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 Increasing the accuracy of time-series clustering while reducing 

execution time is a primary challenge in the field of time-series 

clustering. Researchers have recently applied approaches, such as the 

development of distance metrics and dimensionality reduction, to 

address this challenge. However, using segmentation and ensemble 

clustering to solve this issue is a key aspect that has received less 

attention in previous research. In this study, an algorithm based on the 

selection and combination of the best segments created from a time-

series dataset was developed. In the first step, the dataset was divided 

into segments of equal lengths. In the second step, each segment is 

clustered using a hierarchical clustering algorithm. In the third step, a 

genetic algorithm selects different segments and combines them using 

combinatorial clustering. The resulting clustering of the selected 

segments was selected as the final dataset clustering. At this stage, an 

internal clustering criterion evaluates and sorts the produced 

solutions. The proposed algorithm was executed on 82 different 

datasets in 10 repetitions. The results of the algorithm indicated an 

increase in the clustering efficiency of 3.07%, reaching a value of 

67.40. The obtained results were evaluated based on the length of the 

time series and the type of dataset. In addition, the results were 

assessed using statistical tests with the six algorithms existing in the 

literature. 
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1. Introduction 

Time-series clustering is an unsupervised learning 

process that deals with objects that are not marked 

or labeled. Clustering of time series can be 

utilized both directly and indirectly in various 

industries and services, including electric energy, 

natural gas consumption, water consumption, or 

even healthcare. One of the main applications of 

time-series clustering is identifying consumers' 

behavioral patterns to manage consumer demand 

at different times [1]. Other applications of time 

series clustering are in the preprocessing step for 

forecasting time series data and for anomaly 

detection as well as classification [2-9]. As an 

example, Hatamlou  and Deljavan  have used this 

technique to forecast the price of gold in three 

clusters. 

Time-series clustering includes three categories: 

whole, sequence, and point-based. In whole time 

series clustering, unlike the other two types, a set 

of time series is grouped into clusters based on 

similarity measures, such as having the minimum 

distance from each other in various groups. In 

addition, there are two different approaches for 

clustering of time series. In the first approach, the 

time series itself is used for clustering. However, 

in the second approach, features extracted directly 

or indirectly from a time series will be used for the 

final clustering [10]. Due to the different nature of 

time series data in terms of diversity, one of the 

main approaches in clustering this data type is to 

use specialized distance measures, among which 

Dynamic Time Warping (DTW) and Longest 
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Common Subsequence (LCSS) can be mentioned 

[11, 12].  

This study presents a relatively fast and accurate 

algorithm for clustering various types of time 

series, relying on the importance of segmentation 

and ensemble clustering. The algorithm highlights 

the significance of segmenting a time series and 

utilizes an ensemble clustering technique to 

achieve efficient clustering. This article aims to 

select appropriate segments using an internal 

criterion and a metaheuristic algorithm and finally 

combine these segments using ensemble 

clustering. Implementing the proposed algorithm 

on multiple diverse datasets demonstrates high 

accuracy and relatively low execution time. 

Moreover, the proposed algorithm exhibits good 

stability due to the repeated iterations. 

This paper is divided into five sections. We 

present related work in the first section. The 

second section explains the presented approach 

and the algorithms employed for segmentation 

and ensemble clustering. In the third section, the 

results obtained from implementing the proposed 

algorithm on multiple datasets are evaluated 

based on various measures. Results of the 

presented algorithm, sensitivity, and statistical 

analysis are presented in section four. Our 

conclusions are drawn in the final section.  

1.1. Literature Review 

One of the main approaches in clustering time 

series is specialized distance measures. Rahim 

Khan and Zakarya used the LCSS measure for 

clustering time series data [13]. Also, Soleimani 

and Abessi increased the clustering accuracy in 

various datasets by modifying the LCSS measure 

to a fuzzy version [12]. To cluster long time series 

data, Kamalzadeh et al. first introduced a distance 

measure using specific geometric relationships 

for this type of data. They then utilized this 

distance measure for clustering time series data 

[14]. Wang et al. have shown that the difference 

in the area under two curves can also be a suitable 

measure for calculating the distance between two 

time series [15]. In another study, D’Urso et al. 

applied the fuzzy DTW measure to calculate 

distances and cluster multivariate time series data 

[7].  

Furthermore, different combinations of distance 

measures such as DTW, DDTW, and LCSS are 

usually used [16-18]. Despite the widespread use 

of these types of distance measures, 

computational time remains one of the significant 

challenges. For example, a measure like DDTW 

can result in an effective computational cost, with 

execution times reaching up to 80 hours per 

dataset, which is quite noticeable. Reducing the 

computational time, several approaches have been 

considered. One of these approaches is using 

multi-stage algorithms, where the first phase aims 

to reduce the dimensionality of the main problem, 

which causes a reduction in the clustering time in 

the second phase. Some seminal research in this 

area includes the studies by Aghabozorgi et al. 

[19], Zhang et al. [20], and Manakova and 

Tachenko [21]. Izakian and Mesgari have 

proposed  a technique for clustering time series 

data using a particle swarm optimization (PSO) 

approach. The proposed technique was able to 

find (near) optimal cluster centers during the 

clustering process [22]. 

However, Wang et al. have employed a different 

approach to reduce the computational time. They 

extract features such as variance, first-order 

correlation, linearity, curvature, seasonality, peak 

points, and trough points from a time series. Then, 

they utilize these features for the final clustering 

[23]. Zou et al. have taken a different approach, 

mapping a time series into recurrence and 

visibility graphs. Then, they utilize the features 

extracted from these graphs for clustering time 

series data [24]. 

Furthermore, Ferreira and Zhao have employed a 

different approach, mapping a time series into a 

complex network using various techniques. They 

then perform the final clustering utilizing the 

concept of community detection in a complex 

network [25].  

Indeed, performing feature extraction directly can 

somewhat reduce the computational time of the 

algorithm. However, it may also lead to a decrease 

in the final clustering accuracy. On the other hand, 

using graph-based mapping methods can 

introduce significant computational overhead.  

Another modern approach in this field utilizes 

autoregressive methods and information theory 

[1, 26]. Indeed, recent research has shown that the 

segmentation of a time series can significantly 

improve the clustering accuracy of a time series 

dataset. Guijo-Rubio et al. revealed that instead of 

directly extracting features from a time series, it is 

possible to transform them into segments using 

specific algorithms. Then, they utilized the 

characteristics of these segments and their 

similarity for the final clustering. This approach 

has achieved high accuracy, albeit with a 

relatively higher computational cost [27]. In 

another study, Bonacina et al. demonstrated that 

combining segmentation and transforming 

segments into complex networks can yield better 

results [28].  

In general, recent studies can be categorized into 
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three main groups: distance metrics, 

dimensionality reduction, and clustering 

algorithms. The first category consists of studies 

in which researchers aim to introduce or improve 

a specific distance metric for a time series. In 

some studies, the performance of combining these 

metrics has been investigated. Although using 

these specific distance metrics for a time series 

generally yields good clustering results, it incurs 

significant time costs, leading to inefficiencies in 

utilizing such distance metrics . 
The second category, known as dimensionality 

reduction, is approached using various methods. 

The goal of these studies has often been to reduce 

execution time and make clustering more 

practical; however, this has resulted in decreased 

clustering accuracy. For this purpose, researchers 

have utilized multistage algorithms, where the 

primary focus of these algorithms is dimension 

reduction in the initial phase. Another 

dimensionality reduction method is feature 

extraction, which is performed directly or 

indirectly . 
The third category, which is widely observed in 

the literature, involves the use of diverse 

clustering algorithms, including the utilization of 

new algorithms or combining different methods. 

However, these approaches are often time-

consuming and do not always achieve acceptable 

accuracy for all datasets. Based on the literature 

review, the main challenge in the field of time-

series clustering is to present an algorithm that can 

simultaneously increase clustering accuracy while 

maintaining reasonable execution time costs. An 

efficient clustering algorithm should prioritize not 

only high accuracy but also reasonable time costs. 

In research conducted in this field, the focus is 

often one-dimensional. Some methods emphasize 

increasing accuracy without considering the 

execution time, whereas others focus solely on the 

execution time without considering the accuracy . 
One method used to improve the clustering 

accuracy for various types of data is the utilization 

of ensemble clustering, which has not received 

significant attention in previous research. Recent 

studies have demonstrated that segmentation can 

yield favorable results in time-series clustering. 

This paper presents an algorithm based on 

segmentation and ensemble clustering to enhance 

clustering accuracy while maintaining reasonable 

time costs. 

Although distance measures for time series 

clustering might initially appear desirable, as has 

been widely applied in previous research, the 

approach suffers from some serious drawbacks, 

including a significant computational cost. So, 

there is an urgent need for an accurate and fast 

time series clustering algorithm in the related 

literature. The developed algorithm utilizes a 

combined approach of segmentation and 

ensemble clustering to enhance accuracy while 

simultaneously reducing execution time by 

applying computationally efficient distance 

metrics, such as Euclidean distance. This allows 

for an increase in clustering accuracy within a 

reasonable timeframe 

 The main principle of this algorithm is to select 

suitable segments from a dataset and combine 

them for the final clustering. A combination of a 

genetic algorithm and an internal clustering 

criterion is employed to select and combine 

segments, known as ensemble clustering. 

2. Proposed Method 

Dividing a time series dataset into equal 

segments, some segments may effectively 

represent the existing clusters in the dataset while 

others may not accurately do this. Figure 1 

displays a dataset with two distinct clusters. As 

evident from the figure, segments 3 and 4 

effectively separate the two existing clusters from 

each other. However, segments 1 and 2 have 

difficulty in distinguishing the existing clusters.  

 

Figure 1. Segmentation of a time series with fixed length. 

The objective of the proposed approach is to 

select suitable segments and combine them for the 

final clustering. As explained, not all segments in 

a time-series dataset represent the correct number 

of clusters. If we can separate the correct 

segments from incorrect ones during a process, 

we can utilize the selected correct segments for 

the final clustering. The aim of the presented 

approach is to select suitable segments and 

combine them for final clustering. The proposed 
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algorithm selects appropriate segments using the 

concepts of segmentation, ensemble clustering, 

genetic algorithm, and internal criterion . 
To achieve this, the initial dataset was 

transformed into a fixed number of predetermined 

segments. Subsequently, each segment is 

clustered separately using an existing clustering 

algorithm. The clustering results for each segment 

are then stored. Essentially, this stage determines 

the segments that correctly represent the overall 

dataset clustering. In the next stage, the different 

segments are combined using ensemble 

clustering. The final clustering result was 

obtained from a combination of various segments. 

Consequently, a better choice of segments leads 

to a better final clustering result. The goal is to 

select suitable segments and combine them for the 

final clustering . 
When the number of segments is small, all 

possible cases can be considered. However, a 

small number of segments may lead to improper 

identification of segments with the correct cluster 

number. As the number of segments increased, 

the total number of cases became significantly 

high, making it practically infeasible to examine 

all combinations. For this purpose, a genetic 

algorithm was employed to identify the best 

combination of segments. Owing to the nature of 

clustering compared with classification, an 

external criterion cannot be used as the objective 

function for the genetic algorithm. Therefore, an 

internal criterion was used to evaluate the 

solutions generated by the genetic algorithm. 

 The three-step proposed algorithm utilizes the 

concepts of segmentation, ensemble clustering, 

genetic algorithm, and an internal criterion to 

select suitable segments, as follows:  

First Step (Segmentation): In the initial stage of 

this approach, the dataset is divided into equal 

segments. 

Second Step (Clustering): In this stage, each 

segment created in the first step is clustered by a 

clustering algorithm, and the final clustering 

results for each segment are stored. 

Third Step (Segment Selection): In the final stage, 

a metaheuristic algorithm and ensemble 

clustering are utilized to select suitable segments, 

and the final clustering is performed by 

combining these segments.  

Figure 2 depicts the overall framework of the 

proposed algorithm, which will be described in 

detail in subsequent sub-sections.

 

 

Figure 2. The Proposed algorithm. 
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2.1. Segmentation 

A time series can be divided into smaller 

segments using two different approaches, where 

the arrangement of these segments creates the 

original time series. In the first approach, specific 

algorithms can transform a time series into 

segments of varying lengths [29, 30]. The second 

approach, also used in the developed algorithm, 

defines a window of length L, and the time series 

is divided into equal segments with lengths equal 

to L [31]. Figure 1 illustrates this type of 

segmentation. 

2.2. Clustering 

In the second step of the proposed approach, the 

segments created in the first step have been 

clustered using a hierarchical agglomerative 

algorithm. This algorithm uses the complete 

distance (𝑑𝑚𝑎𝑥) as the linkage distance between 

clusters. Equation (1) represents this type of 

distance. A and B represent the clusters, and a and 

b represent the objects of each cluster, while d 

denotes the distance between two objects [16]. 

( ) max , : , maxd d a b a A b B=    (1) 

To calculate the distance between two time series, 

different distance metrics can be used, such as 

Euclidean distance, Dynamic Time Warping 

(DTW), and Longest Common Subsequence 

(LCSS) [32-34]. Considering the computational 

cost of DTW and LCSS metrics, this study utilizes 

the Euclidean distance [35-37]. If two-time series, 

X and Y, of length N are given, the Euclidean 

distance (ED) can be computed using equation 

(2). However, it should be noted that the 

Euclidean distance is applicable only when the 

two-time series have the same length [32]. 

( ) ( )
2

1

,
n

t t

t

ED X Y x y
=

= −  (2) 

2.3. Segment Selection  
The third and final step of the approach involves 

selecting suitable segments from the created 

segments and combining them. This process uses 

a metaheuristic algorithm, ensemble clustering, 

and an internal criterion. A solution generated in 

the genetic algorithm is represented using a binary 

gene representation of zeros and ones. If a gene 

value is one, it indicates the selection of a segment 

from the available segments. On the other hand, if 

the gene value is zero, it indicates the non-

selection of a segment. Figure 3 demonstrates the 

process of generating a solution in the genetic 

algorithm.  

 

Figure 3. Represent the solution (Chromosome) in genetic 

algorithm. 

In the next step, in this phase, only the selected 

segments are combined using an ensemble 

clustering algorithm, resulting in a final solution. 

In the last step, an internal criterion is used as an 

activity function in the genetic algorithm to 

calculate the fitness function value for the 

generated solution to evaluate the solution.  

2.3.1. Genetic algorithm 

Based on the previous explanations, the genetic 

algorithm has been used to select appropriate 

segments. The utilized algorithm includes two 

leading operators: crossover and mutation. The 

crossover operator combines two parent solutions 

to create new solutions, known as offspring, based 

on the representation of the solution for this 

problem. Two types of operators, single-point and 

two-point crossover, have been used for the 

crossover operator. Figure 4 represents a single-

point crossover operator. In this operator, a 

random point is selected in both parents and by 

swapping the segments of the parents from the 

selected point, two new offspring solutions are 

created.  

 

Parents 

 
Offspring 

Figure 4. Crossover operation. 

Furthermore, the genetic algorithm utilizes a 

mutation operator to escape from a local 

optimum. In this operator, initially, a gene is 

randomly selected within the chromosome, and its 

value is inverted. In other words, if the value is 

zero, it changes to one, and if it is one, it changes 

to zero. Figure 5 represents the mutation operator 

used. Additionally, the algorithm's parameters 

have been adjusted using the Taguchi method. 
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Figure 5. Mutation operation. 

2.3.2. Ensemble clustering 

One of the methods used to achieve higher 

accuracy in clustering is ensemble clustering. 

This approach creates multiple solutions for a 

dataset and combines them to obtain the final 

solution. The ensemble clustering approach 

consists of two main steps: generation and 

consensus. Typically, homogeneous and 

heterogeneous methods are used in the generation 

step to produce initial solutions. Additionally, 

various techniques, such as pairwise similarities 

and graph theory, are employed in the aggregation 

step. Figure 6 illustrates the combined clustering 

approach's overall concept and different 

components. An extended algorithm based on 

graph theory called LWGP is utilized in the 

presented framework. In this method, the 

distances between the created clusters for each 

object are computed initially. Then, using these 

distances and a clustering algorithm, the final 

labels for each object are determined [38]. 

 

Figure 6. Ensemble clustering. 

2.3.3. Internal and External Measures 

Internal and external measures are two indices 

used to assess a dataset's clustering accuracy. In 

this study, the internal measure has been utilized 

as the fitness function for the genetic algorithm. 

During the selection phase of the genetic 

algorithm, since the final labels of the objects are 

unknown, the internal measure of inter-group 

variance has been employed as the fitness 

function for the genetic algorithm. A lower value 

for this measure indicates a better quality. 

Equation (3) represents the calculation method for 

this measure. In this context, n and k represent the 

number of objects in the dataset and number of 

clusters, respectively. Further, x represents an 

object and ci denotes the ith cluster. 

( )
1

1
,

i

k

ii x c
d x c

n k = −
   (3) 

Additionally, an external measure has been used 

to assess and compare the algorithm's accuracy 

with existing algorithms. The specific external 

measure utilized in this study is the Rand Index 

(RI). Suppose TP represents the number of objects 

with the same class and cluster. In that case, TN 

represents the number of objects that have 

different classes and clusters, FP represents the 

number of objects that have different clusters but 

the same class, and finally, FN represents the 

number of objects that have the same cluster but 

different classes. Then, Equation (4) represents 

the calculation method for the Rand Index. 

TP TN
RI

TP TN FP FN

+
=

+ + +
 (4) 

3. Implementing the proposed model 

The algorithm's performance has been evaluated 

by running it on 82 different datasets from the 

UCR website. For this purpose, the model 

parameters have been adjusted, including the 

number of segments created for each dataset and 

the genetic algorithm parameters. 

3.1. Parameter Tuning 

The number of segments created for each dataset 

can vary. If the number of segments is too small, 

the probability of identifying ideal segments 

decreases. Conversely, if the number of segments 

is too large, the characteristics of each segment 

will be lost. Therefore, a logarithmic relationship 

has been used to determine the number of 

segments created for each dataset. This 

relationship ensures that the number of segments 

increases slowly as the time series length 

increases. Additionally, it provides that a 

sufficient number of segments is created even for 

shorter lengths. Equation (5) represents the 

calculation method for determining the number of 

segments (k). In this equation, L represents the 

length of the time series dataset. 

10logk L=  (5) 

Additionally, a Taguchi design has been utilized 

to optimize the parameters of the genetic 

algorithm. In this design, the parameters of the 
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number of iterations, population size, crossover 

rate, and mutation rate have been optimized. 

Table 1 displays the levels used in the Taguchi 

design, representing the specific values assigned 

to each parameter for optimization purposes. 

Table 1. Taguchi method levels. 

Parameters Symbol Levels 

Crossover rate pc 0.4 – 0.65 – 0.9 

Mutation rate pm 0.1 - 0.3 – 0.5 

Population size pop 100 - 200 - 300 

Iteration IT 10 - 20 - 30 

Table 2 displays nine experiments resulting from 

the design and the outcomes of ten iterations of 

the provided algorithm for a time series dataset. 

Table 2. Taguchi method and Rand Index values for the 

proposed algorithm. 

Number of 

experiment 
pc pm pop It RI  

1 0.40 0.1 100 10 71.00% 

2 0.40 0.3 200 20 72.38% 

3 0.40 0.5 300 30 72.27% 

4 0.65 0.1 200 30 72.30% 

5 0.65 0.3 300 10 72.58% 

6 0.65 0.5 100 20 72.42% 

7 0.90 0.1 300 20 72.23% 

8 0.90 0.3 100 30 72.23% 

9 0.90 0.5 200 10 72.33% 

Based on the reported signal-to-noise ratio for the 

provided algorithm (Figure 7), the parameter 

values for crossover rate, mutation rate, 

population size, and number of iterations are set 

to 0.65, 0.3, 300, and 20, respectively. 

 

Figure 7. Signal-to-noise ratio. 

4. Results 

The presented algorithm has been evaluated by 

performing ten iterations for each dataset and 

examining the Rand index and execution time. To 

assess the algorithm's performance, the Rand 

index of the proposed approach was compared to 

those without segmentation. According to the 

information in Table 3, the average Rand index 

for 82 datasets, without segmentation, is reported 

as 64.33, while the Rand index for the developed 

algorithm is 67.40, indicating a 3.07% 

improvement in the Rand index. Additionally, 

considering the improvement value, it can be 

observed that the algorithm has improved the 

Rand index value in 46 datasets compared to 

without segmentation case. The average standard 

deviation of 10 iterations is 0.38%, indicating 

relatively good stability of the algorithm. In the 

best case, the developed algorithm has achieved a 

46.97% improvement in the Rand index for one 

dataset.    The maximum and minimum values of 

the Rand Index for the developed algorithm were 

95.20% and 36.86%, respectively. In contrast, 

these values are 94.58% and 30.59%, 

respectively, for the non-segmented case. 

4.2. Sensitivity Analysis 

In this section, the performance of the algorithm 

is evaluated based on two assessment criteria. In 

the first part, a sensitivity analysis was conducted 

concerning the length of the time series, and in the 

second part, the algorithm's performance was 

examined for the type of time series under 

investigation. In this section, the efficiency of the 

proposed algorithm has been examined according 

to the length of each time series dataset. For this 

purpose, the datasets under investigation are 

divided into three categories: short (less than 

200), medium (between 200 and 500), and long 

(greater than 500) based on their length. The Rand 

index value and the improvement achieved are 

examined for all three introduced classes. 

According to the information in Figure 8, it can be 

observed that the algorithm performs best in the 

medium-length classes. In this class, the 

algorithm has managed to increase the Rand index 

by 3.8 compared to the without-segmentation 

case. It can also be seen that the algorithm's 

performance in the short-length class does not 

differ significantly from the medium-length class, 

with an improvement value of 3.4. However, the 

algorithm's performance in the long-length class 

is relatively lower than the other two classes, 

which is noticeable. Furthermore, the medium-

length datasets have the highest Rand index value 

of 70.5%, significantly different from the other 

two classes. Overall, it can be concluded that the 

algorithm performs best in the medium-length 

class, followed by the short and long-length 

categories, respectively. 
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Table 3. Results of Rand index and Standard Deviation for the proposed algorithms. 
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ADI 37 86.89% 92.03% 0.34% 5.14% MPA 2 58.06% 73.95% 0.00% 15.89% 

ARR 3 34.45% 62.63% 0.25% 28.18% MPC 3 52.86% 49.96% 0.00% -2.90% 

BEE 5 58.81% 66.85% 0.03% 8.03% MPT 2 82.63% 81.33% 0.58% -1.30% 

BFL 2 51.92% 53.33% 0.00% 1.41% MOT 6 51.01% 57.63% 0.00% 6.62% 

BIR 2 49.23% 49.36% 0.29% 0.13% NO1 42 89.72% 94.20% 0.60% 4.48% 

CAR 4 61.51% 66.47% 0.02% 4.96% NO2 42 93.73% 94.78% 0.23% 1.05% 

CBF 3 64.20% 63.26% 0.00% -0.94% OLI 4 84.07% 89.04% 0.00% 4.97% 

CHL 3 39.96% 52.79% 0.00% 12.83% OSU 6 73.24% 70.25% 1.16% -2.99% 

CIN 4 63.83% 65.66% 0.15% 1.82% PHA 2 53.96% 50.00% 0.00% -3.97% 

COF 2 50.13% 74.08% 2.21% 23.95% PHO 39 92.74% 86.45% 0.23% -6.28% 

COM 2 49.90% 49.90% 0.00% 0.00% PLA 7 91.19% 94.56% 0.42% 3.36% 

CRX 12 82.41% 83.45% 0.30% 1.04% PPA 3 41.73% 78.57% 0.14% 36.83% 

CRY 12 83.24% 78.45% 3.90% -4.80% PPC 2 56.52% 53.31% 0.00% -3.21% 

CRZ 12 84.87% 81.71% 0.47% -3.16% PPT 6 81.75% 74.84% 0.24% -6.91% 

DIA 4 30.59% 77.56% 0.96% 46.97% REF 3 55.25% 36.86% 3.74% -18.39% 

DPA 3 71.72% 72.85% 0.00% 1.14% SCR 3 44.68% 53.66% 1.33% 8.98% 

DPC 2 52.71% 49.96% 0.00% -2.76% SHS 2 49.75% 49.77% 0.00% 0.02% 

DPT 6 87.42% 80.48% 4.80% -6.93% SHA 60 94.20% 95.20% 0.36% 0.99% 

EAR 2 52.30% 56.76% 0.34% 4.46% SMA 3 41.14% 44.18% 0.19% 3.03% 

EC2 2 60.38% 62.31% 0.00% 1.93% SO1 2 53.45% 59.60% 0.00% 6.14% 

EC5 5 84.87% 84.03% 0.00% -0.83% SO2 2 56.41% 59.50% 0.00% 3.09% 

ECF 2 49.99% 50.09% 0.00% 0.10% STR 2 52.26% 50.24% 0.00% -2.01% 

FAA 14 83.70% 85.09% 0.53% 1.39% SWE 15 52.11% 84.97% 0.57% 32.86% 

FAF 4 67.82% 74.90% 0.00% 7.08% SYM 6 77.86% 89.67% 0.00% 11.81% 

FIS 7 71.00% 73.52% 1.21% 2.51% SYN 6 79.08% 81.03% 0.00% 1.94% 

FOA 2 50.24% 50.04% 0.00% -0.20% TO1 2 49.95% 49.82% 0.00% -0.13% 

FOB 2 50.02% 49.99% 0.00% -0.03% TO2 2 53.56% 49.70% 0.00% -3.86% 

GUN 2 50.07% 49.75% 0.00% -0.32% TRA 4 75.12% 74.90% 0.01% -0.22% 

HAM 2 49.92% 51.89% 0.00% 1.97% TWP 2 61.29% 61.27% 2.45% -0.03% 

HAN 2 53.94% 67.25% 0.08% 13.31% TWE 4 50.34% 51.08% 0.00% 0.74% 

HAP 5 55.80% 66.84% 0.36% 11.05% UWX 8 80.79% 82.97% 0.00% 2.19% 

HER 2 50.21% 50.05% 0.00% -0.16% UWY 8 83.08% 82.04% 0.00% -1.04% 

INL 7 50.95% 72.30% 0.11% 21.35% UWZ 8 81.93% 83.04% 0.04% 1.11% 

INS 11 85.51% 85.97% 0.32% 0.46% UWA 8 85.76% 88.04% 0.13% 2.28% 

ITA 2 51.43% 50.01% 0.00% -1.42% W50 50 94.58% 93.78% 0.07% -0.80% 

LAR 3 53.16% 51.04% 0.00% -2.12% WAF 2 53.44% 53.44% 0.00% 0.00% 

LI2 2 60.00% 50.36% 0.00% -9.64% WIN 2 49.88% 49.58% 0.00% -0.29% 

LI7 7 74.74% 71.76% 0.98% -2.98% WOS 25 88.83% 86.94% 0.70% -1.90% 

MAL 8 92.89% 90.79% 0.12% -2.10% WOR 5 63.44% 63.69% 0.53% 0.26% 

MEA 3 77.04% 72.49% 0.00% -4.55% WOT 2 49.81% 49.95% 0.06% 0.14% 

MED 10 64.18% 65.30% 0.02% 1.13% YOG 2 50.00% 49.99% 0.00% -0.01% 

Average  64.33% 67.40% 0.38% 3.07%       
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Figure 8. The performance of the developed algorithms 

according to the length of the time series. 

According to the UCR website, the datasets used 

have been categorized into 6 types: Device, ECG, 

Image, Motion, Sensor, Simulated, and Spectro. 

The number datasets for each type are 5, 6, 28, 14, 

18, 5, and 6. The Rand index and improvement 

value were examined for seven types of time 

series which were introduced previously. Based 

on the Figure 9 and the Rand index, the best and 

worst average Rand index was observed for the 

Simulated and Device, respectively. The average 

Rand index values for these two data types were 

78.31 and 47.13, respectively. Additionally, based 

on the figure data, it can be seen that the increase 

in the Rand index for the developed algorithm on 

the device type is -1.70, whereas it is 0 for the 

simulated type. The increase values were positive 

for the other five types, with the highest being 

6.22 for the image type. Considering both the 

Rand index and the value change, it is evident that 

the algorithm’s performance is acceptable for six 

of the seven types of time series, with only one 

type showing poor performance. 

To investigate the execution time of the 

algorithm, 82 datasets have been divided into 

three categories based on their size. The first 

category of data sets whose number of objects is 

less than 500 (small), the second category of data 

sets whose number of objects is between 500 and 

1000 (medium), and the third category of data sets 

whose number of objects is more than 1000 (big). 

 

 
Figure 9. The performance of the developed algorithms 

according type of dataset. 

According to Figure 10, the average execution time 

for small data sets is equal to 151 seconds. With the 

doubling of the size of the data set, the algorithm 

execution time has almost doubled and increased 

linearly. However, for large data sets, the average 

execution time equals 5312 seconds, which shows 

an exponential increase. 

 
Figure 10. The performance of the Run time of the 

developed algorithms according to size of the dataset. 

4.3. Statistical analysis 

Based on the two criteria of the Rand index and 

execution time, six algorithms from the literature 

have been selected for comparing these criteria. 

The six  mentioned algorithms are DTW, which 

uses Dynamic Time Warping distance metrics 

with a hierarchical algorithm, which uses 
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Derivative Dynamic Time Warping distance 

metrics with a hierarchical algorithm,   
𝐷𝐷DTW, which combines two distance metrics 

with a hierarchical algorithm [16]; KSC 

algorithm, which utilizes specific temporal 

patterns for clustering [39]; 𝑇𝑆3𝐶MV and  
𝑇𝑆3𝐶CH algorithms, which are developed based 

on temporal segmentation characteristics [27]. 

According to the information in Table 4, it can be 

observed that the developed algorithm 

outperforms all six introduced algorithms in terms 

of the Rand index. Additionally, in terms of 

execution time, the developed algorithm performs 

better, with an average of 1899 seconds compared 

to the other six algorithms. 

In summary, the developed algorithm 

demonstrates superior performance in terms of the 

Rand index and execution time compared to the 

six introduced algorithms. 

Table 5 presents a complete display of the Rand 

index and execution time for the six selected 

algorithms and the developed algorithm for each 

dataset. According to the information in Table 5, 

it can be observed that the developed algorithm 

provides the best solution among the five 

algorithms for 20% of the datasets

Table 4. Rand index and run time of the presented algorithm and six previous studies. 

 
Proposed 

algorithm 𝑻𝑺𝟑𝑪𝐂𝐇 𝑻𝑺𝟑𝑪𝐌𝐕 𝑫𝑫𝐃𝐓𝐖 KSC DTW 𝑫𝐃𝐓𝐖 

Rand Index 67.40 66.10 65.68 60.55 60.26 58.20 45 
Run Time 1,899 3,270 3,284 23,6467 17,365 - - 

 

Table 5. Comparison of the Rand Index and running time of the proposed algorithm and six other selected algorithms. 
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50W 93.78 94 94 92 66 92 65 681 1478 1503 104285 17667 

ADI 92.03 92 92 687 95 71 19 348 887 904 32221 5374 

ARR 62.63 62 63 35 63 35 35 48 361 362 4603 84 

BEE 66.85 68 68 58 71 42 56 40 188 188 1247 63 

BFL 53.33 49 49 59 50 59 50 24 136 136 642 21 

BIR 49.36 49 49 50 54 50 51 25 117 117 688 19 

CAR 66.47 65 65 50 68 48 32 43 392 392 8371 142 

CBF 63.26 67 67 78 56 42 33 383 976 978 24830 584 

CHL 52.79 49 47 40 53 40 40 7,541 6556 6601 763587 2623 

CIN 65.66 64 64 56 69 48 28 2,296 11648 11653 763587 27772 

COF 74.08 51 51 49 75 50 49 23 98 98 385 10 

COM 49.90 50 51 50 50 50 50 319 2699 2700 210113 413 

CRX 83.45 85 85 78 41 71 37 249 1708 1715 82970 4356 

CRY 78.45 84 84 69 53 70 23 294 1752 1759 83710 4488 

CRZ 81.71 84 85 71 41 71 35 281 1680 1687 78563 3807 

DIA 77.56 72 72 30 96 30 30 65 623 624 20433 303 

DPA 72.85 60 60 71 72 71 71 114 312 314 3091 83 

DPC 49.96 51 51 53 50 53 53 325 484 487 8536 45 

DPT 80.48 68 66 86 66 80 86 125 303 306 3231 194 

EAR 56.76 53 53 54 62 51 55 212 2246 2247 93262 308 

EC2 62.31 50 50 54 61 54 55 32 122 122 651 18 

EC5 84.03 64 60 89 59 88 47 8,272 5019 5088 736065 16214 

EFC 50.09 50 50 50 81 51 51 344 942 945 19578 136 

FAA 85.09 85 85 60 30 60 36 1,720 1876 1893 763587 5236 

FAF 74.90 57 57 55 38 54 42 51 270 270 2449 90 

FIS 73.52 73 64 18 79 17 17 113 930 932 42707 1265 
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FOA 50.04 52 51 54 50 50 50 16,103 16265 16316 763587 36823 

FOB 49.99 50 50 50 50 50 50 13,385 12187 12222 763587 28637 

GUN 49.75 54 54 50 51 50 50 34 134 134 2009 10 

HAM 51.89 52 52 50 53 50 50 45 557 558 14039 152 

HAN 67.25 50 55 55 69 54 55 5,400 20404 20408 763587 34052 

HAP 66.84 60 60 39 69 22 39 220 2302 2303 763587 3881 

HER 50.05 50 50 51 50 51 52 37 273 273 7475 38 

INL 72.30 71 71 54 74 54 17 599 5598 5600 763587 11234 

INS 85.97 81 81 55 69 20 21 1,978 3661 3685 474905 10473 

ITA 50.01 50 50 51 64 50 50 467 242 246 1233 20 

LAR 51.04 55 55 34 41 34 34 556 3906 3908 369379 711 

LI2 50.36 50 54 50 50 50 50 35 543 544 9478 128 

LI7 71.76 75 75 60 59 63 56 67 323 324 3125 180 

MAL 90.79 80 80 93 92 93 81 3,370 14510 14530 763587 18388 

MEA 72.49 71 40 77 76 77 34 38 279 279 4718 86 

MED 65.30 65 65 64 47 60 46 422 646 651 19954 1062 

MPA 73.95 56 56 73 73 70 73 143 250 251 4086 70 

MPC 49.96 51 51 50 50 53 50 337 395 396 9306 65 

MPT 81.33 74 82 80 81 79 79 140 286 289 3319 204 

MOT 57.63 50 50 50 58 50 50 696 717 721 20456 496 

NO1 94.20 94 95 70 95 64 16 3,252 17115 17226 763587 218650 

NO2 94.78 95 95 85 97 82 56 2,632 13594 13676 763587 208416 

OLI 89.04 77 77 76 85 74 74 47 139 139 2444 66 

OSU 70.25 73 73 62 29 58 29 179 1097 1100 60765 670 

PHA 50.00 51 51 54 51 54 54 2,756 1499 1515 77558 200 

PHO 86.45 93 93 45 51 42 17 2,506 15477 15525 763587 364703 

PLA 94.56 83 80 100 92 96 95 66 149 149 2047 53 

PPA 78.57 76 76 78 76 77 77 144 235 236 4909 82 

PPC 53.31 56 56 54 53 54 52 317 418 421 8195 32 

PPT 74.84 78 78 88 81 79 87 147 319 321 3851 221 

REF 36.86 56 54 35 39 34 35 609 3969 3972 422843 900 

SCR 53.66 53 53 35 45 33 35 549 4022 4024 355109 1358 

SHS 49.77 99 99 50 50 50 50 51 1005 1006 13879 111 

SHA 95.20 97 97 84 63 77 46 1,114 3738 3777 546585 51107 

SMA 44.18 59 59 34 54 34 34 645 4048 4050 379869 1487 

SO1 59.60 51 52 50 75 50 51 173 349 350 2770 74 

SO2 59.50 60 53 53 66 53 53 397 607 610 9040 149 

STR 50.24 50 52 50 50 52 52 539 1331 1334 92052 366 

SWE 84.97 88 88 35 63 35 26 549 985 996 36092 1620 

SYM 89.67 81 81 89 60 89 17 552 2774 2779 248454 2867 

SYN 81.03 78 78 88 38 88 24 110 361 365 2112 235 

TO1 49.82 51 51 51 53 50 50 62 527 528 8315 121 

TO2 49.70 50 50 67 53 69 61 40 338 339 5258 79 

TRA 74.90 84 84 87 72 87 62 56 325 325 4986 114 

TWP 61.27 64 64 85 46 72 25 8,839 6465 6532 581050 4602 

TWE 51.08 64 64 50 54 50 50 558 703 707 11903 240 

UWZ 82.97 78 75 80 51 79 14 7,535 7470 7523 763587 47423 
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UWY 82.04 78 76 82 54 80 13 7,282 8951 9014 763587 48751 

UWZ 83.04 80 80 74 54 75 13 7,327 7264 7315 763587 47554 

UWA 88.04 76 76 59 45 59 13 9,470 18754 18799 763587 167079 

WAF 53.44 50 66 53 59 53 68 21,546 4087 4158 763587 1682 

WIN 49.58 57 50 50 59 50 50 30 105 105 1273 31 

WOS 86.94 87 87 87 50 84 24 481 1463 1476 98233 8212 

WOR 63.69 60 58 62 53 62 30 133 1605 1606 82527 1085 

WOT 49.95 51 51 50 50 51 51 93 1620 1621 77497 676 

YOG 49.99 51 50 50 50 50 50 6,923 7959 7983 763587 4848 

Average 67.40 66.10 65.68 60.55 60.26 58.20 45 1,899 3270 3284 236467 17365 

To examine the Rand Index and execution time of 

the proposed algorithms more accurately, a non-

parametric statistical test called the Wilcoxon 

signed-rank test was employed [40 ] . This test was 

used to assess one sample before and after the 

influence of a given factor. It uses the concept of 

differences in ranks to investigate the significant 

differences between the two samples. The null 

(𝐻0) and alternative hypotheses (𝐻1) used in this 

study are represented by equations (6) and (7) for 

Rand Index and execution time: In this context, 𝜇0 

represents the mean Rand Index and execution 

time for the developed algorithm, and 𝜇1 denotes 

the mean Rand Index and execution time for the 

six selected algorithms. 

0 0 1:H  =  
(6) 

1 0 1:H    

0 0 1:H  =  
(7) 

1 0 1:H    

 Table 6 displays the p-values and Wilcoxon 

Statistic for the Rand index and execution time. 

Assuming an alpha value of 10% for this test, it 

can be observed that the p-value for the six 

selected algorithms is less than 10% in both the 

Rand index and execution time criteria. 

Therefore, it can be concluded that the developed 

algorithm outperforms the six  selected algorithms 

in both the Rand index and execution time criteria, 

with a confidence level of 90%. 

5. Conclusion 

In previous studies, the focus has been chiefly on 

using novel distance measures. Although using 

these measures has somewhat improved the 

clustering accuracy in different datasets, it has 

also increased the computational cost, rendering 

the use of these algorithms less efficient in 

practice. The developed algorithm's most 

significant strength lies in increasing clustering 

accuracy while reducing the execution time cost, 

making it highly effective in practice. This 

research proposed a combined segmentation and 

clustering algorithm for clustering time series data 

in three main steps. The primary basis of the 

proposed algorithm is the selection and 

combination of suitable dataset segments. In this 

approach, a dataset is initially divided into equal 

segments. Then, appropriate segments are 

selected using an iterative algorithm and 

combined to obtain the final solution. The 

developed algorithm was implemented on 82 

datasets, with an average Rand index of 67.40 and 

an execution time of 1899 seconds. The obtained 

results demonstrate that the developed algorithm 

improved the Rand index by 3.07% compared to 

the non-segmented approach. Sensitivity analysis 

of the developed algorithm showed that it 

performs best on time series with average lengths. 

Additionally, the developed algorithm was 

compared to six selected algorithms (DTW, 

 𝐷DTW, 𝐷𝐷DTW, KSC,  𝑇𝑆3𝐶MV, and 𝑇𝑆3𝐶CH) in 

terms of the Rand index and execution time using 

the Wilcoxon statistical test, indicating its 

superior performance in both the Rand index and 

execution time compared to these six algorithms. 

The Rand index and improvement value were 

examined for seven types of time series which 

were introduced previously. The best and worst 

average Rand index was observed for the 

Simulated and Device, respectively.

Table 6. Results of statistical tests of the presented algorithm and six previous studies. 

 𝑻𝑺𝟑𝑪𝐂𝐇 𝑻𝑺𝟑𝑪𝐌𝐕 𝑫𝑫𝐃𝐓𝐖 KSC DTW 𝑫𝐃𝐓𝐖 

Rand Index 
P-value 0.05 0.086 0.00 0.025 0.00 0.00 

Wilcoxon Statistic 2058.5 1997.0 2551.0 2125.5 2740.5 3043.0 

Run time 
P-value 0.00 0.00 0.00 0.00 - - 

Wilcoxon Statistic 414.0 407.0 0.0 764.5 - - 



Time Series Clustering based on Aggregation and Selection of Extracted Features 

 

285 
 

References 

[1] M. Maleki, H. Bidram, and D. Wraith, "Robust 

clustering of COVID-19 cases across US counties using 

mixtures of asymmetric time series models with time 

varying and freely indexed covariates," Journal of 

Applied Statistics. vol. 50, pp. 2648–2662, 2022. 
 

[2] M. Castán-Lascorz, P. Jiménez-Herrera, A. 

Troncoso, and G. Asencio-Cortés, "A new hybrid 

method for predicting univariate and multivariate time 

series based on pattern forecasting," Information 

Sciences. vol. 586, pp. 611-627, 2022. 
 

[3] P. Laurinec, M. Lóderer, M. Lucká, and V. 

Rozinajová, "Density-based unsupervised ensemble 

learning methods for time series forecasting of 

aggregated or clustered electricity consumption," 

Journal of Intelligent Information Systems. vol. 53, pp. 

219-239, 2019. 
 

[4] S. Xu, H. K. Chan, E. Ch’ng, and K. H. Tan, "A 

comparison of forecasting methods for medical device 

demand using trend-based clustering scheme," Journal 

of Data, Information and Management. vol. 2, pp. 85–

94, 2020. 
 

[5] T. M. Dantas and F. L. C. Oliveira, "Improving time 

series forecasting: An approach combining bootstrap 

aggregation, clusters and exponential smoothing," 

International Journal of Forecasting. vol. 34, pp. 748-

761, 2018. 
 

[6] J. Li, H. Izakian, W. Pedrycz, and I. Jamal, 

"Clustering-based anomaly detection in multivariate 

time series data," Applied Soft Computing. vol. 100, p. 

106919, 2021. 
 

[7] P. D’Urso, L. De Giovanni, and R. Massari, 

"Trimmed fuzzy clustering of financial time series based 

on dynamic time warping," Annals of Operations 

Research. vol. 299, pp. 1379-1395, 2021. 
 

[8] S. Datta, S. Rokade, and S. P. Rajput, "Classification 

of uncontrolled intersections using hierarchical 

clustering," Arabian Journal for Science and 

Engineering. vol. 45, pp. 8591-8606, 2020. 
 

[9] A. Hatamlou and M. Deljavan, "Forecasting gold 

price using data mining techniques by considering new 

factors," Journal of AI and Data Mining. vol. 7, pp. 411-

420, 2019. 
 

[10] S. Aghabozorgi, A. S. Shirkhorshidi, and T. Y. 

Wah, "Time-series clustering–a decade review," 

Information Systems. vol. 53, pp. 16-38, 2015. 

 

[11] L. Wang and P. Koniusz."Uncertainty-DTW for 

time series and sequences," presented at the European 

Conference on Computer Vision, 2022, pp. 176-195. 
 

[12] G. Soleimani and M. Abessi, "DLCSS: A new 

similarity measure for time series data mining," 

Engineering Applications of Artificial Intelligence. vol. 

92, p. 103664, 2020. 
 

[13] M. A. Rahim Khan and M. Zakarya, "Longest 

common subsequence based algorithm for measuring 

similarity between time series: a new approach," World 

Applied Sciences Journal. vol. 24, pp. 1192-1198, 2013. 
 

[14] H. Kamalzadeh, A. Ahmadi, and S. Mansour, 

"Clustering time-series by a novel slope-based 

similarity measure considering particle swarm 

optimization," Applied Soft Computing. vol. 96, p. 

106701, 2020. 
 

[15] X. Wang, F. Yu, W. Pedrycz, and J. Wang, 

"Hierarchical clustering of unequal-length time series 

with area-based shape distance," Soft Computing. vol. 

23, pp. 6331-6343, 2019. 
 

[16] M. Łuczak, "Hierarchical clustering of time series 

data with parametric derivative dynamic time warping," 

Expert Systems with Applications. vol. 62, pp. 116-130, 

2016. 
 

[17] R. Ma and R. Angryk."Distance and density 

clustering for time series data," presented at the 2017 

IEEE International Conference on Data Mining 

Workshops (ICDMW), 2017, pp. 25-32 
 

[18] T. Górecki, "Classification of time series using 

combination of DTW and LCSS dissimilarity 

measures," Communications in Statistics-Simulation 

and Computation. vol. 47, pp. 263-276, 2018. 
 

[19] S. Aghabozorgi, T. Ying Wah, T. Herawan, H. A. 

Jalab, M. A. Shaygan, and A. Jalali, "A hybrid algorithm 

for clustering of time series data based on affinity search 

technique," The Scientific World Journal. vol. 2014, 

2014. 
 

[20] X. Zhang, J. Liu, Y. Du, and T. Lv, "A novel 

clustering method on time series data," Expert Systems 

with Applications. vol. 38, pp. 11891-11900, 2011. 
 

[21] N. Manakova and V. Tkachenko."Two-stage time-

series clustering approach under reducing time cost 

requirement," presented at the 2020 IEEE 15th 

International Conference on Advanced Trends in 

Radioelectronics, Telecommunications and Computer 

Engineering (TCSET), 2020, pp. 653-658. 

 

[22] Z. Izakian and M. Mesgari, "Fuzzy clustering of 

time series data: A particle swarm optimization 

approach," Journal of AI and Data Mining. vol. 3, pp. 

39-46, 2015. 
 

[23] R. J. Hyndman, E. Wang, and N. Laptev."Large-

scale unusual time series detection," presented at the 

2015 IEEE International Conference on Data Mining 

Workshop (ICDMW), 2015, pp. 1616-1619. 
 

[24] Y. Zou, R. V. Donner, N. Marwan, J. F. Donges, 

and J. Kurths, "Complex network approaches to 

nonlinear time series analysis," Physics Reports. vol. 

787, pp. 1-97, 2019. 
 

[25] L. N. Ferreira and L. Zhao, "Time series clustering 

via community detection in networks," Information 

Sciences. vol. 326, pp. 227-242, 2016. 
 



Ghorbanian & Ghorbani / Journal of AI and Data Mining, Vol. 12, No. 2, 2024 

286 
 

[26] H. Liu, J. Zou, and N. Ravishanker, "Clustering 

high‐frequency financial time series based on 

information theory," Applied Stochastic Models in 

Business and Industry. vol. 38, pp. 4-26, 2022. 
 

[27] D. Guijo-Rubio, A. M. Durán-Rosal, P. A. 

Gutiérrez, A. Troncoso, and C. Hervás-Martínez, 

"Time-Series Clustering Based on the Characterization 

of Segment Typologies," IEEE Transactions on 

Cybernetics. vol. 51, pp. 5409-5422, 2020. 
 

[28] F. Bonacina, E. S. Miele, and A. Corsini, "Time 

Series Clustering: A Complex Network-Based 

Approach for Feature Selection in Multi-Sensor Data," 

Modelling. vol. 1, pp. 1-21, 2020. 
 

[29] A. Koski, M. Juhola, and M. Meriste, "Syntactic 

recognition of ECG signals by attributed finite 

automata," Pattern Recognition. vol. 28, pp. 1927-1940, 

1995. 
 

[30] E. J. Keogh and M. J. Pazzani."An enhanced 

representation of time series which allows fast and 

accurate classification, clustering and relevance 

feedback," presented at the Knowledge Discovery and 

Data Mining, 1998, pp. 239-243. 
 

[31] E. Keogh, S. Chu, D. Hart, and M. Pazzani (2004), 

"Segmenting time series: A survey and novel approach," 

in Data Mining in Time Series Databases, M. Last Ed.: 

World Scientific, pp. 1-21. 
 

[32] C. Faloutsos, M. Ranganathan, and Y. 

Manolopoulos, "Fast subsequence matching in time-

series databases," ACM Sigmod Record. vol. 23, pp. 

419-429, 1994. 
 

[33] E. Keogh and C. A. Ratanamahatana, "Exact 

indexing of dynamic time warping," Knowledge and 

Information Systems. vol. 7, pp. 358-386, 2005. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

[34] M. Djukanovic, G. R. Raidl, and C. Blum, "Finding 

Longest Common Subsequences: New anytime A∗ 

search results," Applied Soft Computing. vol. 95, p. 

106499, 2020. 
 

[35] M. Paterson and V. Dančík."Longest common 

subsequences," presented at the International 

Symposium on Mathematical Foundations of Computer 

Science, 1994, pp. 127-142. 

 

[36] R. Lin, A. King-lp, and H. S. S. K. Shim."Fast 

similarity search in the presence of noise, scaling, and 

translation in time-series databases," presented at the 

Proceeding of the 21th International Conference on 

Very Large Data Bases, 1995, pp. 490-501. 
 

[37] M. Vlachos, G. Kollios, and D. 

Gunopulos."Discovering similar multidimensional 

trajectories," presented at the Proceedings 18th 

International Conference on Data Engineering, 2002, 

pp. 673-684. 
 

[38] D. Huang, C.-D. Wang, and J.-H. Lai, "Locally 

weighted ensemble clustering," IEEE Transactions on 

Cybernetics. vol. 48, pp. 1460-1473, 2017. 
 

[39] J. Yang and J. Leskovec."Patterns of temporal 

variation in online media," presented at the Proceedings 

of the Fourth ACM International Conference on Web 

Search and Data mining, 2011, pp. 177-186. 
 

[40] J. Demšar, "Statistical comparisons of classifiers 

over multiple data sets," The Journal of Machine 

Learning Research. vol. 7, pp. 1-30, 2006. 

 



 .1403دوره دوازدهم، شماره دوم، سال  ،کاویمجله هوش مصنوعی و داده                                                                                                 و قربانی قربانیان 

 

  یهایسر یبندخوشه  منظوربه ترکیبی و الگوریتم ژنتیک  یبندخوشه، یبندقطعه از نوآورانهیک ترکیب 

 زمانی 

 

  *2 علی قربانیان   و 1  زهرا قربانی

 . اسکاتلند ، ادینبرا ، دانشگاه هریوت وات ، ادینبرا بیزنس اسکول 1

 . رانی ، ااسفراین، مجتمع آموزش عالی فنی و مهندسی اسفراین ع،ی صنا یگروه مهندس 2

 02/05/2024 پذیرش؛ 29/03/2024 بازنگری؛ 12/02/2024 ارسال

 چکیده:

. در باشههدیم  یزمان   یهایسههر  بندیخوشهههدر حوزه    یاصههل  یهااز چالش  یکیزمان با کاهش زمان اجرا  هم  یزمان   یهایسههر  یبندخوشهههدقت    شیافزا

  ی وارداز م یکی  وجود  نیا  با.  اندنمودهچالش اسهفااده    نیحل ا  یفاصهله و کاهش ابهاد برا  یارهایمانند توسههه مه  ییکردهایپژوهشهگران از رو ریاخ  انیسهال

  ک ی .  باشدمیمسئله    نیحل ا  منظوربه  باشدمی  یبیترک  بندیخوشههو   یبندقطههقرار گرففه اسهت اسهفااده از     موردتوجهکمفر  نیشهیپ  یهاپژوهشکه در  

مجموعه داده به    کیتوسههه داده شهده اسهت. در گام اول   یزمان   یمجموعه داده سهر  کیاز    جادشهدهیاقطهات    نیبهفر بیانفخاب و ترک یبر مبنا  فمیالگور

. در گام  شهوندیم  بندیخوشهه یبسهلسهله مرات  فمیبا اسهفااده از الگور  جادشهدهیااز قطهات    کی، در گام دوم هر گردندیم میتقسه  کسهانیبا اندازه    یقطهات

  بندی خوشه  جهی. نفدینمایم بیترک  گرید کیبا    ،یبیترک  بندیخوشهو با اسفااده از   دینمایمقطهات مخفلف را انفخاب   کیژنف  فمیالگور کی  یسوم و اصل

و   یاب یرا ارز  جادشدهیا  یهاجواب  بندیخوشه  یدرون   اریمه  کیگام    نی. در اگرددیممجموعه داده انفخاب    یینها  بندیخوشه  عنوانبه  شهدهانفخابقطهات  

  یی کارا  شیدهنده افزانشههان  شههدهارائه  فمیالگور  جی. نفاتاسهه تکرار اجرا شههده 10داده مخفلف در  مجموعه    82 یرو  شههدهارائه  فمی. الگوردینمایم  مرتب

قرار    یاب یو نوع مجموعه داده مورد ارز  یزمان   یحاصههله با توجه لول سههر  جی. نفاباشههدمی 67.40به عدد   دنیدرصههد و رسهه  3.07  زانیبه م  بندیخوشههه

 .است قرار گرففه  یاب یمورد ارز  زین   اتیادب  موجود در  فمیالگور  6با    یحاصله با اسفااده از تست آمار  جینفا  نیاست. همچنگرففه

 .بندی، الگوریفم ژنفیکبندی ترکیبی، قطههزمانی، خوشهسریبندی خوشه :کلمات کلیدی

 


