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 Finding an effective way to combine the base learners is an essential 

part of constructing a heterogeneous ensemble of classifiers. In this 

paper, we propose a framework for constructing heterogeneous 

ensembles, utilizing an artificial neural network to learn a non-linear 

combination of the base classifiers. In the proposed framework, a set 

of heterogeneous classifiers work together to produce the first-level 

outputs in a multistep procedure where in each step, a part of the 

output is produced in a similar manner to cross-validation. Then these 

outputs are augmented using several combination functions to 

construct the inputs of the second-level classifier. We conduct a set of 

extensive experiments on 121 datasets, and compare the proposed 

method with other established and state-of-the-art heterogeneous 

methods. The results demonstrate that the proposed scheme 

outperforms many heterogeneous ensembles, and is superior compared 

to singly tuned classifiers. The proposed method is also compared with 

several homogeneous ensembles, and performs notably better. Our 

findings suggest that the improvements are even more significant on 

larger datasets. 
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1. Introduction 

Classification is one of the well-known problems 

of machine learning. Developing accurate 

classifiers for real-world problems has been 

widely studied in the past decades. Classifiers are 

constructed based on a wide range of different 

learning algorithms. Each learning algorithm 

explores the hypothesis space from a different 

perspective. Thus by simply tuning even the best 

algorithm for a problem, some valuable aspects of 

the problem remain unexplored and ignored [1].  

It has been shown that we can improve the 

accuracy of real-world classification problems by 

using ensembles rather than spending time and 

resources to find and tune a specific algorithm [2]. 

By combining classifiers and creating an 

ensemble learning system, several different 

individual perspectives are combined to make a 

consensus decision [3]. Following this 

perspective, many ensemble algorithms are 

introduced, such as Naïve Bayes Combiner (NBC) 

[4, 5], Cross-validation Accuracy Weighted 

Probabilistic Ensemble (CAWPE) [2], 

heterogeneous boosting [6], and many others [7–

10]. To design an ensemble, many questions have 

to be answered regarding its structure, one of the 

most important of which is how to combine the 

results to make the final decision. Voting, 

summing [11–13], and meta-learning [14] are 

some of the major schemes for combining 

classifier decisions, among which summing and 

voting are used more frequently. Theoretical and 

practical evidence in many studies have proven 

the superiority of summing over voting [15]. 

Actually, a large number of ensemble algorithms 

are based on summing or in other words, 

weighting schemes. The central concept of many 

weighting schemes is to give each classifier a 

weight of influence based on its performance. In 

the meta-learning scheme, which is the least 

investigated among the three mentioned schemes, 

a second-level learning algorithm is used to learn 

a good combination of the base classifiers. For 
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homogeneous ensembles, where the base 

classifiers are of the same type, the meta-

classifiers mainly consist of combiner trees [16, 

17] and neural networks [18, 19]. In this 

approach, the diversity is achieved by partitioning 

the data. 

Heterogeneous ensembles have been shown to 

outperform homogeneous ensembles in many 

applications [2, 20]. In this category, where the 

base classifiers use different learning algorithms 

to provide diversity, the meta-learning approach is 

represented mainly by stacked generalization 

(stacking). In stacking, the results of the base 

classifiers are combined using another classifier, 

often called the meta-classifier. The inputs of this 

second-level meta-classifier are derived from the 

outputs of the base classifiers. Stacking methods 

despite showing promising results [21], have not 

been thoroughly investigated and widely used due 

to the lack of availability of sufficient amount of 

data or computational resources. As these 

limitations are largely lifted in the recent years, 

the meta-learning ensemble methods are gaining 

more attention recently. This encouraged us to 

investigate the performance of stacking methods.   

As mentioned earlier, the most popular and 

usually most successful methods for combining 

classifiers, both for heterogeneous and 

homogenous ensembles, are based on weighting 

schemes. This inspired us to investigate using 

neural networks for combining the base 

classifiers. Especially, by the recent successful 

revisit of the neural networks, which is the direct 

result of the availability of more enormous 

datasets and powerful computational platforms, it 

is reasonable to revisit and further investigate 

utilizing neural networks as the meta-classifier in 

ensemble systems. We propose a new stacking 

framework for heterogeneous ensembles, which 

instead of assigning constant weights to the 

outputs of base classifiers, uses a second-level 

classifier to learn the weights automatically. The 

second-level neural network classifier learns a 

mapping function from the outputs of the base 

classifiers to the actual target values. The 

proposed framework consists of three steps: 

generating the probabilistic outputs of the base 

classifiers and constructing the meta-data, 

building the second-level meta-classifier, and 

regenerating the base classifiers. Instead of simply 

partitioning the dataset among the base classifiers, 

which is the general approach in ensemble 

learning, we utilize the iterative folding scheme of 

stacked generalization to produce the outputs of 

the first-level classifiers. In addition, the proposed 

framework investigates several different 

combination functions to construct the meta-data 

as inputs of the second-level classifier. We 

empirically investigate the performance of the 

proposed stacking framework by evaluating it on 

121 UCI benchmark datasets. The results are 

compared to different state-of-the-art, and 

established ensemble methods, like Majority Vote 

(MV), Weighted MV (WMV), several 

heterogeneous ensembles such as CAWPE [2], 

Recall Combiner (RC), [4] and Stacking with 

Multi-response Linear Regression (SMLR) [22], 

and several homogeneous ensembles like Random 

Forest [23] and XGBoost [24]. Through these 

investigations, we show that the proposed 

heterogeneous ensemble framework, while using a 

neural network as the second-level classifier, is 

able to outperform many other state-of-the-art and 

established weighting scheme and stacking 

methods. The contributions and highlights of our 

work can be summarized as follows: 

 Proposing a new stacking framework for 

heterogeneous ensemble learning 

 Combining the idea of weighting schemes 

and stacked generalization using a neural 

network 

 Introducing new approaches for 

constructing and augmenting the meta-

data as inputs of the second-level 

classifier, and demonstrating that some of 

these approaches can improve the 

classification accuracy 

 Conducting rigorous and detailed 

experiments to demonstrate that the 

proposed framework can outperform 

different state of the art and benchmark 

ensemble models 

In the rest of the paper, an overview of the related 

works on heterogeneous and homogenous 

ensembles focusing on meta-learning methods is 

provided in Section 2. Section 3 introduces a 

general layout for weighting scheme methods, and 

provides a brief introduction to some of the 

methods used for comparison in the experiments. 

The proposed model is introduced in Section 4. A 

set of comprehensive experiments are reported in 

Section 5, and finally, conclusion is provided in 

Section 6.  

2. Literature Review  

Ensemble learning algorithms can be categorized 

into two main groups of heterogeneous or 

homogeneous ensembles, according to the 

employed base classifiers. Homogenous 
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ensembles refer to ensemble algorithms that use 

the same type of base classifiers with different 

training data, whereas heterogonous ensembles 

combine the results of different base classifiers 

with the same training data. Recent studies 

suggest that a heterogeneous ensemble of a set of 

diverse classifiers can perform more efficiently 

compared to homogeneous ensembles [2, 20]. In 

both the heterogeneous and homogeneous 

categories, classifiers should be diverse. Diversity 

is one of the key elements that has a crucial effect 

on the accuracy of the ensemble [25]. In 

homogeneous methods, diversity is achieved 

either by varying the training data of the base 

classifiers as performed in bagging [26] and 

boosting [27] or by varying the feature subset that 

each base classifier is built on, as in ensemble 

feature selection methods [28].  Heterogeneous 

methods ensure diversity by varying the base 

classifiers. The difference between classifiers is 

either in their type of learning algorithms or in 

their hyper-parameters.  

Our focus in this paper is on the meta-learning 

methods in the heterogeneous category. In the 

following, we will discuss the ensemble methods 

and some of their major examples in more detail 

focusing on heterogeneous methods. 

The existing heterogeneous ensembles can be 

divided into three main categories of fusion 

methods, selection methods, and meta-learning, 

considering the algorithm employed for 

combining the results of the base classifiers. The 

former consists mostly of weighting schemes. 

Weighting schema algorithms are one of the first 

types of ensemble methods proposed and used in 

heterogeneous as well as homogeneous 

ensembles. Such methods assign weights to the 

base classifiers, and classify a sample using a 

weighted combination of base outcomes. Methods 

such as majority vote and weighted majority vote 

[29, 30] are still used in many applications of 

ensemble methods. Recall combiner [4] and Naïve 

Byes combiner [4] are other established 

heterogeneous examples of weighting scheme 

methods. CAWPE [2] is a recent weighting 

scheme that sums up the advantages of the 

weighting schemes and suggest four properties 

that if used alongside each other, could make a 

powerful algorithm that outperforms other, even 

more complicated, heterogeneous and 

homogenous methods.  

Ensemble selection algorithms are focused on 

selecting the best possible combination of base 

algorithms. The idea of selection is applicable in 

both homogeneous [31] and heterogeneous [32–

34] ensembles. Some methods [35] have also been 

proposed that are a combination of selection and 

fusion. Pick Best (PB) is the most straightforward 

algorithm in this category, which evaluates each 

of the base classifiers, typically by cross-

validation, and selects the best one. As argued by 

Dzeroski and Zenko [36], pick best is a suitable 

baseline for comparison because of its simplicity 

and good performance. This category of models is 

less prone to overfitting. However, they usually 

are effective when applied to a large number of 

base classifiers, and therefore, are usually more 

complex, in both time and space, compared to the 

other categories of heterogeneous methods [37, 

38].  

The meta-learning scheme, which has been 

mentioned before, is the least investigated among 

the three ensemble schemes; a learning algorithm 

is used to learn how to effectively combine the 

base classifiers using their outcomes as meta-data. 

For homogeneous ensembles, the commonly used 

meta-learning algorithms are the arbiter and 

combiner trees [16, 17], and neural networks [18, 

19]. When using neural networks in homogeneous 

ensembles, meta-learning sometimes follows an 

end-to-end fashion, which is similar in spirit to 

stacking in which a combiner is trained in a 

generalized version of cross validation. In 

stacking, the base models are trained and then 

fixed. In end-to-end ensemble methods [19], 

however, the combiner participates in the training 

of the base neural networks [39].  

Meta-learning in heterogeneous ensembles has 

been realized in two different types; stacking and 

grading [40]. Grading [41] is a type of meta-

learning in which predictions of each of the base 

classifiers are marked as correct or incorrect, and 

then these graded predictions are assumed to form 

two meta-classes. Corresponding to each base 

classifier, a meta-classifier is trained based on this 

meta-data. The aim is to gain the ability to predict 

when a base classifier will misclassify. For 

classifying each unseen instance, the predictions 

of base classifiers are gathered and each of them 

is marked as correct or incorrect. The final 

classification is derived from the results of those 

base classifiers marked as correct. Although 

grading methods [41, 42] are inspired by stacking, 

they are based on selection, contrary to stacking 

which follows the fusion scheme.  Grading suffers 

from the problem of imbalanced data as in the 

meta-level, the number of correctly guessed 

instances is usually many more than the incorrect 

ones [43]. On the other hand, [44] shows that 

grading could be reduced to a special case of 

stacking.  
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Stacking algorithms use a second-level classifier 

to learn the best possible combination model. The 

second-level classifier uses cross-validation to 

learn from the data provided by the base 

classifiers. This scheme is applied on ensembles 

of both the same [45] and different learner types 

[14]. In the case of the former, the diversity is 

achieved by using different parameters or hyper-

parameters for each of the base classifiers. 

Stacking, despite showing promising 

performance, has received little attention.  

Our approach aiming to use a neural network as a 

combining algorithm is considered a stacking 

algorithm. One of the first stacking algorithms 

[22] uses multi-response linear regression as the 

meta-classifier. This method is improved in 

another research [36] by augmenting the class 

probability distributions, which are obtained from 

the base classifiers by additional attributes. 

Another example of staking algorithms is GA-

stacking [46], which employs the Genetic 

Algorithm (GA) to select the meta-classifier. 

Similarly, ABC-stacking [47] exploits the ability 

of the Artificial Bee Colony (ABC) to select the 

meta-classifier at the stacking level. Non-strict 

stacking [48] is another version of stacking, which 

can be considered as a combination of same-type 

and different-type stacking methods. In this 

method, each base classifier can participate in the 

ensemble with many duplicates, which are 

constructed using different feature subsets of the 

original data. Xia et al. have proposed to combine 

bagging and stacking to improve diversity [49]. 

Some models [50] use other ensembles as the base 

level in the stacked generalization scheme. 

Stacking methods have used many different types 

of models as meta-classifiers. For example, [51] 

and [52] use logistic regression as the meta-

classifier and [53], investigates tree-based 

methods. However, to the best of our knowledge, 

the use neural networks as a meta-classifier, in 

heterogeneous stacking ensembles, has not been 

thoroughly investigated.  

Neural networks have been used as the meta-

classier for homogeneous ensembles of neural 

networks [45] or recently, ensembles of deep 

neural networks [54]. In another example of such 

models [55], six different classifiers such as 

nearest neighbor, SVM and neural networks are 

investigated as a meta-classifier to combine 

several convolutional neural networks in a 

stacking scheme, and the best results were 

achieved by MLP.  

In this paper, we propose a new heterogeneous 

ensemble method, which uses a feed-forward 

neural network to learn to combine the outputs of 

the base classifiers. On the other hand, stacking is 

usually constructed using a few numbers of base 

classifiers, and as the meta-level data is 

constructed by concatenating the outputs of these 

classifiers, the number of features in meta-level 

space is limited. Thus we have proposed and 

investigated several methods to enrich the meta-

level feature space. We have also considered 

averaging as an alternative to concatenation. 

 

3. Preliminaries 

Our proposed framework is based on a stacking 

method, which inspired by the success of the 

weighting and voting approaches, combines the 

base-level models in a meta-learning step. 

Therefore, in this section, we discuss stacking and 

some voting schemes in more details. The 

methods discussed here are used as baselines for 

comparison in our experiments.  
 

Table 1. List of notations used in the algorithm 

description. 

Notation Description 

C , iC  Set of base classifiers, the 
thi  classifier 

iA  The 
thi  learning algorithm 

P  
Number of base classifiers 

K  
Number of classes 

jx  
A data point  

i
y , ˆ j

iy   Output vectors for data point 
jx  

assigned by the ensemble, base classifier iC   

jl ,
j

il   Label assigned to 
jx  by the ensemble, iC   

M  
Number of folds in the first-level learning 

jx  The meta-data vector of jx  

metaD  
The set of all meta-data vectors 

 

3.1. Weighting scheme 

As suggested and justified by [4], we will use the 

following voting schemes to compare our model 

with: Majority Vote (MV), Weighted Majority 

Vote (WMV), Recall Combiner (RC), and Naïve 

Bayes Combiner (NBC). We will also compare 

the proposed model with the recently suggested 

weighting approach CAWPE [2].  

The following terminology is used to describe the 

methods. Let us assume that there is an ensemble 

of P  base classifiers  1 2, , , PC C C C   to 

classify data into K  classes 1 K . A weight iw  

is assigned to each classifier iC . The probabilistic 

output of the base classifier iC  for a data point 

jx  is a vector ˆ j

iy  of size K , where the 
thk  
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element ,
ˆ j

i ky  is the probability assigned to class 

k . The label proposed by this classifier for jx  is 

denoted as  1,j

il K  . Similarly, the 

probabilistic output of the ensemble for input jx  

is a vector 
i

y , where the 
thk  element 

j

ky  is the 

probability assigned to class k . The label 

proposed by the ensemble jx  is denoted as 
jl . 

The list of notations is provided in Table 1. 

There are two approaches for combining the 

outputs of the base classifiers when using a 

weighting scheme. In the first approach, the 

predicted labels are directly used, and the 

weighted sum of the base outputs are calculated 

for each label k  as follows: 

 
1

,
P

j j

k i i

i

y w l k


  
(1) 

where  ,j

il k  is the Kronecker delta, being one 

if the base classifier iC  assigns label k  to 
jx , 

and zero otherwise. The second approach employs 

the actual probabilistic outputs of the classifiers 

using the following equation: 

,

1

ˆ
P

j j

k i i k

i

y w y


  
(1) 

In both scenarios, the actual predicted label 

assigned to jx  by the ensemble is calculated by 

the following equation:  

argmaxj j

k
k

l y  (2) 

In other words, the proposed label of the ensemble 

is obtained by selecting the most weighted class. 

Now we can describe the mentioned weighting 

schemes as follows.  

In other words, the proposed label of the ensemble 

is obtained by selecting the most weighted class. 

Now we can describe the mentioned weighting 

schemes as follows:  

 MV:  Majority vote uses Equation (1) and 

sets 1iw   for all the base classifiers. 

 WMV: Weighted MV usually uses 

Equation (1) with the classifier weights 

being computed based on their 

performance (accuracy) on the training 

data.   

 RC: Recall Combiner uses Equation (1) 

while considering a separate ,i kw  per 

each classifier and class label, based on 

the class-specific recalls [4].   

 NBC: Naïve Bayes Combiner is very 

similar to Equation (1), with the weights 

being class-dependent and calculated 

based on the confusion matrix for each 

class [5]. 

 CAWPE: CAWPE uses class probabilities 

as depicted in Equation (2), with the 

weights being class-dependent and the 

ensemble accuracy estimated through 

cross-validation [2].  

In this paper, we aim to demonstrate that neural 

networks, in combination with stack 

generalization can be used to effectively optimize 

the weights and learn a non-linear combination of 

the base classifiers’ outputs.  

 

3.2. Stacking 

Stacking is a heterogeneous meta-learning scheme 

in which the input (first-level) data are mapped 

into an intermediary space through a process 

similar to cross-validation. The meta-level 

classifier is trained in this new space. The first-

level data is divided into M  folds. Then in M  

iterations, the next-level data are generated. In 

each iteration, one of the folds is held out and the 

remaining 1M   are used to train the first-level 

models, i.e., the base classifiers. Then the held-out 

fold is presented to the trained classifiers and the 

output is used as one part of the next-level data. 

At the end of the iterations, the number of 

instances in the second-level data is equal to the 

first-level data. The target values are shared 

between the two levels. Any classifier can be 

trained using this intermediary data as the meta-

classifier. In our proposed model, the weights are 

learned using a feed-forward neural network. The 

base classifiers are assumed to generate 

probabilistic outputs for the K  classes. 

Otherwise, such probabilities can be calculated 

using the probability calibration based on the 

Platt’s logistic model [56]. 
 

4. Proposed Heterogeneous Ensemble 

Framework  

In this paper, we introduce a new heterogeneous 

stacking framework, which we refer to as 

Metanet. This framework uses a feed-forward 

neural network to learn to combine base 

classifiers outputs. The motivation for this 

proposal is the established success of the 

heterogeneous ensembles that use a weighting 
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scheme to combine the outputs of the base classifiers. 

 

 

(a)- First step: the training dataset is divided into M  parts that lead to M  iterations for generating the second-level data. 

In the 
th

m  iteration, the 
th

m  part of the second-level data is generated. 

 
 (b)- Second step: the meta-classifier is trained using the meta-data 

 
  (c)- Third step: the base classifiers are regenerated using the entire train data 

Figure 1. The three steps of stack generalization. 

Our model uses a multilayer neural network while 

satisfying the following properties suggested by 

Large et al. [2]: 

 Using a small set of diverse classifiers 

instead of a large number of weak ones of 

the same learning paradigm 

 The inputs of the second (combination) 

level are based on the probability 

estimations produced by the base 

classifiers 

 The weights are obtained considering the 

quality of the base classifiers 

 The weights are obtained also by 

emphasizing the difference between the 

base classifiers in quality 

The first two conditions are exactly followed. 

Large et al. satisfy the last two conditions by 

simply setting weights based on the quality of the 

base-classifiers, and amplifying the differences by 

rising them to the power of a positive integer 

value. In our method, in contrast, we satisfy them 

by using a feed-forward neural network. The 

network combines the probability values 

generated by base classifiers using weights that 
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are learned automatically. This means that the 

qualities of the base classifiers are taken into 

account by the network through the learning 

process, and the magnitude of the weights are 

determined respectively. However, here we are 

not learning a simple linear combination but a 

non-linear mapping function that is specified by 

the weights of the neural network.  

 
Algorithm 1- Training the heterogeneous model 

Input: 
trainD , P  learning algorithms, the combination function f  

Output: The set of base classifiers C , the meta-classifier 
metaC  

1 Initialize P  classifiers  1 2, , , PC C C C   based on learning algorithms iA , 1i P   

2 Partition 
trainD  into M  exclusive subsets: 

train

mD , 1m M   

3 For 1 .m M   

4  1

m train

m

j m

S D


  

5  2

m train

mS D   

6  Train each classifier iC  using 1

mS  

7  Apply each classifier iC  on 2

mS  to obtain class probabilities ˆ j

iy , 
21 ,  1 mi P j S     

8  Apply combination function f  to vectors ˆ j

iy  to obtain 
meta

mD  

9 EndFor 

10 

1

M
meta meta

m

m

D D


  

11 Train meta-classifier 
metaC  on 

metaD  

12 Regenerate the set of base classifiers C  using 
trainD  

13 Output C  and 
metaC  

 

The proposed method follows the stacking scheme 

in which, the first-level data is divided into M  

folds. Then in M  iterations, the second-level data 

is generated such that in each iteration, one of the 

folds is held out and the remaining 1M   folds 

are used to train the first-level models. Then the 

held-out fold is fed to the trained classifiers and 

the output is used as one of the M  parts of the 

second-level data. After the iterations are finished, 

the number of instances in the second-level data 

equals to the number of instances in the first-level 

data. The target values are shared between the two 

levels. The input of the neural network meta-

classifier, called the “meta-data” is constructed 

using this intermediary data. All of the instances 

are used to train the neural network. The meta-

data itself can be divided into folds to be used in a 

cross-validation scheme to generalize the training 

process of the neural network in the second-level. 

After training the neural network, the entire first-

level data is used to re-generate the base 

classifiers, which can be used to classify the 

unseen data. This process has three distinct steps: 

training the base classifiers to generate the 

second-level data and construct the meta-data, 

training the second-level classifier, and 

regenerating the base-level models. 

The three steps, as elaborated above, are depicted 

in Figure 1. In the first step, the training data 
trainD  is divided into M  parts (folds) that leads 

to M  iterations for generating the meta-data 
metaD . In the 

thm  iteration, the 
thm  part of the 

meta-data is generated. In each iteration m , one 

part ( 2

mS ) is held out and the remaining 1M   

parts (collectively shown as 1

mS ) are used to train 

each base-level classifier 
m

iC  using the learning 

algorithm iA . Then the held-out part is presented 

to the classifiers to generate the 
thm  part of the 

meta-data 
meta

mD . Function f  is used to combine 

the outputs of the base classifiers and generate the 

meta-data. In the second step the meta-data is 

used to train the meta-classifier 
metaC . In the third 

step, the entire original train data is used to 

regenerate the base-classifiers, which can then be 
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used for the prediction step. The three steps are 

described in Algorithm 1. 

For integrating the outputs of the first-level 

classifiers and constructing the meta-data, we use 

different combination schemes. If the initial 

training data is of size N , the constructed meta-

data is of the same size. Let jx  denote the meta-

data vector corresponding to the data instance jx . 

For a training set of size N , the final meta-data is 

defined as 
1

meta

j

N

j
D


 x . In the concatenating 

scheme, the class probabilities generated by the 

base classifiers are concatenated to generate 
CP

jx  

as a vector of size P K :  

 1 2, ,ˆ ,ˆ ˆ cp j j j

j P x y y y  
(4) 

We have also considered integrating the outputs 

of the first-level classifiers using the average 

function as shown in Error! Reference source 

not found. The resulting meta-data vector 
avg

jx  is 

of size K .  

     ,1 ,2 ,
i i i

ˆ ˆ aavg ,avg , ,  v ˆgavg j j j

j i i i Ky y y
 

  
 

x  
(5) 

The performance of the model using each one of 

these functions is evaluated in our experiments 

and the results are reported in Section 5.4. 

When constructing the meta-data by 

concatenation, the number of constructed features 

is limited to the number of base-classifiers times 

the number of classes. This may be limiting 

especially when the number of classes is small. 

Therefore, we may use the original data besides 

the generated class probabilities to enrich the 

feature space: 

 ,j j jxx x  
 (3) 

This approach can be used with both the 

concatenation of class probabilities (4) and class 

probability averages (5). Another approach to 

enrich the meta-data feature space is to 

concatenate both the class probabilities and class 

probability averages for each data: 

 ,cp avg avg cp

j j j

 x x x  
(7) 

We construct four different compositions 

according to the mentioned functions. The first 

composition just concatenates the first-level 

outputs (class predictions) as the meta-level data. 

We will name this primary composition as 

“Class”. In another composition that we will call 

“Class + Base”, the concatenated first-level 

outputs are augmented with the input data to 

construct the meta-data. In another composition, 

called “Mean + Class” the mean vector of first-

level outputs is calculated and then the 

concatenated first-level output is augmented by 

the mean vector to construct the meta-data. The 

last composition uses the mean vector augmented 

by the input as the meta-data. This composition is 

called “Mean + Base”. Figure 2 shows these four 

models. In the third step of the framework, the 

base classifiers are regenerated using the entire 

train data. This gives them a more generalized 

prediction power. When the labels of a dataset are 

to be predicted, the data is presented to all of the 

base-level models and the class probabilities are 

generated. These probabilities are used to 

construct the meta-data as the next level's input. 

The probabilities are fed to the meta-classifier and 

the trained neural network decides the class label 

based on this meta-data. 

 

5. Experiments 

In this section, we first describe the dataset and 

the experimental settings. Then the results 

obtained are presented. We have followed the 

same settings used by [2]. The experiments are 

performed on 121 datasets. All the results on each 

dataset are obtained by averaging over 30 

different test and train splits generated using 

stratified sampling. In all the splits the ratio of test 

to train examples is kept approximately the same. 

We use five different algorithms as our base 

classifiers. The results of the suggested ensemble 

are compared to each of the base classifiers 

individually, 11 other heterogeneous ensembles, 

and five homogeneous ensembles. 

 

5.1. Dataset 

We use 121 datasets from the UCI archive for our 

experiments. The datasets cover a variety of 

classification problems, the smallest dataset 

contains ten samples, the largest one contains 

130064 samples, and they have an average of 

4554.504 samples. The average number of 

attributes per dataset is 28.842, and the average 

number of classes per dataset is 6.851. As 

mentioned earlier, for each dataset, 30 different 

test and train splits are generated with 

approximately equal sizes using stratified 

sampling. In other words, the test and train sets, 

each cover 50% of the data. We have used the 

exact splits, which are provided by [2].
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Figure 2. Four different proposed composition to construct meta-data. From (a) to (d), “Class”, “Class+Base”, 

“Mean+Base” and “Mean+Class”. OM  denotes the mean of the class probabilities iO . 

As the number of datasets is large, reporting the 

sole average values of different metrics may not 

provide a complete insight into algorithm 

performance. Therefore, we further conduct a 

clustering task to provide a meaningful 

partitioning of the datasets into several groups. 

The performance of the model is then evaluated 

individually in these groups. These results are 

presented in Section 5.4.5.  

5.2. Evaluation Metrics  

The classifiers are evaluated using four different 

metrics: accuracy, balanced accuracy, the area 

under the ROC curve (AUC), and negative log 

likelihood (NLL). The reported result for each 

classifier is averaged over 3630 experiments. We 

use balanced accuracy to deal with possible class 

imbalances when evaluating the accuracy of our 

method. The AUC metric is not sensitive to class 

imbalances; however, it is able to provide us with 

an evaluation of probability estimates of the 

models and their ability to separate the classes 

regardless of the selected threshold. For problems 

with two classes, we treated the minority class as 

a positive outcome. For multi-class problems, we 

calculate the AUC for each class and weight it by 

the class frequency in the train data, as 

recommended by [57]. NLL evaluates the 

likelihoods. The higher the probabilities assigned 

to the correct classes, the better the classifier. For 

the values of NLL, contrary to the others, less 

means better. 
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5.3. Experimental settings 

As mentioned before, we use a set of diverse base 

classifiers, namely Logistic Regression (LR), 

C4.5 decision tree, linear Support Vector Machine 

(SVML), Nearest Neighbor (NN), and a Single 

Hidden Layer Perceptron (MLP) as suggested in 

many other studies [2]. As mentioned earlier, the 

meta-classifier is a feedforward neural network. It 

is a multi-layer perceptron with three layers. In 

other words, the network has only one hidden 

layer as our contribution in this paper is mainly 

focused on demonstrating the ability of a simple 

neural network to learn a heterogeneous ensemble 

and not finding the best network structure. 
 

Table 2. List of 10 heterogeneous and five homogeneous ensembles used for performance comparison. 

Heterogeneous ensemble methods 

Pick Best PB 

Majority Vote MV 

Weighted Majority Vote WMV 

Multi-Response Linear Regression [22] SMLR 

Naïve Bayes Combiner [5] NBC 

Ensemble Selection[58]  ES 

Multi-Response Linear Regression on Extended Features [36] SMLRE 

Multi-Response Model Trees [36] SMM5 

Recall Combiner [4]  RC 

Cross-validation Accuracy Weighted Probabilistic Ensemble [2]  
Grading [59] 

CAWPE 
GRAD 

Homogeneous Ensemble Methods 

Bootstrap Aggregating [60] Bagging 

Adaptive Boosting [61] AdaBoost 

Random Forests [23] RandF 

Additive Logistic Regression [62] LogitBoost 

Gradient boosting [24] XGBoost 

Rotation forest [63] ROF 
 

The size of the hidden layer is heuristically set as 

half the overall number of classes and features in 

the problem at hand. Hyperbolic tangent function 

(tanh) is used as the activation function in the 

hidden layer.  

If unspecified in any experiment, the meta-data 

used for training the network is by default the 

concatenated class probabilities (
cp

jx ). The 

algorithm is implemented in python using Keras
1
. 

The implementation is publicly accessible
2
. 

The performance of the proposed model is 

compared with each one of these classifiers 

individually. The reported values are the mean 

values of the performances of each classifier on  

 

the 121 UCI datasets and on 30 different test 

and train splits for each dataset. The proposed 

model is also compared with established and 

state-of-the-art homogeneous and heterogeneous 

ensemble models. The list of these models is 

available in  

Table 2.  

                                                      

1https://github.com/keras-team/keras 

2https://github.com/amiralitaheri/tsml/blob/metanet/Metanet_Python.
ipynb 

In the experiments, after comparing the 

performance of the proposed framework with  

 

 

other models, we investigate the effect of different 

combination functions in enriching the meta-data 

feature space. 

 

 
Figure 3. Average accuracy values and standard 

deviations of Metanet on 121 datasets. 

 

5.4. Results 

In this section, we will describe the conducted 

experiments and present the results of these 

experiments. These experiments are conducted on 

the mentioned 121 datasets. 

As a primary evaluation, we measure the accuracy 

of Metanet on 121 datasets. Figure 3 shows the 

mean accuracy values (solid line) on the 30 splits 

of each dataset, and the standard deviations (SD) 

are shown as shadows around the accuracies.  
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The problems in this figure are sorted according to 

their accuracies. The largest SD values belong to 

the problems "Plant-shape" and "Congressional". 

The SD values are 0.2 and 0.135, respectively. 

The former problem is a two-class problem with 

29 features and only 10 instances, while the latter 

is another two-class problem with four features 

and only 16 instances. These are actually the two 

smallest datasets among the 121 datasets. 

According to the small size of instances in these 

datasets, it is not unexpected for these two 

problems to be unstable when trained on different 

splits of the training data.  

The smallest accuracy obtained by Metanet is 

0.381 that belongs to the "heart-va" problem. It is 

a five-class problem with 12 features and 200 

instances. The largest accuracy is one which 

belongs to "acute-inflammation". It is a two-class 

problem with six features and 120 instances. The 

results show that the accuracies obtained by the 

proposed ensemble framework are mostly stable 

on different datasets. 

 

5.4.1. Comparison with base classifiers 

The proposed model is an ensemble of five 

classifiers, which are called base classifiers 

throughout this manuscript. Naturally, the 

proposed model has to perform better than these 

base classifiers for it to be justifiable and worthy 

of further investigations and evaluations.  

Table 3 shows the average results of applying the 

base classifiers on 121 UCI datasets using the 

setting explained in Section 5.3. One can see that 

metanet significantly outperforms base classifiers 

in terms of accuracy, balanced accuracy, the area 

under the ROC curve, and negative log-likelihood. 

This justifies the claim that a heterogeneous 

ensemble can perform better than multiple 

individual classifiers. 
Table 3. Comparison between metanet and base 

classifiers. 

Algorithm Accuracy Balanced accuracy AUC NLL 

Logistic 0.762 0.691 0.841 8.134 

C4.5 0.770 0.699 0.736 1.161 

MLP 0.786 0.712 0.860 1.297 

NN 0.784 0.697 0.798 1.116 

SVML 0.771 0.694 0.849 1.073 

Metanet 0.831 0.756 0.881 0.725 
 

5.4.2. Comparison with heterogeneous 

ensembles 

The proposed model is compared to the other 

heterogeneous ensembles constructed using the 

same set of base classifiers. The experiments are 

performed under the settings explained in Section 

5.3, and the results are depicted in Table 4.  
 

Table 4. Comparison between metanet and heterogeneous 

ensembles. 

Algorithm Accuracy 
Balanced 

accuracy 
AUC NLL 

CAWPE  0.815                                                                                                                                      0.742 0.884 0.704 

ES 0.810 0.734 0.813 0.884 

MV 0.805 0.727 0.808 0.877 

NBC 0.807 0.740 0.820 0.999 

PB 0.771 0.694 0.847 0.950 

RC 0.805 0.712 0.811 0.912 

SMLR 0.805 0.728 0.737 1.144 

SMLRE 0.786 0.712 0.734 1.251 

SMM5 0.805 0.729 0.744 1.046 

WMV 0.808 0.730 0.814 0.872 

GRAD 0.496 0.411 0.516 2.005 

Metanet 0.831 0.756 0.881 0.725 
 

As observed, metanet has the best accuracy 

among all heterogeneous ensembles. In terms of 

AUC it is comparable with CAWPE, while 

outperforming the other methods. However, 

CAWPE has a better negative log-likelihood than 

the proposed model while it is better than the 

other methods. However, according to our 

observations, NLL could be improved by using 

more information to achieve better probability 

estimates. This will be further discussed in the 

Section 5.4.4.  

The results confirm that using a heterogeneous 

ensemble with a neural network meta-learner can 

achieve a notable performance which outperforms 

other established heterogeneous models. 

As depicted above, the proposed model is more 

accurate on average than many other types of 

heterogeneous ensemble models, the most recent 

of which is CAWPE. For more clarification, we 

have investigated the performance of CAWPE and 

Metanet more closely. Figure 4 shows the 

differences in the accuracies of the Metanet and 

CAWPE models on each of the problems in 121 

UCI datasets. As one can see in this figure, the 

proposed model is more accurate in most of the 

cases.  

 

Figure 4. A difference between Metanet accuracy and 

CAWPE accuracy in increasing order. 

Accurately speaking, the accuracy of CAWPE is 

better in only 10 datasets out of the total 121 

datasets. The average number of instances in these 

10 datasets is 587.1, meaning that these are small 
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datasets. The average size of the other 111 

datasets where Metanet performs better is 4911.9. 

This can be considered as an indicating point that 

the proposed model has the potential to perform 

even better on bigger datasets. 

 

5.4.3. Comparison with homogeneous 

ensembles 

The performance of Metanet is compared with 

five different homogeneous ensembles, all of 

which are constructed using 500 different 

instances of the same base classifier. The results 

are reported in Table 5. 

As depicted in Table 5, Metanet is also more 

accurate than homogeneous ensembles. In terms 

of AUC, the proposed model outperforms four of 

the homogeneous ensembles, and is comparable to 

random forest. This is also true in terms of NLL 

except the case of random forest, which is 

performing slightly better. Again, NLL can be 

improved by adding more features as discussed in 

the following sub-section.  

Table 5. Comparison between Metanet and homogeneous 

ensembles. 

Algorithm Accuracy Balanced accuracy AUC NLL 

AdaBoost 0.647 0.531 0.775 3.258 

Bagging 0.794 0.697 0.868 0.775 

LogitBoost 0.759 0.698 0.836 8.246 

RandF 0.815 0.741 0.886 0.713 

XGBoost 0.807 0.739 0.876 0.843 

ROF 0.749 0.721 0.881 1.019 

Metanet 0.831 0.756 0.881 0.725 
 

The results show that the proposed heterogeneous 

ensemble framework, with only five base 

classifiers, can outperform ensembles with a large 

number of homogeneous base learners. 

5.4.4. Enriching meta-data 

The aforementioned experiments have shown that 

stacked generalization, using a neural network as 

the meta-classifier can achieve better results over 

a large set of problems in comparison to 

established and state-of-the-art ensemble 

approaches. In the previous experiments, the 

meta-data was the class probability values of the 

first-level classifiers, i.e. 
cp

jx . This concatenation 

of probabilities was slightly lacking in terms of 

NLL metric compared to some weighted 

approaches such as RF and CAWPE. It means that 

these approaches are more confident in their 

decisions. This could be related to the type and 

number of features that are used for training the 

meta-classifier. When using just the outputs of the 

first-level classifiers by concatenation, the size of 

the meta-data features is limited to the number of 

base-classifiers times the number of classes. This 

could be much less than enough especially when 

the number of classes is small. However, there are 

more possibilities for integrating the outputs of 

the first-level classifiers to prepare the meta-data. 

Thus, we have decided to enrich the meta-level 

data with three different approaches, mainly 

focused on improving the performance of the 

proposed model on the NLL metric.  

To enrich the feature space of the meta-data, we 

may use the original data along with the class 

probabilities or class probability averages, as 

shown in Equation (5). We call these approaches 

"Class+Base", or "Mean+Base" if the first-level 

features are added to 
cp

jx  or 
avg

jx , respectively. 

We have also investigated using the averages 

along with the concatenated class probabilities 

(
cp avg

j


x ), which would be called "Mean+Class". 

Table 6 shows the results of these approaches, 

averaged on the 121 datasets. In this table, the 

approach with concatenated class probabilities 

(
cp

jx ) without any extra data is referred as 

"Class". As one can see in Table 6, none of the 

three approaches show any significant 

improvement over the concatenation approach.  

 
Table 6. Comparing performance of Metanet with 

different combination functions. 

Algorithm Accuracy Balanced accuracy AUC NLL 

Class 0.831 0.756 0.881 0.725 

Mean+Base 0.828 0.751 0.872 0.726 

Mean+Class 0.830 0.754 0.876 0.740 

Class+Base 0.832 0.756 0.876 0.723 
 

In case of "Mean+Class" even, NLL has 

deteriorated.  However, after looking more 

closely, we have found out that most cases of 

improvements for these approaches over our 

original concatenation scheme, happen when the 

numbers of classes are large and even better when 

the numbers of features are also small. Inspired by 

this observation, we have sorted the datasets first 

by the number of classes in descending order and 

then by the number of features in ascending order. 

Let us look at the results for the first nine 

problems in this sorted list where the number of 

classes are at least 15 and at most 100. For such 

problems in which the number of classes is high, 

it is not easy to achieve good results in case of 

NLL. However, the proposed approaches yield 

improvements in these problems as is shown in 

Table 7.  
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Table 7. Comparing performance of Metanet with 

different combination functions on the problems with at 

least 15 classes. 

Algorithm Accuracy Balanced accuracy AUC NLL 

Class 0.768 0.704 0.961 1.347 

Mean+Base 0.768 0.723 0.964 1.230 

Mean+Class 0.771 0.707 0.960 1.284 

Class+Base 0.771 0.713 0.964 1.234 

CAWPE 0.763 0.729 0.963 1.274 

RF 0.756 0.716 0.966 1.515 
 

For these same datasets, RF reaches the NLL 

value 1.515 and CAWPE yields 1.274. Thus, by 

using the right set of meta-level features, the 

proposed model can outperform RF and CAWPE, 

especially in case of NLL. As we have mentioned 

before, these results show that when we are using 

only the class probabilities, the number of features 

is bound to the number of classes, which in many 

cases is as small as two. 

One approach to mitigate this problem is 

enriching the metadata with the original (base) 

data. However, in the face of a large number of 

original features, the small set of class 

probabilities could be dominated and lose their 

effect. Therefore, when the number of classes is 

larger and the number of original features is small 

the proposed approaches especially "mean + base" 

and "Class+Base" are more likely to make 

improvement over the original concatenation 

scheme. These results also show that the set of 

meta-level features are very important to the 

proposed method and can affect its performance. 

Especially the means of class probabilities over all 

the base classifiers could be considered as very 

meaningful features.  

 

5.4.5. Comparing performance on some 

individual problems 

In this section, we depict the results for some of 

the problems individually. Inspired by the results 

and observations in the previous experiments, to 

fairly select a set of representative datasets 

(problems), we define a clustering task to divide 

the problems into six exclusive clusters. Then in 

each cluster of problems, we compute the average 

classification accuracy, and select the problem 

with the nearest accuracy to the average as a 

representative. For the clustering task, each 

problem is represented by three features; number 

of instances, number of features and number of 

classes. The clusters are constructed using the K-

means clustering algorithm with 15k  , after 

normalizing the feature space. In a post-

processing step, the problems in the clusters with 

less than five members have been reassigned to 

other clusters. This step reduced the number of 

clusters into six. The average feature values of 

each cluster are shown in Table 8 and the 

representative problems in  

Table 9. The values of our four metrics for the 

representatives are depicted in Table 10. 
 

Table 8. Average properties in the six clusters of the 121 

problems. 

Cluster 

(cl) 

Number of 

features 

Number of 

classes 

Number of 

instances 

Cluster 

size 

1 15.7 8.92 1501.67 12 

2 7.92  2.94 642.49 49 

3 104.14  5.78 1536.93 14 
4 26.65 3.0 15638.69 26 

5 44.0 54.28 7676.28 7 

6 34.92 3.0 1518.15 13 
 

Table 9. Representative problems selected from each 

cluster. 

Cl 
Representative 

problem 

Number of  

features 

Number of  

classes 

Number of  

instances 

1 led-display 7 10 1000 

2 lenses 4 3 24 

3 

conn-bench-

sonar-mines-

rocks 

60 2 208 

4 Parkinson's 22 2 195 

5 plant-margin 64 100 1600 

6 annealing 31 5 898 
 

Most of the problems, with large number of 

classes are placed in the fifth cluster, which is 

almost identical to the subset of problems 

mentioned in sub-section 5.4.4. 

The problems with the largest numbers of features 

are placed on the third cluster. Most members of 

this cluster have two or three classes. Carefully 

inspecting algorithm performance on these 

clusters, as shown in Table 10, confirms our 

previous observation; when the number of classes 

is large and the numbers of features are relatively 

small, as in the fifth cluster, the "Mean+Base" 

version of our method, outperforms the other 

models. However, if the number of classes is 

small and the number of features is large in 

comparison, we cannot expect "Mean+Base" to 

yield the same outstanding results. As another 

example of this, one can refer to the second 

cluster.  

The second-best results for "Mean+Base" are 

achieved in this cluster which is the largest 

cluster. In this cluster, "Mean+Base" outperforms 

the other version of Metanet very clearly. This 

cluster is the second largest in case of the number 

of classes. The number of features is not large in 

comparison to the number of classes, which again 

provides suitable situations for the "Mean+Base" 

version of the proposed model to excel.  
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Table 10. Comparing performance of Metanet with CAWPE on representative problems. 

Problem Accuracy AUC Balanced accuracy NLL 
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led-display 0.729 0.725 0.718 0.948 0.938 0.952 0.730 0.727 0.719 1.343 1.478 1.271 
lenses 0.797 0.731 0.776 0.820 0.699 0.887 0.692 0.605 0.765 1.097 1.334 0.924 
conn-bench 0.826 0.846 0.815 0.881 0.892 0.894 0.823 0.844 0.811 0.656 0.618 0.628 
Parkinson's 0.896 0.927 0.903 0.925 0.955 0.952 0.819 0.889 0.855 0.445 0.352 0.345 
plant-margin 0.821 0.802 0.812 0.996 0.991 0.996 0.821 0.802 0.812 0.933 1.210 0.981 

annealing 0.929 0.942 0.922 0.951 0.963 0.964 0.827 0.862 0.821 0.381 0.320 0.333 
 

In the case of accuracy and balanced accuracy, our 

models outperform CAWPE in all the examples. 

However, the CAWPE model performs better than 

"Mean+Base", in terms of NLL in all the 

examples except the "plant-margin", which is the 

representative of the fifth cluster. This cluster 

contains the problems with the largest number of 

classes and smaller number of features (in 

comparison to the number of classes). As we have 

mentioned above, in such circumstances the 

"Mean+Base" version of our model exhibits its 

best performance. 

 

5.4.6. Statistical significance 

In this section, we investigate if the superiority of 

the proposed model over the other methods is 

significant. We conducted a nonparametric and 

paired statistical test over the accuracy differences 

of the proposed model and the other mentioned 

heterogeneous models over the 121 datasets. We 

have used the Wilcoxon’s signed-rank test for 

matched pairs. In this test, no specific distribution 

is assumed over the data. The null hypothesis 

states that the median difference is zero, while the 

alternative hypothesis (two-sided) states that it is 

not zero. If the p-value is small then the null 

hypothesis can be rejected at the confidence level 

of 5%, in favour of the alternative. It means that 

the differences are significant. The test is 

performed by calculating the signed differences of 

each pair of the data. Then a statistic is obtained 

using the rank (signed) of the absolute values of 

these differences. Our results show that the 

differences are significant with the p-values less 

than 0.001.  

  

6. Conclusion 

Classification is still a major concern in computer 

science as finding the perfect classifier for a 

problem is time-consuming and difficult. We 

proposed a method to create a heterogeneous 

ensemble by combining established and state-of-

the-art classifier algorithms and neural networks. 

The proposed method is called Metanet. This  

 

 

 

 

model follows the stacking scheme, and uses a 

neural network as the meta-classifier to learn a 

nonlinear function for effectively combining the 

outputs of the base classifiers. The base outputs 

are used to generate a set of meta-data as input of 

the meta-classifier. Different functions are 

proposed to combine the outputs of the base 

classifiers into meta-data, based on concatenation 

and averaging. As the number of such features are 

small, we also considered enriching them with the 

base-level data. 

A set of extensive experiments were conducted to 

evaluate Metanet with the two mentioned 

combination functions in comparison to classifiers 

and ensembles of several different schemes such 

as homogeneous, weighting scheme, and stacking 

methods. According to our experiments, Metanet 

is more accurate compared to other state-of-the-art 

heterogeneous or homogenous ensembles of 

weighting or stacking schemes such as CAWPE 

or XGBoost. Between the two meta-data 

functions, i.e. concatenation and averaging, 

averaging performs better when used along with 

the first-level data. Using a neural network as a 

combiner in heterogeneous ensembles has the 

benefits of learning a powerful combination 

specific to each problem based on the provided 

data. Our experiments show that a neural network 

in a stacking scheme, given a sufficient set of 

meta-data would create a very successful 

ensemble of heterogeneous classifiers. Further 

investigation of the combination functions would 

be a good path to create even more powerful 

ensembles. Especially with the massive datasets 

available for many problems, and the continuous 

improvement in access to computational power, 

the capability of different ensemble structures 

should be revisited.   
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 چکیده:

کلهی   بچههارچو یهک  ، در این مقالهه اساسی از ساخت یک سیستم  یادگیری ناهمگن گروهی است.  ییادگیران پایه، بخشیافتن راهی موثر برای ترکیب 

بنهههای پایهه اسهتهاده     ، بهرای یهادگیری ترکیهب خیرخدهی دسهته     از یک شبکه مصنوعی عصهبی  در آن کنیم که گیری ناهمگن گروهی ارائه میدبرای یا

پردازنه. بهه   در کنار یکهیگر و در طی چنه مرحله به تولیه خروجی مرحله اول میبنههای ناهمگن  ای از دسته مجموعهچوب پیشنهادی، ر. در چهاشود می

ها با استهاده از چنههین تهابم مختله      این خروجی . شود ، تولیه میمتقابل یاعتبارسنجای مشابه  هاین ترتیب که در هر مرحله بخشی از خروجی، به شیو

 روشمجموعهه داده انجهاد داده و    212ای را بهر روی   مها آزمایشهاگ گسهترده   کننهه.   بنه مرحله بعهه را تولیهه مهی    خنی و ترکیب شهه و ورودیهای دسته

ایم. نتایج این آزمایشهاگ حهاکی از برتهری روش پیشهنهادی بهر       شهه، مقایسه نموده موجود اعم از نوین و شناخته های ناهمگن دیگر روشپیشنهادی را با 

های همگن مقایسهه   همچنین با تعهادی روش ،ظیم دقیق است. روش پشنهادیبنههای منهرد با تن دستههمیندور های ناهمگن موجود و  بسیاری از روش

 های بزرگ چشمگیرتر است. دهه که برتری روش پیشنهادی بر روی مجموعه داده های ما نشان می است. یافته شهه و برتری خود را نشان داده

 .بنهها، یادگیری ماشین همجوشی دستههای عصبی، تعمیم انباشته،  بنهی، شبکه یادگیری ناهمگن گروهی، دسته :کلمات کلیدی


