[1] M. F. Ahmad, N. A. M. Isa, W. H. Lim, and K. M. Ang, “Differential evolution: A recent review based on state-of-the-art works,” Alexandria Eng. J., 2021.
[2] M. Paniri, M. B. Dowlatshahi, and H. Nezamabadi-Pour, “MLACO: A multi-label feature selection algorithm based on ant colony optimization,” Knowledge-Based Syst., vol. 192, p. 105285, 2020.
[3] X.-Y. Liu, Y. Liang, S. Wang, Z.-Y. Yang, and H.-S. Ye, “A hybrid genetic algorithm with wrapper-embedded approaches for feature selection,” IEEE Access, vol. 6, pp. 22863–22874, 2018.
[4] A. Purohit, N. S. Chaudhari, and A. Tiwari, “Construction of classifier with feature selection based on genetic programming,” in IEEE Congress on Evolutionary Computation, 2010, pp. 1–5.
[5] L. Abualigah and A. Diabat, “Chaotic binary group search optimizer for feature selection,” Expert Syst. Appl., vol. 192, p. 116368, 2022.
[6] R. Kundu, S. Chattopadhyay, E. Cuevas, and R. Sarkar, “AltWOA: Altruistic Whale Optimization Algorithm for feature selection on microarray datasets,” Comput. Biol. Med., vol. 144, p. 105349, 2022.
[7] A. M. Ibrahim, M. A. Tawhid, and R. K. Ward, “A binary water wave optimization for feature selection,” Int. J. Approx. Reason., vol. 120, pp. 74–91, 2020.
[8] Z. A. Varzaneh, S. Hossein, S. E. Mood, and M. M. Javidi, “A new hybrid feature selection based on Improved Equilibrium Optimization,” Chemom. Intell. Lab. Syst., vol. 228, p. 104618, 2022.
[9] R. Ramasamy Rajammal, S. Mirjalili, G. Ekambaram, and N. Palanisamy, “Binary Grey Wolf Optimizer with Mutation and Adaptive K-nearest Neighbour for Feature Selection in Parkinson’s Disease Diagnosis,” Knowledge-Based Syst., vol. 246, p. 108701, 2022, doi: https://doi.org/10.1016/j.knosys.2022.108701.
[10] M. Taradeh et al., “An evolutionary gravitational search-based feature selection,” Inf. Sci. (Ny)., vol. 497, pp. 219–239, 2019, doi: https://doi.org/10.1016/j.ins.2019.05.038.
[11] R. Guha, M. Ghosh, A. Chakrabarti, R. Sarkar, and S. Mirjalili, “Introducing clustering based population in Binary Gravitational Search Algorithm for Feature Selection,” Appl. Soft Comput., vol. 93, p. 106341, 2020, doi: https://doi.org/10.1016/j.asoc.2020.106341.
[12] Z. Shojaee, S. A. Shahzadeh Fazeli, E. Abbasi, and F. Adibnia, “Feature Selection based on Particle Swarm Optimization and Mutual Information,” J. AI Data Min., vol. 9, no. 1, pp. 39–44, 2021.
[13] M. Tubishat et al., “Dynamic Salp swarm algorithm for feature selection,” Expert Syst. Appl., vol. 164, p. 113873, 2021, doi: https://doi.org/10.1016/j.eswa.2020.113873.
[14] I. Aljarah et al., “A dynamic locality multi-objective salp swarm algorithm for feature selection,” Comput. Ind. Eng., vol. 147, p. 106628, 2020, doi: https://doi.org/10.1016/j.cie.2020.106628.
[15] M. Manonmani and S. Balakrishnan, “Feature Selection Using Improved Teaching Learning Based Algorithm on Chronic Kidney Disease Dataset,” Procedia Comput. Sci., vol. 171, pp. 1660–1669, 2020, doi: 10.1016/j.procs.2020.04.178.
[16] M. Allam and M. Nandhini, “Optimal feature selection using binary teaching learning based optimization algorithm,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 2, pp. 329–341, 2022, doi: https://doi.org/10.1016/j.jksuci.2018.12.001.
[17] S. Thawkar, “A hybrid model using teaching--learning-based optimization and Salp swarm algorithm for feature selection and classification in digital mammography,” J. Ambient Intell. Humaniz. Comput., vol. 12, no. 9, pp. 8793–8808, 2021.
[18] R. V. Rao, V. J. Savsani, and D. P. Vakharia, “Teaching--learning-based optimization: a novel method for constrained mechanical design optimization problems,” Comput. Des., vol. 43, no. 3, pp. 303–315, 2011.
[19] A. Taheri, K. RahimiZadeh, and R. V. Rao, “An efficient balanced teaching-learning-based optimization algorithm with individual restarting strategy for solving global optimization problems,” Inf. Sci. (Ny)., vol. 576, pp. 68–104, 2021.