only one Past/current 

disease variable is considered.  

[90] 2021    Yes No 
AI is integrated to provide drones with image processing, face 
recognition, and object detection capabilities. 

[91] 2021    Yes No 
It presented a communication scheme that leverages BC and AI 

to enable multiswarm drones to address COVID-19 situations 

[93] 2021    Yes No 
It proposed a smart healthcare system that integrates BC and AI 
to monitor and detect COVID-19 in biomedical images 

This 

study 
2024    Yes Yes 

Propose intelligent system to cover all stages. Used large dataset 

(66,143 records) includes variables:  basic information (6), 
symptoms (17), semi-clinical data (1), and comorbidities (14). 

Performance indicators resulted in 74.81%. accuracy in 

prehospital stage and 77.3% in-hospital stage accuracy. 
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consideration, and transaction costs. Therefore, 

before developing and deploying the proposed 

system, technical design parameters should be 

studied to validate and evaluate the feasibility, 

functionality, and performance of the proposed 

system in a simulated or real-world setting, and to 

identify and resolve any potential issues or 

limitations. Second, we propose an XDC platform 

for deploying the proposed system. The XDC 

platform offers robust and efficient infrastructure 

for deploying the proposed system. Its advanced 

features and scalability make it ideal. Different 

decision support systems such as MCDM and AHP 

can be used to define the selection methodology 

among multiple platforms. Third, to assess the 

effectiveness of the proposed system compared to 

other existing or alternative solutions for pandemic 

management, such as centralized or distributed 

databases, cloud computing, or other BC platforms, 

a systematic literature review, meta-analysis, or 

benchmarking study must be conducted. This 

involves evaluating the strengths and weaknesses 

of each solution, and identifying the best practices 

and lessons learned from each approach. Fourth, 

the system can be extended to address other types 

of pandemics, such as influenza, Ebola, and Zika, 

and other public health emergencies, such as 

natural disasters, bioterrorism, and environmental 

pollution. This would require adapting the system's 

design and configuration to suit the specific 

characteristics, challenges, and needs of each 

scenario and incorporating the latest scientific and 

technological developments in the relevant 

domains.  

The proposed BlockCOV has several practical 

implications. First, adapting the system to the 

changing dynamics and needs of the pandemic, 

such as new variants, vaccines, policies, or 

behaviors. This requires updating and fine-tuning 

the system's parameters, models, and algorithms to 

reflect the latest data and evidence and to provide 

accurate and timely predictions and 

recommendations. Second is the impact and 

outcomes of the system on pandemic management 

and public health, such as the infection rate, 

mortality rate, recovery rate, resource utilization, 

cost-effectiveness, and quality of life. This would 

require conducting longitudinal and comparative 

studies using appropriate indicators and metrics to 

measure and analyze the system's performance and 

value, and to identify the best practices and areas 

for improvement. 

 

5.3. Conclusions 

COVID-19 has brought to light the need for a re-

envisioned pandemic management framework that 

emphasizes data-driven systems in robust 

technological infrastructure. BCT holds great 

promise as a means of overcoming the challenge of 

insufficient valid and globally shared datasets in 

public health, allowing for informed decision-

making by public health leaders rather than leaving 

such decisions to politicians, as has been observed 

during the pandemic. Our study leveraged AI and 

BC to address the main challenges of pandemic 

management across different stages. We designed 

and configured an intelligent system to tackle 

challenges in the pre-hospital, in-hospital, and 

post-hospital stages from a patient-centric 

perspective. BlockCOV also addressed the issue of 

limited PPE distribution, ensuring fair distribution 

through smart contracts. Our proposed model 

demonstrates how early-stage screening 

requirements, infection severity prediction, 

prediction of length of hospital stay, reinfection 

probability, and readmission can be modeled. The 

smart contract concept also shows how virtual 

coins can be used for fair distribution of PPE 

during a pandemic. Experimental results for early 

infection, LoS, and severity prediction can be 

achieved using AI, providing valuable 

recommendations for stakeholders, particularly 

policymakers.  

Although the COVID-19 pandemic may have 

nearly ended, this research remains valuable for 

several reasons. First, it contributes to the 

advancement of knowledge and innovation in 

healthcare, information systems, and AI by 

proposing a novel and comprehensive system that 

combines BC and AI to address the challenges of 

pandemic management. Second, this research 

provides a practical solution that can be 

implemented and adapted to different contexts and 

scenarios, such as other types of pandemics, public 

health emergencies, or routine healthcare services, 

to improve the quality and efficiency of the 

healthcare sector and public health outcomes. 

Third, the research was implemented in the context 

of the COVID-19 case in Iran, which can be 

beneficial for other countries and regions facing 

similar or different problems and opportunities in 

dealing with pandemics and other health issues. 

Fourth, this research discusses the implications of 

the proposed system and suggests future directions 

for improvement and further research, which can 

inspire and guide other researchers and 

practitioners interested in this topic. 
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 چکیده:

ارائه   12-گیری کوویدمدیریت همه برای را( یو خصططوصطط دیبریدوگانه )ه نیبر بلاکچ یهوشططمند مبتن سططت یسطط کیسطططب بالا  یکربندیمطالعه پ نیا

هوشمند است و دو  یو قراردادها اراتیها، اطلاعات ساختار بلوک، کنترل اختها و نقشگره ،ییشطام  نو  شطبکه، سطب تمرکززدا . این پیکربندیدهدمی

مورد مخاطب قرار  12-کووید یریگهمهمختلف مراح   درسططه ماژول هوشططمند  قیاز طررا  –داده  تیریو مد اتیعمل تیریمد -چالش  یدسططته اصططل

رفع  یبرا خانگی یهااز دادهدهد که این سیست  ارائه می را 12-ی به کوویدابتلا ینیبشیپ هوشمند سطت یسط کی ،یمارسطتانیب شیپ در مرحله دهد.می

 کی ،یمارستانیداخ  ب . در مرحلهکندیافراد بالقوه آلوده اسطتااده م عیسطر ییشطناسطا یبرا نهیهزسطاده، کارآمد، چابک و ک  یروش غربالگر کیفقدان 

 افتیدر یها برانآ یبندتیپرخطر، اولو مارانیب ییشناسا یبرا مارستانیب بیمار در و مدت اقامت ابتلاشدت  ینیبشیپ یهوشمند برا ینیبشیپ ست یسط

 زانیم ینیبشیپ یهوشمند برا ینیبشیپ ست یس کی ،یمارستانیباشطده است. در مرحله پس شطنهادیبهتر منابع پ صیتخصط  یو تسطه یخدمات مراقبت

 منصططاانه عیتوز ن،یشططده اسططت. علاوه بر ا شططنهادیخطر پ معرضدر  یبهداشططت یهامراقبت سططت یکمک به کاهش بار سطط یمجدد، برا یو بسططتر ابتلای

توسعه  تونیها با اسطتااده از پاماژول نیا نماید.ارائه میهوشطمند  یو قراردادها یخصطوصط نیبا اسطتااده از بلاکچ را محدود یحااظت شطخصط زاتیتجه

 هایژگیو نیتر. مه شوندیمتقاب  در هر مرحله استااده م یاعتبارسنج قیطر زا نیماش یریادگی یشطرفتهیپ یهاکیتکن ،عملکرد یابیارز یو برا اندافتهی

 یهاشرفتیپ یبرا ییهاهیو توص یو عم  بررس قیتحق یخود را برا ست یس هایدلالت ت،یشدند. در نها  یو تحل  یترسط (SHAP) مقادیربا اسطتااده از 

 .شده استارائه  ندهیآ

 .ست یس ،یکربندیپ ،یهوش مصنوع ن،یبلاکچ ،یریگهمه :کلمات کلیدی

 


