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 This paper introduces an adaptive optimal distributed algorithm based 

on event-triggered control to solve multi-agent discrete-time zero-

sum graphical games for unknown nonlinear constrained-input 

systems with external disturbances. Based on the value iteration 

heuristic dynamic programming, the proposed algorithm solves the 

event-triggered coupled Hamilton-Jacobi-Isaacs equations assuming 

unknown dynamics to develop distributed optimal controllers and 

satisfy leader-follower consensus for agents interacting on a 

communication graph. The algorithm is implemented using the actor-

critic neural network, and unknown system dynamics are 

approximated using the identifier network. Introducing and solving 

nonlinear zero-sum discrete-time graphical games in the presence of 

unknown dynamics, control input constraints and external 

disturbances, differentiate this paper from the previously published 

works. Also, the control input, external disturbance, and the neural 

network's weights are updated aperiodic and only at the triggering 

instants to simplify the computational process. The closed-loop 

system stability and convergence to the Nash equilibrium are proven. 

Finally, simulation results are presented to confirm theoretical 

findings. 
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1. Introduction 

Due to the numerous applications of distributed 

control of multi-agent systems (MAS) in various 

engineering fields, researchers have become 

interested in it in the last few decades [1, 2]. 

The leaderless and leader-follower consensus 

problems are two types of consensus issues that 

distributed control approaches have recently 

addressed [3-5]. In the leader-follower consensus 

[6-8], a favorite in this article, the states of all 

agents synchronize to a leader state, whereas in the 

leaderless consensus [9, 10], all agents synchronize 

to a standard value. Leader-follower consensus in 

discrete-time (DT) MASs has been the subject of 

numerous studies [11, 12]. There is no guarantee 

that the studies mentioned above will be optimal. 

However, the game-theoretic framework can be 

utilized to accomplish this. 

The optimal multi-agent control problems, in 

which each agent tries to optimize their 

performance index and obtain their optimal policy, 

are well suited for research in game theory [13]. 

Since many real-world MASs problems have 

external disturbances, solving multi-agent games 

with unknown external disturbances is critical 

because neglecting this can lead to performance 

degradation and instability. Graphical games [14], 

first developed for continuous time (CT) systems, 

are used to solve optimally distributed leader-

follower consensus problems in linear [14-16] and 

nonlinear [17] systems, where every follower's 

performance index, actions, and tracking error 

dynamics are dependent on neighbors local 

information. Zero-sum nonlinear differential 

graphical games of CT systems, which considered 

the existence of external disturbances, were added 

to these games [18, 19]. Several studies have been 

done in DT games on two-player zero-sum linear 

and nonlinear games [20-22]. Additionally, linear 
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N-player DT graphical games have been studied by 

[23, 24].  

To solve multi-agent games that include external 

disturbances, it is necessary to solve the coupled 

Hamilton-Jacobi-Isaacs (HJI) equations. However, 

solving these nonlinear equations is either 

impossible or extremely challenging. 

Consequently, these equations can be solved using 

approximation-based approaches. 

Reinforcement learning (RL) algorithms [25] have 

many applications in various problems [26] and 

have recently been developed as effective 

approximation-based techniques for solving multi-

agent games [27, 28]. 

The work [20] employed heuristic dynamic 

programming (HDP) techniques to solve nonlinear 

zero-sum games with known dynamics. Reference 

[23] introduced a value iteration (VI) algorithm to 

solve linear DT graphical games under systems’ 

known dynamics. Moreover, most physical 

systems are nonlinear, with higher-order dynamics 

that are difficult to model precisely. Also, 

saturation nonlinearity exists in many actuators and 

should be considered in the obtained controller 

design [29-31] since ignoring it can cause 

performance degradation or system instability. 

Therefore, solving multi-player games under 

unknown dynamics and input constraints is very 

important. 

Most of the references mentioned above use time-

based methods that perform calculations at all 

instants. This process is time-consuming and 

increases the complexity of calculations. Due to the 

significant reduction in calculations, the event-

triggered control method has recently attracted 

much attention from researchers [32-34]. Event-

triggered schemes for DT systems without 

considering optimal control problems in [35] are 

presented. Reference [36] employed an HDP-based 

event-triggered adaptive control method for 

unknown nonlinear DT systems. Reference [37] 

deals with event-triggered adaptive control for DT 

zero-sum games and these references have not 

considered graphical games and input constraints. 

Several issues discriminate DT zero-sum graphical 

games from DT zero-sum [20, 21, 22] and DT 

graphical games [23, 24]. In DT zero-sum 

graphical games, distributed optimal controllers are 

developed to satisfy optimal leader-follower 

consensus for agents interacting on a 

communication graph. Every follower's 

performance index, actions, and local error 

dynamics are dependent on neighbors' local 

information. But in zero-sum games, the 

communication of agents is not under the graph 

topology and the influence of neighboring agents is 

not considered. They do not consider the leader-

follower synchronization problem and are 

leaderless. On the other hand, solving HJI 

equations is required in the DT zero-sum game to 

determine the worst-case disturbance and the best 

controller. In DT zero-sum graphical games, 

coupled HJI equations should be solved to develop 

distributed optimal controllers to satisfy leader-

follower consensus for agents interacting on a 

communication graph, while solving coupled HJI 

equations due to the existence of graphical 

coupling terms is quite different and rather difficult 

than solving HJI equations. Furthermore, DT zero-

sum graphical games engage external disturbance 

as an opposite player against the controller for 

every agent and need to solve coupled HJI 

equations which are different from Hamilton-

Jacobi-Belman equations in graphical games, 

which neglect the existence of external 

disturbance. 

We are aware that no results have been reported on 

DT zero-sum graphical games that can solve the N-

player leader-follower synchronization problem 

for unknown dynamics nonlinear agents with input 

constraints and external disturbances. Also, DT 

graphical games are not solved by the event-

triggered method. 

This paper introduces nonlinear multi-agent DT 

zero-sum graphical games. It suggests a new 

adaptive optimal distributed algorithm based on 

event-triggered control to solve these games for 

constrained-input unknown nonlinear systems with 

external disturbances. The following are the 

article's main contributions: 

• The first is the introduction of DT zero-sum 

graphical games for nonlinear DT MASs that use 

the local information of neighbor agents to achieve 

the leader-follower synchronization problem. 

• A VI HDP algorithm based on event-triggered 

control for solving multi-agent DT zero-sum 

graphical games in an online and distributed 

fashion is proposed. 

• Using the event-triggered method and performing 

calculations non-periodically, which leads to a 

reduction of calculations and execution time. 

• The presented algorithm solves the games under 

the assumption of unknown dynamics where every 

agent's unknown dynamics are identified using an 

identifier. 

• Constraints on control inputs and external 

disturbance existence are considered to make the 

proposed algorithm more applicable to real-world 

problems.  

• Finally, The stability of the closed-loop system 

and its convergence to the game's approximate 

Nash equilibrium is demonstrated. 
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Structure: This paper has the following sections. In 

the next section, the required knowledge of graphs 

and problem formulation is explained. Then, a 

multi-player DT zero-sum graphical game based on 

event-triggered with control input constraints and 

unknown dynamics is proposed. The presented 

graphical game's event-triggered Nash solution 

with proof of its convergence and the proposed 

event-triggered optimal distributed algorithm with 

unknown dynamics and external disturbances are 

presented afterward. The identifier employed for 

every agent unknown dynamics is described and an 

actor-critic structure used for the proposed 

algorithm is presented. The simulation study is 

presented, and then the conclusions are drawn. 

 

2. Graphs and Problem Formulation 
This section presents background on graphs, 

formulation of optimal leader-follower consensus 

control, and the triggering mechanism. 

 

2.1. Graphs 

The directed graph ( , )Gr P   provides a 

description of the interactive topology for N agents' 

information exchange, where a set of graph nodes 

is 
0{ ,....., }NP p p  and a set of graph edges is 

P P  . [ ] N N

ijC c R    represents an 

adjacency matrix for the graph such that 0ijc   if 

( , )j ip p  , otherwise 0ijc   where ( , )j ip p  

means that agent i  can get information from agent 

j  but not necessarily vice versa. The list of node 

ip 's neighbors is shown with 

{ : ( , ) }i j j iN p p p  . { }iQ diag q  denotes 

the in-degree matrix of Gr  with 
i

i ijj N
q c


 . 

The Laplacian matrix of the graph is given by 

L Q C  . The leader agent is denoted by 0 and 

information can be transmitted from the leader to 

its neighbors. The leader pinning matrix is 

indicated by { }i
N NA diag a R  , where 0ia   

is the pinning gain. If the agent i  is connected to 

the leader, it is non-zero, otherwise it is equal to 

zero. Note that the leader is connected to at least 

one of the follower nodes. A graph has a spanning 

tree if there is a directed path from an agent called 

the root to all other agents. In this article, it is 

assumed that the graph has a spanning tree. 

 

2.2. Problem Formulation 

On the communication graph Gr  with N follower 

agents, the local dynamic of agent i  is as follows 

(1)          

 ( ) ( )

1i i i i i

i i i

is s t s t t

h s t

t g u

t

f



  


 

where   n

is t R ,   m

iu t R  and   k

i Rt   are 

the state, control input, and external disturbance 

vector of agent i , respectively.   n

i if s R , 

  n m

i isg R   and   n k

i ih s R   are the drift, 

input, and disturbance dynamics of the agent i , 

respectively, which are all considered unknown in 

our developments. The leader dynamic 0s , 

indicating a reference trajectory, is as follows 
(2)     0 0 01s tt f s   

0f  is the state matrix of the leader. 

Synchronizing all follower agents' states to the 

leader is the goal of the leader-follower consensus. 

The local error of agent i [38] is defined as 
(3)            0

i

i ij j i i i

j N

t c s t t s ta ts s


      

The network local error for all agents is as  
 (4)         0( )nL A I st t s t       

where      0 0 0, ,
T

T T nNs st s t Rt    

1 , ,
T

T T nN

N Rss s     ,
1 , ,

T
T T nN

N R        . 

nI  is the unit matrix of n n  and   represents 

Kronecker multiplication. 

The disagreement error vector is as 

     0

nNs s Rt t t     (5) 

If a root node is connected to the leader and the 

graph has a spanning tree,  L A  is nonsingular 

[38].  

Remark1. It is demonstrated in [23] that if 

 L A  is nonsingular, the disagreement error 

vector is bounded as 
(6)   ( ) / ( )t t L A     

where (.)  is a matrix's smallest singular value. 

Therefore, leader-follower synchronization can be 

achieved by keeping the local error small. 

For simplicity, ( )is t  is written as 
its  from now on, 

and other variables are considered similarly. 

We describe a series of incremental time instants 

 
0

i

m m
t




 for each agent i  to create an event-

triggered control situation, where i

mt  is the m-th 

sampling instant with 
0 0it   and 

1

i i

m mt t  . To 

reduce the computational complexity, in a new 

sampled state 
0 1, ,....i it t , weights of the neural 
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networks, the control input, and the external 

disturbance are updated. 

Sampling instants are obtained in violation of the 

following condition for agent i  at i

mt t . 

( )i ie t   (7) 

where 
i  is the threshold, and ( )ie t  is the event-

triggered error as follows 

1( ) ( ) ( ), [ , )i i i

i i m i m me t t t t t t      (8) 

Where ( )i

i mE t  and ( )iE t  are the local error in the 

sampled state and current state, respectively. 

Remark 2. In the sampled state i

mt t , event-

triggered error ( )ie t  is reset to zero. Meanwhile, 

the control input and external disturbance of agent 

i  are adjusted in line with the new measurement 

and remain constant in 
1[ , )i i

m mt t 
, i.e 

1( ) ( ), ( ) ( ), [ , )i i i i

i i m i i m m mu t u t t t t t t      . 

Assumption 1. For each agent i , positive 

constants 
iD  exist, such that 

( 1) ( ) ( )i i i i ie t D e t D t     (9) 

Theorem 1. For DT nonlinear systems, the event-

triggered error must satisfy the following 

condition: 

1 (2 )
( ) ( )

1 2

i
mt t

ii
i i i i m

i

D
e t D t

D





  


 
(10) 

Proof. Inspired by [36] for each 
1[ , )i i

m mt t t   it is 

obvious that ( 1) ( ) ( 1)i

i i m ie t t t   , so that 

( 1) ( 1)i ie t t     and so we have 

( 1) ( ) ( )i i i i ie t D e t D t     (11) 

Then, by substituting (8) in (11), we obtain 

( 1) 2 ( ) ( )i

i i i i i me t D e t D t     (12) 

Therefore 

   
1

( ) 2 ( 1) ( )

2 (2 ( 2) ( ) )

( )

......

2 ( ) 2 ( )

.... ( )

i i
m m

i

i i i i i m

i

i i i i i m

i

i i m

t t t ti i

i i m i i i m

i

i i m

e t D e t D t

D D e t D t

D t

D e t D D t

D t

  

   

   

 

  

  

 

(13) 

Considering the initial conditions and  ( ) 0i

i me t   

simplifying (13), we have 

1 (2 )
( ) ( )

1 2

i
mt t

ii
i i i m i

i

D
e t D t

D


 
   
  

 
(14) 

Therefore, the proof is complete. 

By using Equations (1) and (3) the event-triggered 

local error of agent i  for 
1[ , )i i

m mt t t   is obtained 

as 
(15) 

( 1)

0 0

( ) ( )

( ) ( )

( ( ) ( ))

( ( ) ( ))

( )( ( ) ( ) )

( ( ( ) ( ) )

i

i i
m m

j j
m m

i t ij j jt i it

j N

i t i it

i i i it i iti t i t

ij j jt j jtj t j t

c f s f s

a f s f s

q a g s u h s

c g s u h s









  

 

  

 





 

To obtain leader-follower synchronization, a 

distributed controller for each player is proposed to 

minimize Equation (15) for 0i  , assuming that 

the dynamics of the system are unknown. 

 

3. DT Zero-Sum Graphical Game by Event-

Triggered Control 

In this section, we introduce nonlinear DT zero-

sum graphical games with disturbance and control 

constraints. The definition of these games is based 

on local error (15) and by introducing the local 

performance index. 

Considering constant control input and constant 

disturbance between trigger instants for 

1[ , )i i

m mt t t  , the local performance index of agent 

i  is as follows 

(16) 1

1

1

( ) ( ) ( ) ( )
[ , ) [0, )

( )

2

( ) ( ) ( )
[ ,

2

( ) ( )

( , , , , )

( )

1
( )

2

i
m

i i i i
m m m m

i i i
m m m m

m
ii

m

m m m
j i i

i i
im m m m

m m
i i

i

t

i i it i t i t i t i t
t t t t

T

it i it i t
t

T

iij t i t i t
j Nt t t t

T

ijj t j t
j N

J U u u

O W u

W u T

T

 

  

  









 
  





 

 
   
 
   
 
 
 
 
 

 

 


1 ) [0, )i  



  

where 0 n n

iO R   , 0 k k

iiT R   , 

0 k k

jjT R    , 0   is a prescribed constant and 

(.) 0W  . The control and disturbance of the 

neighbors of agent i  are { | }i j iu u j N    and 

{ | }i j ij N    , respectively. 

For each player, the following nonquadratic 

functional [39] is used to take into account the 

control input constraints 
(17) 

1

0

( ) 2 ( )
iu

T

itW u Y x Y ydx


   

where 0y   is a diagonal positive definite matrix, 
1 1 1 1 2 1( ) [ ( ) ( ).... ( )]b T

it it it itu u u u       , mx R  , 

mR  , where z

itu  is the z-th element of the vector 

itu , 0,...,z b . (.)  is a monotonic odd bounded 
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function satisfying (.) 1   and its first derivative 

is bounded. Y  is a bound for actuators. In this 

paper, (.) tanh(.)  .  

Each agent 's value function is defined as 
(18) 

( ) ( , , , , )i it i id id id id id

d t

V U u u  


 



          

3.1 Bounded L2-Gain Synchronization Problem 

Gaining a control policy itu  is desirable for solving 

the synchronization problem of DT zero-sum 

graphical games when 0it   and it satisfies the 

following bounded 2L -gain condition for a given 

*  when 0it   for all players   

(19) 
1

1

1

[ , ) [0, )

( ) ( )
2

0

( ) ( )( , ,....., )

( ( ))

( ( ))

( )

i
m

i i i
m m m m

i

i i
m m

j ji i
m mm m

i

T i
t it i it i m

j

j m
t t t t

j N

T

iii t i t

T i
ijj t j tt t t

j N

O W u t

W u t

T

T

 

 
 







  


 


   
 
 
 

 
 

  
 
 
 

  

 

 

for several bounded functions   such that 

(0) 0  . Let *  is the smallest amount that 

satisfies the above bounded 
2L -gain condition. 

 

3.2. Event-Triggered Bellman Equation for DT 

Zero-Sum Graphical Games  

Considering the control input and disturbance at 

the trigger instants and the first difference of 

Equation (18), the Bellman equation of each agent 

i  for 
1[ , )i i

m mt t t   is obtained as follows  

(20) 
( ) ( ) ( ) ( )

( 1)

( ) ( , , , , )

( ), (0) 0

i i i i
m m m m

i it i it i t i t i t i t

i i t i

V U u u

V V

 
 



  

  
 

The game's purpose is to find a unique saddle point 

( , )o o

it itu   for every agent such that   

(21) 

( ) ( ) ( ) ( )

( 1)

( )

( , , , , )

( )
maxmin

i i i i
m m m m

i i

o

i ik

i it i t i t i t i t

o
u

i i t

V

U u u

V

 
 





 
 
   

 

In our event-triggered control method, the event-

triggered optimal control and disturbance policies 

are only updated when the events are triggered. As 

a result, they are updated using the sampled state 

( )i
mi t

s  and 
( )i

mi t
  rather than the actual state its  and 

it  when 
1[ , )i i

m mt t t  . Therefore, the bounded 

event-triggered optimal control and event-

triggered worst disturbance policies for each agent 

i  can be respectively obtained by minimizing and 

maximizing Equation (20) concerning control 

input itu  and disturbance it  as follows   

(22) 

      

( ) ( ) ( ) ( )

( 1)

1

( ) ( 1)

( ) ( )

( , , , , )

(

( )

)
arg min

i i i i
m m m m

it

i i
m m

o o i

T o

i i i

i i m

i it i t i t i t i t

o
u i i t

i i t i t
Yy g V

u t u t

U u u

V

Y q a s

 
 









 
 
  

 





 

(23) 

 

( ) ( ) ( ) ( )

( 1)

( ) 1)

1

2 (

( ) ( )

( , , , , )

)

(

1
( ( )

)
arg max

i i i i
m m m m

it

i i
m m

o o i
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where 
( 1) ( 1) ( 1)( ) ( ) /i t i i ti tiV V        .      

Substituting Equations (22) and (23) into Bellman 

Equation (20), the following event-triggered 

coupled Bellman optimality equations are gained  
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3.3. Event-Triggered Coupled Hamilton-Jacobi-

Isaacs Equation 

Based on (15) and (18) each agent's Hamiltonian 

function for 
1[ , )i i

m mt t t   is defined as 
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By employing the 0i

it

H

u





 and 0i

it

H







, the 

bounded optimal control policy and the worst 
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disturbance are obtained for each agent i  

respectively as follows: 
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Substituting Equation (26) and Equation (27) into 

Equation (25), one obtains the following event-

triggered coupled DT HJI equations 
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 The obtained event-triggered bounded optimal 

control policy and the worst disturbance require the 

solution of the event-triggered coupled Bellman 

optimality equations (24) or event-triggered DT 

HJI equations (28). These equations are equivalent 

[23] and difficult or impossible to solve. Therefore, 

the VI algorithm is employed to approximate the 

solutions. 

4. Event-Triggered Nash Equilibrium of DT 

Zero-Sum Graphical Game 

To solve the multi-agent DT graphical games for 

unknown nonlinear constrained-input systems in 

the presence of external disturbances, one needs to 

find the Nash equilibrium solutions by solving the 

event-triggered coupled HJI equations. Therefore, 

in the next step, the Nash equilibrium condition is 

defined. 

Definition 1 The N-player games have an event-

triggered global Nash equilibrium solution if for all 

agents 
(29)    

 

* * * * * * *

* * *

, , , , , , , ,

, , , ,

i it it it it it i it it it it it

i it it it it it

J J

J

u u u u

u u

   

 

   

 





 


 

Theorem 2. Let *( ) 0i itV    satisfies Equation 

(24) or Equation (28). Let for 
1[ , )i i

m mt t t   the 

condition 
2
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 holds. 

Let control and disturbance policies are 

respectively given by Equation (26) and Equation 

(27) in terms of *

iV . Let the communication graph 

has a spanning tree and 0ia   for at least one 

agent. Then, the local error (15) are asymptotically 

stable and all agents’ states synchronize to the 

leader state. 

Proof. Consider *( ) 0i itV    as Lyapunov 

function for (15), and from (20) we have  
(30) 
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Thus, the dynamics of the local error (15) are 

asymptotically stable and according to Remark1, 

all agents’ states synchronize to the leader state. 

In the following theorem, it is proved that solutions 

to the event-triggered coupled DT HJI equations 

provide Nash equilibrium solutions and solve the 

DT zero-sum graphical game. 

Theorem 3. let *( )i itV   satisfies Equation (24) or 

Equation (28) such that the dynamics of the local 

error (15) are asymptotically stable. Let control and 

disturbance policies are respectively given by 

Equation (26) and Equation (27) in terms of *

iV . 

Then, all agents constitute a Nash equilibrium, 

inequality (29) is satisfied and the optimal 

performance index of each agent 𝑖 is expressed as  
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Proof. According to Theorem 1, the closed-loop 

system (Equation (15)) is asymptotically stable and 
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Rearranging Equation (31) results in  
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the local performance index. Then, one has 
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The optimal control policy minimizes the function 

of the local performance index. Thus, it is clear that  
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Therefore, according to Equation (33) and 

Equation (34), we obtain 
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Then, for each function ( ),i ilV i N  , we can 

write Equation (16) as 
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Let now that *

iV  satisfies the DT HJI (28), *

iu  and 

*

i  are respectively the optimal policies and the 

disturbance given by Equation (26) and Equation 

(27), one can write Equation (36) as  
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(38) 

Therefore, it is shown that the left inequality of (29) 

is satisfied  
(39)    * * * * * * *, , , , , , , ,i it it it it it i it it it it itJ Ju u u u         

 Setting *

it it   in Equation (38) yields  

(40)  * * * * *, , , , ( )i it it it it it i itu uJ V      

Therefore, the proof is complete. 
 

5. Event-Triggered Value Iteration HDP 

Algorithm for DT Zero-Sum Graphical Games 

In this part, an online event-triggered value 

iteration HDP algorithm based on event-triggered 

Bellman equations is presented to obtain the 

answers of the DT zero-sum graphical game. 

Algorithm 1 solves the event-triggered coupled 

Bellman optimality equations to obtain optimal 

values, control policies, and disturbance policies.  
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Algorithm 1 

Event-Triggered Value Iteration Algorithm for DT 

Zero-Sum Graphical Games 

(Initialization). Give arbitrary initial control and 

disturbance policies and values for all agents. 

(Policy evaluation). Solve the following equation 

for 
1[ , )i i

m mt t t   to obtain 1l

iV   
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(Policy improvement). Update the disturbance and 

control policies at the triggering instants by the 

following equations 
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For all i , when 
1( ) ( )l l

i it i itV E V E     end.   is 

a small constant. 

l  denotes the iteration index. 

 

6. Neural Network-Based System 

Approximation 

In this study, the drift, input, and disturbance 

dynamics of each agent are assumed to be unknown 

and we approximated unknown system dynamics 

using the neural-network-based identification 

technique as follows 
(44) ( 1) ( ( )) ( )T T

i is is is is iss t W v z t t     

where (.)is  is the activation function and it is 

presumed to be bounded, ( )is t  is the NN 

estimation error, ( ) [ ]T T T T d

is it it itz t s u w R   is 

the NN input with d n m k   , 
T

isv  and 
T

isW  

denote the ideal weight matrix between the input 

layer and the hidden layer, the hidden layer and the 

output layer, respectively. 

In the system identification process, 
T

isv  is assumed 

to be constant and only 
T

isW  is adjusted. Hence, the 

identifier network output is described as  
(45) ˆˆ ( 1) ( ( ))T

i is is iss t W Z t   

where ( ) ( )T

is is isZ t v z t  , îs  is the estimated state 

vector and ˆ
isW  is the estimation of isW . 

The approximation error for system identification 

is defined as   
(46) ˆ ( 1) ( 1)

ˆ ( ( )) ( 1)

is i i

T

is is is i

e s t s t

W Z t s t

   

  
 

The squared approximation error is defined as 

follows  
(47) 1

( )
2

T

is is isE e e  

The identifier weights are updated using the 

gradient descent rule as  
(48) ( 1)ˆ ˆ

ˆˆ ( ( ))( ( ( )) ( 1))

l T lT

is is

lT l T

is is is is is is i

W W

Z t W Z t s t  

 

  
 

where ˆ0 1is   denotes the learning rate of the 

identifier network. 

After the learning process in the NN, the identifier 

weight matrix will converge to a certain value 

ˆ T

ismW . Then, the identifier network output is 

expressed as 
(49)        

( )

( )

ˆˆ

ˆ ˆ( ) )

1

( (

ˆ

)

i
m

i
m

t

T T

i it ism is is isi t

i i i i i i
s t s t

h s

s t f g u

W v z t 

  

 
 

where   ˆ
i if s t ,   ˆ

i ig s t  and ˆ ( ( ))i ih s t  are the 

estimations of   i if s t ,   i ig s t  and ( ( ))i ih s t , 

respectively. 

 

7. Event-Triggered-Based Actor-Critic 

Learning for Unknown DT Zero-Sum 

Graphical Games 

In this section, the algorithm (1) will be 

implemented using an actor-critic framework that 

is based on event-triggered. In order to carry out 

the policy evaluation (41) and estimate the optimal 

value function, the critic network is designed for 

each agent. The actor approximators are 

constructed to perform the policy improvements 

Equations (42) and (43), respectively, which 

estimate the bounded event-triggered optimal 

control and disturbance policies. Additionally, 

using a neural network, each agent's unknown 

dynamics is approximated. 

 

7.1. Actor-Critic Approximators and Tuning 

For each agent i , The control and disturbance 

policies are estimated using actor approximators 

ˆˆ (. )i iau W  and  ˆ ˆ.i idW , respectively. Also, the 
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optimal value function is estimated using the critic 

approximator  ˆ ˆ.i icV W  so that  

(50)  ˆˆ ( )ˆ T

it ia ia iuu WW t  

(51)  ˆˆ ( )ˆ T

it id id idWW t   

(52)  ˆ ˆ ˆ ( )T

it ic iic cW W tV   

where ˆ
iaW  , ˆ

idW  are the estimated actor weights for 

control and disturbance, respectively and ˆ
icW  is the 

estimated critic weight. iu , id  and ic  are the 

activation functions for the control actor, 

disturbance actor, and critic, respectively. All 

activation functions are assumed to be bounded, 

i.e., (.)iu ium  , (.)id idm   and

(.)ic icm  . Each agent's activation function is 

equal to the local error vector of that agent and its 

neighbor.  

The actor network's control input error for 

1[ , )i i

m mt t t   can be defined as  

(53)  ) )( ( )(

ˆ (ˆˆ )i i i
m m m

i

ia ia iu

T

iai mt i t i t
e Wu u W t u     

The control input 
)( i

mi t
u  is given as  

(54) 

     

1

( ( () ) 1)
ˆˆ ( )i i i

m m m

T

i i ii tit i t i
q a Eu Y Yy g s V





      
  

 

By using (52), (54) can be written as follows 
(55) 

    ) )

1

( (
ˆ ( ) ˆ

i i
m m

T T

i i i ici t i tiu Y Y Wy gq s Ga


   

where [0....[ ] ....0] ijn nN

i iiG I


  . ijN is the total 

number of each agent i  and its neighbors. 

The actor network's squared error for control input 

is as 

(56) 

 
1

2
ia a

T

ia ie eE   

The actor weights for control input are updated 

using the gradient descent rule as 
(57)  

 

1

)(

ˆ ˆ

) (( )ˆ ( )i
m

i i T

iu

l T lT

ia ia

lT l

ia ia i iu mtm

W W

t tW u 




 
 

where 0 1ia   denotes the actor network 

learning rate for control input. 

Similarly, the actor network's disturbance error can 

be described as 

  
(58)  ) )( ( )(

ˆ (ˆˆ )i i i
m m m

i

id id id

T

idi mi it t t
e W tW        

The disturbance 
( )i

mi t
  can be defined as  

               
(59) 

1

) )2( ( ( 1)

1 ˆ ˆ( ) ( ) ( )i i i
m m m

T

i i ii i ii t ti i t
q a T h s V E


 


     

By using (52), (59) can be written as follows 

               
(60) 2 )( ()

11 ˆ( ) ( )ˆ)i i
m m

T T

i i ii i i icti t i
q a T h s W


      

where [0....[ ] ....0] ijk kN
i iiI


   . 

The following is a definition of the disturbance 

actor's squared error 

                             
(61)  

1

2
id d

T

id ie eE   

To update the actor weights for the disturbance, the 

gradient descent rule is employed as follows  

          
(62) 

 

 

1

)(

ˆ ˆ

) (( )ˆ ( )i
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i i T
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l T lT

id id

lT l

id id i id mtm

W W
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


 
 

where 0 1id   is the learning rate for the 

disturbance. 

The objective value function itV  is given by 

 
(63)    

 

)( )(

2 2
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The following is the critic network's error 
                           (64)  ˆ ˆ

ic it it ice V V w   

The squared error for the critic is defined as follows  
(65) 

 
1

2
ic c

T

ic ie eE   

The critic weights are updated using the gradient 

descent rule. 
          (66)  

 

1

)(

ˆ ˆ

) (( )ˆ ( )i
m

i i T

ic

l T lT

ic ic

lT l

ic ic im ic mt

W W

t tW V 




 
 

where 0 1ic   denotes the critic network 

learning rate. 

Finally, Algorithm 2 is presented for actor-critic 

network weights online tuning of unknown DT 

zero-sum graphical games. 
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Algorithm 2 

Event-triggered value iteration HDP algorithm 

Implementation using an actor-critic structure 

   1. Start the weights for the actors and identifiers 

at random and critic with zero. 

   2. Initialize the initial state (0)is  for all agents 

and 
0 (0)s  for the leader agent randomly. 

  3. setting i
D  for each agent 

  4. Do Loop ( l  iterations)   

 Calculate the local error 
itE  on the system 

trajectory by (3).  

 Calculate the event-triggered error 
ite  by 

Equation (8) 

 Calculate the threshold i  for each agent 

by Equation (14) 

 Calculate the estimated state ( 1)
ˆl

i ts   by 

Equation (45) 

 For each agent  i , if ( )i ie n   then 

1l l   and go to step 4, otherwise: 

- Calculate control policies ˆ l

itu  by Equation (50)  

- Calculate disturbance policies ˆ l

it  by Equation 

(51)  

- Calculate the local error 
( 1)

l

i t 
 (3) using the 

estimated states  

- Calculate the value function 
( 1)

ˆ l

i tV 
 by Equation 

(52)  

- Update the critic weights 

   1

)(
ˆ ˆ ) (( )ˆ ( )i

m

i i T

ic

l T lT lT l

ic ic ic ic im ic mt
W W t tW V 


  

where itV  is gained by Equation (63)  

- Update the actor weights 

   1

)(
ˆ ˆ ) (( )ˆ ( )i

m

i i T

iu

l T lT lT l

ia ia ia ia i iu mtmW W t tW u 


    

   1

)(
ˆ ˆ ) (( )ˆ ( )i

m

i i T

id

l T lT lT l

id id id id i id mtmW W tW t  


       

- Update the identifier weights 
( 1)ˆ ˆ ˆˆ ( ( ))( ( ( )) ( 1))l T lT lT l T

is is is is is is is is iW W Z t W Z t s t        

- For all i , when 1ˆ ˆ( ) ( )l l

i it i itV E V E     end, 

where   is a small constant.  

8. Simulation Study 

In this part, the applicability of the developed NN-

based adaptive optimal event-triggered algorithm 

is demonstrated by the simulation results. Consider 

the graph structure of Figure 1. 

 

 

 

 

 

 
Figure 1. Topology of interactions among four 

agents. 

 

The drift, input and disturbance matrices for every 

agent are given as  

 
 
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        , 1,2,3,
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4i i

i

g is
s

 
  

 

 

   

   

1 1 2 2

3 3 4 42 2

31 41

1 1
, 

0.8 0.1

0.9 1
  ,

h s sh

h h
s

s
s

s

   
    

    

   
    

   

 

The drift matrix of the leader is as   

 
 

01 02

2

01 01 0

0 0

2

    
0.5 1

s
f

s s s

s
s

 
  

    

 

The pinning gains are 
1 2 3 40  , 1a a a a    ,  and 

the edge weights is considered as 

12 23 31 140.7, 0.5, 0.7, 0.4c c c c    . The chosen 

learning rates are ˆ 0.3is  , ˆ ˆ0.1, 0.3ic ia    

and ˆ 0.3id  . The disturbance attenuation is given 

by 1.5   and bound for actuators is considered as 

1Y  . 

The following is a list of the matrices in the 

performance indices 

14 23

11 22 33 44 2 2

11 2

31

2 33 44

12

1

1

O

T

T

O O O I

T T T

T T T

   

 

  





  

Figures 2, 3, 4 and 5 respectively depict the 

convergence of the control actor, disturbance 

actor, critic and identifier for agent 1. In these 

figures, it is shown that all weights converge. 

The update for all neural networks is done only 

at the event trigger and remains constant at other 

times. This reduces the calculation and execution 

time. Figures 6 and 7 depict the local error and 

the estimated states of all agents, respectively, 

where the local error dynamics converge to zero 

خ

0 

4 

3 

1 2 
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and the synchronization of the states of all agents 

with the leader state is achieved while 

maintaining their optimality. 

 
Figure 2. Control input actor weights update for 

agent (1). 

 
 Figure 3. Disturbance actor weights update for 

agent (1). 

 
Figure 4. Critic weights update for agent (1). 

 
Figure 5. Identifier weights update for agent (1). 

 
Figure 6. Tracking error versus iteration steps. 

 
Figure 7. Synchronization of follower agents to 

leader agent. 

  

9. Conclusion 

An event-triggered control scheme and a 

distributed adaptive optimal algorithm are 

proposed in this paper to solve the N-player leader-

follower synchronization problem for unknown 

nonlinear systems with disturbances and input 

constraints. The proposed method can reduce the 

excessive consumption of communication and 
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computing resources since updates and 

calculations are performed only when the event 

happened and remain constant at other times. 

Besides, the actor-critic structure and NN-based 

system identification techniques are used to 

approximate the optimal event-triggered value 

function, optimal control, worst-case disturbance 

policies and unknown dynamics of the players. The 

closed-loop stability according to Lyapunov and 

the convergence of Nash game equilibrium are also 

shown. Finally, the proposed algorithm's efficiency 

in synchronizing with the leader is demonstrated. 
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های غیرخطی زمان گسسته بیقی مبتنی بر رویداد برای سیستمپیرو بهینه تط-کنترل اجماع رهبر 

 ورودی محدود ناشناخته

 

  فرزانه تاتاری و *دیدبانعباس ، زهرا جهان

  .رانیدانشگاه سمنان، سمنان، ا وتر،یبرق و کامپ یدانشکده مهندس

 05/06/2024 پذیرش؛ 08/04/2024 بازنگری؛ 11/11/2024 ارسال

 چکیده:

 با یعاملگسسته چندزمان مجموع صفر  یگراف یهایحل باز یبرا دادمبتنی بر روی کنترل برمبنای یقیتطب نهیشده بهعیتوز تمیالگور کی ،مقاله نیادر 

شناخته  یرخطیمحدود غ یورود یهاستمیس شاتا و همراه بانا شا شنهادی تمیالگور .دشویم یمعرف یخارج غت  زاکسیا-یجاکوب-لتونیمعادلات هم پی

های بهینه توزیع شننده را ند تا کنترل کنندهکحل می تکرار ارزش پویای تطبیقی یزیربرنامه اسننا بر و ناشننناخته  کینامیرا با فرض د دادیهمراه با رو

عملگر پیاده سازی می-صبی نقادهای عالگوریتم با استفاده از شبکه .، توسعه دهدعواملی که روی یک گراف ارتباطی تعامل دارند پیرو-برای اجماع رهبر

 یشبکه عصب یهاو وزن یکنترل، اغتشاش خارج یورودهمچنین، . شوندشبکه عصبی شناساگر تقریب زده می های ناشناخته سیستم باد و دینامیکشو

سانبه رویداد یهالحظه درو فقط  یاصورت دورهبه سبات ندیتا فرآ شوندیم یروزر ساده یمحا صفر بازی معرفی تر کنند.را  های گرافی غیرخطی مجموع 

سسته شناخته، محدودیت ورودی کنترل وبا دینامیک  زمان گ ش نا شا شر با روشو حل آنها ارجی ات خاغت های مبتنی بر رویداد، این مقاله را از آثار منت

سته و همگرایی به تعادل نشهمچنین کند. متمایز میشده قبلی  ستم حلقه ب سی شده پایداری  ستاثبات  شبیها صی. در انتها، نتایج  ف سازی برای تو

 است.کارایی روش پیشنهادی ارائه شده

 .یعصب یهاشبکه ،یتیتقو یریادگی نه،یبه رویپ-اجماع رهبر داد،یرو روش مبتنی بر ،توزیع شده نهیکنترل به :کلمات کلیدی


