[1] R. Zebari,A. Abdulazeez, D. Zeebaree, D. Zebari, and J. Saeed, "A comprehensive review of dimensionality reduction techniques for feature selection and feature extraction", Journal of Applied Science and Technology Trends, vol. 1 ,pp. 56-70, 2020.
[2] Juvonen A, Sipola T, and Hämäläinen T, Online anomaly detection using dimensionality reduction techniques for HTTP log analysis, Computer Networks, vol. 91, pp. 46-56 ,2015.
[3] S.A. Alsenan, I.M. Al-Turaiki, and A.M. Hafez, "Auto-KPCA: A Two-Step Hybrid Feature Extraction Technique for Quantitative Structure–Activity Relationship Modeling", IEEE Access 9, pp. 2466-2477, 2020.
[4] A.U. Khan, "Descriptors and their selection methods in QSAR analysis: paradigm for drug design", Drug discovery today,vol 21, pp. 1291-1302, 2016.
[5] N. Sukumar,G. Prabhu, and P. Saha, "Applications of genetic algorithms in QSAR/QSPR modeling, in: Applications of metaheuristics in process engineering" Springer, pp. 315-324, 2014.
[6] E. Bonabeau,M. Dorigo,G. Theraulaz, "Inspiration for optimization from social insect behaviour", Nature, vol. 406, pp. 39-42, 2000.
[7] C. Yoo, M. Shahlaei, "The applications of PCA in QSAR studies: A case study on CCR5 antagonists", Chemical biology & drug design, vol. 91, pp. 137-152, 2018.
[8] S. Nanga, A.T. Bawah, B.A. Acquaye, M-I Billa, F.D. Baeta, N.A. Odai, S.K. Obeng, and A.D. Nsiah, "Review of dimension reduction methods", Journal of Data Analysis and Information Processing, vol 9, pp. 189-231, 2021.
[9] N. Kambhatla and T.K. Leen, "Dimension reduction by local principal component analysis", Neural computation,vol 9, pp. 1493-1516, 1997.
[10] C. Yin, Y. Zhu, J. Fei, and X. He, "A deep learning approach for intrusion detection using recurrent neural networks", Ieee Access 5, pp. 21954-21961, 2017.
[11] N. Shone, T.N. Ngoc, V.D. Phai, and Q. Shi, "A deep learning approach to network intrusion detection", IEEE transactions on emerging topics in computational intelligence, vol 2, pp. 41-50, 2018.
[12] K. Singh, L. Kaur, and R. Maini, "Comparison of principle component analysis and stacked autoencoder on NSL-KDD dataset", Computational Methods and Data Engineering: Proceedings of ICMDE 2020, Volume 1, pp. 223-241, Springer, 2021.
[13] J. Oh, N. Kwak, "Generalized mean for robust principal component analysis", Pattern Recognition, vol. 54, pp.116-127, 2016.
[14] Q. Wang, Q. Gao, X. Gao, and F. Nie, "Optimal mean two-dimensional principal component analysis with F-norm minimization", Pattern recognition, vol. 68, pp. 286-294, 2017.
[15] F. Farahnakian and J. Heikkonen, "A deep auto-encoder based approach for intrusion detection system", 20th International Conference on Advanced Communication Technology (ICACT): IEEE, pp. 178-183, 2018.
[16] B. Lee, S. Amaresh, C. Green, and D. Engels, "Comparative study of deep learning models for network intrusion detection", SMU Data Science Review, 1 p. 8, 2018.
[17] N. Shahid, V. Kalofolias, X. Bresson, M. Bronstein, and P. Vandergheynst, "Robust principal component analysis on graphs", Proceedings of the IEEE International Conference on Computer Vision, pp. 2812-2820, 2015.
[18] Z. Kang, H. Liu, J. Li, X. Zhu, and L. Tian, "Self-paced principal component analysis", Pattern Recognition, vol. 142, p. 109692, 2023.
[19] C. Peng, C. Chen, Z. Kang, J. Li, and Q. Cheng, "RES-PCA: A scalable approach to recovering low-rank matrices", Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7317-7325, 2019.
[20] E.J. Candès, X. Li, Y. Ma, and J. Wright, "Robust principal component analysis?", Journal of the ACM (JACM), vol. 58, pp. 1-37, 2011.
[21] B.K. Bao, G. Liu, C. Xu, and A. Yan, "Inductive robust principal component analysis", IEEE transactions on image processing, vol. 21, pp. 3794-3800, 2012.
[22] S.R.S. Malladi, S. Ram, and J.J. Rodríguez, "Image denoising using superpixel-based PCA", IEEE Transactions on Multimedia, vol. 23, pp. 2297-2309, 2020.
[23] Z. Zhu, X. Li, S. Zhang, Z. Xu, L. Yu, and C. Wang, "Graph PCA hashing for similarity search", IEEE Transactions on Multimedia, vol. 19, pp. 2033-2044, 2017.
[24] Q. Ke and T. Kanade, "Robust l/sub 1/norm factorization in the presence of outliers and missing data by alternative convex programming", IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05): IEEE, pp. 739-746, 2005.
[25] C. Ding, D. Zhou, X. He, and H. Zha, "R 1-pca: rotational invariant l 1-norm principal component analysis for robust subspace factorization", Proceedings of the 23rd international conference on Machine learning, pp. 281-288, 2006.
[26] R. Wang, F. Nie, X. Yang, F. Gao, and M. Yao, "Robust 2DPCA With Non-greedy $\ell _ {1} $-Norm Maximization for Image Analysis", IEEE transactions on cybernetics, vol. 45, pp. 1108-1112, 2014.
[27] F. Ju, Y. Sun, J. Gao, Y. Hu, and B. Yin, "Image outlier detection and feature extraction via L1-norm-based 2D probabilistic PCA", IEEE Transactions on Image Processing, vol. 24, pp. 4834-4846, 2015.
[28] Y. Liu and D.A. Pados, "Compressed-sensed-domain l 1-pca video surveillance", IEEE Transactions on Multimedia, vol. 18, pp. 351-363, 2016.
[29] F. Nie, J. Yuan, and H. Huang, "Optimal mean robust principal component analysis", International conference on machine learning: PMLR, pp. 1062-1070, 2014.
[30] Z. Song, D.P. Woodruff, and P. Zhong, "Low rank approximation with entrywise l1-norm error", Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 688-701, 2017.
[31] M. Luo, F. Nie, X. Chang, Y. Yang, A. Hauptmann, and Q. Zheng, "Avoiding optimal mean robust PCA/2DPCA with non-greedy l1-norm maximization", Proceedings of International Joint Conference on Artificial Intelligence, pp. 1802-1808, 2016.
[32] M. Kwak and S.B. Kim, "Unsupervised Abnormal Sensor Signal Detection With Channelwise Reconstruction Errors", IEEE Access, vol. 9, pp. 39995-40007, 2021.
[33] A. Tyagi, V.P. Singh, and M.M. Gore, "Towards artificial intelligence in mental health: a comprehensive survey on the detection of schizophrenia", Multimedia Tools and Applications, vol. 82, pp. 20343-20405, 2023.
[34] S. Hosseini, M. Khorashadizadeh, "Efficeint feature selection method using binary teaching-learning-based optimizatin algorithm", Journal of artificial intelligence and data mining (JAIDM), vol. 11, No.1, pp. 29-37, 2023.
[35] J. Kiefer and J. Wolfowitz, "Stochastic estimation of the maximum of a regression function", The Annals of Mathematical Statistics, pp. 462-466, 1952.
[36] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski, "Optimization with sparsity-inducing penalties", Foundations and Trends® in Machine Learning, vol. 4, pp. 1-106, 2012.
[37] S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift", International conference on machine learning: pmlr, pp. 448-456, 2015.
[38] J. Bridle, "Training stochastic model recognition algorithms as networks can lead to maximum mutual information estimation of parameters", Advances in neural information processing systems, vol. 2, 1989.