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This paper introduces an adaptive optimal distributed algorithm based
on event-triggered control to solve multi-agent discrete-time zero-
sum graphical games for unknown nonlinear constrained-input
systems with external disturbances. Based on the value iteration
heuristic dynamic programming, the proposed algorithm solves the
event-triggered coupled Hamilton-Jacobi-lsaacs equations assuming
unknown dynamics to develop distributed optimal controllers and
satisfy leader-follower consensus for agents interacting on a
communication graph. The algorithm is implemented using the actor-
critic neural network, and unknown system dynamics are
approximated using the identifier network. Introducing and solving
nonlinear zero-sum discrete-time graphical games in the presence of
unknown dynamics, control input constraints and external
disturbances, differentiate this paper from the previously published
works. Also, the control input, external disturbance, and the neural
network's weights are updated aperiodic and only at the triggering
instants to simplify the computational process. The closed-loop
system stability and convergence to the Nash equilibrium are proven.
Finally, simulation results are presented to confirm theoretical

findings.

1. Introduction

Due to the numerous applications of distributed
control of multi-agent systems (MAS) in various
engineering fields, researchers have become
interested in it in the last few decades [1, 2].

The leaderless and leader-follower consensus
problems are two types of consensus issues that
distributed control approaches have recently
addressed [3-5]. In the leader-follower consensus
[6-8], a favorite in this article, the states of all
agents synchronize to a leader state, whereas in the
leaderless consensus [9, 10], all agents synchronize
to a standard value. Leader-follower consensus in
discrete-time (DT) MASs has been the subject of
numerous studies [11, 12]. There is no guarantee
that the studies mentioned above will be optimal.
However, the game-theoretic framework can be
utilized to accomplish this.

The optimal multi-agent control problems, in
which each agent tries to optimize their

performance index and obtain their optimal policy,
are well suited for research in game theory [13].
Since many real-world MASs problems have
external disturbances, solving multi-agent games
with unknown external disturbances is critical
because neglecting this can lead to performance
degradation and instability. Graphical games [14],
first developed for continuous time (CT) systems,
are used to solve optimally distributed leader-
follower consensus problems in linear [14-16] and
nonlinear [17] systems, where every follower's
performance index, actions, and tracking error
dynamics are dependent on neighbors local
information.  Zero-sum nonlinear differential
graphical games of CT systems, which considered
the existence of external disturbances, were added
to these games [18, 19]. Several studies have been
done in DT games on two-player zero-sum linear
and nonlinear games [20-22]. Additionally, linear
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N-player DT graphical games have been studied by
[23, 24].

To solve multi-agent games that include external
disturbances, it is necessary to solve the coupled
Hamilton-Jacobi-Isaacs (HJI) equations. However,
solving these nonlinear equations is either
impossible or extremely challenging.
Consequently, these equations can be solved using
approximation-based approaches.

Reinforcement learning (RL) algorithms [25] have
many applications in various problems [26] and
have recently been developed as effective
approximation-based techniques for solving multi-
agent games [27, 28].

The work [20] employed heuristic dynamic
programming (HDP) techniques to solve nonlinear
zero-sum games with known dynamics. Reference
[23] introduced a value iteration (V1) algorithm to
solve linear DT graphical games under systems’
known dynamics. Moreover, most physical
systems are nonlinear, with higher-order dynamics
that are difficult to model precisely. Also,
saturation nonlinearity exists in many actuators and
should be considered in the obtained controller
design [29-31] since ignoring it can cause
performance degradation or system instability.
Therefore, solving multi-player games under
unknown dynamics and input constraints is very
important.

Most of the references mentioned above use time-
based methods that perform calculations at all
instants. This process is time-consuming and
increases the complexity of calculations. Due to the
significant reduction in calculations, the event-
triggered control method has recently attracted
much attention from researchers [32-34]. Event-
triggered schemes for DT systems without
considering optimal control problems in [35] are
presented. Reference [36] employed an HDP-based
event-triggered adaptive control method for
unknown nonlinear DT systems. Reference [37]
deals with event-triggered adaptive control for DT
zero-sum games and these references have not
considered graphical games and input constraints.
Several issues discriminate DT zero-sum graphical
games from DT zero-sum [20, 21, 22] and DT
graphical games [23, 24]. In DT zero-sum
graphical games, distributed optimal controllers are
developed to satisfy optimal leader-follower

consensus for agents interacting on a
communication  graph.  Every  follower's
performance index, actions, and local error

dynamics are dependent on neighbors' local
information. But in zero-sum games, the
communication of agents is not under the graph
topology and the influence of neighboring agents is
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not considered. They do not consider the leader-
follower synchronization problem and are
leaderless. On the other hand, solving HJI
equations is required in the DT zero-sum game to
determine the worst-case disturbance and the best
controller. In DT zero-sum graphical games,
coupled HJI equations should be solved to develop
distributed optimal controllers to satisfy leader-
follower consensus for agents interacting on a
communication graph, while solving coupled HJI
equations due to the existence of graphical
coupling terms is quite different and rather difficult
than solving HJI equations. Furthermore, DT zero-
sum graphical games engage external disturbance
as an opposite player against the controller for
every agent and need to solve coupled HJI
equations which are different from Hamilton-
Jacobi-Belman equations in graphical games,
which neglect the existence of external
disturbance.

We are aware that no results have been reported on
DT zero-sum graphical games that can solve the N-
player leader-follower synchronization problem
for unknown dynamics nonlinear agents with input
constraints and external disturbances. Also, DT
graphical games are not solved by the event-
triggered method.

This paper introduces nonlinear multi-agent DT
zero-sum graphical games. It suggests a new
adaptive optimal distributed algorithm based on
event-triggered control to solve these games for
constrained-input unknown nonlinear systems with
external disturbances. The following are the
article's main contributions:

* The first is the introduction of DT zero-sum
graphical games for nonlinear DT MASs that use
the local information of neighbor agents to achieve
the leader-follower synchronization problem.

* A VI HDP algorithm based on event-triggered
control for solving multi-agent DT zero-sum
graphical games in an online and distributed
fashion is proposed.

» Using the event-triggered method and performing
calculations non-periodically, which leads to a
reduction of calculations and execution time.

* The presented algorithm solves the games under
the assumption of unknown dynamics where every
agent's unknown dynamics are identified using an
identifier.

» Constraints on control inputs and external
disturbance existence are considered to make the
proposed algorithm more applicable to real-world
problems.

* Finally, The stability of the closed-loop system
and its convergence to the game's approximate
Nash equilibrium is demonstrated.



Event-Triggered Optimal Adaptive Leader-Follower Consensus Control for Unknown Input-Constrained Discrete-Time Nonlinear Systems

Structure: This paper has the following sections. In
the next section, the required knowledge of graphs
and problem formulation is explained. Then, a
multi-player DT zero-sum graphical game based on
event-triggered with control input constraints and
unknown dynamics is proposed. The presented
graphical game's event-triggered Nash solution
with proof of its convergence and the proposed
event-triggered optimal distributed algorithm with
unknown dynamics and external disturbances are
presented afterward. The identifier employed for
every agent unknown dynamics is described and an
actor-critic structure used for the proposed
algorithm is presented. The simulation study is
presented, and then the conclusions are drawn.

2. Graphs and Problem Formulation
This section presents background on graphs,
formulation of optimal leader-follower consensus
control, and the triggering mechanism.

2.1. Graphs
The directed graph Gr=(P,X) provides a

description of the interactive topology for N agents'
information exchange, where a set of graph nodes
is P={p,,....., Py} and a set of graph edges is

C=[cle RV
adjacency matrix for the graph such that c; >0 if

represents an

(p;, p;) e X, otherwise c; =0 where (p;,p;)
means that agent i can get information from agent
J but not necessarily vice versa. The list of node

p;'s neighbors is shown with

N, ={p;:(p;,p) e} Q=diag{q} denotes
the in-degree matrix of Gr with ¢ =)

C. .
jeN; i

The Laplacian matrix of the graph is given by
L=Q-C . The leader agent is denoted by 0 and

information can be transmitted from the leader to
its neighbors. The leader pinning matrix is
indicated by A=diag{a}<R"", where a >0
is the pinning gain. If the agent i is connected to
the leader, it is non-zero, otherwise it is equal to
zero. Note that the leader is connected to at least
one of the follower nodes. A graph has a spanning
tree if there is a directed path from an agent called
the root to all other agents. In this article, it is
assumed that the graph has a spanning tree.

2.2. Problem Formulation
On the communication graph Gr with N follower

agents, the local dynamic of agent i is as follows
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s (t+1)=f,(s (1)) + 9, (s (t))u; (t) ()

+h(s (t))a)i (t)
where s, (t)eR", u,(t)eR" and o, (t)eR" are
the state, control input, and external disturbance
vector of agent i, respectively. f (s )eR",

g,(s)eR™ and h(s)eR™ are the drift,

input, and disturbance dynamics of the agent i,

respectively, which are all considered unknown in

our developments. The leader dynamic S,

indicating a reference trajectory, is as follows
5o (t+1) = (s, (1))

f, is the state matrix of the leader.

Synchronizing all follower agents' states to the

leader is the goal of the leader-follower consensus.

The local error of agent i [38] is defined as

E;(t)= ZN: (35 (1) =i (1)) +a (s (1) -5 (1))
JEN;

The network local error for all agents is as

E(t)=—((L+A)®1,)(s(t)-5,(t) @
5 (t)=[s (t).....50 ()] eR™
s:[slT,...,SHT eR™ ,E:[EI,...,EL]T eR™.

I is the unit matrix of nxn and ® represents

n
Kronecker multiplication.
The disagreement error vector is as

o(t)=s(t)-5,(t)eR™ ()
If a root node is connected to the leader and the
graph has a spanning tree, (L+ A) is nonsingular
[38].
Remarkl. It is demonstrated in [23] that if
(L+A) is nonsingular, the disagreement error

2

®)

where

vector is bounded as
lo@]<[E®]! oL+ A) ©
where ¢ (.) is a matrix's smallest singular value.

Therefore, leader-follower synchronization can be
achieved by keeping the local error small.
For simplicity, s, (t) is written as s, from now on,

and other variables are considered similarly.
We describe a series of incremental time instants

{ti }w for each agent i to create an event-
M) m=0

triggered control situation, where t' is the m-th
sampling instant with t; =0 and t, <t' .. To

m+1"*

reduce the computational complexity, in a new
sampled state t;,t;,...., weights of the neural
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networks, the control input, and the external
disturbance are updated.
Sampling instants are obtained in violation of the

following condition for agent i at t =t .

Je.0] < g
where ¢, is the threshold, and e, (t) is the event-
triggered error as follows

e (t)=E(t)—-E,(t), vttt ) (8)
Where E;(t!) and E,(t) are the local error in the

sampled state and current state, respectively.
Remark 2. In the sampled state t=t. , event-

triggered error e, (t) is reset to zero. Meanwhile,

the control input and external disturbance of agent
i are adjusted in line with the new measurement

and remain constant in [t..t' ), ie
u @) =u () o) =a)vielt t ).
Assumption 1. For each agent i, positive

constants D, exist, such that
le; (t+2)] < D; e, )]+ D; |[E; ) ©)
Theorem 1. For DT nonlinear systems, the event-

triggered error must satisfy the following
condition:
1-(2D)"* i 40
le®)|<& = 12D > ||E. (tm)” 3
Proof. Inspired by [36] for each t e[t’ ,t' ) itis
obvious that e (t+1) =E,(t' )~ E, (t+1), so that
et +1)|| <[E; (t +1)| and so we have )
e (t+2)] < D le; @]+ O, [E; 1) D
Then, by substituting (8) in (11), we obtain
e (t+D)] < 2D, [le, ©)]+ D, [E; (t)| (12)
Therefore
(13)

e ()] < 2D, [le; (t =)+ D [E, &)
<2D,(2D, [l (t - 2)]+ D, [E, &)
+D, [E, ()|

<(2D)

t-t]

)7 )

+...+ D, HE, (tr‘n)H
Considering the initial conditions and e, (t)=0

simplifying (13), we have

Je. o) s{% D, [, (1)) - ei]

Therefore, the proof is complete.

(14)
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By using Equations (1) and (3) the event-triggered

local error of agent i for te[t ,t! ) is obtained
as
|(t+1) Z CU ( f (Sjt 1:i (Sit )) (15)
jeN;

+a ( fo (SOt) - fi (Sit))
—(a; +2,)(9; (Sit)ui(trin) +h, (Sit)wi(tim))
To obtain leader-follower synchronization, a

distributed controller for each player is proposed to
minimize Equation (15) for . = 0, assuming that

the dynamics of the system are unknown.

3. DT Zero-Sum Graphical Game by Event-
Triggered Control

In this section, we introduce nonlinear DT zero-
sum graphical games with disturbance and control
constraints. The definition of these games is based
on local error (15) and by introducing the local
performance index.

Considering constant control input and constant
disturbance  between trigger instants for

te[t ,t ), the local performance index of agent
i isas follows

m+1 (16)
i~ ZU iUy Uiy @iy a)—i(tin))
Unlth i) ={000) t=t,
T
Irl'nl
:

Z‘ +ZW uj(t,»m) =7 wi(ti”‘)T“wi(ti”‘)

Unltn tne)=[0.20) t= t' jeN;
4 zw M ]t”‘

where O >0eR™, T. >0eR",

T, >0eR" , y >0 isa prescribed constant and
W (.)>0. The control and disturbance of the
neighbors of agent i are u;={u;|jeN;} and
@, :{a)j | j € N.}, respectively.

For each player, the following nonquadratic
functional [39] is used to take into account the
control input constraints

W (u,) = 2T¢-T (Y %)Y ydx

where y >0 is a diagonal positive definite matrix,

U =y Uy U)oy U, xeR™
¢ e R™ , where ug is the z-th element of the vector
z=0,...,b. w(.) is a monotonic odd bounded

(17)

uit !
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function satisfying [y (.)| <1 and its first derivative
is bounded. Y is a bound for actuators. In this
paper, w(.) =tanh(.).
Each agent 's value function is defined as
Vi(E,) = zui (Eig s Uig Ui, @, @i )
d=t
3.1 Bounded L2-Gain Synchronization Problem

Gaining a control policy u,, is desirable for solving

the synchronization problem of DT zero-sum
graphical games when o, =0 and it satisfies the

(18)

following bounded L, -gain condition for a given
y >y when @, =0 for all players

o (ETOE, +W (u, (t')) (19)
> X j
Unlth th.)=[0.0) t=th +JZN: W(u; ()
) Z w ity )T"w| (th) ( )
<y + B(E;
te(thy tg seeeens©) +ZN a) i) IJ i) ’
je

for several bounded functions S such that
L(0)=0. Let »" is the smallest amount that
satisfies the above bounded L, -gain condition.

3.2. Event-Triggered Bellman Equation for DT
Zero-Sum Graphical Games

Considering the control input and disturbance at
the trigger instants and the first difference of
Equation (18), the Bellman equation of each agent

i for teft!,t' ) isobtained as follows

V(Elt) U, (Elt’ul(t' ) —ith)! |(t )’ —i(t} ))
+Vi(Ei(.y)),Vi(0) =0

The game's purpose is to find a unique saddle point

(20)

(u®, @) for every agent such that
ViO(Eik) (21)
=minmax Ui(Eit’ui(tim)’u—i(tim)’wi(t‘m)’w—i(t‘m))
! o\ (Ei(t+1))

In our event-triggered control method, the event-
triggered optimal control and disturbance policies
are only updated when the events are triggered. As
a result, they are updated using the sampled state

St and E, @) rather than the actual state s, and

E, when telt' t ). Therefore, the bounded
event-triggered optimal control and event-

triggered worst disturbance policies for each agent
i can be respectively obtained by minimizing and

maximizing Equation (20) concerning control

input U, and disturbance o, as follows

-t @2
U (Elt’u| t ’u_i tl ’w| t! ’w—l t! )
_argmin| @i Gy i)
Uy i (Ei(t+l))
=7¢((Yy) (6+a)g/ (s (t‘m))VV'O(E ¢ +1)))
) =00() &
Ui(Bio Uy U0 @00 )
_argmax| . @i Gy i)
[on Vi (Ei(t+1))

:_lz(q )ulhl( ) (Ei(t:"+1))

where VV. (Ei(t+l)) =0V, (Ei(t+l)) / aEi(t+1) '

Substituting Equations (22) and (23) into Bellman
Equation (20), the following event-triggered
coupled Bellman optimality equations are gained

ETOuEn (24)
U )+ LWW,)
jeN;
1
N e
2 (s, T (5, VVEE, )
1 0
Y T (qj +aj)2VVj (Ej(tn',+1))T
je
><hJ( )1T|JTJJ1hJT( ) (Ej(t"inu))

+Vi0 (Ei(t+1))lvi0 (O) =0
3.3. Event-Triggered Coupled Hamilton-Jacobi-
Isaacs Equation

Based on (15) and (18) each agent's Hamiltonian

function for te[t.,t! ) is defined as

m+1

_ (25)
H, (E't'w (E t+1) ey u—'(t‘)’w'(tin)’w—i(t;n))_
ZCU f(sjk | |k))
jeN;
VV(E )T +8;(f,(S,) = fi(Si)
ne (Q.+a)(g.( My +hi(8)e, )
+3 009,500, +hi (5o )
jeN;
+Ui(git’ui(tim)’u—i(t‘m)’wi(t'm)’w—i(tin)) 0V:(0)=0
By employing the ai—o and ﬁ:o the
0 ow,

it

it

bounded optimal control policy and the worst
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disturbance are obtained for each agent i

respectively as follows:
u=u (26)

i)
=argmin(H,)

Uit

W((Yy)il (0,+a)g (Si(ti ))VV‘* (Ei(tim“) ))

m

* *

O =B

=argmax(H,)

Oy

(27)

=——(Q.+a)T (5 )V,

(Ei(t‘m+1))

Substltutlng Equation (26) and Equation (27) into
Equation (25), one obtains the following event-
triggered coupled DT HJI equations

H; (E.t,VV ( m) “*(m) uii(tf“)‘a)i*(t,‘.,)’wti(ﬂ“)):
.
VV ( l+1)

zcij(fj (sjt)_ f (Sit))+a'i(f0(so)_ f (Sn))

JeN;

(28)

(Yy)_1 (g+a)
xg; (s, )VVi*(Ei(emﬂ))
(@sa)iH 5w B

+ 3.6 (g; (5, ) (YyT)_ (qﬁajg 0

e, xg: (Sjtl )WV | E

_<qi +ai)(vgi(5it))¢

Das

1
7

_hi (Sit)

_;Zhj(sjz)(qﬁa)ulhj( W (Ei(‘”))

B0, +W (uy, )Zw( )

4
SPnE TN 6 (] |0
—%Z(q a) W' ( (m))

7 jeN;
xhy (s, )T, TyT; ] (5,,)VY (Ei(w))

The obtained event-triggered bounded optimal
control policy and the worst disturbance require the
solution of the event-triggered coupled Bellman
optimality equations (24) or event-triggered DT
HJI equations (28). These equations are equivalent
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[23] and difficult or impossible to solve. Therefore,
the VI algorithm is employed to approximate the
solutions.

4. Event-Triggered Nash Equilibrium of DT
Zero-Sum Graphical Game

To solve the multi-agent DT graphical games for
unknown nonlinear constrained-input systems in
the presence of external disturbances, one needs to
find the Nash equilibrium solutions by solving the
event-triggered coupled HJI equations. Therefore,
in the next step, the Nash equilibrium condition is
defined.

Definition 1 The N-player games have an event-
triggered global Nash equilibrium solution if for all
agents

Ji (Eut’un ' u-n 1 Oy a)

)J(Euu a)a)) (29)

it ity V=it it

sJ(Euu a)a))

ity it F-it Tt
Theorem 2. Let V,(g,) <0 satisfies Equation
(24) or Equation (28). Let for te[t' t' ) the
(E;O.E, +W(u W ZW(uth )

jeN;
<7/ (a)t'T"wt' +Za)tl ij jtJ

Let control and dlsturbance policies are
respectively given by Equation (26) and Equation

(27) in terms of V.. Let the communication graph
has a spanning tree and a =0 for at least one
agent. Then, the local error (15) are asymptotically
stable and all agents’ states synchronize to the
leader state.

Proof. Consider -V, (E,)>0 as Lyapunov
function for (15), and from (20) we have

- (V'*(Ei(t+l)) _V'*(Eit))
_U (E *l(ti )! |(t |(t' )<0

Thus, the dynamics of the local error (15) are
asymptotically stable and according to Remarkl,
all agents’ states synchronize to the leader state.

In the following theorem, it is proved that solutions
to the event-triggered coupled DT HJI equations
provide Nash equilibrium solutions and solve the
DT zero-sum graphical game.

Theorem 3. let V,"(E,) satisfies Equation (24) or

Equation (28) such that the dynamics of the local
error (15) are asymptotically stable. Let control and
disturbance policies are respectively given by
Equation (26) and Equation (27) in terms of V.".
Then, all agents constitute a Nash equilibrium,
inequality (29) is satisfied and the optimal
performance index of each agent i is expressed as

condition holds.

(30)

it? I(t' ’
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‘J (Elh’ulh’u—lh’ |h’ ) V (Elh)

Proof. According to Theorem 1, the closed-loop
system (Equation (15)) is asymptotically stable and
E, (c0) — 0. Therefore V,"(E; (x)) =0 and

J; (Eih  Uin ) Ui s @ a)—ih) (31)
_V +ZU E|h’u|h’u—|h’ |h’ h)
t=h
Rearranging Equation (31) results in
3 ({E; Uy Uiy, @, 03 }) =V, (Ey) (32)
+Z En’ult’u—lt’ lt'w t)
U, (E|t’un’u—|t’ |t'w—it))

=Wy, Dy

Assumethat u ,, =u", , @y, =aw ,, for
the local performance index. Then, one has

3 ({B U U 05,0 3) = Vi (E) (33)
2: (B Uy U3 0,0,

U (Elt’ult’u it? Il’ It))
The optimal control policy minimizes the function
of the local performance index. Thus, it is clear that

: (34)
ZU E|t’u|t’u|t’ |t’ ZU Elt’ult’u—lt’ it? —It)

ZW it n

Therefore, according to Equation (33) and
Equation (34), we obtain

: (35)
‘] (Elt’ult’u It’a)lt‘a)—lt) ‘] (Elt’ult’u it? It’ —It)
Then, for each function V,(E,),ie N, we can

write Equation (16) as
36
‘]'(Eih’uih’uih'a)ih'w—ih) (36)

ZEltO||E|I+W it ZW it

JeN;

a)TTa) Za)Tw +V.(E

it it it

Z CI] |t

X ai(fo(so)_fi(sit))
- +av)(g-( U (S )a,)
3600, ug +hi(5,)o,)

jeN;

jeN;

+Z VVI (Ei(t+1) )T
t=0

Let now that V,” satisfies the DT HJI (28), u; and

w, are respectively the optimal policies and the

disturbance given by Equation (26) and Equation
(27), one can write Equation (36) as

J; (G Uiy Uiy @y, 0y ) = 37)
V(B +5 W () -W(U)

%(zjeNiW(u,-t)—vv(u}»
+VViT (Ei(t+l)) z ;9 (sjt)(u} B ujt)

jeN;

"‘VV'T (Ei(t+1))(qi +2;)(9; (Sit)(ui: —Uy)

__7 Z (a)]t ;t)TTij (a)jt _w;t)

jeN;
1, . .
——7/ ((a)it — )T (o, _a’it))

+VV (Eu(t+1))zcu J(Slt)(a)lt 't)

jeN;

* T *
-y* Z (a)jt) T; (a)jt _a)jt)
jeN,
Assigning Uy =Uy, @,=0,, VjeN;, and
Uy = UIt one has

J (E,t,u,t,u OO ) 38)

V (Elt __)/ZZ

Therefore, itis shown that the left inequality of (29)
is satisfied

J(Elt’ult’um @ @ ) \](En,u ult’ ' *n) (39)

it

Ti(o,-@,)

Setting , = w, in Equatlon (38) yields
« . (40)
‘](E U ult’ i» @ |t)_V' (E;)

it Mit? |
Therefore, the proof is complete.

5. Event-Triggered Value Iteration HDP
Algorithm for DT Zero-Sum Graphical Games
In this part, an online event-triggered value
iteration HDP algorithm based on event-triggered
Bellman equations is presented to obtain the
answers of the DT zero-sum graphical game.
Algorithm 1 solves the event-triggered coupled
Bellman optimality equations to obtain optimal
values, control policies, and disturbance policies.
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Algorithm 1
Event-Triggered Value Iteration Algorithm for DT
Zero-Sum Graphical Games

(Initialization). Give arbitrary initial control and
disturbance policies and values for all agents.
(Policy evaluation). Solve the following equation

for te[t .t ) toobtain Vi'+l

1+1 | | (41)
VI (E) =B Uy W Gy @)
+V (E t+1)

(Policy improvement). Update the disturbance and
control policies at the triggering instants by the
following equations

uilt+1 = uil(a) )
~ . 141
=Y¢[(YY) (qu +ai)giT (Si(tim))vvi (Ei(tmﬂ)) j
.|+1 — |+.1
T i) (43)
g VE, )

Forall i, when ‘MH(EH)—W(EH)HSOC end. ¢ is

a small constant.
| denotes the iteration index.

6. Neural Network-Based
Approximation

In this study, the drift, input, and disturbance
dynamics of each agent are assumed to be unknown
and we approximated unknown system dynamics
using the neural-network-based identification

technique as follows

S, (t+1) =W, ¢, (VIS (1) + & ()
where qois(.) is the activation function and it is
presumed to be bounded, &(t) is the NN
z.®)=[s; ul wTeR’is
the NN input with d=n+m+k, v and W,

denote the ideal weight matrix between the input
layer and the hidden layer, the hidden layer and the
output layer, respectively.

System

(44)

estimation error,

In the system identification process, v; is assumed

to be constant and only WisT is adjusted. Hence, the
identifier network output is described as

§(t+1) =W, ¢, (Z, (1)) (49)
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where Z, () =Viz,(t) , § is the estimated state

vector and Wis is the estimation of W, .

The approximation error for system identification
is defined as

e, =S (t+1)—s(t+1)

_WT¢|S(Z|s(t)) S(t+1)
The squared approximation error is defined as
follows

1
E.=—(e
=5

(46)

(47)
)'e

is is

The identifier weights are updated using the
gradient descent rule as
W_(|+1)T :V\‘/_lT

luls(pls (le (t))(\le ;s (Zis (t)) - SiI (t +1))T

where 0 <z, <1 denotes the learning rate of the

identifier network.
After the learning process in the NN, the identifier
weight matrix will converge to a certain value

W . Then, the identifier network output is

ism *

expressed as

§ (t+2)= (s (1)) + 6 (s (1) Juy,
Wil (Vi 2, (1)
where fi(si (t)) Qi(si (t)) and h(s,(t)) are the
estimations of f; (Si (t)) g; (s (t)) and h (5,(1),

respectively.

(48)

(49)

+ ﬁi (Sit)a)i(t

Actor-Critic
DT Zero-Sum

7. Event-Triggered-Based
Learning for Unknown
Graphical Games

In this section, the algorithm (1) will be
implemented using an actor-critic framework that
is based on event-triggered. In order to carry out
the policy evaluation (41) and estimate the optimal
value function, the critic network is designed for
each agent. The actor approximators are
constructed to perform the policy improvements
Equations (42) and (43), respectively, which
estimate the bounded event-triggered optimal
control and disturbance policies. Additionally,
using a neural network, each agent's unknown
dynamics is approximated.

7.1. Actor-Critic Approximators and Tuning
For each agent i, The control and disturbance

policies are estimated using actor approximators
ai('Mia) and @, <-|Wid), respectively. Also, the
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optimal value function is estimated using the critic
ic) so that

approximator \7i (

U, (Wia ) = W.; () 0
o (Wid ) = Wu] (1) ey
(52)

i T
Vi (W, ) =W g, (1)
where W.a , V\/id are the estimated actor weights for
control and disturbance, respectively and \/\A/iC is the

estimated critic weight. @, @, and @, are the

activation functions for the control actor,
disturbance actor, and critic, respectively. All
activation functions are assumed to be bounded,

Le., ”(Diu ()” S Gum ”(Did ()” < Pigm

H(Dic ()H < @, Each agent's activation function is
equal to the local error vector of that agent and its

and

neighbor.
The actor network's control input error for
teft',t' ) can be defined as
A ' W () - (53)
eia - ul(t:ﬂ) (Wia) W ¢IU( ) ul(t:ﬂ)
The control input ui([, ) iS given as
o . : (54)
ul(t:“) :Y(Z) (Yy) (ql +al)g| (Sl(tl\“))vvl (E|((t'm)+1))
By using (52), (54) can be written as follows
— [\ . (55)
~Vo((W)"(a+a)4 (s, 0N

where G, =[0....[1]....0] €[ nan”. Njjis the total

number of each agent i and its neighbors.
The actor network's squared error for control input
is as

1 (56)

E -“(e)e
o).

la

The actor weights for control input are updated
using the gradient descent rule as

W (1+|) W IT

~ (W Yo, (th) -

(57)

0, )@, )
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where 0< g, <1 denotes the actor network

learning rate for control input.
Similarly, the actor network's disturbance error can
be described as

_ Y T iy~
& = Oy )(W'd) By =W tn) =By, (sg)
The disturbance a3| ) can be defined as
~ 1 -IRT f
wi(t,i“) = _?(qi +ai )Tii hi (Si(tim))vvi(Ei(t:n+1)) (59)

By using (52), (59) can be written as follows

- 1 o
Oy = _F(qi +a,)T,h' (Si(ﬂn))A. ) (60)

where A; =[0....[1];....0] €0 kxkN;; |

The following is a definition of the disturbance
actor's squared error

1

Eq = E(eid )T €id

To update the actor weights for the disturbance, the
gradient descent rule is employed as follows

W(1+|) Wl(IiT
~Hig ( a P (tn) — |(t' )(goid (tn))’

where 0< u, <1 is the learning rate for the
disturbance.
The objective value function V,, is given by

ng+W(') ZW( )

(61)

(62)

y (63)
Vit :;
-7 Z IJ ith)
JjeN;
+Vi2t+l)
The following is the critic network's error
ARY R 64

€ =V —Vy (Wic) (64

The squared error for the critic is defined as follows
65
Eic = %(eic )T eic ( )

The critic weights are updated using the gradient
descent rule.

\/\7-(1+|)T :W-IT

IC

e (I 2 €)=V, ) (0 (6]

where 0< g, <1 denotes the critic network

learning rate.

Finally, Algorithm 2 is presented for actor-critic
network weights online tuning of unknown DT
zero-sum graphical games.

(66)
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Algorithm 2
Event-triggered value iteration HDP algorithm
Implementation using an actor-critic structure

1. Start the weights for the actors and identifiers
at random and critic with zero.

2. Initialize the initial state s, (0) for all agents

and s,(0) for the leader agent randomly.

3. setting D; for each agent

4. Do Loop (| iterations)
Calculate the local error E;, on the system
trajectory by (3).

Calculate the event-triggered error e, by
Equation (8)

Calculate the threshold &; for each agent
by Equation (14)

Calculate the estimated state éil(t+l) by
Equation (45)
For each agent

i, if |g(n)|<é¢ then
| «—1+1 and go to step 4, otherwise:
- Calculate control policies 4/, by Equation (50)

- Calculate disturbance policies @, by Equation
(51)

- Calculate the local error gi'(m) (3) using the

estimated states

- Calculate the value function V.'(m)

by Equation
(52)

- Update the critic weights

W (1T WIT —u (W T (t)-V |(t )((0,C N’

where Vit is gained by Equation (63)
- Update the actor weights
W VT - g, (W, (6) -0, ) )

V\?i(sl+l)T Wl(IjT — Hig (Wu!JT P (t ) (t' ) (¢id (trln ))
- Update the identifier weights

WD =W — 1 (Z @)W @, (Z, (6) — 51 (E+D)T

- For all i, when <¢§ end,

V(B -V (B,

where & is a small constant.
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8. Simulation Study

In this part, the applicability of the developed NN-
based adaptive optimal event-triggered algorithm
is demonstrated by the simulation results. Consider
the graph structure of Figure 1.

00

Figure 1. Topology of interactions among four
agents.

The drift, input and disturbance matrices for every
agent are given as

Siz + S
fi(s)= \ i=1,2,3,4
s, +0.5(1-s})s,,
1.5
gl(sl):|: 2j| li=1121314
—Siy

ORI EXSE I
vt

The drift matrix of the leader is as

S01 + SOZ
SOZ

fo(%)= Lm +0.5(1-s2)

The pinning gains are a, =a, =a, =0,a, =1, and

the edge weights is  considered as
¢, =0.7,¢,=0.5,c,, =0.7,c,, =0.4. The chosen
learning rates are s =0.3, g =0.1,4,=0.3

and z, =0.3. The disturbance attenuation is given
by ¥ =1.5 and bound for actuators is considered as

Y =1.

The following is a list of the matrices in the
performance indices
0,=0,=0;=0, =1
Tu=T,=Tu=T,=1
T,=T,=Tp=Ty=1
Figures 2, 3, 4 and 5 respectively depict the
convergence of the control actor, disturbance
actor, critic and identifier for agent 1. In these
figures, it is shown that all weights converge.
The update for all neural networks is done only
at the event trigger and remains constant at other
times. This reduces the calculation and execution
time. Figures 6 and 7 depict the local error and
the estimated states of all agents, respectively,
where the local error dynamics converge to zero

2x2
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and the synchronization of the states of all agents
with the leader state is achieved while

-
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003 ] 9. Conclusion

An event-triggered control scheme and a
o4 ‘ ‘ , ‘ ‘ ‘ distributed adaptive optimal algorithm are
20 4 68 100 120 proposed in this paper to solve the N-player leader-

Figure 4. Criticweigll:i:t:;;:::foragent 1). foIIo_wer SynChronizat.ion [:_Jroblem for “”k’?o""”
nonlinear systems with disturbances and input

constraints. The proposed method can reduce the
excessive consumption of communication and
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<

o
o
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computing  resources since updates and
calculations are performed only when the event
happened and remain constant at other times.
Besides, the actor-critic structure and NN-based
system identification techniques are used to
approximate the optimal event-triggered value
function, optimal control, worst-case disturbance
policies and unknown dynamics of the players. The
closed-loop stability according to Lyapunov and
the convergence of Nash game equilibrium are also
shown. Finally, the proposed algorithm's efficiency
in synchronizing with the leader is demonstrated.
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