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1. Introduction

Identifying tree species from bark images is a o

In this paper, we propose an innovative classification method for tree
bark classification and tree species identification. The proposed
method consists of two steps. In the first step, we take the advantages
of ILQP, a rotationally invariant, noise-resistant, and fully descriptive
color texture feature extraction method. Then in the second step, a new
classification method called stacked mixture of ELM-based experts
with a trainable gating network (stacked MEETG) is proposed. The
proposed method is evaluated using the Trunk12, BarkTex, and AFF
datasets. The performance of the proposed method on these three bark
datasets shows that our approach provides a better accuracy than other
state-of-the-art methods. Our proposed method achieves an average
classification accuracy of 92.79% (Trunk12), 92.54% (BarkTex), and
91.68% (AFF), respectively. Additionally, the results demonstrate that
ILQP has better texture feature extraction capabilities than similar
methods such as ILTP. Furthermore, stacked MEETG has shown a
great influence on the classification accuracy.

Technological advancement: The tree

challenging problem in the field of computer
vision. This project can be a practical and
valuable project for assessing the condition of
forests and natural resources, as well as for
environmental protection. The benefits that can
be mentioned are as the following:

o Time and cost reduction: Automated tree
bark detection systems can reduce the time and
cost associated with manual inspection and
imaging of trees.

. High accuracy: The tree bark detection
system based on artificial intelligence and
machine learning algorithms can accurately detect
tree bark with increasing the confidence of
inspection results.

° Increased information: Detecting tree bark
can provide more information about tree diseases,
pests, growth rates, and forest conditions, which
can aid in planning and decision-making for
environmental protection and forest monitoring.

bark detection project can serve as a foundation
for developing other automated systems for forest
and environmental monitoring.

o Environmental protection: Early detection
of tree diseases and pests can prevent their spread,
and increasing vegetation can help preserve
biodiversity and protect the environment.

To identify and classify the type of trees, various
parameters such as the overall shape and size of
the tree, bark, leaves or needles, flowers, fruits,
leaf buds, and twigs are used [1]. As mentioned,
bark is one way to identify trees, which is the
outer protective coating of the trunk and branches
of trees that may appear gray and brown, but if
looked at closely, changes in color and texture can
be observed. There are various patterns, textures,
and other characteristics of bark that can help
identify trees. According to Michael Wojtech in
[2], "If you want to know the trees, learn their
bark". Forester can recognize the species of trees
by differences in their bark either externally or by
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cutting a small slash to examine the inner
structure. Experts also believe that tree bark has a
stronger correlation with species compared to
other phenotypic properties [3]. Thus bark is a
useful diagnostic feature for plant classification.
Recognizing tree species is a challenging problem
that can aid in drone navigation in forest
environments and autonomous management of
forest inventory. Tree bark usually has a specific
texture that can be used to classify tree species. As
you can see in Figure 1(a), the basswood’s bark is
brown/gray with deep vertical fissures and in
Figure 1(b), a crab apple’s bark is reddish/brown,
flat ridges, shallow fissures with broad flat topped
scaly ridges.

(b)

Figure 1. Two examples of tree bark (a) basswood’s bark and
(b) crab apple’s bark.

Thus bark is a useful diagnostic feature for plant
classification and identification, which is one of
the topics that is regarded by the researchers [4].
For example, in [5] Fiel and Sablatnig have
proposed a method for identification of tree
species from images of the bark, leaves, and
needles. For bark description, they used the scale
invariant feature transform (SIFT) with bag of
words approach, afterwards a combination of the
gray-level co-occurrence matrices (GLCM)
features (contrast, correlation, energy, and
homogeneity) and wavelet features have been
applied as the input of support vector machine
(SVM) on the AFF dataset.

Bressane et al. [6] have extracted four statistical
parameters (uniformity, entropy, asymmetry, and
smoothness) used in texture classification of trunk
images, and have employed a decision tree for
classification. In [7], Boudra el al. have proposed
a rotational invariant statistical radial binary
pattern (SRBP) descriptor to characterize a bark
texture.

In [8], Le-Viet et al. have presented gradient local
binary pattern (GLBP) to encode the local texture
of bark image. In addition to encoding,
magnitude, and orientation gradient is used to
create the second and the third histogram. Also
they have applied k nearest neighbor classifier to
classify the bark images.

392

Ratajczak et al. have proposed two novel
algorithms for bark classification based on
combination of texture and color information to
reduce their dimensionality [9]. Light combination
of local binary pattern (LCoLBP) in combination
with color histogram descriptor provides highest
accuracy [9]. A patch-based convolution neural
network has been proposed by Debaleena Misra et
al. [10] for the identification of tree species from
bark images. Fekri-Ershad [1] proposed a method
for bark texture classification based on the
improved local ternary patterns (ILTP). In [1],
MLPs are used as a classifier and also four
different strategies are applied to evaluate the
number of neurons in hidden layers.

A single learning algorithm performs better than
all other algorithms for a particular problem
according to both empirical studies and specific
machine learning applications [11-14].

As a result, applying multiple classifiers and
combination their output called as an ensemble
learning system is an effective approach to
improve the accuracy and the reliability of the
overall learning system [11-14].

Mixture of extreme learning machine based
experts with trainable gating network (MEETG)
[15, 16] is a mixture of experts (ME) based
ensemble learning method. In MEETG, the
superiorities of ELM have been taken for
designing the architecture and training process of
ME. ELM has been considered due to its high
generalization ability, low training time, high
accuracy, and performance, reducing the
likelihood of overfitting and its ability to
overcome the problems and limitations of the
backpropagation algorithm.  Furthermore, in
MEETG, a dynamic strategy has been used for the
combination of the experts' output according to
the input sample, which is performed by the
gating network. Furthermore, in this paper, we
extend the capabilities of MEETG and propose
"Stacked MEETG" for tree bark classification and
tree species identification, in which a meta-
classifier has been applied to aggregate the
outputs of the base experts. The general
framework of Stacked MEETG consists of two
levels. In the first level, which is the base learning
stage, MEETGs act as base experts and are trained
on different feature spaces. These feature spaces
are extracted from tree bark images using the
improved local quinary pattern (ILQP) descriptor.
Since some texture descriptors are sensitive to
noise and rotation, we have used the ILQP
descriptor that is resistant to these changes.

In the second level, meta-learning, a meta-
classifier is trained on the outputs of the first-level
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classifiers to learn how to aggregate the
predictions of base experts. In this paper, we take
advantage of ELM as the meta-classifier. The
output of base experts is considered as the output
of the hidden layer neurons of ELM, and the
Moore-Penrose pseudo-inverse method is applied
for adjusting the output weights of ELM. The
trained weights of ELM determine how much
each expert contributes to the final classification.
The proposed approach has demonstrated superior
classification accuracy compared to well-known
methods on three benchmark datasets in the
experimental results. Additionally, our method
offers the advantages of being noise-resistant and
rotation-invariant. In  continuation, for the
classification of tree bark images, the choice of
classifier is also an important factor. Ensemble
learning methods, in which the output results of
multiple classifiers are combined, are a good
approach to improve the performance of
classification. To the best of our knowledge, in
most previous works, tree bark classification is
typically performed using a single classifier.
Therefore, in this paper, we propose a hybrid
ensemble system called stacked MEETG.

As a result, our approach can be effectively
utilized in real-world applications, leading to

reduced financial costs and human risks
associated with  plant  species diagnosis.
Specifically, our bark texture classification

method shows promise in this regard.

The paper is organized as what follows. In the
next section, the primary concepts will be
overviewed. In Section 3, the proposed bark
texture classification approach is described. In
Section 4, the simulation results are reported, and
finally, a general conclusion is provided in
Section 5.

2. Preliminaries

In this section, improve local quinary pattern
(ILQP) and mixture of ELM based experts with
trainable gating network (MEETG) are briefly
described.

2.1. Improve local quinary pattern

Local bainary pattern (LBP) is one of the most
powerful and widely used local descriptor has
been introduced by Ojala et al. [17, 18] for texture
classification. In this descriptor, a neighborhood is
considered for each point of the image. Then
intensity value of each neighborhood is compared
with the center for building the binary pattern. It
generates a binary code 0 if the value of neighbor
pixel is smaller than the center value of patch;
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otherwise, it generates a binary code 1. Finally,
with a binary weighted sum of the values in the
binary extraction patterns are obtained values at
the base of ten [18].
The original form of LBP has some disadvantages
such as low discrimination and high
computational complexity, and with increasing
number of neighboring points this computational
complexity increases. The first modification of
LBP, called the uniform, has been introduced by
Ojala [19]. One of the weaknesses of LBP and
modified version of it is that in cases with
different structures, the same binary code is
generated. In other words, if there is one or one
hundred unit’s intensity difference between a
neighbor pixel and the center pixel, there is no
distinction between the two intensity differences.
One of the drawbacks of LBP is sensitivity to
noise, because a small gray change of the central
pixel may cause different codes for a
neighborhood in an image, especially for the
smooth regions. To overcome this weakness,
several versions have been proposed, uch as
completed LBP (CLBP) [20], local ternary pattern
(LTP) [21], enhanced LTP (ELTP) [22], e local
binary count (LBC) [23], improved LTP(ILTP)
[1], local quainary patterns (LQP) [24] exc.
improved local quainary patterns(ILQP) is one of
the extended versions of LBP [25]. The
advantages of ILQP are low sensitivity to impulse
noise and illumination and towards scale and
rotation invariant. In addition, lower number of
features and ability to expound any of the features
are advantages of this descriptor [25].
In ILQP descriptor, for each pixel of an image,
whit using two threshold dynamics a five-value
coding is computed which is codes between 2 and
—2 by S(gp, g.) function is defined as follows:

2 p 209, +7,

19.+7,9,<0.+7,

$(9,:9.)=90 09, —7,<9,<0.+7,

-19,-7,0,<9. -7

-2 9,<9.-7,
where g. denotes the intensity value of the central
pixel and g,, is the intensity value of neighboring
and threshold 7; and 7, are thresholds named
(MAD) and global significant value (GSV). MAD
and GSV calculations are defined as follows:

@)

LocalMAD = median(] G —median(G) |), 2
G={ g,lp=01...,P-1}
MAD = median(| LM —median(Imad)|), ©)

LM ={ LocalMAD,|c=12,...MxN }
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l P-1
LSV ==3(19.-9, ) @
p=0
3 1 N M (5)
GV = ZZLSVH

1
N

=1

According to (2-(5), P refers to the number of
neighboring pixels considered in the pattern,
while R refers to the radius of the circle centered
on the central pixel used to define the neighboring
pixels. Together, P and R determine the size and
shape of the local neighborhood around each pixel
that is used to calculate the ILQP code.

d,(p=0,1...,P-1) denotes the gray value of

the neighbor, G is the set of the gray-level values
in g, local regionand N, M show size of image.

Next, five-value code is divided strongly binary
positive pattern, positive binary pattern, negative
binary pattern and strongly negative binary
pattern, according to (6) [25]. Error! Reference
source not found. shows an example of splitting
a quinary code into four binary codes.

ILQP,

ILQPposnive pattern — {

1

if x=2
trongly positive pattern = 0 Otherwise

1 if x=2o0r x=1

ILQP 0 otherwise
ch — -
ILQP e s = {1 if x=-2 orj x=-1
0 otherwise
ILQPs!roneg negative pattern {1 it x= ._2
0 otherwise
121 | 137 | 54 2 2
94 98 253 I:> 0
92 | 98 | 109 |r; =4,7, =77 [ o

(6)

1 0
0 1
0 1
0 0
0 0
0 1
0 0
0 0
1 0
0 1
0 0
1 0

Figure 2. An example of splitting a quinary code into four

| Size of neighborhood |

| Setting thresholds |

Input image

MAF]

Defining the local quinary

l—
pattern for each pixel

Divi

sion quinary patterns into 4
binary patterns

binary codes.

Strongly negative
binary pattern

Negative binary
pattern

Positive binary
pattern

Strongly positive
binary pattern

Labeling

Feature extraction

| Concatenate feature vectors |

\

Final feature vector |

Figure 3. Block diagram of the ILQP method [25].

According to Figure 2, for converting quinary
pattern (2221010) into code strongly positive
pattern (1101000), it is considered by observing 2

T . m it st =

Feature Extraction

and 1 in the quinary pattern. In owther words, this
pattern shows the difference between the intensity
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values of neighboring pixels and center is greater
than 7, [25].

According to (7), the degree of uniformity is
calculated for each of these four binary patterns.
In this equation, the number of mutations that
occurred is calculated from 0 to 1 and vice versa
in the binary pattern extracted from In the
following, uniform neighbors are assigned labels
from 0 to P, and non-uniform neighbors are
assigned labels of P +1.

Finally, the probability of occurrence of each label
in the whole image is considered a feature.

U(ILQR, g = (952) = (951 |

ST o )
+21(9,™) = (9,47
p=0

p-1 @ ) E
LQRr, - @) T VIR g

P+1 otherwise
P and gfj‘ are, respectively, the number of

neighbors and the value of the p"™ neighbor in

the extracted binary pattern. The ch index
corresponds to each of four patterns (strongly
positive, positive, negative and strongly negative).
Thus feature vector for each pattern is defined as
follows:

Fron, =(FonFir o ©)

' Ups (P+1)>
Due to concatenation of four feature vectors with
dimension P +2; a feature vector with dimension
4x (P +2) will be extracted.

FinalFeatureVectory,gp = (F,Lstmnglypositm,

(10)

FILqppositive’ FILstnegutive’ FILststrunglynegative

2.2. Mixture of ELM-based experts with
trainable gating network (MEETG)

Mixture of experts (ME) has been introduced by
Jacobs et al. [26] as one of the most popular
ensemble methods. The architecture of this
method consists of several experts and a gating
network that can improve the accuracy of
complex problems based on the divide and
conquer principle. In ME, the input space of the
problem is decomposed, and the experts are
assigned to different sub-spaces by managing the
gating network.

Besides the benefits of ME, there are some
drawbacks. In ME, MLP is used as the experts
and gating network, and gradient descent-based
algorithms are used for training the model. One of
the drawbacks of gradient descent-based
algorithms is their dependency on parameter

B=H'Y
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initialization and the complexity of the feature
space, which may prevent them from always
finding the global best solution and cause them to
converge to a local minimum. Additionally, these
algorithms require an iterative learning process
that can be time-consuming.

Huang et al. proposed the Extreme Learning
Machine (ELM) [27], a learning algorithm for
Single Hidden Layer Feed-forward Neural
Networks (SLFNs). In ELM, the weights between
the input layer and hidden layer are assigned and
do not need to be tuned. Additionally, the weights
between the hidden layer and output layer are
updated in a single step.

In order to overcome the limitations of ME,
MEETG was proposed [15, 16], which takes
advantage of ELM in designing its structure.
Given training  set D:{(Xi,yi)izl’z’___va}and

% =[%,, %, %,]° is the input vector and

Y. =[Yi, Vino» Vi ]' IS the output vector. This

input data is received by the experts and gating
network. The parameters generated (weights and
bias) between the input layer and the hidden layer
of each expert are set randomly and besides with
L hidden nodes and activation function
G(Wj,bj,xi)of experts and gating network in the

form of ZL: B.G, are made.

i=1
At first, the output matrix of hidden layer of each
of expert and gating network is calculated
according to (11).
G(w, by, x,) G(w,,by, %)
H= : : (11)
Gw.bex, ) |
~ 1
 Lexp(=(w,.x +b,)
B=[p,B, B, is the weight vector

connecting the ith hidden node and the output
nodes, that weights between hidden layer and
output layer of each expert are -calculated
according to (13).

G(W1v bl' XNmm) o

G(w.,b;,x)

IR A

(12)

(13)

where H' is Moore-Penrose generalized inverse
of matrix H and Y is target matrix of training
data [28]. Also the target vectore of gating
network which is used for training process
corresponding to one sample is given in (14),
which shows to what extent each expert can
produce desired output y .

[

exp H y — Q&

Zk: exp H y —QFwert
i=1

_ et |
Vears = e ooly H_z (14)
[ Zexly-0=|
i=1
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where y is desired output and O™ s the
output of expert i .Y as the target matrix of

Gating
the gating network for N;,4;, training samples and
k experts, is given in (15).
Expeanz

exply -0 |

Yoy -0
i=1

eXpHy1 -0,
k
Yewly -0
i=1

YGating =

train

ExpeanZ

exp[yy,,. ~On,

xxxxxxxxxxxxxxx

layer of gating network are calculated according
to (16).

B=H'Y, (16)
Also to combine outputs of experts, gating
network applies a trainable data dependent
strategy according to (17), in which g, is the

ating

weight corresponding to i ™" expert for sample X .
_ exp(0, )

>©,)

where O, is the i" output of the gating network

a7

and k is the number of experts. g, can be

interpreted as estimation of selecting the output of

i" expert by the gating network. According to

(17), the softmax function is applied as the gating
network which satiates g; >0 and) " g, =1.

The final output of MEETG, where each gate is
multiplied by the output of acorresponding expert,
and all there are aggregated, in order to produce
the final output is calculated as follows:

k

Oens = zo|g| (18)
i=1

where O, is the output of i" expert. Final

decision-making, the maximum possibility is
considered as follows:

C =argmax,0,, (19)

where O, =[0,,0,,:--,0,] is the output vector of

MEETG corresponding to m classes for each test
sample. The details of MEETG algorithm are
given in [15,16]. The structure of MEETG is
shown in Figure 4.

3. Proposed Bark Texture Classification
Approach

Feature extraction and classification are the two
main factors that must be considered in designing
a texture classification system [1, 25, 29, 30]. In
the feature extraction phase, texture properties are

(15)
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extracted using texture descriptors. In the second
phase, a classifier such as a neural network,
mixture of experts, or other classifiers is trained to
assign an unknown sample to a predefined texture
class based on its texture properties. In this
section, we describe the proposed method for the
feature extraction phase and classification.

: e

| \

i=->|  ELM Experi2 -— Z O (:D I
-y .

i |

M g o

' // G_

1

L

1

- ELM Expert k J
'

- Lh s

i_ _______________________ ELM Gating
Network (EGN)

Figure 4. Block diagram of MEETG [16].

E
=
£
=4
¥

3.1. Feature extraction phase (color improved
local quinary patterns)

When extracting features from tree bark images
for the purpose of identifying tree species, color
information is an important characteristic to
consider. The color and texture of the bark can
serve as excellent features for accurate
identification of tree species. As the dataset used
in this study consists of color images, it is
necessary to incorporate color features into the
algorithm. However, the ILQP descriptor used in
this work has been originally designed for gray
scale images [25], presenting a challenge for
combining it with color sensor information. To
address this issue, we propose an approach for
color-texture classification using our modified
version of ILQP. To preserve color information in
this color dataset, the descriptor has been applied
to all three image bands, and the sum and
concatenation methods are used to combine this
information into a vector.

In this article, we applied a method of using color
images for color-texture classification. RGB
colors are called primary colors and are additive.
A color image is a combination of some basic
colors. In other words, each image breaks into 3
matrices down into red, green, and blue values
then each one representing color features.

At the beginning of the work, to extract color-
texture features, we separated each color image
into three different color channels, red, green, and
blue. In continuation, each of these three channels
is considered as a gray scale image, and then by
applying the ILQP operator, texture features are
extracted from red, green, and blue channels. We
use two techniques to combine the color images.
In the first technique according to (20), we
concatenate the features extracted from each
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channel and we consider them as a feature vector
for color texture as follows:

ILQPSR™ =< Fy, g, Fy >
where F; shows the extracted feature vector for

(21)

red color channel using (21). Also F, and F;

can be defined in a similar way. Finally,
ILQPSZ™% is a vector with 12x(P+2)
dimension. In second technique, the summation of
extracted color features is considered to provide a
main feature vector according to (22).

ILQPM" =< F, + Fg + Fy > (22)
Also the dimension of the final feature vector is
4x (P +2). Thus by applying the proposed feature

extraction method, two feature vectors are

3.2. Classification phase (stacked mixture of
ELM-based experts with trainable gating
network)

In this sub-section, we present a new classification
method named as stacked mixture of ELM based

MEETG 1

MEETG 2

sese

MEETG k

provided for each input image. The block diagram
of the proposed feature extraction method is
shown in the Figure 5.

ColorImage

— Red ILQP Fr Sum

Green ILQP g

N o N /

Figure 5. Block diagram of the proposed feature
extraction method.

experts with trainable gating network (stacked
MEETG). Our proposed method is inspired by the
methods presented in [31] and [32]. Figure 6
shows the structure of stacked MEETG.

[
concatenation

Figure 6. Block diagram of stacked MEETG.

The stacking is a generic framework which it
consists of two levels of learning, base learning,
and meta-learning. In the first level, the base
experts are trained on the original data set. Then, a
meta-classifier on top of previous models
combines their outputs. In other words, the output
of first-level experts is regarded as new features,
and the original class labels are kept as the labels
in the new data set.

The main difference between stacked and other
methods of ensemble techniques is that in
stacking, meta-level classification is applied as
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final classification. Our proposed method consists
of training multiple MEETGs on different feature
spaces, then in the meta-learning, training the
weights directs how much each MEETG’s output
contributes to the final prediction.

The main difference between stacked and other
methods of ensemble techniques is that in
stacking, meta-level classification is applied as
final classification. Our proposed method consists
of training multiple MEETGs on different feature
spaces, then in the meta-learning, training the

ssssss

concatenation—— [LQPCOTR
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weights directs how much each MEETG’s output
contributes to the final prediction.

The training mechanism of MEETG is given in
Algorithm 1. In this paper, we take the advantages
of ELM as the meta-classier. The output of base
experts is considered as the output of the hidden
layer neurons of ELM and the Moore-Penrose
pseudo inverse method is applied for adjusting the
output weights of ELM. In other words, for a
system with k MEETGs and m classes, the
number of weights of ELM in this method is ¢ x
m, where ¢ is the concatenation outputs of
MEETGs. In this method, we employ the output
layer of ELM in the meta-level as the decision
layer. If A is the output matrix of MEETGs for N
training samples which is considered as the output
of hidden layer neurons of ELM and g is the
weight matrix between hidden layer and output
layer of network, then g is calculated according to
(25).

o om" ... Oof .. OF
lop Lor o op| @
N
By
B=|" (24)
Be o
B=A'Y (25)
where A" is the Moore-Penrose generalized

inverse of matrix A. Finally, the result of the
ensemble learning model is obtained by
multiplying the calculated output weights in the
output matrix of each base MEETG. In other
words, Y, =[Y,,Y,,..., Y] is the output vector of

stacked MEETG corresponding to each test
sample xeR" and m classes which vy, is
calculated as follows:
K m
yi=2.2.0"5
i=1 j=1
Therefore the final class label can be determined

by the following maximum process.
Label =argmax}.Y.

j=1"ens

(26)

(27)

As shown in Figure 7., we apply two MEETGs as
the base classifiers of the ensemble learning
model for tree bark classification. In order to
increase diversity of the ensemble learning model,
in addition to random input weights, different
features are given to each of the classifiers.
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JLOPS'M et MEETG 1

[LQPConcat _b MEETG 2

Figure 7. Block diagram of tree bark classification using
ILQPCemcat [1QPS*™ and stacked MEETG.

In this paper, first MEETG receives ILQPp%™ as a
feature vector obtained according to (21) and
second MEETG receives ILQPS%*% as a feature
vector obtained according to (22).

4. Simulation results

To evaluate the effectiveness of the proposed tree
bark classification approach, we carry out
experiments on three datasets called Trunk12
[33], BarkTex [34] and AFF [5]. The brief
description of the datasets is expressed in the next
subsection. Computer specifications to evaluate
the performance of our proposed approach are
shown in Table 1.

Table 1. Computer specifications used in the experiments.

Computer properties Specification

CPU Intel Core(TM) i5-6200U
Core 5 cores (2.40 GHz)
RAM 12 GB

Simulation MATLAB 2018a
Operating system 64 bit

4.1. Datasets
In this subsection, the applied texture datasets are
briefly described.

e Trunk12 dataset
The Trunk12 dataset contains 393 images of tree
barks belonging to 12 different trees that are
found in Slovenia in .JPG image format, with a
resolution of 3000x4000 pixels. The number of
images per class varies between 30 and 45
images. Bark images are captured under
controlled scale, illumination and pose conditions.
Some examples of this dataset are shown in
Figure 8.
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(i) linden (j) ginkgo biloba (k) oriental plane (1) horse chestnut

Figure 8. Some examples of Trunk12 dataset.

e BarkTex dataset

This dataset contains a collection of 408 color
textures for the computer vision community. The
pictures show the bark of six different European
trees (betula pendula, fagus silvatica, picea abies,
pinus silvestris, quercus robur, and robinia
pseudacacia). The collection contains 68 images
corresponding to each class. All pictures were
taken from different trees under natural lighting
conditions. This image collection was acquired for
classification experiments in color texture
analysis. All images in the BarkTex dataset are
stored as raw ppm (P6) files. The images have
small (128 x 192) resolution, and they have
unequal natural illumination and scale. Some
examples of this dataset are shown in Figure 9.

Figure 9. Images of the BarkTex dataset, one example for
each class (left-right):(Birch, Beech, Spruce, Pine, Oak,

e AFF dataset

The AFF bark dataset provided by Osterreichische
Bundesforste, Austrian Federal Forests (AFF), is a
collection of the most common Austrian trees [5].
The dataset contains 1182 bark samples 1000x
(478-1812) belonging to 11 classes. The size of
each class varying between 16 and 213 images.
AFF samples are captured at different scales, and
under different illumination conditions [5]. Some
examples of this dataset are shown in Figure 10.

Figure 10. Images of the AFF dataset, one example for
each class (left-right and top-bottom): ( Ash, Beech, Black
pine, Fir, Hornbeam, Larch, Mountain oak, Scots pine,
Spruce, Swiss stone pine, and Sycamore maple).

4.2. Experimental results

In this paper, an ensemble learning method based
on extreme learning machine is proposed for tree
bark classification in which MEETG is used as the
base classifier. To demonstrate performance of the
proposed method, experimental results of our
method are reported on three datasets consisting
of Trunk12 [33], BarkTex [34], and AFF [5]. In
this section, the performance of MEETG and
stacked MEETG are compared on different
feature vectors. The results of experiments are
presented with different experts in Table 2, Table
3 and Table 4. As it is shown in the Tables, in the
experiments, different radiuses (R) and neighbors
(P) are employed for ILQPp .

Robinia).
Table 2. Classification accuracy (%) of stacked MEETG and MEETG on Trunk12 dataset with 10-fold cross-validation.
Method 3 experts 5 experts 7 experts

ILQP§G™ ™ + MEETG 81.63 83.60 85.83
ILQPgY™ + MEETG 81.84 83.89 84.59
ILQPZ™ + ILQP‘”"”‘" + stackedMEETG 84.89 87.35 88.32
ILQP{E5°® + MEETG 82.25 83.77 84.79
ILQPSY! + MEETG 77.27 78.04 79.08
ILQPSY™ + ILQPSYY™ + stackedMEETG 83.06 84.27 85.27
(ILQPg, + ILQPy4,) 0% + MEETG 89.80 91.77 91.05
(ILQPg 1 + ILQP;4 ;)™ + MEETG 86.83 87.84 88.08
91.50 91.77 92.79

(ILQPg; + ILQP16,)**™ + (ILQPg; + ILQP14,) " + stacked MEETG
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Table 3. Classification accuracy (%) of stacked MEETG and MEETG on BarkTex dataset with 10-fold cross-validation.

Method 3 experts 5 experts 7 experts
ILQPSI™et + MEETG 88.02 87.56 87.07
ILQPsY™ + MEETG 88.9 87.47 87.72
ILQPZ™ + ILQng’{"“‘stackedMEETG 89.91 90.14 90.13
ILQPngC“f + MEETG 88.71 87.5 87.75
ILQPFT + MEETG 87.54 87.57 88.29
ILQPSY® + ILQPSSY + stackedMEETG 90.17 90.16 90.63
(ILQP&1 + ILQpls,z)amcut + MEETG 92.06 91.34 91.84
(ILQPg, + ILQPyq,)*"™ + MEETG 91.09 90.84 91.36
(ILQPgy + ILQP14,)**™ + (ILQPg 1 + ILQP14,)°™* + stackedMEETG 92.07 91.10 92.54

Table 4. Classification accuracy (%) of stacked MEETG and MEETG on AFF dataset with 10-fold cross-validation.

Method 3 experts 5 experts 7 experts
ILQPSS™** + MEETG 86.30 86.05 86.98
ILQPgY™ + MEETG 83.80 84.21 84.81
ILQPE™ + ILQPg“* stackedMEETG 89.32 88.95 89.82
ILQP{™ + MEETG 84.04 83.20 84.29
ILQPES + MEETG 80.61 80.69 80.69
ILQPSE% + ILQP{YS™ + stacked MEETG 89.15 89.16 89.15
(ILQP&1 + ILQpls'z)cancat + MEETG 9084 9135 9109
(ILQPgq + ILQP;s,)™ + MEETG 87.33 86.99 87.50
(ILQPg4 + ILQP14,)*™ + (ILQPg4 + ILQP4,)" ™ + stacked MEETG 91.35 91.68 91.35

Based on the approach used in Figure 7 (Stacked
MEETG method), two MMETG classifiers are
utilized, and thus two feature vectors are needed.
For example, in Table 2, ILQP}3Z +
ILQP{95" + stackedMEETG means that the
stacked MEETG method is used as a classifier,
with ILQP¢3" used as the first feature vector for
the first classifier, and ILQPfo5@" used as the
second feature vector for the second classifier.
Similarly, (ILQPg; + ILQPy62)S"™ + (ILQPg; +
ILQPy¢ ;)02 + stackedMEETG means that the
first feature vector merges ILQP3Y™ and ILQP%ES!
for MEETGL1, while the second feature vector
merges ILQP 95" and ILQPg5®* for MEETG2.
Furthermore, (ILQPg; + ILQP;¢,)"™ + MEETG
in the table implies that ILQPg{™ and
ILQP2'need to be merged to form a feature
vector for the classifier, using the MEETG
method, which requires a feature vector.

As the result illustrated in Table 2, the best
accuracy on the Trunk12 is achived with
considering 7 experts for both MEETG and
stacked MEETG compared with 5 and 3 experts.
Also the results show that stacked MEETG
performs better than MEETG corresponding to
each feature. According to Table 3, the maximum
accuracy on the BarkTex dataset is 92.54% by
using stacked MEETG and combination of
ILQPg; and ILQPyc, with 7 experts. Also
according to the achieve results for AFF dataset
that are shown in Table 4, the best accuracy with

ILQPg; is 89.82%, with ILQP;¢, is 89.15% and
with combination of ILQPg; and ILQPi4, is
91.68%. Overall the results indicate that stacked
MEETG performs better than MEETG and also
combination of ILQPg; and ILQP; 4, provides the
maximum accuracy.

Table 5. Comparison between the results (%) of the
proposed method and different bark classification

methods.
Approach Trunk12 BarkTex AFF
SRBP¢; + LBPFY2 [7] 62.84 84.55 60.49
sum and difference histograms
[35] - 87 -
GLBP [8] 78.39 94.39 72.21
Concatenating I[_8?P and Gradient 73.45 91.33 71.33
1DLBPg, + 1DLBPy, [36] 77.32 - 70.96
Color Histogram (H=30) [9] 64.43 55.4 50.51
Color Histogram (H=80) [9] 69.00 61.3 55.62
LCoLBP + Color Histogram
(H=80) [9] 84.2 91.7 80.7
LCoLBP + Color Histogram
(H=30) [9] 84.2 92.4 80.7
GWs + Color [I—3||7s]togram(H=30) 743 66.2 64.7
GWs + Color I[—|3i§;09ram (H=80) 76.10 69.6 66.5
SSRBP(sch#1) + 1 — NN[38] 77.86 . 78.25
SRBP(sch#2) + 1 — NN[38] 81.17 . 77.83
ILTPgy + ILTP;q, + MLP [1] 86.76 - 82.93
(ILQPg; + ILQP16,)™™
+ (ILQPg, + ILQP ) omc 92.79 9254 9168

+ stackedMEETG
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4.3. Comparison between proposed method
and different bark classification methods

The main objective of this paper is to provide a
bark  classification approach  with  high
performance. Table 5 shows a comparison



Tree Bark Classification using Color-improved Local Quinary Pattern and Stacked MEETG

between the performance of the proposed method
with some other methods in this area.

As seen in Table 5, our approach vastly
outperforms all compared methods on the
Trunk12 and AFF datasets and has the second best
result on the BarkTex dataset.

According to Table 6, stacked MEETG improves
the performance about 6% for Trunk12 dataset.
As seen in this tables the accuracy of ILQP+
stacked MEETG has increased bout 12% with
P =8,R =1 compared with ILTP + MLP and
alsowitha P = 16, R = 2 increased about 10%.

Table 6. Comparison of the proposed method with method [1] on Trunk12 dataset with 10-fold.

Proposed method Accuracy (%) [1] Accuracy (%)
ILQPSY™ + ILQPSS™ % + stackedMEETG 88.32 ILTPg, + MLP 75.82
ILQP¥D + ILQP{Y%® + stackedMEETG 85.27 ILTPyg, + MLP 81.17
concat
(ILQPs, + ILQPygz)sum + (ILQPy, + ILQP1s2) 92.79 ILTPy, + ILTPyq, + MLP 86.72

+ stackedMEETG

4.4. Tree bark classification in the presence of
noise

To evaluate the performance in presence of noise,
we first apply two type of impulse noises (salt &
pepper and speckle) on texture images and extract
the texture features using the proposed method.
The results are shown in Table 7.

In Table 7, speckle noise level with the variance
of 0.02 and also salt & pepper noise with a density
ratio of 5%, 10%, 20%, and 30% are applied to
tree bark images. Comparison between the
proposed method and the other efficient methods
in this domain is carried out with 10-fold cross-
validation in the presence of a variety of noise on
Trunk12 dataset.

Table 7. Comparison classification accuracy (%) of the proposed method on Trunk12 dataset.

Without Salt and pepper Speckle
Method Noise 5%  10%  20% _ 30% 002
1DLBP,, + 1DLBPy,, [36] 7732 7226 6941 6164 5843  64.96
ILTPy + ILTPy, + MLP[1] 8676 8249 804 7226 6844 7353
sum concat
(ILQPg1 + ILQP162)™" + (ILQPg; + ILQP15,) 9279 9159 9006 87.85 8584  89.07

+ stackedMEETG

4.5. Evaluation of stacked MEETG

Confusion matrix is an N xN matrix applied to
evaluate the performance of a classification
model, where N is the number of target classes.
In this matrix, the actual level of data for each
class is displayed in the rows and columns, and
the number of samples that have been assigned
correctly or incorrectly to each class is entered in
the corresponding cells. Generally, in a confusion
matrix, the diagonal elements represent the
number of samples that have been correctly
assigned to their own class. In other words, these
elements show how many samples has been
correctly classified by the algorithm or model.
The off-diagonal elements of the confusion matrix
represent the number of samples that have been
incorrectly assigned to each class. In other words,
these elements show how many samples the
algorithm or model has incorrectly classified as
other classes. Based on the confusion matrix,
various metrics can be calculated to evaluate the
performance of an algorithm or model in multi-
class problems.

Accuracy: The ratio of the number of samples that
have been correctly classified to the total number
of samples. To calculate accuracy, the sum of the
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diagonal elements of the confusion matrix is
divided by the total number of samples.

Precision: The ratio of the number of samples that
belong to class i and have been correctly
classified to the number of samples that the
algorithm has classified as class i . To calculate
precision for each class, the number of diagonal
elements corresponding to that class is divided by
the number of elements in the same column of
that class.

Recall: The ratio of thenumber of samples that
belong to class i and have been correctly
classified to the total number of samples that
actually belong to class i . To calculate recall for
each class, the number of diagonal elements
corresponding to that class is divided by the
number of elements in the same row of that class.
The confusion matrix of Trunkl2 dataset,
BarkTex dataset, and AFF dataset is shown in
Figure 11, Figure 12, and Figure 13.

For example, Figure 12 shows the confusion
matrix of the BarkTex dataset. As it can be seen,
the Beech class has been correctly classified, and
no samples have been incorrectly assigned to this
class. Additionally, out of 68 samples in the
Spruce class, 3 samples have been misclassified to
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other classes, and 6 samples from other classes
have been incorrectly classified as Spruce.

In addition to overall classification accuracy,
some other criteria can be measured to evaluate
the performance of the proposed method such as
precision and recall. Precision and Recall are
useful measures of success of prediction when the
classes are very imbalanced which is calculated
according to (27) and (28).

Precision = — (28)
TP+FP
Recall = — " (29)
TP+FN
Accuracy = TP+TN (29)
TP+TN +FP +FN
where TP is number of true positives, FP

number of false positives, and FN is number of
false negatives.

Using these two metrics (Precision and Recall),
the performance of an algorithm can be evaluated
more completely and accurately. For example, an
algorithm that has a high precision but low recall
means that the algorithm correctly identifies most
of the cases that are identified as positive, but the
number of cases that are not identified as positive
is very high. In other words, this algorithm finds
positive cases that are truly positive, but does not
pay attention to many positive cases that are
actually positive. Therefore, to make the
algorithm work well and provide accurate results,
both of these metrics should be examined
simultaneously.

For example, in cases where both precision and
recall are high, it means that the algorithm has
correctly identified positive cases and has also
found many positive cases. As a result, precision
and recall should be examined together to fully
evaluate the performance of the algorithm. The
performance of stacked MEETG with(ILQPg; +
ILQP;62)"™ + (ILQPg 1 + ILQP;45) 0"
based on these metrics are presented in Table 8.

Table 8. Precision, recall, and accuracy (%) metrics for
the stacked MEETG with 10-fold cross-validation.

Dataset Precision Recall Accuracy

Trunk12 91.62 92.34 92.79

BarkTex 92.66 92.72 92.54
AFF 89.39 92.68 91.68

Predicted classes

Al Be Bi Ch Gi Ho Horse Li Oa Or Pi

Sp

Alder | 34 0 0 0 0 0 0 0 0 0 0

Beech| 0 28 0 0 1 1 0 0 0 0 0

Birch | 2 0 33 0 0 0 0 1 0 0 0

Chestnut | 2 0 0 24 0 0 1 0 2 0 0

Ginkgo biloba | 0 0 0 0 30 0 0 0 0 0 0

Hornbeam | 0 1 0 0 0 28 0 0 1 0 0

Horse chestnut | 0 0 0 0 0 0 32 0 o] 0 0

Actual classes

Linden | 3 0 0 0 0 0 2 22 2 1 0

Oak | 0 0 0 0 1 0 0 0 29 0 0

Oriental plane 0 0 0 0 0 0 1 0 0 29 1 1
Pine | 0 0 0 0 0 0 0 0 0 0 30 0
Spruce | O 0 0 0 0 0 0 0 0 0 0 45

Figure 11. Confusion matrix of Trunk12 dataset.

Predicted classes

Bi Be Sp Pi Oa Ro
Birch 67 0 1 0 0 0
. Beech 0 68 0 0 0 0
é
= Spruce 1 0 65 0 2 0
=
=
g Pine| © 0 0 62 4 2
Oak 0 0 4 1 56 7
Robinia 0 0 1 1 6 60
Figure 12. Confusion matrix of the BarkTex dataset.
Predicted classes
Ash Beech BP Fir HO Larch MO SP Spruce SSP SM
Ash | 24 0 1 0 0 0 2 2 1 3 0
Beech | 0 15 0 1 0 0 0 0 0 0 0
Black pine | 0 0 153 1 0 3 0 8 0 1 0
Fir| o 0 0 124 | 0 2 0 1 0 0 0
Hornbeam | 0 0 0 0 41 0 0 1 0 0 0
Larch | © 0 7 1 0 182 0 9 0 1 0
Mountain oak 2 0 0 0 0 1 68 0 il 5 0
Scots pine 0 0 6 0 0 13 0 171 0 0 0
Spruce 0 0 0 3 0 2 0 1 206 1 0
viss stone pine | 1 0 1 0 0 3 1 2 1 86 1
'camore maple 0 0 2 0 0 1 0 1 1 2 15

Figure 13. Confusion matrix of the AFF dataset.
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Table 9. TP-rate and FP-rate for stacks MEETG, and the
method proposed in [1] on Trunk12 dataset with 10-fold
cross-validation.

Table 10. Then measures of diversity Q statistics and
correlation stacked MEETG.

Dataset Q-statistics Correlation (p)
I TP-rate TP- FP-rate Trunk12 0.79 0.29
(Proposed) rate [1] (Proposed) BarkTex 0.94 0.53
alder 1.0 0.882 0.01 AFF 0.84 0.36
beech 0.933 0.900 0.002
birch 0.891 0.973 0.000 .
chestnut 0.75 0.625 0.000 5. Conclusion o o
ginkgo biloba 1.0 0.933 0.005 Tree species classification and identification
hornbeam 0.933 0.900 0.002 H i i
horse chostut 0969 0909 0005 through tree ba_rk is a topic of interest among the
linden 073 0.667 0.002 researchers. This paper presents a novel ensemble
- oak 0.966 0.767 0.013 learning method for bark classification based on
O“E”S?r']g'a”e 0.500 oo 2002 textural and color features. Two techniques are
spruce 1.0 0.911 0.017 applied to extract features from color images. As

4.5. Diversity measures of stacked MEETG
Diversity among the members of a team of
classifiers is deemed to be a key issue in classifier
combination. Several measures have been defined
for quantitative assessment of diversity. The
simplest ones are pair-wise measures, defined
between two classifiers [39, 40].

Dj(correc) Dj(incorrect)
D;(correc) a b
D;(incorrect) c d

where a is the fraction of instances that are
correctly classified by both classifiers, b is the
fraction of instances correctly classified by D, but

incorrectly classified by D;, and so on. Then the

following pairwise diversity measures can be
defined:

_ (ad —bc) (30)
(ad +bc)
(ad —bc)
= , 0<p<1 31
P farbcid@robd) 1 (1)
e The Q statistic:
Diversity is measured as the Q statistics

according to (30). Q assumes positive values if
the same instances are correctly classified by both
classifiers, and negative values, otherwise,
maximum diversity is obtained for Q =0.

e The correlation coefficient p:

Diversity is measured as the correlation between
two classifier outputs, defined according to (31).
Maximum diversity is obtained for p=0,
indicating that the classifiers are uncorrelated
[39].
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the experimental results are shown, combination
of ILQPg; and ILQP;s, provides maximum
accuracy.

For the classification of tree bark images, the
choice of classifier is also an important factor.
Ensemble learning methods, in which the output
results of multiple classifiers are combined, are a
good approach to improving the performance of
classification. To the best of our knowledge, in
most previous works, tree bark classification is
typically performed using a single classifier.
Therefore, in this paper, we propose a hybrid
ensemble system called stacked MEETG.
Stacking involves applying a learning algorithm to
combine the predictions of several other learning
algorithms. The general framework of stacked
MEETG consists of two levels. In the first level,
base classifiers or base experts are trained. We
apply MEETG as base experts for designing the
structure of stacked MEETG.

In the second level, meta-learning, a meta-
classifier is trained based on the outputs of the
first-level classifiers to learn how to aggregate the
predictions of base experts. In this paper, we take
advantage of ELM as the meta-classifier. The
output of base experts is considered as the output
of the hidden layer neurons of ELM, and the
Moore-Penrose pseudo-inverse method is applied
for adjusting the output weights of ELM. The
trained weights of ELM determine how much
each expert contributes to the final classification.
We compared our proposed method with the
recent state-of-the-art method the context of tree
bark classification. Experimental results proposal
method performs better than the state-of-the-art
method in this area. We believe that ILQPER*“**
and ILQPg%R™ can be generalized on other
applications for feature extraction and also
stacked MEETG can be applied in many complex
classification problems.
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