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Article Info Abstract

Various data analysis research has recently become necessary in
finding and selecting the relevant features without class labels using
Unsupervised Feature Selection (UFS) approaches. Despite the fact
that several open-source toolboxes provide feature selection
techniques to reduce redundant features, data dimensionality, and
computation costs, these approaches require programming
knowledge, which limits their popularity, and has not adequately
addressed unlabeled real-world data. Automatic UFS Toolbox (Auto-
UFSTool) for MATLAB, proposed in this study, is a user-friendly and
fully-automatic toolbox that utilizes several UFS approaches from the
most recent research. It is a collection of 25 robust UFS approaches,
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without requiring a single line of code. Even users without any
previous programming experience may utilize the actual
implementation by the Graphical User Interface (GUI). It also
provides the opportunity to evaluate the feature selection results and
generate graphs that facilitate the comparison of subsets of varying
sizes. It is freely accessible in the MATLAB file exchange repository,
and includes scripts and source code for each technique. The link to
this toolbox is freely available to the general public on:
bit.ly/AutoUFSTool.

1. Introduction

In several applications with high dimensional data,
feature selection [1] (also called variable subset
selection) has been found to provide a greater
accuracy while using less data.

In these fields, the observations or samples under
examination frequently have useless and redundant
information in their descriptions [2]. This might
substantially impact data processing, leading to
biases or even inaccurate models. Feature selection
refers to methods that select essential features for
developing predictive models and evaluating their
variables in tasks such as classification, regression,
and clustering. Furthermore, feature selection not
only reduces the dimensionality of the data, making
it easier to visualize and to understand, but also
increases the generalization of models [3]. Feature

selection is an intriguing research topic due to its
obvious advantages, where numerous feature
selection approaches have been proposed in the
recent decades. Feature selection approaches can
be categorized as supervised, semi-supervised, and
unsupervised based on the information in the
datasets. For the supervised approach, the data
must be labeled to identify and select significant
features [4,5]. Semi-supervised approaches simply
need the labeling of particular objects. On the other
hand, Unsupervised Feature Selection (UFS)
approaches do not require a supervised dataset.
Over the last few decades, various methods have
been developed for selecting features; most of them
were created for supervised classification problems
[6]. However, due to the recent technological
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advancements and the large volume of data without
labels generated in many applications including
text mining, bioinformatics, image retrieval, social
media, and intrusion in network security, as
examples, UFS approaches have attracted the
scientific community’s attention. UFS approaches
have two significant benefits: a) they are impartial,
and perform well when previous information is not
provided, as opposed to supervised feature
selection approaches, which may not be able to
handle data from new classes. b) they can lessen
the danger of data overfitting [7].

Similar to the other feature selection methods, UFS
may be classified into four primary ways based on
the strategy of feature selection [8]:

o Filter methods: assess the data directly to
identify the most important features, and no
clustering technique is used to direct the search
for relevant features. Primarily, filter
techniques are characterized by their fast and
scalable solution.

o Wrapper methods: assess subsets of features
utilizing the clustering algorithm’s outcomes.
This methodology is defined by identifying
subsets of features that increase the clustering
quality. They are nevertheless computationally
expensive algorithms that can only be applied
to clustering techniques that follow a specific
methodology.

e Hybrid methods: utilize the strengths of
previous methods, while seeking a balance
between efficiency and effectiveness.

e Embedding methods: it is possible to view
embedded methods as a sub-category within
the three main above-mentioned methods.

The rest of the study is structured as what follows.
Auto-UFSTool is given in Section 2. The method
is presented in Section 2.1. Section 2.2 provides an
example, and Section 2.3 describes the
implementation, and finally, Section 3 discusses
the evaluation metrics of the paper.

2. Auto-UFSTool

2.1. Method

Several open-source toolboxes such as sklearn in
python [9], the caret package in R [10], the Feature
Selection Library (FSLib) in MATLAB [11], weka
in Java [12], and MATLAB toolbox for Feature
Ranking (MatFR) [13] have published a few
approaches for feature selection. However, a few
freshly found strategies are included in these
toolboxes. Furthermore, these toolboxes require
programming skills, which limit their wider
adoption, and they have not adequately addressed
the underlying issue of unlabeled real-world data.
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We intend to develop a user-friendly toolbox with
various UFS approaches. Automatic UFS Toolbox
(Auto-UFSTool) is a library for feature selection
that is extensively used in MATLAB, a language
that is frequently used in many scientific fields. It
is publicly accessible through the MATLAB file
exchange repository.

The toolbox provides users with 25 efficient UFS
techniques on the subject. It includes an example
script and the source code for each technique as
well as Graphical User Interface (GUI) provides
users with an  automated  user-friendly
environment. This article presents an overview of
the toolbox’s UFS techniques, which include filter,
embedding, hybrid, and wrapper approaches.

Table 1. Summary of different works pertaining to
unsupervised feature selection.

Row  Articles Acronym Type Complexity
1 [14] CFS f o((n%/2)T)

2 [15] LS f N/A

3 [16] SPEC f N/A

4 [17] MCFS f N/A

5 [18] UDFS f O(m)+0(T?)
6 [19] LLCFS f N/A

7 [20] NDFS f O(M)+0(cT?)
8 [21] RUFS f O(T)+0(Tn)
9 [22] FSASL w O(n*+Tn?)

10 [23] SOCFS f N/A

11 [24] SOGFS e N/A

12 [25] UFSOL w O(iTen3)

13 [26] Inf-FS f O(n?%+ (1+T))
14 [27] DGUFS w N/A

15 [28] SRCFS f N/A

16 [29] CNAFS e O(Tn?+ T?n + T°)
17 [30] EGCFS e N/A

18 [31] RNE e N/A

19 [32] Inf-FS2020 f O(n¥(1+T))
20 [33] UAR-HKCMI  h N/A

21 [34] FMIUFS h N/A

22 [35] FRUAR h N/A

23 [36] U2FS e O(T* +nd)

24 [37] IMVFG f N/A

25 [38] NNSE e N/A

All of the original resources and codes are available
online, as well as in the original articles. Auto-
UFSTool is a list of UFS methodologies. Table 1
summarizes their type, which is f = filters, w =
wrappers, h = hybrid, and e = embedding methods,
the abbreviation of their names, and complexity. In
terms of complexity, T represents the number of
samples, n represents the number of initial
observations, i represents the number of iterations
in the case of iterative methods, C represents the
number of classes, and in some articles, the
complexity is Not Available (N/A).

This work’s significance arises from three key
factors. Firstly, there are 25 UFS methods
implemented, and 11 of them have been introduced
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in the past five years. This ensures a
comprehensive coverage of recent advancements.
Secondly, the toolbox is designed to be user-
friendly, simplifying the feature selection process.
Thirdly, the users can effortlessly load their data,
apply specific techniques, evaluate results, and
conduct comparisons without the need to write a
single line of code. As a result, a systematic
comparison of different methodologies from
diverse viewpoints becomes practical and
straightforward.

Figure 1 shows the GUI window of the Auto-
UFSTool. Four main blocks have been designed to
facilitate user interaction with the GUI. The first
block contains a push button that lets users load
various data formats such as Excel or Mat files. If
structured data is loaded into the program, the user
will be asked to separate it by type (i.e. feature
vectors and their labels).

The following block contains a drop-down list with
25 UFS methods, allowing the users to select one

easily. Once the user has chosen a method from the
drop-down list, the selected method is displayed in
a pop-up window. To implement the preferred
method, the wuser is prompted to initialize
parameters manually or by default. The options
window will be displayed if the user wishes to
select the options manually. An in-depth
understanding of the original UFS technique’s
paper is required to select options and parameters
[14]-[38].

Once the feature selection has been completed, the
workspace will be saved with the results. A button
in the following block allows user to cluster their
selected features into subsets based on the number
of baseline features or manually select the size and
the number of subsets using the K-means clustering
method. In the next block, clustering results will be
evaluated using the metrics explained in Section 3.
In the final block, the users can view the obtained
results as a graphical representation.
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Figure 1. Auto-UFSTool graphical user interface environment.

2.2. Example

In the presence of an input matrix X,,«, (m
samples and n features per sample), the process for
utilizing one of the UFS methods in the toolbox is
as follows:

Result = Auto_ UFSTool(X, Method). 1)
where Result represents the output rank indices of
features in descending order of their relative
importance or a subset of the feature. The method
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should be replaced with the acronym of the
method’s name given in Table 1.

As illustrated in Figure 1, a user can utilize any
UFS method from the drop-down list that is
automatically displayed. An alternative approach
for implementing the UFS procedure involves
expressing Eq. (1) as a script.

An example is presented using the Columbia
Object Image Library (COIL20) dataset, a
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collection of images from Columbia University,
featuring 20 distinct objects [39]. As each object
was rotated on a turntable, 72 images were
captured at 5 degrees apart, and each object
contained 72 images. Each image is 32 by 32 pixels
and contains 256 gray levels per pixel. As a result,
with the input X,m = 1440 andn = 1024.
After loading the data from the first block, one line
of code to utilize the Robust UFS (RUFS) [21]
algorithm is presented below.

Result = Auto_ UFSTool(X','RUFS"). )

It is crucial to recognize that users will either
directly provide all method options and parameters,
or the algorithm will utilize default values
initialized with the input data for necessary
parameters. The file “UFS_Names.mat” contains
the names of all UFS methods. Please refer to the
original articles and algorithm implementations for
further information cited in Table 1.
This toolbox allows the user to generate graphs for
comparing their results. The process involves first
prompting the user to indicate their preference for
generating a plot. Subsequently, based on either
default settings, determined by the size of the
primary feature space, or the user's specific
selection, a line chart is generated accordingly. It
generates graphs that facilitate the user’s
comparison of findings based on the selected
criteria and charts’ size. This will demonstrate the
evaluation criteria presented in Section 3.

2.3. Implementation

This toolbox is written using the GUI Development
Environment (GUIDE) in MATLAB 2018b, which
is a prominent programming language for machine
learning and pattern recognition research. The
Auto-UFSTool GUI was tested on 64-bit Windows
8/10/11 PCs with MATLAB R2019b/R2022a on a
range of publicly available datasets based on
original articles.

3. Evaluation

Evaluation of the results of a clustering algorithm
is a crucial step in the data clustering process. In
supervised learning, “the evaluation of the resultant
classification model is a vital element of the
classification model development process, and
there are widely acknowledged evaluation
techniques and procedures” [40].

Due to the nature of unsupervised learning, cluster
validation is not well-developed, resulting in
difficulty in assessing clustering algorithm quality.
This challenge gives birth to numerous evaluation
methodologies. Several considerations must be
discussed for validating clustering algorithm
results, while evaluating clustering results [40].
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e Determining the clustering tendency of the
data (i.e. the existence of a non-random
structure).

¢ Finding the proper number of clusters.

e Evaluating the quality of clustering results
without using metadata.

e Comparing derived results with external
information.

e Comparing two cluster sets to decide which is
superior.

The first three problems are handled through
internal or unsupervised validation, as no external
information is utilized. External or overseen
validation resolves the fourth problem. Supervised
and unsupervised validation methods can address
the last issue.

Auto-UFSTool provides two internal and six
external validation methods to evaluate the
performance of UFS algorithms. External
validation proceeds by introducing extra
information into the clustering validation
procedure, namely external class labels for the
training instances. External validation methods are
not used on most clustering issues since
unsupervised learning approaches are typically
employed when such information is unavailable.
However, they can still be used when external
information is accessible and synthesizing data
from an existing data collection.

The K-means clustering algorithm, a widespread
and fundamental clustering technique with several
applications, is utilized to evaluate the efficacy of
feature selection techniques.

The evaluation result will be generated under two
conditions:

¢ Baseline features

Using K-means, all original features will be
clustered.

o Variable subsets

If the number of original features is fewer than 100,
the toolbox will offer five potential subset sizes: 5,
10, 20, 30, and 40.

If the number of features is more significant than
100 but less than 1000, the toolbox will
recommend 50, 100, 150, 200, and 300 as
alternative subset sizes.

It is also possible to skip this option and manually
select the subset size and number.

To prove the validity of the selected technique, the
Auto-UFSTool provides the opportunity to
manually or automatically compare the result with
subsets of varying sizes.

The Auto-UFSTool offers eight commonly used
evaluation measures, including redundancy,
Jaccard, purity, NMI, accuracy, precision, recall,
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and F-measure, for assessing the performance of
UFS algorithms. Additionally, the users can
employ other metrics of their choice if desired.

3.1. Redundancy

Assume F is the set of selected features, and Xg
solely consists of F features, where p; ; yields the
Pearson correlation between fi and fj and m is the
number of selected features.

1
RED(F) m(m-1) filijZF;I>in,i’
This metric evaluates the average correlation
between all feature pairs; a high value implies that
a significant number of selected features are
strongly correlated. Hence, redundancy is
anticipated in F.

®3)

3.2. Jaccard
The Jaccard score derived from

L MBIk K ) NNB(ikK)
IAC(K ¢ KK = nZHNB(i,k, K ) UNB(ik K)' @

where K = XzX}; and Kr and K are the similarity
matrix computed from the selected features and the
input similarity matrix, respectively. Furthermore,
NB(i, k, K) yields the k nearest neighbors of the ith
instance based on the specified pairwise similarity
K. The Jaccard score estimates the average overlap
between the Kr and K neighbourhoods. A high

Jaccard score shows consistency between the
pairwise similarities described by the two
similarity matrices.

The last two metrics are used to evaluate an
algorithm’s ability to preserve sample similarity in
continuous and discrete ways, respectively [41].

3.3. Purity
Purity determines if each cluster includes only
instances of the same class.

P,

U=)> P (max
ZI p|( J p
InEq. (5), p; = ny/n, p; = n;/n,and p;; = nj/n,
where n;; represents the number of instances in the
class i discovered in the cluster j and n;(n;) is the
number of instances in the cluster i(j).

()

3.4.NMI

Normalized Mutual Information (NMI) indicates
how much uncertainty regarding class labels is
reduced when cluster labels are known. One of the
advantages of NMI is that it is normalized, which
permits the evaluation of various clustering models
with different numbers of clusters.

(P,
NMI(P,Q)=—( Q) : (6)
JH(PH@Q)
Figure 2 shows a comparison of the above-
mentioned evaluation metrics with their baselines.
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Figure 2. Variability of the Redundancy, Jaccard, Purity, and NMI subsets and their baselines.

In order to compare the result of a clustering
algorithm C = {C1, C2, ..., Cm} to a potentially
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different partition P = {P1, P2, ..., Pm}, which
may indicate the analyst’s specialist knowledge,
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the results obtained by another clustering
algorithm, or simply a grouping considered to be
“correct” [42].

A contingency matrix must be constructed to
analyze the clusters identified by the algorithm to
conduct this analysis. This contingency matrix has
four terms:

e TP: The number of data pairings in the same
cluster in C and P.

e FP: The number of data pairings discovered
inside the same cluster in C but distinct clusters
in P.

e FN: The number of data pairings that were
discovered in distinct clusters in C but the same
cluster in P.

e TN: The number of data pairings discovered in
distinct clusters in C and P.

From these four criteria, it is simple to conclude:
External validation methods that may be used to
compare two data partitions identify the relation
between each cluster found in C and its natural
correlation to the classes in the reference result
specified in P. Several metrics may be constructed
to quantify the similarity between the clusters in C,
which were generated by the clustering algorithm,
and the clusters in P.

3.5. Accuracy
Accuracy measures either true positive or true
negative against the total dataset.

TP+TN

“TP+FP+TN+FN’

ACC (M)
3.6. Precision

Precision measures the true positives or the number
of correctly classified instances inside the same
cluster.

™ P

pPRE-—+ TP
P

- = 8
TP+FP P ®)

3.7. Recall
Recall measures the proportion of components that
are appropriately grouped inside the same cluster.

=L=& 9)
TP+FN P
3.8. F1 Score

F1 score combines accuracy and recall into a single
metric, the weighted harmonic mean of the
variables:

- aop 2Py,
Y 2TP+FP+FN P +P,

(10)

4. Future Works
Four factors come into play for future work. First,
incorporate current UFS approaches into the
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toolbox and follow up on newly developed
techniques. Secondly, to evaluate the validity of
selected features and combine them with clustering
assessment criteria. In unsupervised
classifications, for example, a variety of criteria
may be used to estimate the appropriate number of
clusters. Thirdly, explore various clustering
strategies. Last but not least, the toolbox might be
built in Python and R to hasten the implementation
of these UFS techniques.
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