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 A speedy and accurate transient stability assessment (TSA) is gained 

by employing efficient machine learning- and statistics-based 

(MLST) algorithms on transient nonlinear time series space. In the 

MLST’s world, the feature selection process by forming compacted 

optimal transient feature space (COTFS) from raw high dimensional 

transient data can pave the way for high-performance TSA. Hence, 

designing a comprehensive feature selection scheme (FSS) that 

populates COTFS with the relevant-discriminative transient features 

(RDTFs) is an urgent need. This work aims to introduce twin hybrid 

FSS (THFSS) to select RDTFs from transient 28-variate time series 

data. Each fold of THFSS comprises filter-wrapper mechanisms. The 

conditional relevancy rate (CRR), based on mutual information (MI) 

and entropy calculations, are considered as filter method, and 

incremental wrapper subset selection (IWSS) and IWSS with 

replacement (IWSSr) formed by kernelized support vector machine 

(SVM) and twin SVM (TWSVM) are used as the wrapper ones. After 

exerting THFSS on transient univariates, RDTFs are entered into the 

cross-validation-based train-test procedure for evaluating their 

efficiency in TSA. The results manifested that THFSS-based RDTFs 

have a prediction accuracy of 98.87 % and a processing time of 

102.653 milliseconds for TSA. 
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1. Introduction

Nowadays, continuous monitoring of dynamic 

features related to power system reliability (PSR) 

is tightly correlated to conducting data mining 

(DM) techniques [1, 2] on power raw high-

dimensional transient space (RHDTS) retrieved by 

wide-area measurement systems (WAMS) for 

knowledge discovery. Regardless of the high 

precision DM-based predictive models (DMPMs) 

mounted on IT-based infrastructure for grid 

monitoring, these learning methods should be 

reformed based on the type of under-study 

phenomenon in PSR scope. One of the most 

significant branches of PSR analysis is transient 

stability proposed by Kundur et al. [3], known for 

its fast character [4]. In such circumstances, the 

power grid transient monitoring demands timely 

analysis from DMPMs for speedy control actions. 

Hence, the DMPM design should satisfy fast and 

accurate transient stability assessment (TSA). In 

the presence of RHDTS, achieving such a dual-

purpose-based TSA would be impossible. This 

problem originates from two factors: 1) high 

dimensions in RHDTS, which cause high 

prediction time, and 2) populating RHDTS with the 

irrelevant-non discriminative transient features 

(IRNDTFs) that lead to low accuracy prediction. 

The best way that can solve the paradoxical 

challenges derived by RHDTS leading to low-

performance TSA is feature selection [5]. The 

feature selection process, by discarding IRNDTFs 

from the RHDTS, forms the relevant-

discriminative transient feature (RDTF) set as 
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compacted optimal transient feature space 

(COTFS), which promises high-level information 

sharing between COTFS’s members and target 

class. COTFS-based train-test procedure (CTTP) 

plugged into DMPM brings high-performance 

TSA from two aspects: 1) extracting important 

patterns via RDTFs causes high prediction 

accuracy of transient unseen cases, and 2) the fast 

execution in CTTP due to low dimensional space 

reduces the prediction time as the main component 

of the processing time of transient sample labeling. 

The above concerns remind the importance of 

designing a comprehensive feature selection 

scheme (FSS) coordinated as a joint study by data 

mining and electrical engineers for the high-

performance TSA. 

 

2. Related Works 

A glance over FSS-based transient works reveals 

that COTFS has been formed by filter- or hybrid-

oriented FSS. In the case of filter-based FSS, there 

are so many works that find optimal features via 

information theory-based approaches [6-9]. For 

example, mutual information (MI)-based FSS can 

be found in Li et al. [6] and Liu et al. [7] works, 

which selects the most relevant power and angle 

features for transient stability prediction (TSP). For 

induction motor analysis, Stief et al. [8] utilizes the 

ReliefF algorithm to eliminate redundant features. 

In the transfer capability calculation framework 

developed by Yan et al. [9], applying the fast 

correlation-based filter (FCBF) on high-

dimensional data is considered to select optimal 

features for high-performance TSP. In the feature 

selection-based transient studies, a diverse range of 

hybrid FSS has been proposed by scholars [10-16]. 

For example, Ji et al. [10] selects the optimal 

transient features by Relief-support vector machine 

(SVM) as a filter-wrapper algorithm (FWA) for 

power system dynamic monitoring. As another 

hybrid-faced FSS, Chen et al. [11] considers 

coupling normalized MI and binary particle swarm 

optimization as FWA for high-performance TSP. 

The fuzzy imperialist competitive-based hybrid 

FSS with a point-and trajectory-oriented attitude in 

the feature selection process is introduced by 

Bashiri Mosavi et al. [12] to find discriminative 

transient features. Surviving optimal transient 

features by embedding kernelized fuzzy rough sets 

(KFRS) in binary Jaya-based FSS and memetic 

algorithm for forming hybrid FSS can be found in 

Li et al. [13] and Gu et al. [14] works, respectively. 

The cross-permutation-based quad-hybrid FSS 

(CPQHFSS) developed by Bashiri Mosavi et al. 

[15] presents polyhedral FWA for finding optimal 

transient features. Bashiri Mosavi et al. [16] offer 

trilateral nested filter-wrapper FSS, which is 

applied on transient excursions in a partial-oriented 

manner for selecting optimal-blurred transient 

features.  

Regardless of the considerable structural difference 

between filter and hybrid FSS in feature selection, 

these schemes suffer from two problems, namely 

vertically singular strategy (VSS) and chained 

trajectory features (CTFs) case. The VSS refers to 

a non-cross-linked learning model in forming 

COTFS. Such a strategy which can be seen in 

works like [6-9], [10-12], [15], [16], paves no way 

for semi-optimal transient features (SOTFs). (The 

SOTF is a feature in which the filter- or wrapper-

based index value (FWIV) is closest to the optimal 

feature-specific FWIV, and their presence next to 

optimal features may amplify the model's training 

power) to enter into COTFS. Hence, it is necessary 

to design a cross-linked hybrid FSS (CLHFSS) that 

makes the presence of SOTFs in the optimal 

features’ neighborhood. The CTFs is related to how 

to feed data to the CLHFFS, and can negatively 

affect the feature selection process. For example, 

Li et al. [13] and Gu et al. [14] mount their 

proposed FSSs on a single transient trajectory 

derived by placing time series consecutively. This 

issue can exacerbate the ignoring of optimal 

transient features (primarily) and SOTFs (in 

second-degree) per trajectory. Entering unchained 

trajectory features into the CLHFSS (each 

trajectory feature is entered into the feature 

selection process independently) leads to selecting 

optimal and semi-optimal features per trajectory. 

This paper’s contributions to overcoming the two 

major weaknesses of the past feature selection 

algorithms are listed below: 

•   A new scheme named the twin hybrid FSS 

(THFSS) is proposed to select RDTFs for speedy-

accurate TSP. Each fold of the THFSS contains 

filter-wrapper scenarios. 

•   The UTFs view to find the optimal-blurred 

features from transient 28-variate time series data 

(T28VTD) is followed by THFSS. 

•   We compare the efficacy of THFSS-based 

RDTFs and optimal features survived by filter-and 

hybrid-oriented feature selection methods. 

The rest of the paper is arranged as what follows. 

The THFSS is elaborated in Section 3. 

Experimental results related to exerting the THFSS 

on T28VTD and RDTFs-based TSP are given in 

Section 4. Furthermore, to prove the efficacy of 

THFSS, comparing the performance between 

THFSS and other feature selection algorithms is 

placed at the end of Section 4. Finally, the 

conclusion is depicted in Section 5. 
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Figure 1.  The Overall process of THFSS. 

3. Twin Hybrid FSS (THFSS) 

Before elaborating on the proposed FSS based on 

the mathematical treatment presented in this 

section, we consider assumptions as follows: 

 The learning scenarios decorated by 

mathematical treatment are exerted on 

transient space based on the N-1 

contingency criteria (where N refers to the 

number of elements in the network, and 

one refers to a single element that can fail 

in the power system) without regard for the 

contaminated transient data (noisy and 

missing transient data) and different 

operating conditions of the power grid. 

 The transient dataset is balanced (balanced 

class). 

The graphical summary of THFSS is shown in 

Figure 1. According to this figure, the primary 

materials in forming THFSS are based on two 

approaches: 1) filter: conditional relevancy rate 

(CRR) (CRR is based on mutual information (MI), 

and entropy calculations [12]), and 2) wrappers: 

incremental wrapper subset selection (IWSS) [17] 

and IWSS with replacement (IWSSr)  

[18]. The two steps of THFSS (Hyb1) contain the 

filter-wrapper scheme. The first and second folds 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of THFSS are equipped with CRR-IWSS and 

CRR-IWSSr, respectively. For example, in the case 

of CRR-IWSS (hybrid of fold1: Hyb1), the CRR-

based filter (green-face bullet) and IWSS-based 

wrapper (red-face bullet) are placed in the first to 

second steps of Hyb1, respectively (see Figure 1). 

In filter, CRR is mounted on mutual information 

(MI) and entropy, and in wrappers, IWSS and 

IWSSr are triggered by kernelized support vector 

machine (SVM) [19] and twin SVM (TWSVM) 

[20] Kernelized hyperplane-based predictive 

models (KHPMs) situated in the wrapper of Hyb1:2 

for precise mining on transient nonlinear space 

cause arising IWSS- and IWSSr-based wrappers 

with four versions. Using radial basis function 

(RBF) [19] and dynamic time warping (DTW) [21] 

kernels in SVM and RBF and polynomial (POL) 

[22] kernels in TWSVM lead to forming 
SVM

RBFWrapper

, 
SVM

DTWWrapper , 
TWSVM

RBFWrapper , and 
TWSVM

POLWrapper , which 

are connected successively (Wrapper: IWSS/ 

IWSSr). These connected KHPMs-based wrappers 

placed in each fold (second step of Hyb1:2) are 

permuted in a 24-way manner (factorial of 4) (see 

Figure 1; IWSS-based left permutations (LPIWSS) in 

fold1 and IWSSr-based right permutations 

(RPIWSSr) in fold2). 
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Finding RDTFs from transient m-time series data 

is realized by conducting THFSS on each transient 

univariate (TU) (see Figure 1; the transient data set 

was depicted as black-face TU1, pink-face TU2, ..., 

and brown-face TUm, respectively). First, each TUx 

is entered into the first step of Hyb1:2 supported by 

the CRR-based filter, and then 
1,21Hyb topk

xCRRTMs is 

obtained. The CRR is formulated as (1) based on 

MI (2) and entropy (H) (3) formulations, which 

determine the information shared between iTM
xTU

and target class (C) in the presence jTM
xTU . This 

relationship can range from fully redundant to fully 

interdependent ( 1 ( , ) 1ji
TMsTMs

x xCRR TU TU   ). For 

more information about CRR calculation, refer to 

Table 1. Next, TUx-specific 1,21Hyb topk
xCRRTMs  is fed to 

KHPMs-based wrappers (2Hyb1: IWSS-based 

wrapper and 2Hyb2: IWSSr-based wrapper). 

 

( )( ) ( )

( )

( , )

2( ( ; | ) ( ; ))

( ( ) ( ))

ji i

i

TMsTMs TMs

x x x

TMs

x

CRR X Y

MI TU C TU MI TU C

H TU H C





  

 

 

 

(1) 
 

 

where 𝑋 and 𝑌 are 𝑇𝑈𝑥
𝑇𝑀𝑠𝑖  and 𝑇𝑈𝑥

𝑇𝑀𝑠𝑗
, respectively. 

 
( ) ( ) ( )

( ; ) ( ) ( | )i i iTMs TMs TMs

x x xMI TU C H TU H TU C   
(2) 

 

( ) ( ) log ( )
z Z

H Z p z p z


 
 

 

(3) 
 

Based on exerting KHPMs-based IWSS and 

KHPMs-based IWSSr, / KHPMsIWSS IWSSr  related 

to each permutation column in LPIWSS or RPIWSSr is 

recorded as the relevant transient features  

(
2 1,2 /

:
Hyb IWSS IWSSr

x per pRTFs ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In LPIWSS or RPIWSSr, the result of each

/ KHPMsIWSS IWSSr  enters the / KHPMsIWSS IWSSr  as 

input, and then a max function is applied to the 

quad-result of the permutation column. Next, the 

union function operates on 
2 1,2 /

:1
Hyb IWSS IWSSr

x perRTMs  to 

2 1,2 /
:24

Hyb IWSS IWSSr
x perRTMs , and union RTFs is recorded 

in
2 1:2 /Hyb IWSS IWSSr

xURTMs . After ending 2Hyb1:2, the 

intersection operator is applied on 
1:2fold

xOTMs and 

the result is recorded as xOTMs . Finally, applying 

union operation on 1OTMs to mOTMs  leads to 

surviving RDTFs. 

Besides elaborating on the proposed FSS according 

to Figure 1 (see previous paragraph), the 

pseudocode of THFSS is given in Table 2. Also the 

complexity analysis of THFSS is presented for the 

readers. The complexity magnitude of THFSS is 

tightly correlated to the embedded wrapper 

mechanisms. The IWSS and IWSSr have O(n) and 

O(n2) complexity, respectively [18]. The 

complexity of KHPMs plugged into wrappers, 

namely SVM and TWSVM, is O(n3) and 

O(2×(n/2)3), respectively [23]. Hence, KHPMsIWSS

and KHPMsIWSSr have O(max{(n×n3), 

(n×2×(n/2)3)}) and O(max{(n2×n3), 

(n2×2×(n/2)3)}) complexity, respectively. The 

complexity ratio of SVM and TWSVM (
3 3(2 ( / 2) ) 4n n  ) shows the fact that the 

complexity of KHPMsIWSS  and KHPMsIWSSr  is 

O(n×n3) and O(n2×n3), respectively. Compacting 

the RHDTS and feeding the IWSSr tree with 

COTFS provide the necessary conditions for 

equality of complexity IWSSr by IWSS [18].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. The pseudo-code of the CRR. 

Input: xth univariate of transient trajectory data; {x=1, 2, …, m}. 

Output: top k transient moments of TUx based on CRR value. 

(1)  1:TMs s
xRR = RR ( TMs

xTU ); // For more information about RR function, refer to [11]. 

(2)  topk
CRR xTMs = ;  

(3)  0
TMsW = initial weight of TMs ∈ TUx is set to one; 

(4)  1TM =find TM with highest RR in 1:TMs s
xRR ; 

(5)    topk
CRR xTMs = topk

CRR xTMs  1TM ; 

(6)  TMs
xTU = TMs

xTU - 1TM ; 

(7)   for e=2 to k 

(8)    1 2 1. , ;
TMse e ei

TMs TMs xW W CRR TU TM     // CRR: See (1); 

(9)   
1 1( ) ( )11: 1: ;

TMs TM TMs TMUpdated es s
x TMs xRR W RR

   
    

 

 

(10)   eTM =find TM with highest RR from
1( )1:TMs TM Updateds

xRR
 ; 

(11)   topk
CRR xTMs  = topk

CRR xTMs  eTM ; 

(12)  TMs
xTU  = TMs

xTU - eTMs ; 

(13) end 

(14) return topk
CRR xTMs ; 
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In such a situation, the complexity of KHPMsIWSS  

and KHPMsIWSSr  is the same and will equal O(n4). 

Consequently, the complexity of the proposed FSS 

is O(c×n4).  

 

Table 2.  The pseudocode of the THFSS. 

Main body of THFSS                                                                                     

Input: transient m-time series data (TD) (
1:n TU with Lm

TD


   ) 

Output: Optimal transient moments (OTMs) of m-trajectory transient data. 

(1) for x=1 to m 

(2)      
1 1:2Hyb top k

xCRR
TMs = CRR ( TMs

xTU );  Calculating the CRR value (See Table 1) of iTMs ∈ TUx based on SU. 

(3)      for f=1:2    // filter-wrapper in a twofold way called Hyb1:2 (fold1:2). 

(4)         if f==1   
(5)               TMs=[ ]; 

(6)              

2 fHyb

Array = [ IWSS (TMs, RBF, SVM), IWSS (TMs, DTW, SVM), IWSS (TMs, RBF, TWSVM), IWSS (TMs, POL, TWSVM)]; 

(7)       elseif f==2  
(8)             TMs=[ ]; 

(9)            

2 fHyb

Array = [ IWSSr (TMs, RBF, SVM), IWSSr (TMs, DTW, SVM), IWSSr (TMs, RBF, TWSVM), IWSSr (TMs, POL, TWSVM)]; 

(10)       end 

(11)       if f==1 || f==2  

(12)           4x24LWrapperx = Perms (
2 fHyb

Array );  //Perms: ‘perms’ command in MATALB environment.   

(13)           
2 fHyb

xWrapper RTMsU = UnionLinkedWrappers ( 4x24LWrapperx ,
1:21

top k
xCRR

Hyb
TFs );                                        

(14)       end       

(15)           if f==1          

(16)                  
1:2Hyb

OTMs
Rec =struct('fold', num2str(f), 'OTMs', 

2 fHyb
xWrapper RTMsU );   

(17)       else 

(18)                  
1:2Hyb

OTMs
Rec (end+1)=struct('fold', num2str(f), 'OTMs', 

2 fHyb
xWrapper RTMsU ); 

(19)       end 

(20)    end            

(21)   xOTMs =  ∩ [
1:2

(1).
Hyb
OTMs

Rec OTMs :
1:2

(2).
Hyb
OTMs

Rec OTMs ].           

(22)       if x==1          

(23)               
TotalOTMs =struct('Trajectory', num2str(x), 'OTMs', xOTMs ); 

(24)    else 

(25)                
TotalOTMs  (end+1)=struct('Trajectory', num2str(x), 'OTMs', xOTMs ); 

(26)    end  

(27) end 

(28) RDTFs =  ∪ [ (1).TotalOTMs OTMs : ( ).TotalOTMs m OTMs ].           

Function: UnionLinkedWrappers (A, B)                                                                                             

(1)   for p=1 to 24                  // The number of permutations of the kernelized HPMs plugged into wrappers (4 factorial (4!)=24). 

(2)          p
PerBox  =A (:, p);                       p

PerBox  (1). arg1=B;         

(3)          
1
p

RTMs =run ( p
PerBox (1));           B=Sort (

1
p

RTMs );          

(4)          p
PerBox  (2). arg1=B;                   

2
p

RTMs =run ( p
PerBox  (2));       

(5)           B=Sort (
2
p

RTMs );                        p
PerBox  (3). arg1=B;     

(6)         
3
p

RTMs =run ( p
PerBox (3));            B=Sort (

3
p

RTMs ); 

(7)         p
PerBox  (4). arg1=B;                    

4
p

RTMs =run ( p
PerBox (4));        

(8)          if p=1   

(9)              RTMs1:24 =struct('Permutation', num2str(p), 'RTMs', max(
1 4

:
p p

RTMs RTMs ));  

(10)        else 

(11)                   RTMs1:24(end+1) =struct('Permutation', num2str(p), 'RTMs', max(
1 4

:
p p

RTMs RTMs )); 

(12)        end 

(13)  end 

(14)  URTFs = ∪ [   1:24 (1).RTMs RTMs :   1:24 (24).RTMs RTMs ].           

(15) return  URTMs ; 

* The pseudocode of the THFSS is rewritten based on MATLAB commands in the MATLAB environment.  
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Table 3 (Continued.).  28-trajectory transient features 

(TU1:28) 

Math formula 

1:
9 ([ ] ); 0m bust i N

iTU Min VANGLE slack bus


 

1:
10 ([ ] ); 0m bust i N

iTU Var VANGLE slack bus


   

, 1:
11 ( ([ ] ))m bust i j N

i jTU Max abs VANGLE VANGLE


 

, 1:
12 ( ([ ] ))m bust i j N

i jTU Mean abs VANGLE VANGLE


   

, 1:
13 ( ([ ] ))m bust i j N

i jTU Var abs VANGLE VANGLE


   

1
14

1

busgen

m

busgen

N

i

t i

N

i

i

QLOAD

TU

QELEC











 

15: 1428 1 mt GradieTU tont of TU TU  

Symbol: tm= moments in simulation time [1: s], Nbus gen = number of bus 

generator in test case, PELEC= machine electrical power (pu), Pmax= maximum 

amount of machine electrical power, QELEC=machine reactive power, Qmax= 

maximum amount of machine reactive power, Qload= reactive power 

consumption, Volt= bus pu voltages, Nbus= number of buses in test case, 

VANGLE= voltage phase angle, Var= variance, Max= maximum, Min= 

minimum, Mean= average. 

 

Table 3.  28-trajectory transient features (TU1:28) 

Math formula 

1:
1 ([ ] )

max

genbusm
i Nt i

i

PELEC
TU Max

P


  

1:
2 ([ ] )

max

genbusm
i Nt i

i

PELEC
TU Var

P




1:
3 ([ ] )

max

genbusm
i Nt i

i

QELEC
TU Max

Q




1:
4 ([ ] )

max

genbusm
i Nt i

i

QELEC
TU Min

Q




1:
5 ([ ] )

max

genbusm
i Nt i

i

QELEC
TU Var

Q




1:
6 ([ ] )m bust i N

iTU Max VOLT




1:
7 ([ ] )
tm

busi N
iTU Var VOLT




1:
8 ([ ] ); 0m bust i N

iTU Max VANGLE slack bus


   

 

4. Experimental Design 

4.1. Selecting RDTFs from T28VTD 

 

The transient data set (800 (No. transient cases) × 

28 (TU1:28) ×6 (No. observed cycles)) related to 

contingency simulation on the New England test 

system-New York power system (NETS-NYPS) is 

proposed by Canizares et al. [24] and generated by 

Python-SIEMENS PSS/E application program 

interface (API)-based code [25]. The list of 

transient 28-trajectory features is shown in Table 3. 

Also for more information about Python scripting 

for dynamic simulation based on PSS/E API, refer 

to [26]. After creating the transient dataset, finding 

RDTFs from TU1:28 based on THFSS is on the 

agenda in this section according to Figure 1 and 

Table 2.  After conducting the first step of Hyb1:2 

(1Hyb1:2: CRR-based filter) on TUx, which is called
1:21

topk
xCRR

Hyb
TMs ,  the second step of Hyb1:2 (KHPMs-

based wrapper models) fed by 
1:21

top k
xR

H
R

yb
TMs  is 

applied to each TUx. The obtained results via 2Hyb1:2 

per TUx is shown in Table 4. By completing the two 

steps of folds per TUx, which is recorded in 
1:2

x

Hyb
OTMs

Rec struct, the intersection function is 

operated on TUx-specific twofold results (See Table 

2, Line 21: ∩ [
1:2

(1).
Hyb
OTMsRec OTMs :

1:2

(2).
Hyb
OTMsRec OTMs

]). The obtained results are shown in Table 5. The
TotalOTMs struct contains 28 OTMs-objects related 

to TU1:28. Finally, applying the union operator on 28 

records of TotalOTMs struct (See Table 2, Line 28: ∪ 

[ (1).TotalOTMs OTMs : ( ).TotalOTMs m OTMs ]) cause to 

surviving RDTFs set. The members of the RDTFs 

set refer to the last row of Table 5. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. The obtained results induced by exerting 2Hyb1:2 

(2Hyb1: IWSS-based wrapper and 2Hyb2: IWSSr-based 

wrapper) per TUx. 

 Input           
2 1Hyb

xIWSS RTMsU          Input           
2 2Hyb

xIWSSrURTMs                             

 1Hyb1
TU1         {1TM1, 1TM5:6}           1Hyb2

TU1           {1TM1, 1TM5:6}                             

 1Hyb1
TU2         {2TM1:4}                     1Hyb2

TU2           {2TM1:4}                   

 1Hyb1
TU3         {3TM1, 3TM5}             1Hyb2

TU3           {3TM1, 3TM4:5}                   

 1Hyb1
TU4         {4TM1, 4TM4:5}           1Hyb2

TU4           {4TM1, 4TM3:5}                             

 1Hyb1
TU5         {5TM1, 5TM3,4}           1Hyb2

TU5           {5TM1:2, 5TM4}                 

 1Hyb1
TU6         {6TM3}                     1Hyb2

TU6           {6TM3:4}                             

 1Hyb1
TU7         {7TM1, 7TM3}             1Hyb2

TU7           {7TM1:2}                             

 1Hyb1
TU8         {8TM2:3, 8TM5 }          1Hyb2

U8            {8TM2:3, 8TM5}                 

 1Hyb1
TU9         {9TM1:3}                    1Hyb2

TU9           {9TM1:2, 9TM5}                    

 1Hyb1
TU10        {10TM1:3}                   1Hyb2

TU10        {10TM1:3}                  

 1Hyb1
TU11        {11TM1, 11TM3:4}          1Hyb2

U11           {11TM1:4}                             

 1Hyb1
TU12        {12TM1:2, 12TM4}         1Hyb2

TU12         {12TM1:3}               

 1Hyb1
TU13        {13TM1:4}                   1Hyb2

TU13         {13TM1:4}                            

 1Hyb1
TU14        {14TM1:3}                   1Hyb2

TU14         {14TM2:4}                             

 1Hyb1
TU15        {15TM1}                     1Hyb2

TU15         {15TM1:2}               

 1Hyb1
TU16        {16TM1:4}                   1Hyb2

TU16         {16TM1:4}                             

 1Hyb1
TU17        {17TM1:4}                   1Hyb2

TU17         {17TM2:4}                  

 1Hyb1
TU18        {18TM1, 

18TM5:6}           1Hyb2
TU18        {18TM1, 18TM5:6}               

 1Hyb1
TU19        {19TM1:4}                    1Hyb2

TU19         {19TM3:4}                             

 1Hyb1
TU20        {20TM3, 20TM5}            1Hyb2

TU20         {20TM3, 20TM5}                    

 1Hyb1
TU21        {21TM1:4}                    1Hyb2

TU21         {21TM1, 21TM3:4}                  

 1Hyb1
TU22        {22TM4:5}                    1Hyb2

TU22         {22TM1, 22TM4:5}                  

 1Hyb1
TU23        {23TM6}                      1Hyb2

TU23         {23TM6}                  

 1Hyb1
TU24        {24TM1:4}                    1Hyb2

TU24         {24TM2:4}                             

 1Hyb1
TU25        {25TM2:3, 25TM5:6}         1Hyb2

TU25         {25TM2:3, 25TM5:6}       

 1Hyb1
TU26        {26TM1:4}                     1Hyb2

TU26         {26TM1:4}                             

 1Hyb1
TU27        {27TM1:2, 27TM4}           1Hyb2

TU27         {27TM1:4}                              

 1Hyb1
TU28        {28TM1:4}                    1Hyb2

TU28         {28TM3:4}                   

x in 
1,21Hyb top k

xCRR
TMs : xth TU; xTMj: j

th
 moments of TUx, top 4: top 4 

moments based on CRR.  
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4.2. TSP based on RDTFs set 

 

Evaluating the performance of RDTFs in TSP is 

based on 10-fold cross-validation is considered in 

this section. Based on performance metrics 

(accuracy (Acc), True Positive Rate (TPR), and 

True Negative rate (TNR)), obtained results related 

to applying SVMRBF on RDTFs per fold are given 

in Table 6. This table contains the Max (Acc), TPR, 

and TNR of folds, which are obtained via exerting 

fine-tuning-oriented train-test by SVMRBF. Based 

on applying the mean function on folds’ results, 

Acc 98.87 %, TPR 98.5 %, and TNR 99.25 % are 

obatined (see the last row of Table 6). For more 

clarity, the Acc variations in fold1, fold3, fold7, and 

fold9 are shown in Figure 2. In the 3-D charts of 

Figure 2, the X axis is related to the σ parameter  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

variations ([-5:15]), the Y axis is related to C 

parameter variations ([0:15]), and the Z axis is 

related to the Acc fluctuations. Furthemore, 

processing time calculation based on transient 

observation cycles (TOCs) and prediction time is 

reported in this section. The members of RDTFs 

(see Table 5, last row) show the fact the maximum 

TOCs (MTOCs) are six cycles (e.g., 1TM6, 18TM6, 

and 23TM6). Hence, 6 cycles are equal to 100.2 

miliseconds (ms) (6×0.0167s (measurement rate)). 

In terms of prediction time, SVMRBF labels to an 

unseen transient case in 2.387 ms. Consequently, 

the summation of 100.2 ms (MTOCs) and 2.453 ms 

(prediction time) gives the processing time 

(102.653 ms). Such a low processing time provides 

proper conditions for timely corrective control 

actions. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. The obtained OTMsx set and RDTFs set. 

  Input                 OTMsx          
                                     Input                     OTMsx

                 

TU1: ∩ [.]        {1TM1, 
1TM5:6}                       TU15: ∩ [.]                {15TM1}       

TU2: ∩ [.]            {2TM1:4}                            TU16: ∩ [.]                {16TM1:4}       

TU3: ∩ [.]         {3TM1, 
3TM5}                       TU17: ∩ [.]                {17TM2:4}       

TU4: ∩ [.]    {4TM1, 
4TM4, 

4TM5}                  TU18: ∩ [.]           {18TM1, 
18TM5:6}       

TU5: ∩ [.]         {5TM1, 
5TM4}                       TU19: ∩ [.]                {19TM3:4}       

TU6: ∩ [.]              {6TM3}                            TU20: ∩ [.]            {20TM3, 
20TM5}      

TU7: ∩ [.]              {7TM1}                            TU21: ∩ [.]      {21TM1, 
21TM3, 

21TM4}       

TU8: ∩ [.]     {8TM2, 
8TM3, 

8TM5}                 TU22: ∩ [.]            {22TM4,
 22TM5}       

TU9: ∩ [.]          {9TM1, 
9TM2}                      TU23: ∩ [.]                 {23TM6}       

TU10: ∩ [.]            {10TM1:3}                          TU24: ∩ [.]                {24TM2:4}       

TU11: ∩ [.]   {11TM1, 
11TM3, 

11TM4}               TU25: ∩ [.] {25TM2, 
25TM3, 

25TM5, 
25TM6}       

TU12: ∩ [.]            {12TM1:2}                          TU26: ∩ [.]                 {26TM1:4}       

TU13: ∩ [.]            {13TM1:4}                          TU27: ∩ [.]           {27TM1:2, 
27TM4}       

TU14: ∩ [.]       {14TM2, 
14TM3}                      TU28: ∩ [.]            {28TM3, 

28TM4}       

RDTFs: Union of OTMs1
 to OTMs28 (∪ [ (1).

Total
OTMs OTMs :

(28).
Total

OTMs OTMs ])           

{1TM1,5:6, 2TM1:4, 3TM1, 5, 4TM1, 4:5, 5TM1, 4, 6TM3, 7TM1, 8TM2:3, 5, 9TM1:2, 

 10TM1:3, 11TM1, 3:4, 12TM1:2, 13TM1:4, 14TM2:3, 15TM1, 16TM1:4, 17TM2:4,  
18TM1, 5:6, 19TM3:4, 20TM3, 5, 21TM1, 3:4, 22M4:5, 23TM6, 24TM2:4, 25TM2:3, 5:6,  

26TM1:4, 27TM1:2, 4, 28TM3:4} 

[.]: 
1:2

(1).
Hyb
OTMs

Rec OTMs : 
1:2

(2).
Hyb
OTMs

Rec OTMs  

Table 6. Results of TSP based on RDTFs set. 

 

Classifier 

 

Test case 

 

10-fold cross validation 

Max(Acc.) per fold based on fine-tuning on SVMRBF 

parameters 

Accuracy [TPR / TNR] 

 

 

 

 

 

SVMRBF 

 

 

 

 

 

NETS-NYPS 

 

      fold 1                fold 2               fold 3                      fold 4 
 

        98.75 

  [97.5 / 100] 

       95 

   [95 / 95] 

    97.5 

[95 / 100] 

      98.75 

[100 / 97.5] 

      fold 5                  fold 6              fold 7                  fold 8  
 

100 

 [100 / 100] 

        100 

   [100 / 100] 

     100 

[100 / 100] 

      100 

 [100 / 100] 

                   fold 9                                           fold 10 
 

                     98.75 

               [97.5 / 100] 

                          100 

                    [100 / 100] 

Mean (measure) of folds: Accuracy [TPR / TNR] 

                                      98.87 [98.5 / 99.25] 
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Figure 2.  Acc variations in fold 1, 3, 7, 9 for TSP based on RDTFs set (In 3-D charts; X axis: σ parameter ([-5:15]), Y axis: 

C parameter ([0:15]), and Z axis: Acc fluctuations). 

) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 Comparison of experimental methods 

 

In this section, comparing the proposed FSS with 

three filter-faced FSSs (3FFSSs) and two hybrid-

faced (2HFSSs) is on the agenda. The mRMR [5], 

ReliefF [8], and FCBF [9] as 3FFSSs and 

BMHFSS [11] and PITHS [16] as 2HFSSs are 

compared with THFSS. After exerting 3FFSSs and 

2HFSSs on T28VTD and entering survived optimal 

transient features (OTFs) into SVMRBF in the same 

train-test procedure considered in our study, the 

obtained results show that THFSSRDTFs have better 

performance in TSP than 3FFSSsOTFs and 

2HFSSsOTFs (See Table 6 (last row) and Table 7). 

THFSS-based RDTFs containing 72 optimal cycles 

retrieved from T28VTD has better performance 

(Acc, TPR, and TNR) than mRMROTFs (9 OCs of 

T4VTD), FCBFOTFs, ReliefFOTFs, and 

BMHFSSOTMs (9 OCs of T3VTD) [11], and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PITHSOFs (24 OCs of T28VTD [16]) (ignoring only 

0.25% less than TPR than PITHS). From 

processing time aspect, SVMRBF-THFSSRDTFs-

based processing time (102.653 ms) and the Table 

8 results show that SVMRBF-THFSSRDTFs has a 

higher TPT (102.653 ms) than SVMRBF-

3FFSSsOTMs (SVMRBF-mRMROTFs: 68.793 ms, 

SVMRBF-FCBFOTFs: 68.930 ms, SVMRBF-

ReliefFOTFs: 68.910 ms) and SVMRBF-BMHFSSOTFs 

(BMHFSS as 2HFSSs) with 52.948 ms. Also, 

SVMRBF-THFSSRDTFs have a lower processing time 

than SVMRBF-PITHSOTFs with 152.591 ms. The 

final report depicted in Table 8 (The seventh row 

of Table 8) indicates the amount of memory usage 

by the SVMRBF-THFSSRDTFs for TSP. For more 

information, refer to Table 8. 
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Table 7. Results of TSP Via coupling SVMRBF and selected RDTFs by 3FFSSs and 2HFSSs. 

 

Classifier-FSS 

 

Test case 

 

10-fold cross-validation 

  Max(Acc.) per fold based on fine-tuning on SVMRBF parameters 

Accuracy [TPR / TNR] 

        fold 1                 fold 2                fold 3                   fold 4              

         93.75 

   [97.5 / 90] 

   93.75 

[97.5 / 90] 

   90 

[95 / 85] 

       90 

[82.5 / 97.5] 

        fold 5                 fold 6              fold 7                     fold 8 

SVMRBF-mRMR 

 

NETS-NYPS 95 

 [97.5 / 92.5] 

       95 

   [95 / 95] 

     95 

[100 / 90] 

    91.25 

[87.5 / 95] 

                        fold 9                                           fold 10 

                         88.75 

                  [95 / 82.5] 

              93.75 

          [92.5 / 95] 

  Mean(measure) of folds: Accuracy [TPR / TNR] 

  92.62 [94 / 91.25] 

            fold 1                 fold 2                 fold 3                      fold 4              

  98.75 

 [97.5 / 100] 

      95 

 [95 / 95] 

  96.25 

[92.5 / 100] 

     97.5 

 [95 / 100] 
 

               fold 5                fold 6                  fold 7                      fold 8 

SVMRBF-FCBF NETS-NYPS 96.25 

 [92.5 / 100] 

     97.5 

[97.5 / 97.5] 

   97.5 

[95 / 100] 

     97.5 

 [97.5 / 97.5] 
 

 

                           fold 9                                            fold 10 

                          97.5 

                    [95 / 100] 

                   100  

               [100 / 100] 
 

  Mean(measure) of folds: Accuracy [TPR / TNR] 

  97.37 [95.75 / 99] 

            fold 1                 fold 2                   fold 3                   fold 4              

  98.75 

 [97.5 / 100] 

      95 

  [95 / 95] 

    96.25 

[92.5 / 100] 

     97.5 

 [95 / 100] 
 

            fold 5                fold 6                     fold 7                   fold 8 

SVMRBF-ReliefF NETS-NYPS 96.25 

 [92.5 / 100] 

     97.5 

 [97.5 / 97.5] 

      97.5 

[95 / 100] 

     97.5 

 [97.5 / 97.5] 
 

                           fold 9                                           fold 10 

  97.5 

                   [95 / 100] 

                   100 

             [100 / 100] 
 

  Mean(measure) of folds: Accuracy [TPR / TNR] 

                                        97.37 [95.75 / 99] 

        fold 1                 fold 2                      fold 3                   fold 4              

  100 

 [100/ 100] 

     97.5 

 [100 / 95] 

      96.25 

[92.5 / 100] 

     95 

 [92.5 / 97.5] 
 

 

               fold 5               fold 6                      fold 7                   fold 8 

SVMRBF-BMHFSS NETS-NYPS 100 

 [100 / 100] 

    100 

 [100 / 100] 

      97.5 

[97.5 / 97.5] 

     98.75 

 [97.5 / 100] 
 

 

                               fold 9                                            fold 10 

                           97.5                   

                   [97.5 / 97.5] 

                      100 

                 [100 / 100] 
 

 

  Mean(measure) of folds: Accuracy [TPR / TNR] 

                                       98.25 [97.75 / 98.75] 

               fold 1               fold 2                     fold 3                     fold 4              

  98.75 

 [97.5 / 100] 

   96.25 

[100 / 92.5] 

      97.5 

[95 / 100] 

     98.75 

 [100 / 97.5] 
 

 

               fold 5               fold 6                       fold 7                  fold 8 

SVMRBF-PITHS NETS-NYPS 100 

 [100 / 100] 

    100 

[100 / 100] 

      98.75 

[97.5/ 100] 

     100 

 [100 / 100] 
 

 

                             fold 9                                              fold 10 

                        97.5 

                [97.5 / 97.5] 

                     100 

                [100 / 100] 
 

 

  Mean(measure) of folds: Accuracy [TPR / TNR] 

  98.75 [98.75 / 98.75] 
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5. Conclusions and Future Work 

The RHDTS with IRNDTFs is a main obstacle in 

achieving fast-accurate TSA. Passing this obstacle 

is possible only through the feature selection 

process. Hence, in this paper, we offer the twin 

hybrid FSS (THFSS) to find RDTFs from 

T28VTD. The THFSS encompasses two folds in 

which the filter-wrapper scheme is executed. The 

filter steps are supported by CRR, and the wrapper 

step is triggered by IWSS and IWSSr mechanisms. 

The obtained results show that THFSS-based 

RDTFs have high performance (Acc 98.87 %, TPR 

98.5 %, TNR 99.25 %, and transient processing 

time of 102.653 ms) on TSP. For evaluating the 

efficacy of the proposed FSS, THFSS is compared 

with other FSS. The results indicate that the 

THFSS-based RDTFs set is better than optimal 

features selected through other feature selection 

algorithms on TSP. 

Selecting the most relevant features for high-

performance TSP under the power grid's 

complicated conditions raised by N-k contingency, 

different load-generation levels, and contaminated 

transient samples (communication failure 

(unavailability) and lack of quality of power 

system dynamic responses (noisy data)) are main 

factors that are not considered in the design of our 

proposed learning framework. Hence, it is possible 

that our learning method cannot result in high-

performance transient prediction as in normal 

transient data. Hence, this issue can be considered 

as the limitation of our proposed FSS. In the future 

FSS-based TSA, we decorate a convolutional 

neural network (CNN), in which extracted features 

by its layers feed the polyhedral feature selection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

algorithm. Such a scheme promises high-

performance TSA under the power grid's 

complicated conditions raised by N-k contingency, 

different load-generation levels, and contaminated 

transient samples. 
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Notation 
   

CRR (·)                          conditional relevancy rate function. 

RR (·)                             relevancy rate function. 

TUx                                                 xth transient univariate (TU) of  

                                       transient trajectory data. 
TMs
xTU                           transient moments (TMs) in TUx. 

1:TMs s
xRR                    sorted TMs of TUx via RR function.  

topk
CRR xTMs                    recording top TMs based on CRR  

                                       formula per TUx. 
0

TMsW                              initial weight of TMs ∈ TUx is set to  

                                       one. 

1TM                              TM with highest RR in 1:TMs s
xRR . 

1e
TMsW 

                            e-1th weight of TMs ∈ TUx calculated  

                                       based on CRR function. 

1( )1:TMs TM Updateds
xRR


     updating the weights of TMs ∈ TUx   

                                       except TM1. 

eTM                             TM with highest RR from   

                                      
1( )1:TMs TM Updateds

xRR


 

1:n TU with Lm
TD


           transient data (TD) with n sample, m      

                                       trajectory features, and labels (L) 

 

Table 8. TSP based on 3FFSSs and 2HFSSs and amount of memory usage by 

SVMRBF-THFSSRDTFs model. 

SVMRBF- 
 3FFSSs / 

2HFSSs 

MTOCs in 

cycle / 

second 

Processing time 

(MTOCs + prediction time) 

 

SVMRBF-mRMR 4 / 0.0668 66.8 ms+1.993 ms= 68.793  ms  

SVMRBF-FCBF 4 / 0.0668 66.8 ms+2.130 ms= 68.930 ms  

SVMRBF-ReliefF 4 / 0.0668 66.8 ms+2.110 ms= 68.910 ms  

SVMRBF-BMHFSS 3 / 0.0501 50.1 ms+2.848 ms= 52.948 ms  

SVMRBF-PITHS 9 / 0.1503 150.3 ms+2.291 ms= 152.591 ms  

 

Memory status 

 

Max 

Possible 

Array Bytes 

Mem available 

         all arrays (MAAAs) 

  Mem used 

  MATLAB 

Before starting 

model (BSmodel) 

 4.0087e+09                 4.0087e+09   1.3455e+09 

  After ending 

model (AEmodel) 

3.0849e+09                           3.0849e+09              1.2750e+09 

Memory used in Megabytes 
AEModel.MAAAs – BSModel.MAAAs = - 881 Megabytes 

(-): indicates that the free memory is (about 251 megabytes) lower now 

than it was before started model (SVMRBF-THFSSOTFs). 
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1 1:2Hyb top k
xCRR

TMs   recording top TMs based on CRR  

                              formula per TUx by exerting the first   

                              step of fold1 and fold2 of THFSS 

2 fHyb

Array               The array contains the IWSS/IWSSr-based          

                              learning model accompanied by kernelized  

                              SVM and TWSVM, which are situated in   

                              the second step of folds. 

4x24LWrapperx    data structure for recording the results of        

                              various permutations in execution

2 fHyb

Array .  

2 fHyb
xWrapper RTMsU     the union of obtained results recorded in        

                             4x24LWrapperx (Called union of relevant  

                              transient moments of TUx (URTMsx)). 

1:2Hyb
OTMs

Rec           a struct for recording results of  

                            
2 fHyb

xWrapper RTMsU per fold. 

xOTMs                 optimal transient moments of TUx derived  

                             by intersecting the obtained results of fold1- 

                             specific
1:2Hyb

OTMs
Rec and fold2-specific  

                            
1:2Hyb

OTMs
Rec per TUx. 

TotalOTMs             a struct for recording OTMs set per TUx. 

RDTFS              relevant-discriminative transient features  

                             derived by the union of OTMs1 to OTMs28. 

p
PerBox            different permutations of IWSS/IWSSr-  

                            based learning scenarios accompanied with      

                            kernelized SVM and TWSVM decorated in  

                            24 manners (p: 1 to 24) situated in the  

                            second step of fold1 and fold2. 
p

thN
RTMs          obtained results (relevant transient moments  

                            (RTMs)) derived by execution of Nth rounds    

                            of
p

PerBox (Nth) (rounds from 1 to 4).                      

 RTMs1:24                  a struct contains RTMs derived by applying  

                           max function on 1
p

RTMs  to 2
p

RTMs per p. 

URTFs          the union relevant transient features  

                          (URTFs) stemmed from union of RTMs1:24(1)    

                           to RTMs1:24 (24).  
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 بینیپیش جهت گذرا یمسیره چند هایداده روی بر ترکیبی-دوگانه ویژگی انتخاب طرح بکارگیری

 گذرا پایداری

 

 2امید خلف بیگی و*1سید علیرضا بشیری موسوی

 .گروه مهندسی برق و کامپیوتر، مرکز آموزش عالی فنی و مهندسی بوئین زهرا، بوئین زهرا، قزوین، ایران1

 .و کامپیوتر، دانشگاه خوارزمی، تهران، ایرانگروه مهندسی برق 2

 31/10/2023 ؛ پذیرش12/10/2023 بازنگری؛ 02/09/2023 ارسال

 چکیده:

ستفاده با گذرا پایداری دقیق و سریع ارزیابی یک شین یادگیری کارآمد هایالگوریتم از ا ضای در آمار بر مبتنی و ما ست به گذرا غیرخطی زمانی سری ف  د

 هموار بالا کارایی باارزیابی پایدرای گذرا  برای را راه تواندمی بالا ابعاد با گذرا هایداده از فشککرده گذرا ویژگی فضککای تشککلی  با ویژگی انتخاب فرآیند. آیدمی

 هدف. است فوری نیاز یک کند، پر مرتبط متمایز گذرای هایویژگی با بتواند فضای داده ای گذرا را که ویژگی انتخاب جامع طرح یک طراحی رو، این از. کند

زمملانی شام بخش از الگوریتم پیشنهادی  هر. است متغیره 28 زمانی سری هایداده از ویژگی های بهینه انتخاب برای  دوقلوساختار ترکیبی  معرفی کار این

ست و پوششی فیلتر های ستگی نرخ. ا شروط واب ساس بر، م سبات و متقاب  اطلاعات ا  زیر انتخاب و شودمی گرفته نظر در فیلتر روش عنوان به آنتروپی، محا

فاز پوششی  عنوان به شود،تغذیه می و نسخه دو قلو آن دار هسته پشتیبان بردار ماشین توسط که با جایگزین این روشنسخه  و افزایشی یپوشش مجموعه

 برای متقاب  اعتبارسککنجی بر مبتنی آزمایش روش واردهای منتخب ویژگی گذرا، هایمتغیره تک روی بر روش پیشککنهادی اعمال از پس. شککودمی اسککتفاده

ست آمده  نتایج. شوندمیارزیابی پایداری گذرا  در آنها کارایی ارزیابی شانبد شنهادی بر مبتنی های منتخبویژگی کهدهد  می ن پیش دقت دارای روش پی

  .هستند پیش بینی وضعیت پایداری گذرا برای ثانیه میلی 102.653 پردازش زمان و درصد 98.87 بینی

 .گذرا پایداری بینیپیش مرتبط، متمایز گذرای هایویژگی ترکیبی، ویژگی انتخاب طرح :کلمات کلیدی

 


