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 Nowadays, given the rapid progress in pattern recognition, new ideas 

such as theoretical mathematics can be exploited to improve the 

efficiency of these tasks. In this paper, the Discrete Wavelet 

Transform (DWT) is used as a mathematical framework to 

demonstrate hand-written digit recognition in spiking neural networks 

(SNNs). The motivation behind this method is that the wavelet 

transform can divide the spike information and noise into separate 

frequency sub-bands, and also store the time information. The 

simulation results show that DWT is an effective and worthy choice, 

and brings the network to an efficiency comparable to previous 

networks in the spiking field. Initially, DWT is applied to MNIST 

images in the network input. Subsequently, a type of time encoding 

called constant-current-Leaky Integrate and Fire (LIF) encoding is 

applied to the transformed data. Following this, the encoded images 

are input to the multi-layer convolutional spiking network. In this 

architecture, various wavelets are investigated, and the highest 

classification accuracy of 99.25% is achieved. 
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1. Introduction 

Due to the rapid progression of science and 

technology in various recognition fields, research 

continues on various platforms in order to 

improve the accuracy of network performance and 

inference. A large number of these studies are 

concerned with the initial data pre-processing 

stage including the transformation and coding of 

input images. In this process, the amount of data 

to be processed is reduced, redundant information 

is discarded, and only valuable and critical 

features are extracted from the input data and used 

in the network. 

Approaches based on multi-resolution or multi-

channel analysis such as Gabor filters [1] and 

wavelet transform [2-6] can be used to extract 

features from images in pattern recognition 

applications. Gabor filters need to fine-tune the 

parameters on different scales. Since their output 

is not orthogonal, a significant correlation may be 

observed between the obtained features. Most of 

these problems can be resolved by means of the 

wavelet transform, a time-frequency analysis 

method widely used in signal and image 

processing, singularity detection, data 

compression, and denoising. Instead of 

representing signals directly in the time-frequency 

space as in the Fourier transform, the wavelet 

transform displays them in the time-scale space. 

The entire frequency information is obtained in 

the Fourier transform; therefore, the overall 

Fourier coefficients can be affected by local 

changes in the signal. The wavelet transform, 

however, performs very well in accurately 

estimating and separating high- and low-

frequency components with short- and long-term 

resolution, respectively. While the low-frequency 

coefficients approximate the signal, the high-

frequency coefficients show its details, which is 

called the multi-level decomposition property or 

coarse-to-fine strategy. The wavelet transform 

performs this process and does not need a large 

number of calculations, as is the case with the 

human visual system. 

SNNs have been introduced as the third 

generation of neural networks, a kind of artificial 

neural network (ANN), that are more precisely 
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inspired by biological neural networks. SNNs can 

effectively imitate the intelligent behavior of the 

brain using spiking neurons. The concept of time 

is also considered in this model. As for ANNs, the 

output of each neuron is calculated and updated in 

every single iteration. In SNNs, on the other hand, 

each neuron generates a spike only when its 

membrane potential or membrane voltage exceeds 

a threshold. In biological neural networks, the 

excitable neuron transmits information to other 

neurons by generating an electrical signal or 

spike. The test accuracy in SNN is lower than in 

ANN. In order to increase accuracy, the network 

can be extended to deep architectures [7-10]. One 

type of deep spiking platform is the spiking 

convolutional neural network (spiking CNN), 

which is used in this article. For further 

comprehension, it is recommended to review 

articles on deep learning in SNNs [11-15]. 

As mentioned earlier, information in an SNN is 

processed and transmitted through spike trains. 

Therefore, the conversion of the analog input data 

into a spike train is the first step in implementing 

an SNN that cannot be ignored and must be done 

utilizing information encoding methods. The input 

signal must be pre-processed before encoding 

using one or more methods. Nowadays, it has 

been shown that the wavelet transform can be 

widely used as a useful tool to extract the main 

features of images. This observation motivated us 

to use DWT for the input signal pre-processing in 

the proposed spiking network. In this way, the 

network can efficiently extract key features and 

information from images and use them to perform 

the recognition process with high accuracy. 

The rest of the paper is organized as what follows. 

In Section 2, recent related studies are 

summarized. Section 3 provides a detailed 

description of the proposed model. Section 4 

contains the evaluation results. Finally, the work 

is concluded in Section 5. 

 

2. Related Works 

In most systems with arbitrary architecture, 

learning method, and simulation framework, pre-

processing of input data is required to extract 

essential features. Here, the focus is on the spiking 

structure. For this reason, a review of some related 

studies has been carried out on pre-processing of 

input signals in spiking networks. 

In the studies done in the field of pattern 

recognition in SNNs, the wavelet transform has 

rarely been used for pre-processing of input 

images. For instance, in [16], iris data is 

embedded in the content of a digital image to 

authenticate the owner's identity. An SNN called 

Pulse Coupled Neural Network (PCNN) algorithm 

is used to enhance the contrast of the iris image 

and to separate its boundaries from the human 

eye. The PCNN is based on the visual cortex of a 

cat, and has an entirely different structure than the 

convolutional SNN we have used. In this 

algorithm, Daubechies wavelet extracts the iris 

texture features in the pre-processing stage. 

Afterward, the iris code is inserted and extracted 

into digital images using DWT. The quality 

estimation parameter called the correction rate has 

reached the highest value of 0.9775. 

In [17], to simulate the human visual system, a 

different SNN from the proposed method is used. 

Using Mallat wavelet transform on different 

scales, the network classified the textures by 

extracting the essential features of input images 

from the Brodatz album and obtained an average 

accuracy of 98.938. Another difference is the use 

of a Fast Wavelet Transform (FWT) here, where 

the input is down-sampled after passing through 

the filter each time. Furthermore, after performing 

the FWT, the normalized energy in each sub-

channel is used as extracted features. 

In [18], a shallow convolutional SNN (see Figure 

1) performs object recognition in natural images, 

different from the proposed method, using 

Reward-modulated Spike-Time-Dependent-

Plasticity (R-STDP) learning. Compared to the 

conventional STDP learning, which extracts 

repetitive features, the network extracts distinct 

visual features. In the first layer, four Gabor filters 

with different orientations are used to pre-process 

the input image. The time encoding is applied, yet 

the computed value of each filter is converted into 

only one spike with a latency proportional to the 

inverse of the output value of the filter, using an 

intensity-to-latency conversion mechanism. In 

[19, 20], the same intensity-to-latency procedure 

is performed in a deep convolutional SNN (as 

shown in Figure 2) for digit recognition. The 

layers are trained using R-STDP or STDP 

learning. Instead of DWT, DoG filters are applied 

to the input data in the first layer. The network has 

achieved 97.2% accuracy on MNIST. 

The mentioned intensity-to-latency time coding 

and STDP learning are also used in [21, 22]. In 

[21], a 5-layer SNN, which used the ETH dataset 

and 3D-Object for object recognition tasks, is 

presented. Next, in [22], a spiking DNN 

consisting of multiple convolutional and pooling 

layers designed by Kheradpisheh was tested on 

Caltech, ETH-80 and MNIST datasets and 

achieved 99.1%, 82.8%, and 98.4% accuracy, in 

turn. The two articles are different from our study 

in which DWT is used for feature extraction, 
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whereas in [21], the input images are convoluted 

with 4 Gabor filters to detect bars and edges, and 

in [22], the DoG filters are used in the first layer 

to detect contrasts. Moreover, in [23], based on 

[21, 22], a deep spiking CNN was presented using 

a combination of STDP learning, backpropagation 

and employing DoG filters in the network input. 

The system has achieved 98.5% and 85.3% 

accuracy on MNIST and EMNIST datasets, 

respectively. Table 1 shows a summary of recent 

works, their parameters, and network accuracy, 

which has been explained before. 

 
Figure 1. Network architecture in [18]. 

 
Figure 2. Network architecture in [19]. 

 
Table 1. Summary of the recent related works in SNNs. 

Performance Dataset Preprocessing Architecture Ref. 

97.75 Iris images Wavelet transform SNN (Hassanien et al., 2009) [16] 

98.938 Brodatz album Fast Wavelet Transform SNN (Zhang et al., 2015) [17] 

97.2% MNIST DoG filtering Convolutional (Mozafari, Ganjtabesh, Nowzari-

Dalini, Thorpe, et al., 2019) [19] 
98.4% 

99.1% 

82.8% 

MNIST 

Caltech 

ETH-80 

DoG filtering Convolutional (Kheradpisheh et al., 2018) [22] 

96.9% MNIST DoG filtering Convolutional (Mozafari, Ganjtabesh, Nowzari-

Dalini, & Masquelier, 2019) [20] 
98.5% MNIST DoG filtering Convolutional (Vaila et al., 2022) [23] 
98.9% 

89.5% 
Caltech 

ETH-80 Gabor filtering Convolutional (Mozafari et al., 2018) [18] 

81.1% ETH-80 Gabor filtering Convolutional (Kheradpisheh et al., 2016) [21] 

 

3. Proposed Method 

3.1. SNN architecture 

Our proposed convolutional SNN architecture is 

shown in Figure 3. Firstly, in a pre-processing 

layer, the pixels of each input image are 

multiplied by a discrete wavelet filter, and a 

feature map is created whose cells are 

approximation coefficients that are obtained from 

the wavelet transform. In an encoding layer, this 

feature map is then converted into spike trains 

through a time encoding method. Subsequently, 

the spike trains are converted into spike maps 

over time by two hierarchical convolutional and 

pooling layers. The convolutional layers consist of 

LIF neurons. Besides, a max-pooling layer with 

the same number of kernels is added after each 

convolutional layer to reduce the size of the maps 

and remove redundant information. 

Next, a fully connected (FC) layer and an 

integrated layer for readout are embedded in the 

system structure. These two layers are composed 

of LIF and ReLU neurons, in turn. In the end, 

there is a decoding layer with 10 output neurons 

containing the same number of classes as input 

images. For this purpose, the maximum value of 

the neurons membrane potential is examined over 

time and their softmax is calculated. The gradient 

descent method is used to train the network. The 

proposed network is tested on the MNIST dataset. 

This network has been evaluated on different 

wavelet functions, by changing the threshold 

voltage of network neurons, and inverting the 

input image. The results indicate that the network 

can compete against its spiking counterparts and 

achieve comparable accuracies when different 

wavelets and threshold voltages are used. 
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Figure 3. Proposed spiking network. SNN with DWT pre-processing, an encoder, two hierarchical LIF convolutional and 

spike-based max-pooling layers, a LIF FC layer, a non-spiking ReLU leaky integrator, and finally, a decoder. 

 

3.2. Neural dynamics 

To model the behavior of spiking neurons in the 

proposed network, the LIF neuron model was 

selected from various models presented for the 

neuron, including Hodgkin-Huxley (HH) [24] and 

Izhikevich (IZ) [25]. The LIF neuron model can 

appropriately mimic the biological behavior of 

neurons with less computational complexity [26-

31]. It is expressed as: 

 
    

1
reset

mem

dv t
v v t I t

dt 
    (1) 

 
  

1
in

syn

dI t
I t I

dt 
                       (2) 

In the above equations, the membrane and 

synaptic time constants are mem  and syn , 

respectively. v is the neuron membrane voltage, 

and I is the sum of the currents entering the 

neuron. The constant parameter vreset is the neuron 

membrane voltage at rest, and the parameter Iin is 

the input current, i.e. the intensity of each input 

pixel into the neuron. A threshold voltage v_th is 

defined for the neuron, which can vary and is 

generally around 1 mV. When the neuron 

membrane voltage exceeds the threshold, it fires a 

spike and returns to its resting state. Figure 4 

shows the LIF neuron membrane voltage and the 

fired spikes for three different threshold voltages. 

What can be seen from the graphs is that the 

lower the spiking threshold of the neuron, the 

higher the firing rate. Therefore, the spikes are 

fired at shorter time intervals. 

 

 
Figure 4. LIF neuron membrane voltage (top row) and its corresponding spike train (bottom row) under changing the 

threshold voltage v_th: 1.0mV (left side), 0.8 mV (middle), 0.6 mV (right side). The input pixel value to this neuron is 1.1795, 

and the simulation time is assumed to be 70 ms. 

3.3. DWT pre-processing unit 

The superiority or exceptional performance of 

wavelet transform theory is the ability to perform 

simultaneous time-frequency localization of 

signals. Due to this property, a specific and fast 

pattern recognition routine can be developed in 

the proposed spiking network. Instead of 

transmitting signals into the time-frequency 

domain directly, the wavelet transform expresses 

them in the time-scale domain, where each scale 

represents a specific frequency range. Therefore, 

the wavelet transform can separate the high- and 

low-frequency components accurately. References 

[2-6] [32-36] are recommended for studying the 

wavelet transform and its applications. 

Wavelet analysis is based on small signals, called 

wavelets, all of which are obtained from the 

expansion and transition of a basic wavelet 

function, called the mother wavelet. The wavelet 

transform with discrete wavelets, i.e. DWT, on a 

two-dimensional function f(x,y) such as an image 

is described as follows: 

     
0

1 1

0 , ,

0 0

1
, , , ,

M N

j m n

x y

W j m n f x y x y
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 

 

 

   (3) 
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The obtained coefficients Wφ and Wѱ are 

approximation and detail coefficients. φ(x,y) and 

ѱ(x,y) are scale and wavelet functions. j is the 

scale parameter, and m and n are shift parameters. 

The wavelet coefficients are defined in three 

directions and follow the horizontal, vertical, and 

diagonal changes in the desired function.  

The multilevel decomposition means that it starts 

with the coarsest scale and proceeds to the finer 

scales [37]. The image is divided into four regions 

or subbands, including one approximation and 

three details in each level. In the next level, the 

approximation coefficients are then decomposed 

again in the same way. The process continues 

until the desired level is reached. The 

approximation and detail coefficients are coarse 

and fine coefficients that show the obtained key 

features. 

 

3.4 Input encoding 

As mentioned earlier, encoding the numerical 

input data into spiking input data is required in the 

first stage of modeling a spiking network. The 

encoding process maps the vector level to the 

spike level. The rate and time coding schemes are 

the most important among the various schemes 

that have been used in many studies [38, 39]. We 

use a time encoding method called constant-

current-LIF encoding [40] in the proposed spiking 

network. In this coding method, each pixel's 

intensity of the image is input as a constant 

current to a corresponding LIF neuron. Each 

neuron fires at most once and that time is the first 

moment its membrane voltage rises above the 

threshold value. The firing moment of this single 

spike is in inverse proportion to the intensity of 

the corresponding pixel. Finally, after running the 

encoding scheme, we have multiple feature maps 

distributed during the encoding interval for an 

initial feature map. The input dataset is the 

MNIST dataset, from which we use the original 

images and their inverses to evaluate the system. 

Figure 5 shows the spiking activity of a sample of 

these images and its inverse after applying the 

constant-current-LIF coding. 

  

  

Figure 5. Constant-current-LIF encoding of digit 5 input image (top row) and its inverse (bottom row) by changing the 

threshold voltage v_th: 1.0 mV (left side), 0.8 mV (middle), 0.6 mV (right side). The simulation time is considered 32 ms. 

 

The well-known MNIST dataset of handwritten 

digits [41-43] with 28 x 28 images consists of two 

sub-sets, a trainset with 60,000 sample images for 

learning the network and a testset with 10,000 

sample images for its evaluation. In Figure 5, the 

spiking activity of the digit 5 image and its 

inverse are plotted for three different threshold 

voltages of the LIF neuron. These grayscale 

images are first transformed into a tensor and then 

normalized. They are then converted into a feature 

map by applying a DWT. Finally, after entering 

the coding block, they change into spike trains as 

shown in the figure. It is evident from the figure 

that the lower the neuron threshold voltage, i.e. its 

spiking threshold, the more spikes it fires in a 

shorter time interval. 

 

3.5. Learning procedure 

Biological synapses are communication interfaces 

between pre- and post-synaptic neurons that 

transmit information through neurotransmitters or 

electrical signals. To modify the strength of the 

synapses or the weights of the neural network, a 

learning process is used, which can be a known 

supervised, unsupervised or reinforcement 

learning method. This proposed network uses a 
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supervised gradient descent algorithm. The loss 

function is based on the negative log-likelihood, 

which gives us the predicted probabilities 

assigned to correct labels to see how good the 

prediction was. Then we minimize this loss 

function using the gradient descent method. 

In the last layer of the proposed network, after 

selecting the neuron with the highest output 

voltage as the winner and comparing it with the 

correct label, the prediction error is calculated 

using the negative log-likelihood function. The 

gradient descent algorithm returns the error 

backward to the network to improve the weights. 

The training of the network is repeated in each 

epoch for all images in the MNIST trainset. Next, 

the trained network is evaluated on all MNIST 

testset images for different threshold voltages and 

different wavelets. To determine the efficiency of 

the method, the number of correct decisions made 

by the system is divided by the total number of 

test examples. In this way, performance accuracy 

is obtained. 
 

4. Results and Discussion 

In the proposed system architecture, the values of 

the receptive fields in the convolutional and 

pooling layers are practically selected based on 

the architectural properties of the network and the 

statistics of input images. The convolutional 

layers comprise 5 × 5 windows with a stride 

length of 1. These windows have initial random 

weights with a uniform distribution in the range of 

0 to 1. Non-overlapping 2 × 2 windows with 

weights of 1 are used in the pooling layers. The 

output of the second pooling layer is drawn to 800 

neurons and then to 500 neurons using the FC 

layer. Eventually, the readout layer writes it to 10 

output neurons over time. We varied the LIF 

neurons voltage of the network from 1 mV to 0.4 

mV in steps of 0.05 mV In the simulations, 

moreover, the duration of the simulations is 70 

ms, which are repeated on 300 epochs. 

We have seen that redundant features are removed 

from the input image in DWT pre-processing 

stage. Therefore, encoding the residual essential 

information of the image into spike trains and 

then implementing the LIF neurons behavior in 

the spiking network will be easier. Different 

wavelets were tested, and different threshold 

voltages were also tried per wavelet for the LIF 

neurons. Furthermore, all these steps were 

performed for both MNIST images and their 

inverses. Tables 2 and 3 show the system 

recognition accuracy for all these conditions. It 

can be recognized that the best overall accuracy is 

99.25% when a Coiflet wavelet of scale 9 with a 

threshold voltage of 0.7 mV is chosen for the 

original MNIST image. Accuracies greater than 

99% were also achieved in many cases. The 

results prove that DWT pre-processing method 

can extract important features from the input 

image with a very high capability. Therefore, it is 

concluded that the wavelet transform is a 

compatible platform with the spiking structure of 

the neural network. 

According to the accuracies summarized in Tables 

2 and 3, discrete Coiflet wavelets on a scale of 8 

to 10 performed best in the system for both 

original MNIST images and their inverses. The 

Coiflets family includes compactly supported 

wavelets with the highest number of vanishing 

moments for both scale and wavelet functions. 

Among wavelets of the same family with different 

scales, larger kernels provide better frequency 

resolution but poorer time resolution. Lower 

frequencies (scales) have the lowest output 

accuracy. Since the wavelet function has the 

largest expansion in the smaller scale, it loses the 

low-frequency content of the signal and focuses 

only on the high-frequency content. To make a 

tradeoff between time and frequency resolution, 

the wavelets were selected with different 

members or kernel elements. The results in Tables 

2 and 3 are in terms of the average recognition 

rate and provide a summary of the digit 

recognition results for each wavelet function. 

The confusion matrix for the case where a Coif9 

wavelet is used is presented in Figure 6 in order to 

evaluate the classification accuracy. In addition, 

to estimate the classifier output quality in the 

proposed network, recall and precision metrics 

were calculated. The recall and precision values 

are equal to 0.9923 and 0.9924, in turn. High 

scores for both the precision and recall indicate 

that the classifier provides accurate results and a 

majority of all positive results, respectively. In 

Table 4, a comparison is made between the test 

accuracy of some spiking networks and the test 

accuracy of the proposed architecture for the 

pattern recognition of MNIST digits. Each spiking 

network has its own preprocessing, encoding, and 

learning method. In addition, This architecture 

consists of the preprocessing block of the wavelet 

transform, time encoding, and gradient descent 

training process. In this case, our proposed 

network has achieved 99.25% accuracy, which is 

comparable with the highest accuracy achieved in 

other spiking networks of this type. In [22], a 

spiking DNN consisting of multiple convolutional 

and pooling layers is proposed. DoG filters extract 

contrasts in the first layer of the network, which 
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are then converted into spike trains by a time 

encoding block. 

 
Figure 6. Confusion matrix for the Coif9 wavelet. 

 

It has generally achieved 98.4% accuracy on 

MNIST digits by the STDP update rule. The 

proposed network in [44] does not use a 

preprocessing stage. It uses a rate coding instead 

of the time coding, which is used in our proposed 

method. The rate coding can achieve a slightly 

higher accuracy due to the generation of more 

spikes during the simulation time, which requires 

more computational effort. This architecture has 

achieved 99.28% accuracy utilizing a spike-based 

backpropagation training method preceded by an 

STDP-based pre-training scheme due to the speed, 

power and better generalization of this training 

method. The convolutional SNN presented in [45] 

does not also use a filtering stage. It has achieved 

an accuracy of 98.54% using rate coding and 

STDP-based probabilistic training method. It is 

also so computationally efficient due to the use of 

binary weights. Additionally, in [19, 20], a 

convolutional SNN was introduced using DoG 

filters and time encoding, from which an accuracy 

of 97.2% was achieved. The weights of three 

convolutional layers embedded in this architecture 

are updated through the STDP or R-STDP 

method. Concerning the article [46], an accuracy 

of 97.4% was achieved by means of an FC SNN 

with two hidden layers and the introduction of a 

delay-based backpropagation learning method 

which is based  on the difference between the 

actual and target firing times. The input was not 

filtered, only time encoded. 

Table 2. System recognition accuracy on images of MNIST digits. 

Wavelet 
v_th 

1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 

Haar 98.46 98.22 98.44 98.53 98.45 98.48 98.53 98.39 98.30 98.53 98.38 98.20 98.38 

Bior1.1 98.38 98.49 98.51 98.50 98.40 98.23 98.48 98.34 98.27 98.59 98.12 98.41 98.26 

Bior5.5 98.34 98.47 98.45 98.67 98.58 98.60 98.38 98.36 98.60 98.62 98.61 98.57 98.55 

Rbio1.1 98.97 98.70 98.77 98.65 98.54 98.66 98.58 98.66 98.63 98.64 98.71 98.64 98.62 

Rbio5.5 98.82 98.77 98.68 98.85 98.77 98.77 98.67 98.70 98.69 98.70 98.81 98.75 98.58 

Coif8 99.11 99.14 99.10 99.19 99.01 99.03 99.06 99.20 98.99 99.12 98.97 99.08 79.38 

Coif9 99.21 99.14 99.24 99.15 99.14 99.14 99.25 99.02 99.06 99.04 99.05 99.11 99.01 

Coif10 99.11 99.00 99.00 98.97 99.04 99.06 99.06 98.88 98.89 98.91 98.91 98.86 98.77 

Dmey 99.03 98.98 99.00 99.03 98.93 98.96 98.89 98.84 98.90 98.79 98.94 98.97 99.00 

Db1 98.58 98.83 98.81 98.77 98.51 98.59 98.73 98.59 99.00 98.56 98.70 98.69 98.58 

Db20 98.93 98.90 99.07 98.98 99.03 98.84 98.90 98.91 98.91 98.95 98.83 98.82 98.77 

Sym2 98.76 98.66 98.56 98.79 98.47 98.65 98.47 98.57 98.66 98.57 98.72 98.69 98.50 

Sym20 99.06 99.17 98.95 99.03 98.55 99.07 99.02 99.07 98.97 99.06 99.00 99.23 98.91 

 
Table 3. System recognition accuracy on inverse images of MNIST digits. 

Wavelet 
v_th 

1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 

Haar 98.61 98.66 98.63 98.40 98.31 98.27 98.68 98.36 97.71 98.17 98.61 98.52 98.22 

Bior1.1 98.34 98.52 98.70 98.40 98.65 98.08 98.27 98.23 98.53 98.35 98.71 98.11 98.03 

Bior5.5 98.89 99.01 98.88 98.84 98.74 98.67 98.54 98.39 98.32 98.19 98.73 98.71 98.87 

Rbio1.1 98.87 98.84 98.86 98.80 98.68 98.80 98.58 98.88 98.38 98.67 98.61 98.79 98.67 

Rbio5.5 98.97 98.98 98.91 98.83 98.52 98.61 98.99 98.61 98.79 98.98 98.74 98.81 98.77 

Coif8 99.16 99.22 99.16 99.18 99.07 99.19 98.97 98.90 9.80 98.95 99.05 99.09 98.84 

Coif9 99.22 99.23 99.04 99.18 99.13 99.11 99.01 98.92 98.84 99.01 99.09 98.64 9.80 

Coif10 99.04 99.02 99.09 98.93 98.97 98.83 98.97 98.75 98.92 98.93 98.90 98.90 98.82 

Dmey 99.09 99.11 99.07 99.01 98.98 98.90 98.51 98.61 98.70 98.73 98.92 9.80 98.75 

Db1 98.73 98.94 98.88 98.85 98.40 98.83 98.54 98.35 98.63 98.59 98.75 98.66 98.59 

Db20 99.02 99.06 98.84 98.81 98.89 98.98 98.72 99.00 98.77 98.24 98.87 98.75 98.89 

Sym2 98.86 98.80 98.78 98.64 98.24 98.59 98.57 98.26 98.14 98.62 98.69 98.65 98.51 

Sym20 99.16 99.14 99.08 99.11 98.69 99.05 98.94 98.74 98.99 9.80 98.96 99.02 98.88 

              

The recognition of MNIST handwritten digits is 

discussed in the spiking architecture presented in 

this paper. Thus for MNIST digits 0 to 9, there are 

10 neurons in the output layer. After training this 

network, the neuron with the highest membrane 

voltage is known as the winner among the 10 

output neurons. In Figure 7, the membrane 

voltage of all 10 output neurons is plotted in 

relation to each other for four different input 

MNIST digits, with each neuron having a specific 

color. On the left side of each row of the figure, 

the network has not yet been trained. On the right 

side, the trained network has been able to learn 

the image patterns properly and recognize the 
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label corresponding to the input image in each 

state correctly. The handwritten digits dataset has 

a huge variety since each person's writing style is 

unique. No accepted mathematical model has yet 

been presented to follow the patterns and changes 

in these images. Moreover, there may be some 

correlation and similarity between some digits. 

For instance, between digits 3 and 5 or 0 and 8. 

Therefore, there is a possibility that the resulting 

membrane voltage of neurons corresponding to 

the digits are close to each other. However, based 

on the graphs shown in Figure 7, it is clear that 

even in such cases, the output voltage of the 

winner neuron is higher than that of the others by 

a recognizable distance so that according to the 

applied approaches, the winner neuron has been 

determined accurately in this architecture. 

 

Table 4. Comparison of MNIST digit recognition performance on some spiking networks. 
Performance Learning-rule Coding Pre-processing Architecture Ref. 

98.4% STDP Time DoG filtering Convolutional (Kheradpisheh et al., 2018) [22] 

99.28% STDP & Backpropagation Rate --- Convolutional (Lee et al., 2018) [44] 

98.54% 
Hybrid-STDP & 
Backpropagation 

Rate --- Convolutional (Srinivasan & Roy, 2019) [45] 

97.2% STDP & R-STDP Time DoG filtering Convolutional 
(Mozafari, Ganjtabesh, Nowzari-Dalini, 

Thorpe et al., 2019) [19] 

96.9% STDP & R-STDP Time DoG filtering Convolutional 
(Mozafari, Ganjtabesh, Nowzari-Dalini & 

Masquelier, 2019) [20] 

97.4% Backpropagation Time --- Multilayer FC (Kheradpisheh & Masquelier, 2020) [46] 

99.25% Backpropagation Time DWT Convolutional This paper 

 

  
  

  

 Figure 7. Membrane voltage of 10 output neurons for a sample input image of digit: 0 (first row), 3 (second row), 5 (third 

row), and 8 (last row), before training (left-hand side), after training (right-hand side). 
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5. Conclusion 

In this work, wavelet analysis was studied as a 

mathematical tool that could be used in the pre-

processing unit before information coding. 

Wavelet analysis consists of functions such as 

small waves that are limited in the frequency 

domain like those in Fourier analysis. However, 

unlike Fourier analysis, the waves are limited in 

the time domain, too. Using the discrete type of 

wavelet algorithms, i.e. DWT, the high- and low-

frequency contents of the signals corresponding to 

fast and slow transitions can be separated easily. 

In this way, the approximation and precise details 

of signals can be shown in the time domain. 

In this paper, a spiking convolutional architecture 

was proposed. It is evident that extracting critical 

features through some kind of input data 

transformation and then encoding the transformed 

spectrum into spike trains are primary and crucial 

steps in a spiking network. To extract the basic 

features of the input data in the spiking system, 

the feasibility of using the wavelet transform as a 

preprocessing step of the input image was 

evaluated. 

The proposed wavelet transform method in this 

study was tested with the aim of pattern 

recognition in the MNIST handwritten digit 

dataset. Most of the discrete wavelets, each with 

multiple core elements, were used in the 

evaluations experimentally. The network accuracy 

was obtained and listed for each wavelet scale. 

The Coiflet basic or mother wavelet and its larger 

kernels ensure the best system performance of all 

filters. The output accuracy is lower on the 

smaller scales of the filters since the wavelet 

function is stretched to the maximum, and the 

low-frequency information of the signal is lost, 

thus only high values are displayed. On large 

scales, where the wavelet is less stretched, the 

frequency resolution is higher and functions 

relatively well. The highest accuracies of the 

network output using the Coiflet wavelet function 

at scale 9 with MNIST input images and their 

inverses were obtained at 99.25% and 99.23%, 

respectively. The obtained results confirm that 

this type of preprocessing is a reliable analysis 

that provides an adequate representation of the 

original data before feeding it into the network. 

This capability can be used to extract high-level 

features from the input data. 
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 .1402سال ،دوم شماره هم،دوره یازد ،کاویمجله هوش مصنوعی و داده                                              و همکاران                                                    کیانی

 

 موجک لیبا استفاده از تبد یکایاسپ یعصب یهارقم در شبکه بازشناسی

 

 پرویز کشاورزی و  *کوروش کیانی، هدیه آقابرار

 .رانیدانشگاه سمنان، سمنان، ا وتر،یبرق و کامپ یدانشکده مهندس

 01/05/2023 پذیرش؛ 04/04/2023 بازنگری؛ 15/01/2023 ارسال

 چکیده:

 نیربهرره بررد. در ا موضوعات نیا بازدهیبهبود  یبرا ینظر اتیاضیمانند ر یدیجد یهادهیتوان از ایالگو، مبازشناسی  عیسر شرفتیامروزه با توجه به پ

مرورد اسرتداده قررار   یکایاسپ یعصب یهادر شبکه سینوم دستارقا بازشناسی اجرای یبرا یاضیچارچوب ر کیموجک گسسته  به عنوان  لیمقاله، تبد

و  نمایرد میجداگانره تقسر یفرکانسر یبانردها ریرا به ز زیو نو کیتواند اطلاعات اسپایموجک م لیاست که تبد نیروش ا نیا بکارگیری زهی. انگدگیریم

برا اسرت و شربکه  سرتهیانتخراب مرر ر و شا کیر موجک گسسرته   لیتبدکه  دهدینشان م هایسازهیشب جیکند. نتا رهیرا ذخ یاطلاعات زمان نیهمچن

شربکه  یدر ورود MNIST ریتصراو بره موجرک گسسرته   لیتبرد . ابتدادیرس خواهد یقبل یکایاسپ یهابا شبکه سهیقاقابل م یبه بازده استداده از آن،

 سرپسشود. یم اجراه یافت لیتبد یهاداده روی (LIF)و آتش  ینشتادغام - ابت انیجر یگذارکدبه نام  یزمان یگذارکدنوع  کی شود. متعاقباًیاعمال م

-دقرت طبقره نیو بالاتر اندشده یمختلف بررس یهاموجک ،یمعمار نیشوند. در ایوارد م هیلا چند یکانولوشن یکایشده به شبکه اسپ یکدگذار ریتصاو

 به دست آمده است.درصد  99.25  یبند

 .LIF- ابت انیجر یگذارکد، یکانولوشن یکایاسپ یعصب یهاشبکهرقم،  بازشناسیموجک،  لیتبد :کلمات کلیدی

 


