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A speedy and accurate transient stability assessment (TSA) is gained
by employing efficient machine learning- and statistics-based
(MLST) algorithms on transient nonlinear time series space. In the
MLST’s world, the feature selection process by forming compacted
optimal transient feature space (COTFS) from raw high dimensional
transient data can pave the way for high-performance TSA. Hence,
designing a comprehensive feature selection scheme (FSS) that
populates COTFS with the relevant-discriminative transient features
(RDTFs) is an urgent need. This work aims to introduce twin hybrid
FSS (THFSS) to select RDTFs from transient 28-variate time series
data. Each fold of THFSS comprises filter-wrapper mechanisms. The
conditional relevancy rate (CRR), based on mutual information (M)
and entropy calculations, are considered as filter method, and
incremental wrapper subset selection (IWSS) and IWSS with
replacement (IWSSr) formed by kernelized support vector machine
(SVM) and twin SVM (TWSVM) are used as the wrapper ones. After
exerting THFSS on transient univariates, RDTFs are entered into the
cross-validation-based train-test procedure for evaluating their
efficiency in TSA. The results manifested that THFSS-based RDTFs
have a prediction accuracy of 98.87 % and a processing time of
102.653 milliseconds for TSA.

1. Introduction

Nowadays, continuous monitoring of dynamic
features related to power system reliability (PSR)
is tightly correlated to conducting data mining
(DM) techniques [1, 2] on power raw high-
dimensional transient space (RHDTS) retrieved by
wide-area measurement systems (WAMS) for
knowledge discovery. Regardless of the high
precision DM-based predictive models (DMPMs)
mounted on IT-based infrastructure for grid
monitoring, these learning methods should be
reformed based on the type of under-study
phenomenon in PSR scope. One of the most
significant branches of PSR analysis is transient
stability proposed by Kundur et al. [3], known for
its fast character [4]. In such circumstances, the
power grid transient monitoring demands timely

analysis from DMPMs for speedy control actions.
Hence, the DMPM design should satisfy fast and
accurate transient stability assessment (TSA). In
the presence of RHDTS, achieving such a dual-
purpose-based TSA would be impossible. This
problem originates from two factors: 1) high
dimensions in RHDTS, which cause high
prediction time, and 2) populating RHDTS with the
irrelevant-non discriminative transient features
(IRNDTFs) that lead to low accuracy prediction.
The best way that can solve the paradoxical
challenges derived by RHDTS leading to low-
performance TSA is feature selection [5]. The
feature selection process, by discarding IRNDTFs
from the RHDTS, forms the relevant-
discriminative transient feature (RDTF) set as
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compacted optimal transient feature space
(COTEFS), which promises high-level information
sharing between COTFS’s members and target
class. COTFS-based train-test procedure (CTTP)
plugged into DMPM brings high-performance
TSA from two aspects: 1) extracting important
patterns via RDTFs causes high prediction
accuracy of transient unseen cases, and 2) the fast
execution in CTTP due to low dimensional space
reduces the prediction time as the main component
of the processing time of transient sample labeling.
The above concerns remind the importance of
designing a comprehensive feature selection
scheme (FSS) coordinated as a joint study by data
mining and electrical engineers for the high-
performance TSA.

2. Related Works

A glance over FSS-based transient works reveals
that COTFS has been formed by filter- or hybrid-
oriented FSS. In the case of filter-based FSS, there
are so many works that find optimal features via
information theory-based approaches [6-9]. For
example, mutual information (MI)-based FSS can
be found in Li et al. [6] and Liu et al. [7] works,
which selects the most relevant power and angle
features for transient stability prediction (TSP). For
induction motor analysis, Stief et al. [8] utilizes the
ReliefF algorithm to eliminate redundant features.
In the transfer capability calculation framework
developed by Yan et al. [9], applying the fast
correlation-based  filter (FCBF) on high-
dimensional data is considered to select optimal
features for high-performance TSP. In the feature
selection-based transient studies, a diverse range of
hybrid FSS has been proposed by scholars [10-16].
For example, Ji et al. [10] selects the optimal
transient features by Relief-support vector machine
(SVM) as a filter-wrapper algorithm (FWA) for
power system dynamic monitoring. As another
hybrid-faced FSS, Chen et al. [11] considers
coupling normalized MI and binary particle swarm
optimization as FWA for high-performance TSP.
The fuzzy imperialist competitive-based hybrid
FSS with a point-and trajectory-oriented attitude in
the feature selection process is introduced by
Bashiri Mosavi et al. [12] to find discriminative
transient features. Surviving optimal transient
features by embedding kernelized fuzzy rough sets
(KFRS) in binary Jaya-based FSS and memetic
algorithm for forming hybrid FSS can be found in
Lietal. [13] and Gu et al. [14] works, respectively.
The cross-permutation-based quad-hybrid FSS
(CPQHFSS) developed by Bashiri Mosavi et al.
[15] presents polyhedral FWA for finding optimal
transient features. Bashiri Mosavi et al. [16] offer
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trilateral nested filter-wrapper FSS, which is
applied on transient excursions in a partial-oriented
manner for selecting optimal-blurred transient
features.

Regardless of the considerable structural difference
between filter and hybrid FSS in feature selection,
these schemes suffer from two problems, namely
vertically singular strategy (VSS) and chained
trajectory features (CTFs) case. The VSS refers to
a non-cross-linked learning model in forming
COTFS. Such a strategy which can be seen in
works like [6-9], [10-12], [15], [16], paves no way
for semi-optimal transient features (SOTFs). (The
SOTF is a feature in which the filter- or wrapper-
based index value (FWIV) is closest to the optimal
feature-specific FWIV, and their presence next to
optimal features may amplify the model's training
power) to enter into COTFS. Hence, it is necessary
to design a cross-linked hybrid FSS (CLHFSS) that
makes the presence of SOTFs in the optimal
features’ neighborhood. The CTFs is related to how
to feed data to the CLHFFS, and can negatively
affect the feature selection process. For example,
Li et al. [13] and Gu et al. [14] mount their
proposed FSSs on a single transient trajectory
derived by placing time series consecutively. This
issue can exacerbate the ignoring of optimal
transient features (primarily) and SOTFs (in
second-degree) per trajectory. Entering unchained
trajectory features into the CLHFSS (each
trajectory feature is entered into the feature
selection process independently) leads to selecting
optimal and semi-optimal features per trajectory.
This paper’s contributions to overcoming the two
major weaknesses of the past feature selection
algorithms are listed below:

* A new scheme named the twin hybrid FSS
(THFSS) is proposed to select RDTFs for speedy-
accurate TSP. Each fold of the THFSS contains
filter-wrapper scenarios.

e« The UTFs view to find the optimal-blurred
features from transient 28-variate time series data
(T28VTD) is followed by THFSS.

*  We compare the efficacy of THFSS-based
RDTFs and optimal features survived by filter-and
hybrid-oriented feature selection methods.

The rest of the paper is arranged as what follows.
The THFSS is elaborated in Section 3.
Experimental results related to exerting the THFSS
on T28VTD and RDTFs-based TSP are given in
Section 4. Furthermore, to prove the efficacy of
THFSS, comparing the performance between
THFSS and other feature selection algorithms is
placed at the end of Section 4. Finally, the
conclusion is depicted in Section 5.
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3. Twin Hybrid FSS (THFSS)

Before elaborating on the proposed FSS based on
the mathematical treatment presented in this
section, we consider assumptions as follows:

The learning scenarios decorated by
mathematical treatment are exerted on
transient space based on the N-1
contingency criteria (where N refers to the
number of elements in the network, and
one refers to a single element that can fail
in the power system) without regard for the
contaminated transient data (noisy and
missing transient data) and different
operating conditions of the power grid.
The transient dataset is balanced (balanced
class).

The graphical summary of THFSS is shown in
Figure 1. According to this figure, the primary
materials in forming THFSS are based on two
approaches: 1) filter: conditional relevancy rate
(CRR) (CRR is based on mutual information (Ml),
and entropy calculations [12]), and 2) wrappers:
incremental wrapper subset selection (IWSS) [17]
and IWSS with replacement (IWSSr)

[18]. The two steps of THFSS (Hyb?') contain the
filter-wrapper scheme. The first and second folds

of THFSS are equipped with CRR-IWSS and
CRR-IWSSr, respectively. For example, in the case
of CRR-IWSS (hybrid of fold': Hyb?!), the CRR-
based filter (green-face bullet) and IWSS-based
wrapper (red-face bullet) are placed in the first to
second steps of Hyb?, respectively (see Figure 1).
In filter, CRR is mounted on mutual information
(MI) and entropy, and in wrappers, IWSS and
IWSSr are triggered by kernelized support vector
machine (SVM) [19] and twin SVM (TWSVM)
[20] Kernelized hyperplane-based predictive
models (KHPMs) situated in the wrapper of Hyb?
for precise mining on transient nonlinear space
cause arising IWSS- and IWSSr-based wrappers
with four versions. Using radial basis function
(RBF) [19] and dynamic time warping (DTW) [21]
kernels in SVM and RBF and polynomial (POL)

[22] kernels in TWSVM lead to forming "VraPPefeer’

SVM TWSVM

, Wrappery  Wrappergse™ ang Wrappersg-™ “which
are connected successively (Wrapper: IWSS/

IWSSr). These connected KHPMs-based wrappers
placed in each fold (second step of Hyb'?) are
permuted in a 24-way manner (factorial of 4) (see
Figure 1; IWSS-based left permutations (LP'VSS) in
fold! and IWSSr-based right permutations
(RP'WSSN) in fold?).

Uy specific OTFs |

i 0

Tl s Wi OTFy

Figure 1. The Overall process of THFSS.
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Finding RDTFs from transient m-time series data
is realized by conducting THFSS on each transient
univariate (TU) (see Figure 1; the transient data set
was depicted as black-face TU3, pink-face TU, ...,
and brown-face TUn, respectively). First, each TUx
is entered into the first step of Hyb supported by
the CRR-based filter, and then H¥-"TmsioPk js
obtained. The CRR is formulated as (1) based on
MI (2) and entropy (H) (3) formulations, which

determine the information shared between TU M

and target class (C) in the presence TUIMJ' . This
relationship can range from fully redundant to fully
interdependent (-1<CRR (TUI™S TU™iy<1). For
more information about CRR calculation, refer to
Table 1. Next, TU,-specific “H2-TMsk s fed to

KHPMs-based wrappers (Hyb': 1WSS-based
wrapper and Hyb?: IWSSr-based wrapper).

CRR(X,Y) =
2MITU™;C | TU™) - MI(TU™;C))
(HTU™))+H(C))

M

where x and v are U™ and TU. ", respectively.

MITU™;C) = HTU™) ~HTU™ [C) ()

H(Z)=-) p(z)log p(z) 3)

zeZ

Based on exerting KHPMs-based IWSS and
KHPMs-based IWSSr, 1WsS / IwssrKHPMs  related

to each permutation column in LP'VSS or RP'WSSTjs
recorded as the relevant transient features

2 1,2
Hyb™ IWSS/IWSSr
(™ RTFs e )-

In LPWSS or RPWSS"  the result of each
IWSS / IwssrKHPMSs enters the 1SS / Iwssr<HPMs g5
input, and then a max function is applied to the
quad-result of the permutation column. Next, the

union function operates on “H") RTMsWSS/WSS" 1o
O RTMSIWSSIWSST | and union RTFs is recorded
in "M URTMsWSS/WSST - After ending 2Hyb'?, the
intersection operator is applied on oTms¢"* and
the result is recorded as OTMs, . Finally, applying

union operation on OTMs to OTMs, leads to

surviving RDTFs.

Besides elaborating on the proposed FSS according
to Figure 1 (see previous paragraph), the
pseudocode of THFSS is given in Table 2. Also the
complexity analysis of THFSS is presented for the
readers. The complexity magnitude of THFSS is
tightly correlated to the embedded wrapper
mechanisms. The IWSS and IWSSr have O(n) and
O(n?) complexity, respectively [18]. The
complexity of KHPMs plugged into wrappers,
namely SVM and TWSVM, is O(n®) and

0(2x(n/2)%), respectively [23]. Hence, IwssKHPMs

and IwssrKHPMS have O(max{(nxn3),
(nx2x(n/2)*}) and O(max{(n?xn?),
(n?x2x(n/2)>)}) complexity, respectively. The
complexity ratio of SVM and TWSVM (
n®/(2x(n/2)%)=4) shows the fact that the

complexity of IwssKtPMs and  jwssrKHPMS g
O(nxn® and O(n?xn3), respectively. Compacting
the RHDTS and feeding the IWSSr tree with
COTFS provide the necessary conditions for
equality of complexity IWSSr by IWSS [18].

Table 1. The pseudo-code of the CRR.

Input: x™ univariate of transient trajectory data; {x=1, 2, ..., m}.
Output: top k transient moments of TUx based on CRR value.

(1) ™ssrr, = RR ( TUIM®); // For more information about RR function, refer to [11].

(2) crrMS P =5 ;

(3) Wy = initial weight of TMs € TUx is set to one;

(4) v =find TM with highest RR in ™:sRR, ;

(5) craTMSIPK = cpaTMsPk U ™

(6) TUIMS = TUIMS _TM!;
(7) fore=2tok

(8) WA -Whi+CRR[TU]" M=) 1/ CRR: See (1);

1 1
(9) (TMsy:s —TM )RR;deated :W'I'el\]é L [ (TMsy:s —TM )RRX]

(10) TM® =find TM with highest RR from (st~ ggUpdated -
(11) crRTMSIPK = cpeTMsioPk U TME;
(12) TuMs = TyUIMS - TMms® ;

(13) end

(14) return cggTMsi®;
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In such a situation, the complexity of IwssKHPMs
and 1wssrKHPMS s the same and will equal O(n%).

is O(cxn*).

Table 2. The pseudocode of the THFSS.

Main body of THFSS

Input: transient m-time series data (TD) ([TD] nxTUpq with L )

Output: Optimal transient moments (OTMs) of m-trajectory transient data.
(1) for x=1tom

1012
HngRTMstf"k = CRR ( TUIM); Calculating the CRR value (See Table 1) of TMs;j € TU,based on SU.

@
(3) forf=1:2 // filter-wrapper in a twofold way called Hyb?? (fold'?).
@) iff==
®) TMs=[];
2|
(6) Array = [ IWSS (TMs, RBF, SVM), IWSS (TMs, DTW, SVM), IWSS (TMs, RBF, TWSVM), IWSS (TMs, POL, TWSVM)];
(7)  elseif f==2
8) TMs=[1;
2p
9) Array = [ IWSSr (TMs, RBF, SVM), IWSSr (TMs, DTW, SVM), IWSSr (TMs, RBF, TWSVM), IWSSr (TMs, POL, TWSVM)];
(10) end
11)  iff==1]|f==2
2 f
(12) 4x241 Wrapper, = Perms ( Hyb Array ); /[Perms: ‘perms’ command in MATALB environment.
2,0 f 112
(13) Wrgpy,?erURTMsx = UnionLinkedWrappers ( 4x24LWrappery , HngRTFSQOpk );
(14) end
15  iff==
1:2 2 f
(16) RecoH¥bMS =struct(fold', num2str(f), 'OTMs", WrgggerURTMsx ):
(17)  else
HybL:2 2pyp '
(18) Recorys (end+1)=struct(fold', num2str(f), 'OTMS', wyapper URTMsy );
(19) end
(20) end
2 HybL2
(21) otMs,= N[ Re(:('3‘¥t),\/|lS (1).0TMs : RECO¥MS (2).0T™s 1.
(22) ifx==1
(23) OTMs"™?! =struct(‘Trajectory’, num2str(x), 'OTMSs', OTMs, );
(24) else
(25) OTMs™@ " (end+1)=struct(Trajectory’, num2str(x), 'OTMSs', OTMs, );
(26) end
(27) end

(28) roTrs = U [ OTMs™@ 1) 0TMs : OTMs™® (m).oTMs ].

Function: UnionLinkedWTrappers (A, B)

(1) forp=1to24

// The number of permutations of the kernelized HPMs plugged into wrappers (4 factorial (41)=24).

@ perBox? =A (5, p); perBoxP (1). arg'=B;

©) RTMsP =run ( perBox? (1)); B=Sort (RTMs/ );

4 perBox” (2). arg'=B; RTMs) =run ( perBox? (2));

®) B=Sort (RTMs} ); perBox? (3). arg*=B;

(6) RTMs =run ( pergox (3)); B=Sort (RTMS? );

™ PerBoxP (4). arg'=B; RTMsf =run ( perBox® (4));

® if p=1

©)] RTMs"?* =struct(‘Permutation’, num2str(p), 'RTMS', max( RTMs{ : RTMs ));
(10)  else

(11) RTMs"?/(end+1) =struct('Permutation’, num2str(p), 'RTMSs', max( RTMs : RTMs ));
(12) end

(13) end

(14) URTFs = U [ RTMs™* (1).RTMs : RTMs24 (24).RTMs ].
(15) return URTMs ;

* The pseudocode of the THFSS is rewritten based on MATLAB commands in the MATLAB environment.
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4. Experimental Design
4.1. Selecting RDTFs from T28VTD

The transient data set (800 (No. transient cases) x
28 (TU128) x6 (No. observed cycles)) related to
contingency simulation on the New England test
system-New York power system (NETS-NYPS) is
proposed by Canizares et al. [24] and generated by
Python-SIEMENS PSS/E application program
interface (API)-based code [25]. The list of
transient 28-trajectory features is shown in Table 3.
Also for more information about Python scripting
for dynamic simulation based on PSS/E API, refer
to [26]. After creating the transient dataset, finding
RDTFs from TU12s based on THFSS is on the
agenda in this section according to Figure 1 and
Table 2. After conducting the first step of Hyb'?
(*Hyb2: CRR-based filter) on TUy, which is called

" TMsPk  the second step of Hyb'? (KHPMs-

based wrapper models) fed by 1Hyb;'§TMs‘X°Pk is
applied to each TU.. The obtained results via 2Hyb'?
per TUxis shown in Table 4. By completing the two
steps of folds per TU., which is recorded in

HybL2

Recoiws. Struct, the intersection function s
X

operated on TUx-specific twofold results (See Table
2, Line 21: N [Rect¥” (1).0TMs : RecH¥o” (2).0TMs
]). The obtained results are shown in Table 5. The
oTMs"™® struct contains 28 OTMs-objects related
to TU12s. Finally, applying the union operator on 28
records of oTMs™® struct (See Table 2, Line 28: U
[OTMs™@ (1).0TMs : OTMs™® (m).0TMs]) cause to

surviving RDTFs set. The members of the RDTFs
set refer to the last row of Table 5.

Table 3. 28-trajectory transient features (TU1:2s)

Math formula

TUy™ = Max([——— ';E;EC' 7 Noerves

TU, " ~Va ([PELEC, ]| xNgenbus)

TUg™ = Max ([%E;EC' ]/ e

TU, = Min( e o
i

TU5tm —Var ([QELEC, ] _lNgenhus)

Qm
TUgm = Max([VOLT, ' =ENous
TU;" =Var([VOLT, [=Nous )
TUgm = Max([\/ANGLEi]i:koUS); slack bus =0

Table 3 (Continued.). 28-trajectory transient features
(TUl:ZS)

Math formula

TUg™ = Min([VANGLE; I ENas ): slack bus =0
TUjom =Var([VANGLE;]=tNews ): slack bus =0
TUyy" = Max(abs([VANGLE; ~VANGLE; ]"1=Nuus ))
TUp,™ = Mean(abs(IVANGLE; —VANGLE ;117 Nous ))
TU, 3™ =Var (abs([VANGLE; ~VANGLE ]"1=Nous ))

Nbusgen
> QLOAD,
t i=1
TU.Z =
14 Nbusgen
> QELEC;

i=1
TUJ2., = Gradient of TU; to TUy,

Symbol: tn= moments in simulation time [1: S], Nbus gen = number of bus
generator in test case, PELEC= machine electrical power (pu), Pmax= maximum
amount of machine electrical power, QELEC=machine reactive power, Qmax=
maximum amount of machine reactive power, Qload= reactive power
consumption, Volt= bus pu voltages, Nwuis= number of buses in test case,
VANGLE= voltage phase angle, Var= variance, Max= maximum, Min=
minimum, Mean= average.

Table 4. The obtained results induced by exerting 2Hyb!2
(®Hyb': IWSS-based wrapper and 2Hyb?: IWSSr-based
wrapper) per TUx.

Input Zlvvysbsl URTMs,  Input ZlvvgngRTMsx
'Hyb'rus {*TMy, TMs¢} Hyb%ru; {TMy, ‘TMs5}
'Hyblryz {*TMw} 'Hyb?ru2 {*TM14}
1Hybl*rug {ETMi, 3TMs} 1Hybz*ru;g {3TM1, 3TMA, 5}
"Hyb'rus {“TMy, “TMa:s} Hyb?ryq {TM1, “TMs:}
'Hyblrus {5TMy, 5TM3 4} Hyb%rys {$TM12, STM4}
Hyb'rus {T™s} *Hyb?rus {*TMs.}
1Hy|:)1'|'u7 {7TM1, 7TM3} 1H)/|2)2'|'U7 {7T|V|1;z}
1Hybl'rug {BTMZ:S, 8TMs } 1Hybzug {8TM2:3Y 8TMS}
'Hyb'rus  {*TMus} tHyb?rug {TTM2, °TMs}
1Hy|:)1'|'u1o {mTMl:B} 1Hy|:)2'|'u1o {1°TM1:3}
1Hy|:)1Tu11 {uTMl, 11TMB:A} 1Hybzuu {nTMu}
Hybruiz {PTM12, TMs} Hyb?ru12 {*TM15}
Hyb'ru13 {TM14} Hyb?ru13 {*TM1.}
*Hyb'ruia {“TMus} *Hyb?ru1a {TM24}
*Hyb'ruis {*TM:} *Hyb?ry15 {*TM12}
Hyb'ru1e {**TM14} Hyb?ru1e {**TM1.}
Hyb'rurr {"TMua} *Hyb?ru17 {"TM24}
1HyblTUlzg {wTML 18TMs:a} 1Hyb2TU18 {ISTML 18TMs;s}
Hyblry19 {*TMa4} Hyb?ru1e {9 Mz}
1Hybl'ruzo {ZOTMS, 2OTMQE} 1Hybz'ruzo {ZOTMa, ZOTMs}
*Hyb'ruz {#TMua} Hyb?ruz1 {#'TMy, 2 TMs2}
1Hybl'ruzz {ZZTMA:S} 1Hyszuzz {22TM1Y 2ZTMA;s}
Hyb'ruz3 {#TMg} "Hyb?ruz3 {#TMe}
Hyblruza  {#TMua} Hyb?ruzs {#*TMa4}
1Hybl-ruz5 {ZSTMQ::;, 25TM5:5} 1}‘Iyl:)z*ruzg, {ZSTMQ 3y 25TM5;5}
Hyb 26 {?TMu4} "Hyb?ruze {*TM14}
Hyblruzr {#"TM12, ¥TM4} Hyb?ruzr {#TMw.a}
Hyb'ru2s {BTM14} "Hyb?ru2g {#TMa4}

xin tEtrpsork : x™* TU; *TM;: j moments of TUy, top 4: top 4
moments based on CRR.
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Table 5. The obtained OTMsx set and RDTFs set.

Input OTMsy Input OTMsy
TU1Z n [] {1TM1, 1T'\/Is;e} TU152 n [] {lsTMl}
TU; N[ M1} TUse: N [] {5TM...}
TU3Z n [] {3TM1, 3TM5} TU17Z n [] {17TM2;4}
TU: N L] {*TMy, “TM,, “TMs} TU: N [. {®TMy, ¥TMs:}
TU5Z n [] {STMl, 5TM4} Tulgl n [] {19TM3;4}
TUs N[ {TM3} TUx: N . {ZTM;, TMs}
TU7Z n [] {7TM1} TU212 n [] {ZlTMl, 21TM3, 21TM4}
TUg: N [] {BTMz, BTMg, 8TI\/|5} TU: N [] {ZZTM4, 22TM5}
TUqg: N [] {TT™;, °TM,} TUxs: N [] {ZTMg}
TU101 n [] {10TM1;3} TU24Z n [] {ZATM2;4}
TUw N[ {7TMy, "TM;, "TM} TUszs: N []{ZTMz, ZTMs, ZTMs, ZTMg}
TU121 n [] {12TM1;2} TUZGZ n [] {ZGTM1;4}
TU13Z n [] {13TM1;4} TU27Z n [] {27TM1;2,27TM4}
TU:N[] {MTMg, *TMs} TUzs: N [] M, ZTM,}

RDTFs: Union of OTMs1to OTMszs (U [ oTMs™@ (1).0TMs :
oTMs @ (28).0TMs ])

{!TM1s:6, 2TM1:4, 3TM4, 5, “TM1, 4:5, STMy, 4, 5TM3, "TM1, 8TM2:3, 5, °TM1:2,
0T Mu1:3, 11 TMy, 3.4, PTM1:2, B¥TM1:4, ¥TM23, 15TM1, TMu14, 'TM2:4,
18T My, 56, 2°TM3:4, 2TMs3, 5, 2TM1, 3.4, 22Ma:s, 2TMs, 2TM2:4, ZTM2:3, 5:6,
BTMua, 27TM12, 4, 2TMa:4}

Hybl:z

12
[]: Rect!P " (1).0TMs : Reciy (2).0TMs

OTMs

4.2. TSP based on RDTFs set

Evaluating the performance of RDTFs in TSP is
based on 10-fold cross-validation is considered in
this section. Based on performance metrics
(accuracy (Acc), True Positive Rate (TPR), and
True Negative rate (TNR)), obtained results related
to applying SVMREF on RDTFs per fold are given
in Table 6. This table contains the Max (Acc), TPR,
and TNR of folds, which are obtained via exerting
fine-tuning-oriented train-test by SVMREF, Based
on applying the mean function on folds’ results,
Acc 98.87 %, TPR 98.5 %, and TNR 99.25 % are
obatined (see the last row of Table 6). For more
clarity, the Acc variations in fold?, fold?, fold’, and
fold® are shown in Figure 2. In the 3-D charts of
Figure 2, the X axis is related to the ¢ parameter

variations ([-5:15]), the Y axis is related to C
parameter variations ([0:15]), and the Z axis is
related to the Acc fluctuations. Furthemore,
processing time calculation based on transient
observation cycles (TOCs) and prediction time is
reported in this section. The members of RDTFs
(see Table 5, last row) show the fact the maximum
TOCs (MTOCs) are six cycles (e.g., 'TMs, ¥TMes,
and #TMgs). Hence, 6 cycles are equal to 100.2
miliseconds (ms) (6x0.0167s (measurement rate)).
In terms of prediction time, SVMREF labels to an
unseen transient case in 2.387 ms. Consequently,
the summation of 100.2 ms (MTOCs) and 2.453 ms
(prediction time) gives the processing time
(102.653 ms). Such a low processing time provides
proper conditions for timely corrective control
actions.

Table 6. Results of TSP based on RDTFs set.

10-fold cross validation

Classifier Test case Max(Acc.) per fold based on fine-tuning on SVMREF
parameters
Accuracy [TPR/TNR]
fold 1 fold 2 fold 3 fold 4
98.75 9% 975 98.75
[975/100]  [95/95]  [95/100] [100/97.5]
fold 5 fold 6 fold 7 fold 8
100 100 100 100
SVM™  NETS-NYPS  1199/100]  [100/100] [100/100]  [100/100]
fold 9 fold 10
98.75 100
[97.5/100] [100 / 100]

Mean (measure) of folds: Accuracy [TPR/ TNR]

98.87 [98.5/99.25
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Figure 2. Acc variations in fold *27:° for TSP based on RDTFs set (In 3-D charts; X axis: ¢ parameter ([-5:15]), Y axis:
C parameter ([0:15]), and Z axis: Acc fluctuations).

4.3 Comparison of experimental methods

In this section, comparing the proposed FSS with PITHSO (24 OCs of T28VTD [16]) (ignoring only
three filter-faced FSSs (3FFSSs) and two hybrid- 0.25% less than TPR than PITHS). From
faced (2HFSSs) is on the agenda. The mRMR [5], processing time aspect, SVMREF-THFSSRPTFs-
ReliefF [8], and FCBF [9] as 3FFSSs and based processing time (102.653 ms) and the Table
BMHFSS [11] and PITHS [16] as 2HFSSs are 8 results show that SVMREF-THFSSRPTF has a
compared with THFSS. After exerting 3FFSSs and higher TPT (102.653 ms) than SVMREF-
2HFSSs on T28VTD and entering survived optimal 3FFSSsO™s  (SVMREBF-mRMRCT™:  68.793 ms,
transient features (OTFs) into SVMREF in the same SVMRBF.ECBFOTR:  68.930 ms, SVMREF-
train-test procedure considered in our study, the ReliefF°T™: 68.910 ms) and SVMRBF-BMHFSSCTF
obtained results show that THFSSRPTF have better (BMHFSS as 2HFSSs) with 52.948 ms. Also,
performance in TSP than 3FFSSs®™ and SVMRBF-THFSSRPTF have a lower processing time
2HFSSsC™ (See Table 6 (last row) and Table 7). than SVMRBF-PITHSO™s with 152.591 ms. The
THFSS-based RDTFs containing 72 optimal cycles final report depicted in Table 8 (The seventh row
retrieved from T28VTD has better performance of Table 8) indicates the amount of memory usage
(Acc, TPR, and TNR) than mMRMR°™ (9 OCs of by the SVMRBF-THFSSRPTF for TSP. For more
T4VTD), FCBFOTFs, ReliefFOTFs, and information, refer to Table 8.

BMHFSSC™: (9 OCs of T3VTD) [11], and
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Table 7. Results of TSP Via coupling SVMREF and selected RDTFs by 3FFSSs and 2HFSSs.

Classifier-FSS Test case 10-fold cross-validation
Max(Acc.) per fold based on fine-tuning on SVMREF parameters
Accuracy [TPR/TNR]
fold 1 fold 2 fold 3 fold 4
93.75 93.75 90 90
[97.5/90] [97.5/90] [95/ 85] [82.5/97.5]
fold 5 fold 6 fold 7 fold 8
SVMRE-mRMR NETS-NYPS 95 95 95 91.25
[97.5/92.5] [95/95]  [100/90] [87.5/95]
fold 9 fold 10
88.75 93.75
[95/82.5] [92.5/95]
Mean(measure) of folds: Accuracy [TPR/TNR]
92.62 [94/91.25]
fold 1 fold 2 fold 3 fold 4
98.75 95 96.25 975
[97.5/100] [95/95] [92.5/100] [95/100]
fold 5 fold 6 fold 7 fold 8
SVMFREF-FCBF NETS-NYPS 96.25 97,5 975 975
[92.5/100] [97.5/97.5] [95/100] [97.5/97.5]
fold 9 fold 10
97.5 100
[95/100] [100/ 100]
Mean(measure) of folds: Accuracy [TPR/TNR]
97.37 [95.75/99]
fold 1 fold 2 fold 3 fold 4
98.75 95 96.25 97.5
[97.5/100] [95/95] [92.5/100] [95/100]
fold 5 fold 6 fold 7 fold 8
SVMFREF_ReliefF NETS-NYPS 96.25 97.5 97.5 97.5
[92.5/100] [97.5/97.5] [95/100] [97.5/97.5]
fold 9 fold 10
97.5 100
[95/100] [100/ 100]
Mean(measure) of folds: Accuracy [TPR/ TNR]
97.37 [95.75/ 99]
fold 1 fold 2 fold 3 fold 4
100 97.5 96.25 95
[100/ 100] [100/95] [92.5/100] [92.5/97.5]
fold 5 fold 6 fold 7 fold 8
SVMREF.BMHFSS NETS-NYPS 100 100 975 98.75
[100/ 100] [100/ 100] [97.5/97.5] [97.5/100]
fold 9 fold 10
97.5 100
[97.5/97.5] [100/ 100]
Mean(measure) of folds: Accuracy [TPR/TNR]
98.25[97.75/98.75]
fold 1 fold 2 fold 3 fold 4
98.75 96.25 97.5 98.75
[97.5/100] [100/92.5] [95/100] [100/97.5]
fold 5 fold 6 fold 7 fold 8
SVMPREF-PITHS NETS-NYPS 100 100 98.75 100
[100/ 100] [100/ 100] [97.5/ 100] [100/ 100]
fold 9 fold 10
97.5 100
[97.5/97.5] [100/ 100]

Mean(measure) of folds: Accuracy [TPR/TNR]

98.75[98.75/ 98.75]
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Table 8. TSP based on 3FFSSs and 2HFSSs and amount of memory usage by
SVMRBF-THESSRPTFS model.

SVMPREF. MTOCs in Processing time
3FFSSs/ cycle / (MTOC:s + prediction time)
2HFSSs second
SVMREF-mMRMR 4/0.0668 66.8 ms+1.993 ms=68.793 ms
SVMREF-FCBF 4/0.0668 66.8 ms+2.130 ms= 68.930 ms
SVMREF_ReliefF 4/0.0668 66.8 ms+2.110 ms= 68.910 ms
SVMREF.BMHFSS  3/0.0501 50.1 ms+2.848 ms= 52.948 ms
SVMREFPITHS 9/0.1503 150.3 ms+2.291 ms= 152.591 ms
Max Mem available Mem used
Memory status Possible all arrays (MAAAS) MATLAB
Array Bytes
Before starting 4.0087e+09 4.0087e+09 1.3455e+09
model (®model)
After ending 3.0849e+09 3.0849e+09 1.2750e+09

model (“model)

Memory used in Megabytes

AEModel. MAAASs —BSModel. MAAASs = - 881 Megabytes

(-): indicates that the free memory is (about 251 megabytes) lower now
than it was before started model (SVMREF-THFSSC™),

5. Conclusions and Future Work

The RHDTS with IRNDTFs is a main obstacle in
achieving fast-accurate TSA. Passing this obstacle
is possible only through the feature selection
process. Hence, in this paper, we offer the twin
hybrid FSS (THFSS) to find RDTFs from
T28VTD. The THFSS encompasses two folds in
which the filter-wrapper scheme is executed. The
filter steps are supported by CRR, and the wrapper
step is triggered by IWSS and IWSSr mechanisms.
The obtained results show that THFSS-based
RDTFs have high performance (Acc 98.87 %, TPR
98.5 %, TNR 99.25 %, and transient processing
time of 102.653 ms) on TSP. For evaluating the
efficacy of the proposed FSS, THFSS is compared
with other FSS. The results indicate that the
THFSS-based RDTFs set is better than optimal
features selected through other feature selection
algorithms on TSP.

Selecting the most relevant features for high-
performance TSP under the power grid's
complicated conditions raised by N-k contingency,
different load-generation levels, and contaminated
transient  samples  (communication  failure
(unavailability) and lack of quality of power
system dynamic responses (noisy data)) are main
factors that are not considered in the design of our
proposed learning framework. Hence, it is possible
that our learning method cannot result in high-
performance transient prediction as in normal
transient data. Hence, this issue can be considered
as the limitation of our proposed FSS. In the future
FSS-based TSA, we decorate a convolutional
neural network (CNN), in which extracted features
by its layers feed the polyhedral feature selection
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algorithm. Such a scheme promises high-
performance TSA under the power grid's
complicated conditions raised by N-k contingency,
different load-generation levels, and contaminated
transient samples.
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Notation
CRR (") conditional relevancy rate function.
RR (4) relevancy rate function.
TUx xtransient univariate (TU) of
transient trajectory data.
TUMs transient moments (TMs) in TUx.
TMsp-
Ls RRX sorted TMs of TUx via RR function.
CRRTMsLOPK recording top TMs based on CRR
formula per TUx.
Wvs initial weight of TMs € TUjx is set to
one.
1
™ TM with highest RR in T™sLsRrR, .
e-1 R
WrMs e-1"weight of TMs € TUx calculated

based on CRR function.

1
(M5 =TM )RRijpdated updating the weights of TMs € TUx
except TM1,
TM with highest RR from

1
Msg. ~TM™) ppUpdated
(TMsp:s )RRXp ate

T™®

[TD] TUpy with L transient data (TD) with n sample, m

trajectory features, and labels (L)
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)
YD =TMst%X  recording top TMs based on CRR
formula per TUx by exerting the first
step of fold! and fold? of THFSS
Array The array contains the IWSS/IWSSr-based

learning model accompanied by kernelized
SVM and TWSVM, which are situated in
the second step of folds.

4x241 Wrapper,, ~ data structure for recording the results of
2 Hybf
various permutations in execution Array

2 f
Hyb . : .
Wragpe,URTMsx the union of obtained results recorded in

4x241 Wrapper,, (Called union of relevant
transient moments of TUx (URTMsx)).
R Hybl:2 .
€CoTMs a struct for recording results of

2 f
Hyb
wrapper URTMsy per fold.

OTMs, optimal transient moments of TUx derived
by intersecting the obtained results of fold?*-

- Hybl:2 -
specific Recqtys and fold?-specific

1.2
Hyb
ReCO1¥MS per TUx

oTms'o@l a struct for recording OTMs set per TUx.
RDTFS relevant-discriminative transient features
derived by the union of OTMs1t OTMszs.

PerBoxP different permutations of IWSS/IWSSr-

based learning scenarios accompanied with
kernelized SVM and TWSVM decorated in
24 manners (p: 1 to 24) situated in the
second step of fold* and fold?.

RTMSzm obtained results (relevant transient moments
(RTMs)) derived by execution of N™ rounds

of PerBox” (N™) (rounds from 1 to 4).
RTMst24 a struct contains RTMs derived by applying

max function on RTMslp to RTMSZp per p.

URTFs the union relevant transient features

(URTFs) stemmed from union of RTMs%:24(1)
to RTMst2* (24).
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