
1

Journal of Artificial Intelligence and Data Mining (JAIDM), Vol. 11, No. 1, 2023, 77-93.

Shahrood University of

Technology

Journal of Artificial Intelligence and Data Mining (JAIDM)
Journal homepage: http://jad.shahroodut.ac.ir

 Research paper

Learning a Nonlinear Combination of Generalized Heterogeneous

Classifiers

Marziea Rahimi
*
, Amirali Taheri and Hoda Mashayekhi

Faculty of Computer Engineering, Shahrood University of Technology, Shahrood, Iran.

Article Info Abstract

Article History:
Received 09 November 2022
Revised 25 November 2022

Accepted 21 December 2022

DOI:10.22044/jadm.2022.12403.2387

 Finding an effective way to combine the base learners is an essential

part of constructing a heterogeneous ensemble of classifiers. In this

paper, we propose a framework for constructing heterogeneous

ensembles, utilizing an artificial neural network to learn a non-linear

combination of the base classifiers. In the proposed framework, a set

of heterogeneous classifiers work together to produce the first-level

outputs in a multistep procedure where in each step, a part of the

output is produced in a similar manner to cross-validation. Then these

outputs are augmented using several combination functions to

construct the inputs of the second-level classifier. We conduct a set of

extensive experiments on 121 datasets, and compare the proposed

method with other established and state-of-the-art heterogeneous

methods. The results demonstrate that the proposed scheme

outperforms many heterogeneous ensembles, and is superior compared

to singly tuned classifiers. The proposed method is also compared with

several homogeneous ensembles, and performs notably better. Our

findings suggest that the improvements are even more significant on

larger datasets.

Keywords:
Heterogeneous Ensemble,

Classification, Neural Networks,

Stacked Generalization,

Classifier Fusion, Machine

Learning.

*Corresponding author:

marziea.rahimi@shahroodut.ac.ir(M.
Rahimi).

1. Introduction

Classification is one of the well-known problems

of machine learning. Developing accurate

classifiers for real-world problems has been

widely studied in the past decades. Classifiers are

constructed based on a wide range of different

learning algorithms. Each learning algorithm

explores the hypothesis space from a different

perspective. Thus by simply tuning even the best

algorithm for a problem, some valuable aspects of

the problem remain unexplored and ignored [1].

It has been shown that we can improve the

accuracy of real-world classification problems by

using ensembles rather than spending time and

resources to find and tune a specific algorithm [2].

By combining classifiers and creating an

ensemble learning system, several different

individual perspectives are combined to make a

consensus decision [3]. Following this

perspective, many ensemble algorithms are

introduced, such as Naïve Bayes Combiner (NBC)

[4, 5], Cross-validation Accuracy Weighted

Probabilistic Ensemble (CAWPE) [2],

heterogeneous boosting [6], and many others [7–

10]. To design an ensemble, many questions have

to be answered regarding its structure, one of the

most important of which is how to combine the

results to make the final decision. Voting,

summing [11–13], and meta-learning [14] are

some of the major schemes for combining

classifier decisions, among which summing and

voting are used more frequently. Theoretical and

practical evidence in many studies have proven

the superiority of summing over voting [15].

Actually, a large number of ensemble algorithms

are based on summing or in other words,

weighting schemes. The central concept of many

weighting schemes is to give each classifier a

weight of influence based on its performance. In

the meta-learning scheme, which is the least

investigated among the three mentioned schemes,

a second-level learning algorithm is used to learn

a good combination of the base classifiers. For

mailto:marziea.rahimi@shahroodut.ac.ir(M

Rahimi et al./ Journal of AI and Data Mining, Vol. 11, No. 1, 2023

78

homogeneous ensembles, where the base

classifiers are of the same type, the meta-

classifiers mainly consist of combiner trees [16,

17] and neural networks [18, 19]. In this

approach, the diversity is achieved by partitioning

the data.

Heterogeneous ensembles have been shown to

outperform homogeneous ensembles in many

applications [2, 20]. In this category, where the

base classifiers use different learning algorithms

to provide diversity, the meta-learning approach is

represented mainly by stacked generalization

(stacking). In stacking, the results of the base

classifiers are combined using another classifier,

often called the meta-classifier. The inputs of this

second-level meta-classifier are derived from the

outputs of the base classifiers. Stacking methods

despite showing promising results [21], have not

been thoroughly investigated and widely used due

to the lack of availability of sufficient amount of

data or computational resources. As these

limitations are largely lifted in the recent years,

the meta-learning ensemble methods are gaining

more attention recently. This encouraged us to

investigate the performance of stacking methods.

As mentioned earlier, the most popular and

usually most successful methods for combining

classifiers, both for heterogeneous and

homogenous ensembles, are based on weighting

schemes. This inspired us to investigate using

neural networks for combining the base

classifiers. Especially, by the recent successful

revisit of the neural networks, which is the direct

result of the availability of more enormous

datasets and powerful computational platforms, it

is reasonable to revisit and further investigate

utilizing neural networks as the meta-classifier in

ensemble systems. We propose a new stacking

framework for heterogeneous ensembles, which

instead of assigning constant weights to the

outputs of base classifiers, uses a second-level

classifier to learn the weights automatically. The

second-level neural network classifier learns a

mapping function from the outputs of the base

classifiers to the actual target values. The

proposed framework consists of three steps:

generating the probabilistic outputs of the base

classifiers and constructing the meta-data,

building the second-level meta-classifier, and

regenerating the base classifiers. Instead of simply

partitioning the dataset among the base classifiers,

which is the general approach in ensemble

learning, we utilize the iterative folding scheme of

stacked generalization to produce the outputs of

the first-level classifiers. In addition, the proposed

framework investigates several different

combination functions to construct the meta-data

as inputs of the second-level classifier. We

empirically investigate the performance of the

proposed stacking framework by evaluating it on

121 UCI benchmark datasets. The results are

compared to different state-of-the-art, and

established ensemble methods, like Majority Vote

(MV), Weighted MV (WMV), several

heterogeneous ensembles such as CAWPE [2],

Recall Combiner (RC), [4] and Stacking with

Multi-response Linear Regression (SMLR) [22],

and several homogeneous ensembles like Random

Forest [23] and XGBoost [24]. Through these

investigations, we show that the proposed

heterogeneous ensemble framework, while using a

neural network as the second-level classifier, is

able to outperform many other state-of-the-art and

established weighting scheme and stacking

methods. The contributions and highlights of our

work can be summarized as follows:

 Proposing a new stacking framework for

heterogeneous ensemble learning

 Combining the idea of weighting schemes

and stacked generalization using a neural

network

 Introducing new approaches for

constructing and augmenting the meta-

data as inputs of the second-level

classifier, and demonstrating that some of

these approaches can improve the

classification accuracy

 Conducting rigorous and detailed

experiments to demonstrate that the

proposed framework can outperform

different state of the art and benchmark

ensemble models

In the rest of the paper, an overview of the related

works on heterogeneous and homogenous

ensembles focusing on meta-learning methods is

provided in Section 2. Section 3 introduces a

general layout for weighting scheme methods, and

provides a brief introduction to some of the

methods used for comparison in the experiments.

The proposed model is introduced in Section 4. A

set of comprehensive experiments are reported in

Section 5, and finally, conclusion is provided in

Section 6.

2. Literature Review

Ensemble learning algorithms can be categorized

into two main groups of heterogeneous or

homogeneous ensembles, according to the

employed base classifiers. Homogenous

Learning a Nonlinear Combination of Generalized Heterogeneous Classifiers

79

ensembles refer to ensemble algorithms that use

the same type of base classifiers with different

training data, whereas heterogonous ensembles

combine the results of different base classifiers

with the same training data. Recent studies

suggest that a heterogeneous ensemble of a set of

diverse classifiers can perform more efficiently

compared to homogeneous ensembles [2, 20]. In

both the heterogeneous and homogeneous

categories, classifiers should be diverse. Diversity

is one of the key elements that has a crucial effect

on the accuracy of the ensemble [25]. In

homogeneous methods, diversity is achieved

either by varying the training data of the base

classifiers as performed in bagging [26] and

boosting [27] or by varying the feature subset that

each base classifier is built on, as in ensemble

feature selection methods [28]. Heterogeneous

methods ensure diversity by varying the base

classifiers. The difference between classifiers is

either in their type of learning algorithms or in

their hyper-parameters.

Our focus in this paper is on the meta-learning

methods in the heterogeneous category. In the

following, we will discuss the ensemble methods

and some of their major examples in more detail

focusing on heterogeneous methods.

The existing heterogeneous ensembles can be

divided into three main categories of fusion

methods, selection methods, and meta-learning,

considering the algorithm employed for

combining the results of the base classifiers. The

former consists mostly of weighting schemes.

Weighting schema algorithms are one of the first

types of ensemble methods proposed and used in

heterogeneous as well as homogeneous

ensembles. Such methods assign weights to the

base classifiers, and classify a sample using a

weighted combination of base outcomes. Methods

such as majority vote and weighted majority vote

[29, 30] are still used in many applications of

ensemble methods. Recall combiner [4] and Naïve

Byes combiner [4] are other established

heterogeneous examples of weighting scheme

methods. CAWPE [2] is a recent weighting

scheme that sums up the advantages of the

weighting schemes and suggest four properties

that if used alongside each other, could make a

powerful algorithm that outperforms other, even

more complicated, heterogeneous and

homogenous methods.

Ensemble selection algorithms are focused on

selecting the best possible combination of base

algorithms. The idea of selection is applicable in

both homogeneous [31] and heterogeneous [32–

34] ensembles. Some methods [35] have also been

proposed that are a combination of selection and

fusion. Pick Best (PB) is the most straightforward

algorithm in this category, which evaluates each

of the base classifiers, typically by cross-

validation, and selects the best one. As argued by

Dzeroski and Zenko [36], pick best is a suitable

baseline for comparison because of its simplicity

and good performance. This category of models is

less prone to overfitting. However, they usually

are effective when applied to a large number of

base classifiers, and therefore, are usually more

complex, in both time and space, compared to the

other categories of heterogeneous methods [37,

38].

The meta-learning scheme, which has been

mentioned before, is the least investigated among

the three ensemble schemes; a learning algorithm

is used to learn how to effectively combine the

base classifiers using their outcomes as meta-data.

For homogeneous ensembles, the commonly used

meta-learning algorithms are the arbiter and

combiner trees [16, 17], and neural networks [18,

19]. When using neural networks in homogeneous

ensembles, meta-learning sometimes follows an

end-to-end fashion, which is similar in spirit to

stacking in which a combiner is trained in a

generalized version of cross validation. In

stacking, the base models are trained and then

fixed. In end-to-end ensemble methods [19],

however, the combiner participates in the training

of the base neural networks [39].

Meta-learning in heterogeneous ensembles has

been realized in two different types; stacking and

grading [40]. Grading [41] is a type of meta-

learning in which predictions of each of the base

classifiers are marked as correct or incorrect, and

then these graded predictions are assumed to form

two meta-classes. Corresponding to each base

classifier, a meta-classifier is trained based on this

meta-data. The aim is to gain the ability to predict

when a base classifier will misclassify. For

classifying each unseen instance, the predictions

of base classifiers are gathered and each of them

is marked as correct or incorrect. The final

classification is derived from the results of those

base classifiers marked as correct. Although

grading methods [41, 42] are inspired by stacking,

they are based on selection, contrary to stacking

which follows the fusion scheme. Grading suffers

from the problem of imbalanced data as in the

meta-level, the number of correctly guessed

instances is usually many more than the incorrect

ones [43]. On the other hand, [44] shows that

grading could be reduced to a special case of

stacking.

Rahimi et al./ Journal of AI and Data Mining, Vol. 11, No. 1, 2023

80

Stacking algorithms use a second-level classifier

to learn the best possible combination model. The

second-level classifier uses cross-validation to

learn from the data provided by the base

classifiers. This scheme is applied on ensembles

of both the same [45] and different learner types

[14]. In the case of the former, the diversity is

achieved by using different parameters or hyper-

parameters for each of the base classifiers.

Stacking, despite showing promising

performance, has received little attention.

Our approach aiming to use a neural network as a

combining algorithm is considered a stacking

algorithm. One of the first stacking algorithms

[22] uses multi-response linear regression as the

meta-classifier. This method is improved in

another research [36] by augmenting the class

probability distributions, which are obtained from

the base classifiers by additional attributes.

Another example of staking algorithms is GA-

stacking [46], which employs the Genetic

Algorithm (GA) to select the meta-classifier.

Similarly, ABC-stacking [47] exploits the ability

of the Artificial Bee Colony (ABC) to select the

meta-classifier at the stacking level. Non-strict

stacking [48] is another version of stacking, which

can be considered as a combination of same-type

and different-type stacking methods. In this

method, each base classifier can participate in the

ensemble with many duplicates, which are

constructed using different feature subsets of the

original data. Xia et al. have proposed to combine

bagging and stacking to improve diversity [49].

Some models [50] use other ensembles as the base

level in the stacked generalization scheme.

Stacking methods have used many different types

of models as meta-classifiers. For example, [51]

and [52] use logistic regression as the meta-

classifier and [53], investigates tree-based

methods. However, to the best of our knowledge,

the use neural networks as a meta-classifier, in

heterogeneous stacking ensembles, has not been

thoroughly investigated.

Neural networks have been used as the meta-

classier for homogeneous ensembles of neural

networks [45] or recently, ensembles of deep

neural networks [54]. In another example of such

models [55], six different classifiers such as

nearest neighbor, SVM and neural networks are

investigated as a meta-classifier to combine

several convolutional neural networks in a

stacking scheme, and the best results were

achieved by MLP.

In this paper, we propose a new heterogeneous

ensemble method, which uses a feed-forward

neural network to learn to combine the outputs of

the base classifiers. On the other hand, stacking is

usually constructed using a few numbers of base

classifiers, and as the meta-level data is

constructed by concatenating the outputs of these

classifiers, the number of features in meta-level

space is limited. Thus we have proposed and

investigated several methods to enrich the meta-

level feature space. We have also considered

averaging as an alternative to concatenation.

3. Preliminaries

Our proposed framework is based on a stacking

method, which inspired by the success of the

weighting and voting approaches, combines the

base-level models in a meta-learning step.

Therefore, in this section, we discuss stacking and

some voting schemes in more details. The

methods discussed here are used as baselines for

comparison in our experiments.

Table 1. List of notations used in the algorithm

description.

Notation Description

C , iC Set of base classifiers, the
thi classifier

iA The
thi learning algorithm

P
Number of base classifiers

K
Number of classes

jx
A data point

i
y , ˆ j

iy Output vectors for data point
jx

assigned by the ensemble, base classifier iC

jl ,
j

il Label assigned to
jx by the ensemble, iC

M
Number of folds in the first-level learning

jx The meta-data vector of jx

metaD
The set of all meta-data vectors

3.1. Weighting scheme

As suggested and justified by [4], we will use the

following voting schemes to compare our model

with: Majority Vote (MV), Weighted Majority

Vote (WMV), Recall Combiner (RC), and Naïve

Bayes Combiner (NBC). We will also compare

the proposed model with the recently suggested

weighting approach CAWPE [2].

The following terminology is used to describe the

methods. Let us assume that there is an ensemble

of P base classifiers  1 2, , , PC C C C  to

classify data into K classes 1 K . A weight iw

is assigned to each classifier iC . The probabilistic

output of the base classifier iC for a data point

jx is a vector ˆ j

iy of size K , where the
thk

Learning a Nonlinear Combination of Generalized Heterogeneous Classifiers

81

element ,
ˆ j

i ky is the probability assigned to class

k . The label proposed by this classifier for jx is

denoted as  1,j

il K  . Similarly, the

probabilistic output of the ensemble for input jx

is a vector
i

y , where the
thk element

j

ky is the

probability assigned to class k . The label

proposed by the ensemble jx is denoted as
jl .

The list of notations is provided in Table 1.

There are two approaches for combining the

outputs of the base classifiers when using a

weighting scheme. In the first approach, the

predicted labels are directly used, and the

weighted sum of the base outputs are calculated

for each label k as follows:

 
1

,
P

j j

k i i

i

y w l k



(1)

where  ,j

il k is the Kronecker delta, being one

if the base classifier iC assigns label k to
jx ,

and zero otherwise. The second approach employs

the actual probabilistic outputs of the classifiers

using the following equation:

,

1

ˆ
P

j j

k i i k

i

y w y



(1)

In both scenarios, the actual predicted label

assigned to jx by the ensemble is calculated by

the following equation:

argmaxj j

k
k

l y (2)

In other words, the proposed label of the ensemble

is obtained by selecting the most weighted class.

Now we can describe the mentioned weighting

schemes as follows.

In other words, the proposed label of the ensemble

is obtained by selecting the most weighted class.

Now we can describe the mentioned weighting

schemes as follows:

 MV: Majority vote uses Equation (1) and

sets 1iw  for all the base classifiers.

 WMV: Weighted MV usually uses

Equation (1) with the classifier weights

being computed based on their

performance (accuracy) on the training

data.

 RC: Recall Combiner uses Equation (1)

while considering a separate ,i kw per

each classifier and class label, based on

the class-specific recalls [4].

 NBC: Naïve Bayes Combiner is very

similar to Equation (1), with the weights

being class-dependent and calculated

based on the confusion matrix for each

class [5].

 CAWPE: CAWPE uses class probabilities

as depicted in Equation (2), with the

weights being class-dependent and the

ensemble accuracy estimated through

cross-validation [2].

In this paper, we aim to demonstrate that neural

networks, in combination with stack

generalization can be used to effectively optimize

the weights and learn a non-linear combination of

the base classifiers’ outputs.

3.2. Stacking

Stacking is a heterogeneous meta-learning scheme

in which the input (first-level) data are mapped

into an intermediary space through a process

similar to cross-validation. The meta-level

classifier is trained in this new space. The first-

level data is divided into M folds. Then in M

iterations, the next-level data are generated. In

each iteration, one of the folds is held out and the

remaining 1M  are used to train the first-level

models, i.e., the base classifiers. Then the held-out

fold is presented to the trained classifiers and the

output is used as one part of the next-level data.

At the end of the iterations, the number of

instances in the second-level data is equal to the

first-level data. The target values are shared

between the two levels. Any classifier can be

trained using this intermediary data as the meta-

classifier. In our proposed model, the weights are

learned using a feed-forward neural network. The

base classifiers are assumed to generate

probabilistic outputs for the K classes.

Otherwise, such probabilities can be calculated

using the probability calibration based on the

Platt’s logistic model [56].

4. Proposed Heterogeneous Ensemble

Framework

In this paper, we introduce a new heterogeneous

stacking framework, which we refer to as

Metanet. This framework uses a feed-forward

neural network to learn to combine base

classifiers outputs. The motivation for this

proposal is the established success of the

heterogeneous ensembles that use a weighting

Rahimi et al./ Journal of AI and Data Mining, Vol. 11, No. 1, 2023

82

scheme to combine the outputs of the base classifiers.

(a)- First step: the training dataset is divided into M parts that lead to M iterations for generating the second-level data.

In the
th

m iteration, the
th

m part of the second-level data is generated.

 (b)- Second step: the meta-classifier is trained using the meta-data

 (c)- Third step: the base classifiers are regenerated using the entire train data

Figure 1. The three steps of stack generalization.

Our model uses a multilayer neural network while

satisfying the following properties suggested by

Large et al. [2]:

 Using a small set of diverse classifiers

instead of a large number of weak ones of

the same learning paradigm

 The inputs of the second (combination)

level are based on the probability

estimations produced by the base

classifiers

 The weights are obtained considering the

quality of the base classifiers

 The weights are obtained also by

emphasizing the difference between the

base classifiers in quality

The first two conditions are exactly followed.

Large et al. satisfy the last two conditions by

simply setting weights based on the quality of the

base-classifiers, and amplifying the differences by

rising them to the power of a positive integer

value. In our method, in contrast, we satisfy them

by using a feed-forward neural network. The

network combines the probability values

generated by base classifiers using weights that

Learning a Nonlinear Combination of Generalized Heterogeneous Classifiers

83

are learned automatically. This means that the

qualities of the base classifiers are taken into

account by the network through the learning

process, and the magnitude of the weights are

determined respectively. However, here we are

not learning a simple linear combination but a

non-linear mapping function that is specified by

the weights of the neural network.

Algorithm 1- Training the heterogeneous model

Input:
trainD , P learning algorithms, the combination function f

Output: The set of base classifiers C , the meta-classifier
metaC

1 Initialize P classifiers  1 2, , , PC C C C  based on learning algorithms iA , 1i P 

2 Partition
trainD into M exclusive subsets:

train

mD , 1m M 

3 For 1 .m M 

4 1

m train

m

j m

S D




5 2

m train

mS D

6 Train each classifier iC using 1

mS

7 Apply each classifier iC on 2

mS to obtain class probabilities ˆ j

iy ,
21 , 1 mi P j S   

8 Apply combination function f to vectors ˆ j

iy to obtain
meta

mD

9 EndFor

10

1

M
meta meta

m

m

D D




11 Train meta-classifier
metaC on

metaD

12 Regenerate the set of base classifiers C using
trainD

13 Output C and
metaC

The proposed method follows the stacking scheme

in which, the first-level data is divided into M

folds. Then in M iterations, the second-level data

is generated such that in each iteration, one of the

folds is held out and the remaining 1M  folds

are used to train the first-level models. Then the

held-out fold is fed to the trained classifiers and

the output is used as one of the M parts of the

second-level data. After the iterations are finished,

the number of instances in the second-level data

equals to the number of instances in the first-level

data. The target values are shared between the two

levels. The input of the neural network meta-

classifier, called the “meta-data” is constructed

using this intermediary data. All of the instances

are used to train the neural network. The meta-

data itself can be divided into folds to be used in a

cross-validation scheme to generalize the training

process of the neural network in the second-level.

After training the neural network, the entire first-

level data is used to re-generate the base

classifiers, which can be used to classify the

unseen data. This process has three distinct steps:

training the base classifiers to generate the

second-level data and construct the meta-data,

training the second-level classifier, and

regenerating the base-level models.

The three steps, as elaborated above, are depicted

in Figure 1. In the first step, the training data
trainD is divided into M parts (folds) that leads

to M iterations for generating the meta-data
metaD . In the

thm iteration, the
thm part of the

meta-data is generated. In each iteration m , one

part (2

mS) is held out and the remaining 1M 

parts (collectively shown as 1

mS) are used to train

each base-level classifier
m

iC using the learning

algorithm iA . Then the held-out part is presented

to the classifiers to generate the
thm part of the

meta-data
meta

mD . Function f is used to combine

the outputs of the base classifiers and generate the

meta-data. In the second step the meta-data is

used to train the meta-classifier
metaC . In the third

step, the entire original train data is used to

regenerate the base-classifiers, which can then be

Rahimi et al./ Journal of AI and Data Mining, Vol. 11, No. 1, 2023

84

used for the prediction step. The three steps are

described in Algorithm 1.

For integrating the outputs of the first-level

classifiers and constructing the meta-data, we use

different combination schemes. If the initial

training data is of size N , the constructed meta-

data is of the same size. Let jx denote the meta-

data vector corresponding to the data instance jx .

For a training set of size N , the final meta-data is

defined as
1

meta

j

N

j
D


 x . In the concatenating

scheme, the class probabilities generated by the

base classifiers are concatenated to generate
CP

jx

as a vector of size P K :

 1 2, ,ˆ ,ˆ ˆ cp j j j

j P x y y y
(4)

We have also considered integrating the outputs

of the first-level classifiers using the average

function as shown in Error! Reference source

not found. The resulting meta-data vector
avg

jx is

of size K .

     ,1 ,2 ,
i i i

ˆ ˆ aavg ,avg , , v ˆgavg j j j

j i i i Ky y y
 

  
 

x
(5)

The performance of the model using each one of

these functions is evaluated in our experiments

and the results are reported in Section 5.4.

When constructing the meta-data by

concatenation, the number of constructed features

is limited to the number of base-classifiers times

the number of classes. This may be limiting

especially when the number of classes is small.

Therefore, we may use the original data besides

the generated class probabilities to enrich the

feature space:

 ,j j jxx x
 (3)

This approach can be used with both the

concatenation of class probabilities (4) and class

probability averages (5). Another approach to

enrich the meta-data feature space is to

concatenate both the class probabilities and class

probability averages for each data:

 ,cp avg avg cp

j j j

 x x x
(7)

We construct four different compositions

according to the mentioned functions. The first

composition just concatenates the first-level

outputs (class predictions) as the meta-level data.

We will name this primary composition as

“Class”. In another composition that we will call

“Class + Base”, the concatenated first-level

outputs are augmented with the input data to

construct the meta-data. In another composition,

called “Mean + Class” the mean vector of first-

level outputs is calculated and then the

concatenated first-level output is augmented by

the mean vector to construct the meta-data. The

last composition uses the mean vector augmented

by the input as the meta-data. This composition is

called “Mean + Base”. Figure 2 shows these four

models. In the third step of the framework, the

base classifiers are regenerated using the entire

train data. This gives them a more generalized

prediction power. When the labels of a dataset are

to be predicted, the data is presented to all of the

base-level models and the class probabilities are

generated. These probabilities are used to

construct the meta-data as the next level's input.

The probabilities are fed to the meta-classifier and

the trained neural network decides the class label

based on this meta-data.

5. Experiments

In this section, we first describe the dataset and

the experimental settings. Then the results

obtained are presented. We have followed the

same settings used by [2]. The experiments are

performed on 121 datasets. All the results on each

dataset are obtained by averaging over 30

different test and train splits generated using

stratified sampling. In all the splits the ratio of test

to train examples is kept approximately the same.

We use five different algorithms as our base

classifiers. The results of the suggested ensemble

are compared to each of the base classifiers

individually, 11 other heterogeneous ensembles,

and five homogeneous ensembles.

5.1. Dataset

We use 121 datasets from the UCI archive for our

experiments. The datasets cover a variety of

classification problems, the smallest dataset

contains ten samples, the largest one contains

130064 samples, and they have an average of

4554.504 samples. The average number of

attributes per dataset is 28.842, and the average

number of classes per dataset is 6.851. As

mentioned earlier, for each dataset, 30 different

test and train splits are generated with

approximately equal sizes using stratified

sampling. In other words, the test and train sets,

each cover 50% of the data. We have used the

exact splits, which are provided by [2].

Learning a Nonlinear Combination of Generalized Heterogeneous Classifiers

85

Figure 2. Four different proposed composition to construct meta-data. From (a) to (d), “Class”, “Class+Base”,

“Mean+Base” and “Mean+Class”. OM denotes the mean of the class probabilities iO .

As the number of datasets is large, reporting the

sole average values of different metrics may not

provide a complete insight into algorithm

performance. Therefore, we further conduct a

clustering task to provide a meaningful

partitioning of the datasets into several groups.

The performance of the model is then evaluated

individually in these groups. These results are

presented in Section 5.4.5.

5.2. Evaluation Metrics

The classifiers are evaluated using four different

metrics: accuracy, balanced accuracy, the area

under the ROC curve (AUC), and negative log

likelihood (NLL). The reported result for each

classifier is averaged over 3630 experiments. We

use balanced accuracy to deal with possible class

imbalances when evaluating the accuracy of our

method. The AUC metric is not sensitive to class

imbalances; however, it is able to provide us with

an evaluation of probability estimates of the

models and their ability to separate the classes

regardless of the selected threshold. For problems

with two classes, we treated the minority class as

a positive outcome. For multi-class problems, we

calculate the AUC for each class and weight it by

the class frequency in the train data, as

recommended by [57]. NLL evaluates the

likelihoods. The higher the probabilities assigned

to the correct classes, the better the classifier. For

the values of NLL, contrary to the others, less

means better.

Rahimi et al./ Journal of AI and Data Mining, Vol. 11, No. 1, 2023

86

5.3. Experimental settings

As mentioned before, we use a set of diverse base

classifiers, namely Logistic Regression (LR),

C4.5 decision tree, linear Support Vector Machine

(SVML), Nearest Neighbor (NN), and a Single

Hidden Layer Perceptron (MLP) as suggested in

many other studies [2]. As mentioned earlier, the

meta-classifier is a feedforward neural network. It

is a multi-layer perceptron with three layers. In

other words, the network has only one hidden

layer as our contribution in this paper is mainly

focused on demonstrating the ability of a simple

neural network to learn a heterogeneous ensemble

and not finding the best network structure.

Table 2. List of 10 heterogeneous and five homogeneous ensembles used for performance comparison.

Heterogeneous ensemble methods

Pick Best PB

Majority Vote MV

Weighted Majority Vote WMV

Multi-Response Linear Regression [22] SMLR

Naïve Bayes Combiner [5] NBC

Ensemble Selection[58] ES

Multi-Response Linear Regression on Extended Features [36] SMLRE

Multi-Response Model Trees [36] SMM5

Recall Combiner [4] RC

Cross-validation Accuracy Weighted Probabilistic Ensemble [2]
Grading [59]

CAWPE
GRAD

Homogeneous Ensemble Methods

Bootstrap Aggregating [60] Bagging

Adaptive Boosting [61] AdaBoost

Random Forests [23] RandF

Additive Logistic Regression [62] LogitBoost

Gradient boosting [24] XGBoost

Rotation forest [63] ROF

The size of the hidden layer is heuristically set as

half the overall number of classes and features in

the problem at hand. Hyperbolic tangent function

(tanh) is used as the activation function in the

hidden layer.

If unspecified in any experiment, the meta-data

used for training the network is by default the

concatenated class probabilities (
cp

jx). The

algorithm is implemented in python using Keras
1
.

The implementation is publicly accessible
2
.

The performance of the proposed model is

compared with each one of these classifiers

individually. The reported values are the mean

values of the performances of each classifier on

the 121 UCI datasets and on 30 different test

and train splits for each dataset. The proposed

model is also compared with established and

state-of-the-art homogeneous and heterogeneous

ensemble models. The list of these models is

available in

Table 2.

1https://github.com/keras-team/keras

2https://github.com/amiralitaheri/tsml/blob/metanet/Metanet_Python.
ipynb

In the experiments, after comparing the

performance of the proposed framework with

other models, we investigate the effect of different

combination functions in enriching the meta-data

feature space.

Figure 3. Average accuracy values and standard

deviations of Metanet on 121 datasets.

5.4. Results

In this section, we will describe the conducted

experiments and present the results of these

experiments. These experiments are conducted on

the mentioned 121 datasets.

As a primary evaluation, we measure the accuracy

of Metanet on 121 datasets. Figure 3 shows the

mean accuracy values (solid line) on the 30 splits

of each dataset, and the standard deviations (SD)

are shown as shadows around the accuracies.

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy

Datasets in order of accuracy values

https://github.com/keras-team/keras
https://github.com/amiralitaheri/tsml/blob/metanet/Metanet_Python.ipynb
https://github.com/amiralitaheri/tsml/blob/metanet/Metanet_Python.ipynb

Learning a Nonlinear Combination of Generalized Heterogeneous Classifiers

87

The problems in this figure are sorted according to

their accuracies. The largest SD values belong to

the problems "Plant-shape" and "Congressional".

The SD values are 0.2 and 0.135, respectively.

The former problem is a two-class problem with

29 features and only 10 instances, while the latter

is another two-class problem with four features

and only 16 instances. These are actually the two

smallest datasets among the 121 datasets.

According to the small size of instances in these

datasets, it is not unexpected for these two

problems to be unstable when trained on different

splits of the training data.

The smallest accuracy obtained by Metanet is

0.381 that belongs to the "heart-va" problem. It is

a five-class problem with 12 features and 200

instances. The largest accuracy is one which

belongs to "acute-inflammation". It is a two-class

problem with six features and 120 instances. The

results show that the accuracies obtained by the

proposed ensemble framework are mostly stable

on different datasets.

5.4.1. Comparison with base classifiers

The proposed model is an ensemble of five

classifiers, which are called base classifiers

throughout this manuscript. Naturally, the

proposed model has to perform better than these

base classifiers for it to be justifiable and worthy

of further investigations and evaluations.

Table 3 shows the average results of applying the

base classifiers on 121 UCI datasets using the

setting explained in Section 5.3. One can see that

metanet significantly outperforms base classifiers

in terms of accuracy, balanced accuracy, the area

under the ROC curve, and negative log-likelihood.

This justifies the claim that a heterogeneous

ensemble can perform better than multiple

individual classifiers.
Table 3. Comparison between metanet and base

classifiers.

Algorithm Accuracy Balanced accuracy AUC NLL

Logistic 0.762 0.691 0.841 8.134

C4.5 0.770 0.699 0.736 1.161

MLP 0.786 0.712 0.860 1.297

NN 0.784 0.697 0.798 1.116

SVML 0.771 0.694 0.849 1.073

Metanet 0.831 0.756 0.881 0.725

5.4.2. Comparison with heterogeneous

ensembles

The proposed model is compared to the other

heterogeneous ensembles constructed using the

same set of base classifiers. The experiments are

performed under the settings explained in Section

5.3, and the results are depicted in Table 4.

Table 4. Comparison between metanet and heterogeneous

ensembles.

Algorithm Accuracy
Balanced

accuracy
AUC NLL

CAWPE 0.815 0.742 0.884 0.704

ES 0.810 0.734 0.813 0.884

MV 0.805 0.727 0.808 0.877

NBC 0.807 0.740 0.820 0.999

PB 0.771 0.694 0.847 0.950

RC 0.805 0.712 0.811 0.912

SMLR 0.805 0.728 0.737 1.144

SMLRE 0.786 0.712 0.734 1.251

SMM5 0.805 0.729 0.744 1.046

WMV 0.808 0.730 0.814 0.872

GRAD 0.496 0.411 0.516 2.005

Metanet 0.831 0.756 0.881 0.725

As observed, metanet has the best accuracy

among all heterogeneous ensembles. In terms of

AUC it is comparable with CAWPE, while

outperforming the other methods. However,

CAWPE has a better negative log-likelihood than

the proposed model while it is better than the

other methods. However, according to our

observations, NLL could be improved by using

more information to achieve better probability

estimates. This will be further discussed in the

Section 5.4.4.

The results confirm that using a heterogeneous

ensemble with a neural network meta-learner can

achieve a notable performance which outperforms

other established heterogeneous models.

As depicted above, the proposed model is more

accurate on average than many other types of

heterogeneous ensemble models, the most recent

of which is CAWPE. For more clarification, we

have investigated the performance of CAWPE and

Metanet more closely. Figure 4 shows the

differences in the accuracies of the Metanet and

CAWPE models on each of the problems in 121

UCI datasets. As one can see in this figure, the

proposed model is more accurate in most of the

cases.

Figure 4. A difference between Metanet accuracy and

CAWPE accuracy in increasing order.

Accurately speaking, the accuracy of CAWPE is

better in only 10 datasets out of the total 121

datasets. The average number of instances in these

10 datasets is 587.1, meaning that these are small

-0.05

0

0.05

0.1

0.15

A
cc

u
ra

cy
 D

if
fe

re
n

ce
s

Datasets in order of accuracy difference values

Metanet Accuracy - CAWPE…

Rahimi et al./ Journal of AI and Data Mining, Vol. 11, No. 1, 2023

88

datasets. The average size of the other 111

datasets where Metanet performs better is 4911.9.

This can be considered as an indicating point that

the proposed model has the potential to perform

even better on bigger datasets.

5.4.3. Comparison with homogeneous

ensembles

The performance of Metanet is compared with

five different homogeneous ensembles, all of

which are constructed using 500 different

instances of the same base classifier. The results

are reported in Table 5.

As depicted in Table 5, Metanet is also more

accurate than homogeneous ensembles. In terms

of AUC, the proposed model outperforms four of

the homogeneous ensembles, and is comparable to

random forest. This is also true in terms of NLL

except the case of random forest, which is

performing slightly better. Again, NLL can be

improved by adding more features as discussed in

the following sub-section.

Table 5. Comparison between Metanet and homogeneous

ensembles.

Algorithm Accuracy Balanced accuracy AUC NLL

AdaBoost 0.647 0.531 0.775 3.258

Bagging 0.794 0.697 0.868 0.775

LogitBoost 0.759 0.698 0.836 8.246

RandF 0.815 0.741 0.886 0.713

XGBoost 0.807 0.739 0.876 0.843

ROF 0.749 0.721 0.881 1.019

Metanet 0.831 0.756 0.881 0.725

The results show that the proposed heterogeneous

ensemble framework, with only five base

classifiers, can outperform ensembles with a large

number of homogeneous base learners.

5.4.4. Enriching meta-data

The aforementioned experiments have shown that

stacked generalization, using a neural network as

the meta-classifier can achieve better results over

a large set of problems in comparison to

established and state-of-the-art ensemble

approaches. In the previous experiments, the

meta-data was the class probability values of the

first-level classifiers, i.e.
cp

jx . This concatenation

of probabilities was slightly lacking in terms of

NLL metric compared to some weighted

approaches such as RF and CAWPE. It means that

these approaches are more confident in their

decisions. This could be related to the type and

number of features that are used for training the

meta-classifier. When using just the outputs of the

first-level classifiers by concatenation, the size of

the meta-data features is limited to the number of

base-classifiers times the number of classes. This

could be much less than enough especially when

the number of classes is small. However, there are

more possibilities for integrating the outputs of

the first-level classifiers to prepare the meta-data.

Thus, we have decided to enrich the meta-level

data with three different approaches, mainly

focused on improving the performance of the

proposed model on the NLL metric.

To enrich the feature space of the meta-data, we

may use the original data along with the class

probabilities or class probability averages, as

shown in Equation (5). We call these approaches

"Class+Base", or "Mean+Base" if the first-level

features are added to
cp

jx or
avg

jx , respectively.

We have also investigated using the averages

along with the concatenated class probabilities

(
cp avg

j


x), which would be called "Mean+Class".

Table 6 shows the results of these approaches,

averaged on the 121 datasets. In this table, the

approach with concatenated class probabilities

(
cp

jx) without any extra data is referred as

"Class". As one can see in Table 6, none of the

three approaches show any significant

improvement over the concatenation approach.

Table 6. Comparing performance of Metanet with

different combination functions.

Algorithm Accuracy Balanced accuracy AUC NLL

Class 0.831 0.756 0.881 0.725

Mean+Base 0.828 0.751 0.872 0.726

Mean+Class 0.830 0.754 0.876 0.740

Class+Base 0.832 0.756 0.876 0.723

In case of "Mean+Class" even, NLL has

deteriorated. However, after looking more

closely, we have found out that most cases of

improvements for these approaches over our

original concatenation scheme, happen when the

numbers of classes are large and even better when

the numbers of features are also small. Inspired by

this observation, we have sorted the datasets first

by the number of classes in descending order and

then by the number of features in ascending order.

Let us look at the results for the first nine

problems in this sorted list where the number of

classes are at least 15 and at most 100. For such

problems in which the number of classes is high,

it is not easy to achieve good results in case of

NLL. However, the proposed approaches yield

improvements in these problems as is shown in

Table 7.

Learning a Nonlinear Combination of Generalized Heterogeneous Classifiers

89

Table 7. Comparing performance of Metanet with

different combination functions on the problems with at

least 15 classes.

Algorithm Accuracy Balanced accuracy AUC NLL

Class 0.768 0.704 0.961 1.347

Mean+Base 0.768 0.723 0.964 1.230

Mean+Class 0.771 0.707 0.960 1.284

Class+Base 0.771 0.713 0.964 1.234

CAWPE 0.763 0.729 0.963 1.274

RF 0.756 0.716 0.966 1.515

For these same datasets, RF reaches the NLL

value 1.515 and CAWPE yields 1.274. Thus, by

using the right set of meta-level features, the

proposed model can outperform RF and CAWPE,

especially in case of NLL. As we have mentioned

before, these results show that when we are using

only the class probabilities, the number of features

is bound to the number of classes, which in many

cases is as small as two.

One approach to mitigate this problem is

enriching the metadata with the original (base)

data. However, in the face of a large number of

original features, the small set of class

probabilities could be dominated and lose their

effect. Therefore, when the number of classes is

larger and the number of original features is small

the proposed approaches especially "mean + base"

and "Class+Base" are more likely to make

improvement over the original concatenation

scheme. These results also show that the set of

meta-level features are very important to the

proposed method and can affect its performance.

Especially the means of class probabilities over all

the base classifiers could be considered as very

meaningful features.

5.4.5. Comparing performance on some

individual problems

In this section, we depict the results for some of

the problems individually. Inspired by the results

and observations in the previous experiments, to

fairly select a set of representative datasets

(problems), we define a clustering task to divide

the problems into six exclusive clusters. Then in

each cluster of problems, we compute the average

classification accuracy, and select the problem

with the nearest accuracy to the average as a

representative. For the clustering task, each

problem is represented by three features; number

of instances, number of features and number of

classes. The clusters are constructed using the K-

means clustering algorithm with 15k  , after

normalizing the feature space. In a post-

processing step, the problems in the clusters with

less than five members have been reassigned to

other clusters. This step reduced the number of

clusters into six. The average feature values of

each cluster are shown in Table 8 and the

representative problems in

Table 9. The values of our four metrics for the

representatives are depicted in Table 10.

Table 8. Average properties in the six clusters of the 121

problems.

Cluster

(cl)

Number of

features

Number of

classes

Number of

instances

Cluster

size

1 15.7 8.92 1501.67 12

2 7.92 2.94 642.49 49

3 104.14 5.78 1536.93 14
4 26.65 3.0 15638.69 26

5 44.0 54.28 7676.28 7

6 34.92 3.0 1518.15 13

Table 9. Representative problems selected from each

cluster.

Cl
Representative

problem

Number of

features

Number of

classes

Number of

instances

1 led-display 7 10 1000

2 lenses 4 3 24

3

conn-bench-

sonar-mines-

rocks

60 2 208

4 Parkinson's 22 2 195

5 plant-margin 64 100 1600

6 annealing 31 5 898

Most of the problems, with large number of

classes are placed in the fifth cluster, which is

almost identical to the subset of problems

mentioned in sub-section 5.4.4.

The problems with the largest numbers of features

are placed on the third cluster. Most members of

this cluster have two or three classes. Carefully

inspecting algorithm performance on these

clusters, as shown in Table 10, confirms our

previous observation; when the number of classes

is large and the numbers of features are relatively

small, as in the fifth cluster, the "Mean+Base"

version of our method, outperforms the other

models. However, if the number of classes is

small and the number of features is large in

comparison, we cannot expect "Mean+Base" to

yield the same outstanding results. As another

example of this, one can refer to the second

cluster.

The second-best results for "Mean+Base" are

achieved in this cluster which is the largest

cluster. In this cluster, "Mean+Base" outperforms

the other version of Metanet very clearly. This

cluster is the second largest in case of the number

of classes. The number of features is not large in

comparison to the number of classes, which again

provides suitable situations for the "Mean+Base"

version of the proposed model to excel.

Learning a Nonlinear Combination of Generalized Heterogeneous Classifiers

90

Table 10. Comparing performance of Metanet with CAWPE on representative problems.

Problem Accuracy AUC Balanced accuracy NLL

M
etan

et-

m
ean

+
b

ase

M
etan

et-

class

C
A

W
P

E

M
etan

et-

m
ean

+
b

ase

M
etan

et-

class

C
A

W
P

E

M
etan

et-

m
ean

+
b

ase

M
etan

et-

class

C
A

W
P

E

M
etan

et-

m
ean

+
b

ase

M
etan

et-

class

C
A

W
P

E

led-display 0.729 0.725 0.718 0.948 0.938 0.952 0.730 0.727 0.719 1.343 1.478 1.271
lenses 0.797 0.731 0.776 0.820 0.699 0.887 0.692 0.605 0.765 1.097 1.334 0.924
conn-bench 0.826 0.846 0.815 0.881 0.892 0.894 0.823 0.844 0.811 0.656 0.618 0.628
Parkinson's 0.896 0.927 0.903 0.925 0.955 0.952 0.819 0.889 0.855 0.445 0.352 0.345
plant-margin 0.821 0.802 0.812 0.996 0.991 0.996 0.821 0.802 0.812 0.933 1.210 0.981

annealing 0.929 0.942 0.922 0.951 0.963 0.964 0.827 0.862 0.821 0.381 0.320 0.333

In the case of accuracy and balanced accuracy, our

models outperform CAWPE in all the examples.

However, the CAWPE model performs better than

"Mean+Base", in terms of NLL in all the

examples except the "plant-margin", which is the

representative of the fifth cluster. This cluster

contains the problems with the largest number of

classes and smaller number of features (in

comparison to the number of classes). As we have

mentioned above, in such circumstances the

"Mean+Base" version of our model exhibits its

best performance.

5.4.6. Statistical significance

In this section, we investigate if the superiority of

the proposed model over the other methods is

significant. We conducted a nonparametric and

paired statistical test over the accuracy differences

of the proposed model and the other mentioned

heterogeneous models over the 121 datasets. We

have used the Wilcoxon’s signed-rank test for

matched pairs. In this test, no specific distribution

is assumed over the data. The null hypothesis

states that the median difference is zero, while the

alternative hypothesis (two-sided) states that it is

not zero. If the p-value is small then the null

hypothesis can be rejected at the confidence level

of 5%, in favour of the alternative. It means that

the differences are significant. The test is

performed by calculating the signed differences of

each pair of the data. Then a statistic is obtained

using the rank (signed) of the absolute values of

these differences. Our results show that the

differences are significant with the p-values less

than 0.001.

6. Conclusion

Classification is still a major concern in computer

science as finding the perfect classifier for a

problem is time-consuming and difficult. We

proposed a method to create a heterogeneous

ensemble by combining established and state-of-

the-art classifier algorithms and neural networks.

The proposed method is called Metanet. This

model follows the stacking scheme, and uses a

neural network as the meta-classifier to learn a

nonlinear function for effectively combining the

outputs of the base classifiers. The base outputs

are used to generate a set of meta-data as input of

the meta-classifier. Different functions are

proposed to combine the outputs of the base

classifiers into meta-data, based on concatenation

and averaging. As the number of such features are

small, we also considered enriching them with the

base-level data.

A set of extensive experiments were conducted to

evaluate Metanet with the two mentioned

combination functions in comparison to classifiers

and ensembles of several different schemes such

as homogeneous, weighting scheme, and stacking

methods. According to our experiments, Metanet

is more accurate compared to other state-of-the-art

heterogeneous or homogenous ensembles of

weighting or stacking schemes such as CAWPE

or XGBoost. Between the two meta-data

functions, i.e. concatenation and averaging,

averaging performs better when used along with

the first-level data. Using a neural network as a

combiner in heterogeneous ensembles has the

benefits of learning a powerful combination

specific to each problem based on the provided

data. Our experiments show that a neural network

in a stacking scheme, given a sufficient set of

meta-data would create a very successful

ensemble of heterogeneous classifiers. Further

investigation of the combination functions would

be a good path to create even more powerful

ensembles. Especially with the massive datasets

available for many problems, and the continuous

improvement in access to computational power,

the capability of different ensemble structures

should be revisited.

References

[1] W. J. Tastle, Data mining applications using

artificial adaptive systems, Springer Science &

Business Media,. 2013.

Learning a Nonlinear Combination of Generalized Heterogeneous Classifiers

91

[2] J. Large, J. Lines, and A. Bagnall, “A probabilistic

classifier ensemble weighting scheme based on cross-

validated accuracy estimates,” Data Min. Knowl.

Discov., vol. 33, no. 6, pp. 1674–1709, 2019.

[3] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas,

“On combining classifiers,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 20, no. 3, pp. 226–239, Mar. 1998.

[4] L. I. Kuncheva and J. J. Rodríguez, “A weighted

voting framework for classifiers ensembles,” Knowl.

Inf. Syst., vol. 38, no. 2, pp. 259–275, 2014.

[5] L. I. Kuncheva, “Switching between selection and

fusion in combining classifiers: An experiment,” IEEE

Trans. Syst. Man, Cybern. Part B Cybern., vol. 32, no.

2, pp. 146–156, 2002.

[6] H. R. Kadkhodaei, AME Moghadam, and M.

Dehghan, “HBoost: A heterogeneous ensemble

classifier based on the Boosting method and entropy

measurement”, Expert Systems with Applications vol.

157:113482, 2020.

[7] E. Soltanmohammadi, M. Naraghi-Pour, and M.

van der Schaar, “Context-based unsupervised ensemble

learning and feature ranking”, Machine Learning vol.

105, pp. 459–485, 2016.

[8] F. Pinagé, dos EM. Santos, and J. Gama, “A drift

detection method based on dynamic classifier

selection”, Data Mining and Knowledge Discovery vol.

34, pp. 50–74, 2020.

[9] T. T. Nguyen, N. Van Pham, M. T. Dang, A. V.

Luong, J. McCall, and A. W. C. Liew, “Multi-layer

heterogeneous ensemble with classifier and feature

selection,” in Proceedings of the 2020 Genetic and

Evolutionary Computation Conference, Jun. 2020, vol.

100, pp. 725–733.

[10] K. Zhao, T. Matsukawa, E. Suzuki, “Experimental

validation for N-ary error correcting output codes for

ensemble learning of deep neural networks”, Journal of

Intelligent Information Systems vol. 52, pp.367–392,

2019.

[11] D. Jimenez, “Dynamically weighted ensemble

neural networks for classification,” in 1998 IEEE

International Joint Conference on Neural Networks

Proceedings. IEEE World Congress on Computational

Intelligence (Cat. No.98CH36227), 1998.

[12] J. Z. Kolter and M. A. Maloof, “Dynamic

weighted majority: An ensemble method for drifting

concepts,” J. Mach. Learn. Res., vol. 8, pp. 2755–2790,

2007.

[13] Y. Zhang, G. Cao, B. Wang, and X. Li, “A novel

ensemble method for k-nearest neighbor,” Pattern

Recognit., vol. 85, pp. 13–25, 2019.

[14] D. H. Wolpert, “Stacked generalization,” Neural

Networks, vol. 5, no. 2, pp. 241–259, Jan. 1992.

[15] J. Kittler and F. M. Alkoot, “Sum versus vote

fusion in multiple classifier systems,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 25, no. 1, pp. 110–115,

2003.

[16] P. K. Chan and S. J. Stolfo, “Learning Arbiter and

Combiner Trees from Partitioned Data for Scaling

Machine Learning,” in KDD95, 1995, pp. 39–44.

[Online]. Available:

https://www.aaai.org/Papers/KDD/1995/KDD95-

047.pdf

[17] P. Chan and S. Stolfo, “Toward parallel and

distributed learning by meta-learning,” in Working

notes of the AAAAI-93 workshop on Knowledge

Discovery in Databases, 1993, pp. 227–240. [Online].

Available:

https://www.aaai.org/Papers/Workshops/1993/WS-93-

02/WS93-02-020.pdf

[18] T. Furlanello, Z. C. Lipton, M. Tschannen, L. Itti,

and A. Anandkumar, “Born Again Neural Networks,”

in 35th International Conference on Machine

Learning, ICML 2018, May 2018, vol. 4, pp. 2615–

2624. [Online]. Available:

http://arxiv.org/abs/1805.04770

[19] A. Dutt, D. Pellerin, and G. Quénot, “Coupled

ensembles of neural networks,” Neurocomputing, vol.

396, pp. 346–357, Jul. 2020.

[20] A. Petrakova, M. Affenzeller, and G.

Merkurjeva, “Heterogeneous versus Homogeneous

Machine Learning Ensembles,” Inf. Technol. Manag.

Sci., vol. 18, no. 1, 2016.

[21] M. P. Sesmero, A. I. Ledezma, and A. Sanchis,

“Generating ensembles of heterogeneous classifiers

using Stacked Generalization,” Wiley Interdiscip. Rev.

Data Min. Knowl. Discov., vol. 5, no. 1, pp. 21–34,

2015.

[22] K. M. Ting and I. H. Witten, “Issues in Stacked

GeneralizationS,” J. Artif. Intell. Res., vol. 10, pp. 271–

289, 1999.

[23] T. K. Ho, “The Random Subspace Method for

Constructing Decision Forests,” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 20, no. 8, pp. 832–844, 1998.

[24] T. Chen and C. Guestrin, “XGBoost: A scalable

tree boosting system,” in Proceedings of the ACM

SIGKDD International Conference on Knowledge

Discovery and Data Mining, 2016, vol. 13-17-Augu,

pp. 785–794.

[25] C. E. Brodley and T. Lane, “Creating and

exploiting coverage and diversity,” Proc. AAAI Work.

Integr. Mult. Learn. Model., pp. 8–14, 1996, [Online].

Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.

1.1.51.2526&rep=rep1&type=pdf

[26] L. Breiman, “Bagging predictors,” Mach. Learn.,

vol. 24, no. 2, pp. 123–140, Aug. 1996, doi:

10.1007/BF00058655.

[27] H. Drucker, “Improving regressors using boosting

techniques,” in 14th International Conference on

Machine Learning, 1997, pp. 107–115. [Online].

Available:

http://www.researchgate.net/publication/2424244_Impr

oving_Regressors_using_Boosting_Techniques/file/3d

Rahimi et al./ Journal of AI and Data Mining, Vol. 11, No. 1, 2023

92

eec51ae736538cec.pdf%5Cnhttp://citeseerx.ist.psu.edu

/viewdoc/summary?doi=10.1.1.31.314

[28] Sh. Kashef, H. Nezamabadi-pour, “MLIFT:

Enhancing Multi-label Classifier with Ensemble

Feature Selection”, Journal of AI and Data Mining,

vol. 7, no. 3, pp. 355-365, 2019.

[29] L. I. Kuncheva and E. Alpaydin, Combining

Pattern Classifiers: Methods and Algorithms, vol. 18,

no. 3. 2007.

[30] S. B. Oh, “On the relationship between majority

vote accuracy and dependency in multiple classifier

systems,” Pattern Recognit. Lett., vol. 24, no. 1–3, pp.

359–363, 2003.

[31] R. M. O. Cruz, R. Sabourin, and G. D. C.

Cavalcanti, “On meta-learning for dynamic ensemble

selection,” in Proceedings - International Conference

on Pattern Recognition, 2014, pp. 1230–1235.

[32] T. Zhang and G. Chi, “A heterogeneous ensemble

credit scoring model based on adaptive classifier

selection: An application on imbalanced data,” Int. J.

Financ. Econ., no. August, p. ijfe.2019, Aug. 2020.

[33] M. Smȩtek and B. Trawiński, “Selection of

heterogeneous fuzzy model ensembles using self-

adaptive genetic algorithms,” New Gener. Comput.,

vol. 29, no. 3, pp. 309–327, 2011.

[34] E. Menahem, L. Rokach, and Y. Elovici,

“Combining one-class classifiers via meta learning,” in

International Conference on Information and

Knowledge Management, Proceedings, 2013, pp.

2435–2440.

[35] G. Tsoumakas, L. Angelis, and I. Vlahavas,

“Selective fusion of heterogeneous classifiers,” Intell.

Data Anal., vol. 9, no. 6, pp. 511–525, 2005.

[36] S. Džeroski and B. Ženko, “Is combining

classifiers with stacking better than selecting the best

one?,” Mach. Learn., vol. 54, no. 3, pp. 255–273, 2004.

[37] T. T. Nguyen, A. V. Luong, M. T. Dang, A. W.

C.Liew, and J. McCall, “Ensemble selection based on

classifier prediction confidence”, Pattern Recognition,

vol. 100, 107104, 2020.

[38] R. Caruana, A. Munson and A. Niculescu-Mizil,

"Getting the Most Out of Ensemble Selection," Sixth

International Conference on Data Mining (ICDM'06),

Hong Kong, China, 2006, pp. 828-833.

[39] A. M. Webb et al., “To Ensemble or Not

Ensemble: When does End-To-End Training Fail?,” in

In Computer Vision and Pattern Recognition (CVPR),

Feb. 2019, pp. 1–21.

[40] L. Rokach, “Ensemble Methods for Classifiers,”

in Data Mining and Knowledge Discovery Handbook,

no. August, New York: Springer-Verlag, 2015, pp.

957–980.

[41] Y. Baghoussi and J. Mendes-Moreira, “Instance-

Based Stacked Generalization for Transfer Learning,”

in Intelligent Data Engineering and Automated

Learning, 2018, pp. 753–760.

[42] A. K. Seewald and J. Fürnkranz, “An evaluation

of grading classifiers,” Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 2189, pp. 115–124, 2001.

[43] A. K. Seewald. and J. Fürnkranz, “Grading

classifiers,” Austrian Research Institute for Artificial

Intelligence, Vienna. Tech. Rep. OEFAI-TR-2001-01,

2001.

[44] A. K. Seewald, “Towards a Theoretical

Framework for Ensemble Classification (extended

version),” Austrian Research Institute for Artificial

Intelligence, Vienna, Tech. Rep. TR-2003-08, 2003.

[45] D. V. Sridhar, R. C. Seagrave, and E. B. Bartlett,

“Process Modeling Using Stacked Neural Networks,”

AIChE J., vol. 42, no. 9, pp. 2529–2539, 1996.

[46] A. Ledezma, R. Aler, A. Sanchis, and D. Borrajo,

“GA-stacking: Evolutionary stacked generalization,”

Intell. Data Anal., vol. 14, no. 1, pp. 89–119, 2010.

[47] P. Shunmugapriya and S. Kanmani, “Optimization

of stacking ensemble configurations through Artificial

Bee Colony algorithm,” Swarm Evol. Comput., vol. 12,

pp. 24–32, 2013.

[48] N. Rooney, D. Patterson, and C. Nugent, “Non-

strict heterogeneous Stacking,” Pattern Recognit. Lett.,

vol. 28, no. 9, pp. 1050–1061, 2007.

[49] Y. Xia, C. Liu, B. Da, and F. Xie, A novel

heterogeneous ensemble credit scoring model based on

bstacking approach, vol. 93. Elsevier Ltd, 2018.

[50] M. Massaoudi, S. S. Refaat, I. Chihi, M. Trabelsi,

F. S. Oueslati, and H. Abu-Rub, “A novel stacked

generalization ensemble-based hybrid LGBM-XGB-

MLP model for Short-Term Load Forecasting,”

Energy, vol. 214, p. 118874, 2021.

[51] J. Yan and S. Han, “Classifying Imbalanced Data

Sets by a Novel RE-Sample and Cost-Sensitive

Stacked Generalization Method,” Math. Probl. Eng.,

vol. 2018, 2018.

[52] S. Rajaraman et al., “A novel stacked

generalization of models for improved TB detection in

chest radiographs,” in Proceedings of the Annual

International Conference of the IEEE Engineering in

Medicine and Biology Society, EMBS, 2018, vol. 2018-

July, pp. 718–721.

[53] Z. Eivazpour and M. R. Keyvanpour, “CSSG: A

cost-sensitive stacked generalization approach for

software defect prediction,” Softw. Test. Verif. Reliab.,

vol. 31, no. 5, 2021.

[54] K. Akyol, “Stacking ensemble based deep neural

networks modeling for effective epileptic seizure

detection,” Expert Syst. Appl., vol. 148.

[55] A. Das, S. Roy, U. Bhattacharya, and S. K. Parui,

“Document Image Classification with Intra-Domain

Transfer Learning and Stacked Generalization of Deep

Learning a Nonlinear Combination of Generalized Heterogeneous Classifiers

93

Convolutional Neural Networks,” Proc. - Int. Conf.

Pattern Recognit., vol. 2018-Augus, pp. 3180–3185,

2018.

[56] J. C. Platt, “Probabilistic Outputs for Support

Vector Machines and Comparisons to Regularized

Likelihood Methods,” Adv. large margin Classif., vol.

10, no. 3, pp. 61–74, 1999.

[57] P. Domingos and F. Provost, “Tree Induction for

Probability-Based Ranking,” Mach. Learn., vol. 52, no.

3, pp. 199–215, 2003.

[58] R. Caruana, A. Niculescu-Mizil, G. Crew, and A.

Ksikes, “Ensemble selection from libraries of models,”

in Twenty-first international conference on Machine

learning - ICML ’04, 2004, no. 1996, p. 18.

[59] A. K. Seewald and J. Fuernkranz, “An evaluation

of grading classifiers,” in International Conference on

Advances in Intelligent Data Analysis, Proceedings,

2001, pp. 115-124.

[60] L. Breiman, “Bagging predictors,” Mach. Learn.,

vol. 24, no. 2, pp. 123–140, 1996, [Online]. Available:

https://www.stat.berkeley.edu/%7B~%7Dbreiman/bag

ging.pdf

[61] Y. Freund and R. E. Schapire, “A Decision-

Theoretic Generalization of On-Line Learning and an

Application to Boosting,” J. Comput. Syst. Sci., vol. 55,

no. 1, pp. 119–139, 1997.

[62] J. Friedman, T. Hastie, and R. Tibshirani,

“Additive logistic regression: a statistical view of

boosting (With discussion and a rejoinder by the

authors),” Ann. Stat., vol. 28, no. 2, pp. 337–407, 2000.

[63] J. J. Rodriguez, L. I. Kuncheva, and C. J. Alonso,

“Rotation Forest: A new classifier ensemble method”.

IEEE transactions on pattern analysis and machine

intelligence, vol. 28, no. 10, pp. 1619-1630, 2006.

 .2041سال ،اول شماره هم،دوره یازد ،کاویمجله هوش مصنوعی و داده و همکاران رحیمی

 های مصنوعی عصبی ناهمگن با استفاده از شبکه یافته تعمیم بندهای یادگیری ترکیب دسته

 هدی مشایخی و امیرعلی طاهری، *مرضیه رحیمی

 .سمنان، ایران، شاهرود، دانشگاه صنعتی شاهرود، دانشکده مهندسی کامپیوتر

 12/21/1411 پذیرش؛ 12/22/1411 ازنگریب؛ 40/22/1411 ارسال

 چکیده:

کلهی بچههارچو یهک ، در این مقالهه اساسی از ساخت یک سیستم یادگیری ناهمگن گروهی است. ییادگیران پایه، بخشیافتن راهی موثر برای ترکیب

بنهههای پایهه اسهتهاده ، بهرای یهادگیری ترکیهب خیرخدهی دسهته از یک شبکه مصنوعی عصهبی در آن کنیم که گیری ناهمگن گروهی ارائه میدبرای یا

پردازنه. بهه در کنار یکهیگر و در طی چنه مرحله به تولیه خروجی مرحله اول میبنههای ناهمگن ای از دسته مجموعهچوب پیشنهادی، ر. در چهاشود می

ها با استهاده از چنههین تهابم مختله این خروجی . شود ، تولیه میمتقابل یاعتبارسنجای مشابه هاین ترتیب که در هر مرحله بخشی از خروجی، به شیو

 روشمجموعهه داده انجهاد داده و 212ای را بهر روی مها آزمایشهاگ گسهترده کننهه. بنه مرحله بعهه را تولیهه مهی خنی و ترکیب شهه و ورودیهای دسته

ایم. نتایج این آزمایشهاگ حهاکی از برتهری روش پیشهنهادی بهر شهه، مقایسه نموده موجود اعم از نوین و شناخته های ناهمگن دیگر روشپیشنهادی را با

های همگن مقایسهه همچنین با تعهادی روش ،ظیم دقیق است. روش پشنهادیبنههای منهرد با تن دستههمیندور های ناهمگن موجود و بسیاری از روش

 های بزرگ چشمگیرتر است. دهه که برتری روش پیشنهادی بر روی مجموعه داده های ما نشان می است. یافته شهه و برتری خود را نشان داده

 .بنهها، یادگیری ماشین همجوشی دستههای عصبی، تعمیم انباشته، بنهی، شبکه یادگیری ناهمگن گروهی، دسته :کلمات کلیدی

