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 Managing software projects due to its intangible nature is full of 

challenges when predicting the effort required for development. 

Accordingly, there exist many studies with the attempt to devise the 

models to estimate the efforts necessary in developing software. 

According to the literature, the accuracy of the estimator models or 

methods can be improved by the correct application of data filtering or 

feature weighting techniques. Numerous models have also been 

proposed based on the machine learning methods for data modeling. In 

this work, we propose a new model consisting of the data filtering and 

feature weighting techniques in order to improve the estimation 

accuracy in the final step of data modeling. The model proposed in this 

work consists of three layers. The tools and techniques in the first and 

second layers of the proposed model select the most effective features, 

and weight the features with the help of LSA (Lightning Search 

Algorithm). By combining LSA and an artificial neural network in the 

third layer of the model, an estimator model is developed from the first 

and second layers, significantly improving the final estimation 

accuracy. The upper layers of this model filter out and analyze the data 

of the lower layers. This arrangement significantly increases the 

accuracy of the final estimation. Three datasets of real projects are 

used in order to evaluate the accuracy of the proposed model, and the 

results obtained are compared with those obtained from different 

methods. The results are compared based on the performance criteria, 

indicating that the proposed model effectively improves the estimation 

accuracy. 
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1. Introduction 

The required time and effort for software 

development are two important parameters in any 

software project. Prediction of the required effort, 

to achieve the schedule and other objectives of the 

project, is one of the important duties of the 

project managers. Therefore, the right decisions of 

the software project managers and the accurate 

effort estimation play an important role in the 

success of these projects. To this end, the project 

managers must be able to identify the effective 

parameters on the effort of the project, the 

relationship between them, and their relation 

effect on effort. Usually the project managers use 

their own experience to estimate the effort of the 

projects. However, the extreme dynamics of the 

software project environment make unreliable the 

obtained estimates from this method. Therefore, 

the project managers require tools and methods to 

enable them to estimate the required effort of 

project development accurately. Consequently, 

this issue is considered as a major challenge for 

the researchers and the practitioners in the 

software industry. The estimation methods are 

divided to the algorithmic and non-algorithmic 

categories [1], the first is based on the 
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mathematical and the second on the heuristic and 

metaheuristic methods. 

In both methods, usually a model is devised for a 

number of tools and algorithms proposed to 

estimate the software development effort. In each 

one of these models, the tools and algorithms are 

combined in their unique sense to provide a 

precise estimate of the software development 

effort. Some of these tools or algorithms are 

applied as an intermediate tool to increase the 

accuracy of the method. The following studies 

support this claim in increasing the accuracy of 

the neural network: 

 The neural networks are one of the most 

commonly adopted methods in AI; The 

Elman’s neural network has been applied in 

[2] for the software development effort 

estimation.  

 Rankovic et al. [3] have proposed four new 

models based on the artificial neural network, 

utilizing five datasets to test them.  

 Kumar et al. [4] have used neural networks to 

deep learning in software effort estimation. 

 The dilation-erosion-linear perceptron was 

introduced in 2012. This method is applied in 

many articles for prediction. This method 

will not be sufficient if there exists 

complexity of input/output. Araujo et al. [5] 

have optimized the structure of this 

perceptron using the descending gradient in 

the learning process, and have used it in 

software effort estimation. 

 A combination of satin bowerbird 

optimization algorithm (SBO) and the neuro-

fuzzy (ANFIS) has been applied to increase 

the accuracy in predicting the software error 

[6]. 

A number of researchers seek to increase the 

accuracy of the Analogy-Based Estimation (ABE) 

method through different tools or use ABE as a 

tool to increase the accuracy of the other tools. 

 The ABE method has been commonly used 

for software effort estimation by the 

researchers. The differential equation (DE) 

algorithm has been applied in the similarity 

function to weight the features, named 

Differential evolution in Analogy-Based 

Estimation (DABE) [7], in order to improve 

the efficiency of this method. 

 There exists no exact definition on the project 

similarity. A similarity region has been 

identified by [8] for feature selection in 

similar projects through the Case-Based 

Reasoning (CBR) concept. 

 One of the algorithms combined through the 

ABE methods is the genetic algorithm [9]. 

 Application of the particle swarm 

optimization (PSO) algorithm to increase 

ABE precision [10] and a hybrid model from 

PSO and simulated annealing algorithm to 

improve ABE performance [11] has been 

proposed. 
The fuzzy logic-based tools and technique 

combination with other methods have been 

used in some studies for performance and 

accuracy improvement. 

 The estimation model (EM) proposed by [12] 

is to divide the projects into the categories 

with similar distribution parameters, followed 

by adopting the fuzzy method used in 

estimation and applied from the firefly 

algorithm in the rule-base system for 

selection. 

 The effective parameters on the estimation 

have been proposed by [13], where an 

attempt has been made to increase precision 

through the fuzzy method. 

 A combination of two algorithmic and non-

algorithmic methods COCOMO and 

NEURO-Fuzzy has been applied in [14], 

where the accuracy of the estimation 

increased by sending the outputs of NEURO-

Fuzzy to the COCOMOII. 

 Idri et al. have assessed the effect of the 

missing data (MD) techniques on ABE and 

fuzzy-analogy [15]. 

 Usually the fuzzy logic is applied in solving 

the error prediction problem since it can 

perform with incomplete data, while the main 

problem is the great volume of rules that 

slows the decision-making process. An 

attempt has been made by [16] to reduce this 

volume by applying the fuzzy controllers 

instead of the fuzzy logic. 

 Karimi and Gandomani have used a 

combination of differential evolution 

algorithm and fuzzy-neural network for 

software development effort estimation 

modeling [17].  

 Chhabra and Singh have used the optimizing 

design of fuzzy model for software effort 

estimation using the PSO algorithm [18]. 

Some researchers only use the tools based on the 

algorithmic methods. 

 COCOMO has been proposed by [19], 

COCOMOII has been proposed by [20], 

SLIM has been proposed by [21], function 

point analysis has been proposed by [22], and 

the Dotti model has been proposed by [23]. 
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 The regression-based methods are the linear 

regression methods [24, 25], non-linear 

regression methods [25], and tree regression 

methods [26, 27]. 
The artificial intelligence algorithms can improve 

the efficiency of the formulated methods by 

searching for the appropriate configuration for 

these methods. This approach has been followed 

in some articles. 

 The updated K-modes clustering basic 

algorithms have been applied in effort 

prediction. In the model proposed by [28], 

the Beysian belief network is constructed 

from of the COCOMO model, where the 

intervals are of fuzzy numbers, and then the 

PSO algorithm and genetic algorithm (GA) 

are combined to improve the software effort 

estimation. 

 The machine learning algorithms are 

commonly applied in problem estimation. 

Two different types of Support Vector 

Machine (SVMs) have been applied by [29] 

to predict effort and compare with the other 

methods like neural networks and decision 

tree. Various feature selection methods have 

also been used for performance optimization 

of the machine learning-based methods [30]. 

 The meta-heuristic algorithms are commonly 

applied by the researchers in many cases. A 

hybrid meta-heuristic algorithm consisting of 

Cuckoo Optimization Algorithm (COA), 

harmonic Search [31], and DE algorithm has 

been applied to optimize the COCOMO 

parameters [32], and to improve the software 

effort estimation. 
Some studies emphasize identifying the key 

project features and their relationship with the 

software development effort. There has been an 

emphasis on identifying the interrelated features 

influencing the software development effort [33]. 

The features influencing effort have been 

identified by a neural network [34]. The PSO 

algorithm [35] and the Bayesian technique [36] 

have been used to identify the features influencing 

the software development effort. 

 

 

Table 1. Various methods in software effort estimation. 
Study Year Dataset Evaluation method Method Ref.  No. 

1 2019 21 Projects (1 dataset) MMRE, Pred, MSE ANN 2 

2 2021 COCOMO, NASA, Kemerer MAE, Pred, MMRE ANN 3 
3 2017 ISBSG, Albrecht, Kemerer MMRE, Pred ANFIS 6 

4 2007 CF, DPS MMRE, Pred, MdMRE ABE 9 

5 2012 CF, DPS, ISBSG MMRE, Pred PSO, ABE 10 
6 2019 Desharnais, COCOMO MMRE, Pred Firefly algorithm 12 

7 2019 4 Projects (1 dataset) MMRE, VAF Fuzzy 13 

8 2018 COCOMO MMRE Neuro fuzzy   14 
9 2021 Kemerer, Albrecht MMRE, Pred ANFIS 17 

10 2020 COCOMO MMRE, Pred PSO, Fuzzy 18 

11 2016 COCOMO MMRE Bayesian network 28 
12 2018 ISBSG MAE SVR 29 

13 2017 COCOMO MMRE Cuckoo search 31 

14 2018 COCOMO MMRE, Pred, MAE DE 32 
15 2020 ISBSG, Desharnais MMRE, Pred ACO, ABE 44 

 
A novel model is proposed in this work by 

analyzing the models previously presented in the 

literature. The data preparation tools have been 

proposed in some studies in order to improve the 

estimation accuracy. Some studies have 

emphasized on the different effectiveness of 

various project features on the software 

development effort, and attempts have made to 

propose a model to exactly estimate the effort 

considering the project features and the 

effectiveness of different features. The 

effectiveness has been defined as a coefficient in 

the literature. Data modeling by the machine 

learning methods has also been performed in 

some studies. Accordingly, in the proposed 

model, various separately used techniques and 

tools in the literature for improving the estimation 

accuracy were adopted in a model with separate 

layers. Each layer in this model increases the 

accuracy of the next layer. Simply speaking, the 

output of each layer in this model is the input to 

the next layer, improving the final performance of 

the proposed model. 

Section 2 discusses the ABE method used for 

estimating the software development effort. 

Section 3 introduces the criteria for calculating the 

accuracy of the proposed model. Section 4 

introduces the proposed model. Section 5 

discusses a cross-validation method for evaluating 

the stability of the proposed model results. Section 

6 introduces three datasets of real projects used 

for testing the proposed model. Section 7 

introduces the techniques compared with the 

proposed model. Section 8 presents the test results 

of the proposed model. The model results are 

analyzed in Section 9. 
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2. Analogy-based Estimation (ABE) Method 

The estimation methods are of the two algorithms 

and non-algorithm. Since the first methods are not 

appropriate to be adopted in the dynamic 

environment of software projects, the second 

methods are applied in this context, making ABE 

one of the most applicable methods. The ABE 

method is adopted in the unspecified value 

estimation of single feature (i.e. effort or cost) of 

one project. The steps of this method are 

described in the following sub-sections. 

2.1. Similarity function 
The similarity of projects through studying the 

features with certain value(s) is determined 

through this function. For this purpose, the 

following Euclidean, Eq. 3 and Manhattan Eq. 4 

similarity determination methods, are applied. The 

project features include both the digit and non-

digit groups. With respect to the digit features, in 

both the methods, the space of digit features is 

estimated for the project’s difference estimation. 

With respect to the non-digit features, the level of 

difference is set at 0 or 1. These methods differ in 

the digit feature value space estimation context, 

where the P and P
'
 statements constitute the study 

projects and fi and f
'
i constitute the i

th
 feature of 

the P and P
'
 projects, respectively. The result 

obtained reveals the similarity level between the 

two projects. 
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2.2. Solution function 

This function is applied in the effort estimation of 

one project according to the effort of k projects 

with more similarities. 

(3) 
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where P is the project, the effort value of which is 

intended to be estimated. Symbol Pi is the i
th
 

project of K more similar project. The symbol CPi 

is a certain value to be estimated from the j
th
 more 

similar project. 

 

2.3. Best value of K 
The K value is applied in the effort estimations 

with a high accuracy. An appropriate K value 

mostly depends on the studied projects. If the 

difference in the studied projects is slightly high, 

the K value accuracy reduces because the 

effective projects manifest more differences at the 

final stage of estimation. If the studied projects 

are too close to one another, the low value of K 

results prevents the study of similar projects. The 

existence of these projects in the final stage is of a 

positive influence on the results’ accuracy. This 

accuracy is due to a reduction in the noise rate 

during the estimation process. Consequently, no 

constant value of K can be considered, and thus it 

is better for K to be determined in its dynamic 

sense. 

According to the above-mentioned points, no 

constant value of K can be considered. Therefore, 

it is better for K to be determined in its dynamic 

sense. 

 

3. Equations for Estimation Error Calculation 

In this section, the utilized equations are evaluated 

for the accuracy of the proposed model, and 

comparison with the other methods is made. 

These equations are commonly used for the 

accuracy evaluation by the researchers in the field. 

The results of equations are displayed as diagrams 

for a better accuracy evaluation and comparison. 

The utilized equations are presented in Eqs. (4 to 

8), relative error (RE), magnitude of relative error 

(MRE), median magnitude of relative error 

(MdMRE), prediction percentage (PRED), and 

mean of absolute error (MAE). 

(4) 
Estimate Actual

RE
Actual


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4. Proposed Model  

This paper presents a new model called Flexible 

Effort Estimation Model (FEEM). FEEM is 

composed of two sections: training and test. The 

training section of this model consists of three 

layers, each responsible to refine the data and 
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enhance the precision of estimation. The model of 

layer 1 is shown in Figure 1, where the best 

features are selected based on the feature selection 

and ABE method with several iteration. At every 

one of the iterations, a subset of features is 

selected, and the MdMRE error value is calculated 

for that set of feature. The iteration continues until 

the whole set of selected features end. What is 

obtained here is a set of the best features with the 

highest effect on software development effort 

estimation, which is applied to send as an input to 

the next layer. 

 
Figure 1. A flowchart of training section model, layer 1. 

 

The layer 2 model is shown in Figure 2, which 

undergoes training through the selected features as 

its input. This model is iterated for many times 

through the LSA algorithm, and at each iteration, 

the LSA algorithm suggests an appropriate setting 

for ABE. The ABE method processes the projects 

and estimates them based on the settings 

suggested by the LSA algorithm. This process 

runs until the estimation error reaches a specific 

threshold or the iterations are ended. Finally, the 

best setting for ABE is the result obtained through 

implementing the model of this layer. The 

obtained settings are applied as the input for layer 

3. 

The second layer of the proposed model includes 

a hybrid model of the ABE and LSA methods. 

The ABE method searches for the most similar 

projects with the target project to estimate 

software development effort based on the features 

adaptation. The ABE method uses the LSA 

algorithm to increase the estimation accuracy. The 

LSA algorithm tries to propose the most 

appropriate configuration for the ABE method, 

and helps it to provide a more accurate estimation. 

The configuration proposed by the LSA algorithm 

differs based on the project conditions and its 

features. On the other hand, the first layer helps 

increase the second layer's accuracy by processing 

the input data to the first layer. Simply speaking, a 

higher quality data enters the second layer with 

the help of the first layer. The estimate obtained 

from the second layer is not the final estimation. 

In the third layer, a model is developed for the 

estimator of first and second layers and based on 

their input and output. This layer leads to an 

improved final estimated accuracy. 

 

 
Figure 2. A flowchart of training section model, layer 2. 

 

The layer 3 model is shown in Figure 3 that 

undergoes the predicting proper estimation error 

based on a project's data. In order to estimate the 

prediction error, the Artificial Neural Network 

(ANN) is applied. The proper configuration of 

ABE obtained in layer 2 is received as its input, 

and the best features are obtained in layer 1. This 

layer's model is iterated through the LSA 

algorithm, where at each iteration, the LSA 

algorithm proposes proper values for b and w of 

ANN. Here, ANN predicts the estimation error for 

each project, and ABE estimates the effort. The 

resulting values are applied in Eq. 9 for 

estimation. 

(9) [ ] [ ] ( [ ] )Final ABEE i E i Error i Th  
 

 

where i is the number of projects, EABE is the 

estimation from the ABE method, Error is the 

error proposed by ANN, and the Th coefficient is 

the percentage of effect of suggested error on the 

value of estimation. The result of this equation is 

the value of the final estimation. 

After the final estimation of each project is run, 

the resulting value is applied in Eqs. 5, 6, 7, and 8. 

Consequently, the estimation error is calculated 

based on the settings suggested by the LSA 

algorithm. The obtained estimation error is 

returned to the LSA algorithm as a feedback, and 

this process goes on until the error resulting from 

estimation does not reach a specific threshold or 

iteration of the LSA algorithm ends. This layer 

will provide the best settings for estimation of the 

prediction error through ANN. These proposed 

settings reduce the final estimation error. 
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Figure 3. A flowchart of training section model, layer 3. 

 

The test section flowchart is shown in Figure 4, 

where the set of test projects is estimated through 

the settings proposed in layer 2 for ABE and the 

features specified in layer 1 based on the 

estimation error predicted by layer 3. The 

MdMRE and PRED values resulting from running 

this stage are considered as the estimation errors. 

 

 
Figure 4. Test section model flowchart. 

 

5. Validation Method  

Based on the proposed model, the projects must 

be divided into the two groups of training and test. 

The arrangement of projects in dividing process 

effects on the accuracy of the proposed model 

[37]. For sustainability provement of the models, 

different evaluation methods including 3 fold, 10 

fold, etc. can be used. Each one of these methods 

provides a specific arrangement for the projects. 

Based on the performed study  [37], leave-one-out 

(LOO) is the best method for evaluation, and its 

achieved accuracy is independent from 

arrangement of projects. In this work, the LOO 

method is adopted. 
 

6. Introducing Datasets  
In the testing stage of the proposed model, the 

dataset of real projects are utilized. These datasets 

have been applied by many researchers. The 

details of the data analysis of these datasets are 

tabulated in Table 2. 
 

Table 2. Datasets 

Name Number of sample Number of features Mean (effort) 

COCOMO 63 17 683 

Desharnais 77 10 4795 

Maxwell 62 26 8223 
 

The desharnais dataset consists of 81 real software 

projects. This dataset has been collected from the 

Canadian software houses. The projects in the 
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desharnais dataset are described by 11 features. In 

this dataset, one of the features named 'Cost' is 

dependent and ten other features named 

‘TeamExp’, ‘ManagerExp’, ‘YearEnd’, 

‘Duration’, ‘Transactions’, ‘Entities’, ‘AdjFP’, 

‘AdjFactor’, ‘RawFP’, and ‘Dev.Env’, which are 

independent. In this work, only 77 projects of this 

dataset are used for tests since the other 4 projects 

have defective data. 

The Maxwell dataset contains data on 62 real 

software projects. There is one dependent feature 

called 'effort' and 25 independent features indexed 

from 1 to 25 in this dataset. 

The cocomo dataset contains data on 63 real 

software projects. The independent features are 

'rely', 'data', 'cplx', 'time', 'stor', 'virt', 'turn', 'acap', 

'aexp', 'pcap', 'vexp', 'lexp', 'modp', 'tool', 'sced', 

and 'loc', also 'actual' is the only dependent feature 

in this dataset. 

 

7. Techniques 
This proposed model is compared with the 

following methods for evaluating the accuracy: 

 Ordinary Least Squares (OLS): this method 

is based on the regression and the best line of 

regression. 

 Robust Regression (ROR): ROR uses 

regression for estimation. This method 

utilizes weighting to increase the estimation 

accuracy in the unusual data [38]. 

 Multivariate Adaptive Regression Splines 

(MARS): MARS is a non-linear and non-

parametric regression method, indicative of 

some interesting features like the ease in 

interpretation and the ability to model 

complex non-linear correlations with a rapid 

output [39]. 

 Classification and Regression Tree (CART): 

One of the commonly used methods for data 

classification is the CART method. The 

CART method adopts decision tree for data 

classification [40]. 

 M5: The M5 method utilizes the modeling 

technique for data estimation, and the 

developed model has a tree structure. This 

method separately computes a linear 

regression for each leaf in the developed tree 

model [41]. 

 Multi-Layered Perceptron (MLP): Neural 

network is a non-linear modeling technique. 

MLP-based neural network has been applied 

by many researches. This method is based on 

a network of neurons in an input layer, one or 

more hidden layers, and an output layer [42]. 

 Case-Based learning reasoning (CBR): The 

CBR operator searches for the most similar 

sample to the sample we intend to estimate. 

The similarity of the samples is calculated 

through this method. In this method, K 

determines the number of most similar 

samples that must be used for data estimation 

[43]. 
 

8. Testing Datasets 
The objective of testing this model is to evaluate 

the degree of its precision. The tests are run on the 

introduced datasets. The results here are displayed 

and analyzed through separate datasets. The 

precision of this model in these tests is calculated 

and displayed through the criteria, and the 

equations are introduced in Section 3. 

 

8.1. Desharnais dataset test 

Tde desharnais dataset test is selected as the first, 

the specifications of which are presented in 

Section 6-2. The MRE value obtained from 

implementing this proposed model is expressed in 

Figure 5. The MdMRE value for this test is 0.22, 

and the PRED value is 0.51. 

 
Figure 5. MRE error frequency distribution with FEEM 

model for desharnais dataset. 
 

The frequency distribution diagram of the MRE 

error is graphed in Figure 5, where the 

percentages of distribution of different values of 

MRE error are exposed. The horizontal axis of 

this graph indicates the MRE quantity. The 

vertical axis of this graph represents the 

percentage of the projects with a specific MRE 

quantity.  

As observed in Figure 5, a high percentage of 

errors falls within a range less than 0.5. The 

higher slope of this diagram in one area signifies a 

higher percentage of error distribution within that 

specified range. As the graph moves toward 

bigger errors, its slope becomes less, even reaches 

zero, indicating fewer projects with low 

estimation accuracy. 
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8.2. COCOMO dataset test 
The specifications of this dataset are presented in 

Section 6-1. The MRE value obtained from 

implementing this proposed model is expressed in 

Figure 6. The MdMRE value for this test is 0.53, 

and the PRED value is 0.19. 

 
Figure 6. MRE error frequency distribution with FEEM 

model for COCOMO dataset. 
 

The frequency distribution diagram of the MRE 

error for the COCOMO dataset is shown in Figure 

6, where the horizontal axis represents the MRE 

quantity, and the vertical axis represents the 

percentage of the projects with a specific MRE 

quantity. As observed here, a high percentage of 

errors falls within a range less than 1. This is 

obvious from Figure 6. The higher slope areas of 

the diagram contain small errors, and as the 

diagram moves towards bigger errors, its slope 

becomes less, and even reaches zero, indicating 

fewer projects with a low estimation accuracy. 

 

8.3. Maxwell dataset test 

The next test is run on the Maxwell dataset, 

specifications of which are given in Section 6-3. 

The MRE value obtained from implementing this 

proposed model is expressed in Figure 7.  

 
Figure 7. MRE error frequency distribution with FEEM 

model for Maxwell dataset. 

The MdMRE value for this test is 0.24, and the 

PRED value is 0.5. The frequency distribution 

diagram of the MRE error for the Maxwell dataset 

is drawn in Figure 7, where the horizontal axis 

represents the MRE quantity, and the vertical axis 

represents the percentage of the projects with a 

specific MRE quantity. As observed here, about 

70% of the projects are estimated with less than 

0.5 error, and the big errors are of a small 

distribution. 

 

9. Analysis and Comparison of Results 
For an accuracy comparison of the proposed 

model with the other methods, numerous tests are 

performed. These tests are performed on the same 

test conditions with the proposed model. The 

results of the tests for comparison are shown in 

Tables 3 and 4. In these tables, the results of the 

tests are comparable with each other. The results 

obtained indicate the high precision of the FEEM 

model. Moreover, the PRED value of the FEEM 

model reveals a high precision estimation rate in 

this model. 

 

This precision is due to the fact that the refining 

filters are separated, which, in turn, increase the 

data precision. In the estimation research works, 

in the cases where the data refining methods are 

applied, they join the estimation process, which 

leads to many problems. Combining the 

refinement and estimation processes lead to 

problems for the model leading to a less precision 

in the results. In the early tests run, the refinement 

and estimation are run in a simultaneous manner, 

making the results hardly precise. However, when 

the stages are defined and implemented in 

separate layers, the precision of the results faces 

drastic changes. 

 

Another reason for the high precision of the 

results here is the predictive contribution of the 

estimation error obtained through Eq. 9. This 

method is very effective in normalizing and 

reducing MRE for the projects with a high 

estimation error percentage. Applying Eq. 9 and 

layer 3 leads to a considerable decline in the upper 

limit of MRE with a drastic decline in an 

acceptable range. 

 

In the running tests on the FEEM model, 

identifying the proper sequence of layer 

placement is one of the most important items to be 

tested. The proposed sequence of layers is 

obtained as a result of running different tests and 

the layers’ movement. The results of various tests 

confirm the sequence of layers. 
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The MdMRE and PRED criteria of the proposed 

model are compared with the other methods, as 

shown in Figsures 8, 9, and 10, respectively. 

 
Table 3. Comparison of MdMRE criterion in datasets. 

Method Desharnais Maxwell COCOMO 

CART 0.35 0.45 0.77 

CBR K = 1 0.45 0.59 0.85 

CBR K = 2 0.42 0.55 0.76 
CBR K = 3 0.42 0.44 0.78 

CBR K = 4 0.38 0.52 0.78 

LSSVM 0.41 0.45 1.33 
M5' 0.39 0.49 0.71 

MARS 0.57 0.48 3.70 

MLP 0.54 0.56 0.87 
OLS 0.53 0.48 4.06 

ROR 0.49 0.59 0.98 

PSO + ABE [10] 0.40 0.47 0.75 
ACO + ABE [44] 0.36 0.48 0.75 

RF [45] 0.39 0.32 1.86 

FEEM 0.22 0.24 0.53 

 
Table 4. Comparison of Pred (0.25) criterion in datasets. 

Method Desharnais Maxwell COCOMO 

CART 0.27 0.32 0.12 

CBR K = 1 0.25 0.25 0.07 

CBR K = 2 0.29 0.22 0.17 
CBR K = 3 0.29 0.29 0.07 

CBR K = 4 0.31 0.24 0.06 

LSSVM 0.24 0.29 0.09 
M5' 0.29 0.22 0.17 

MARS 0.23 0.29 0.07 

MLP 0.24 0.20 0.19 
OLS 0.27 0.24 0.12 

ROR 0.36 0.29 0.19 

PSO + ABE [10] 0.40 0.29 0.09 

ACO + ABE [44] 0.36 0.32 0.09 

RF [45] 0.36 0.40 0.12 

FEEM 0.51 0.5 0.19 
 

The results of this comparison for the COCOMO 

dataset are shown in Fig. 8, where the MdMRE 

value of this proposed model is lower than that of 

the MdMRE value of all methods. The PRED 

value of this proposed model is greater than that 

of the PRED values of all methods. The 

Desharnais dataset is assessed in Figure 9, where 

the PRED value of this proposed model is greater 

than that of its MdMRE value. This difference 

reflects the high accuracy of the estimates 

provided by this model. The results of this 

comparison are shown for the Maxwell dataset, 

Figure 10, where the PRED value of this proposed 

model is greater than its MdMRE value. This 

difference reflects the high accuracy of the 

estimates provided by this model. The difference 

in the accuracy of this model with the other 

methods is based on the PRED and MdMRE 

criteria, Figure 10. 

 

Another comparison is made based on the MAE 

benchmark in order to better assess the accuracy 

of this proposed model. This criterion represents 

the mean error of estimation in the projects, 

Figure 11, whereas the observed FEEM model is 

more accurate than all its counterparts. The 

accuracy of this model, according to the MAE 

criterion, is about 70% higher than its 

counterparts. The other methods, even close to 

this model, in one of the datasets, are not able to 

repeat their own estimation accuracy in other 

datasets. This point reflects the ability of this 

model to be adaptive in the project conditions. 

 

In order to determine the FEEM overall 

performance, Wilcoxon, a statistical test, is 

executed, which would confirm the superiority of 

this model. The Wilcoxon test specifies the 

difference between two data samples, and the 

difference is determined by the P-value parameter. 

Based on this method, two samples of data are 

statistically different when the p-value quantity is 

less than 0.05. In this article, the P-value quantity 

of different methods is compared with the FEEM 

method. The P-value of each one of the assessed 

methods in comparison to the FEEM model is 

tabulated in Table 5. The P-value quantity of the 

Wilcoxon test in all methods and all datasets is 

less than 0.05. The results of this test confirm the 

statistical significance of this model. 

 
Table 5. P-values obtained from Wilcoxon test. 

Method Desharnais Maxwell COCOMO 

CART 0.0381 0.0347 0.0356 

CBR K = 1 0.0215 0.0012  0.0015 

CBR K = 2 0.0461  0.0119  0.0473 
CBR K = 3 0.0283  0.0303 0.0125 

CBR K = 4 0.0493  0.0071 0.0088 

    
LS-SVM 0.0434  0.0138 0.00076 

M5'   0.026  0.01 0.0338 

MARS  0.0039  4.80E-05 4.38E-08 
MLP 0.00078 0.00037 0.0342 

OLS         0.0017      0.0219   3,51E-04 

ROR         0.0313      0.000964 0.0166 
PSO + ABE [10] 0.0391      0.0383   0.0368 

ACO + ABE [44] 0.041 0.0389 0.037 

RF [45] 0.048 0.05 2.3853e-005 
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Figure 8. Comparing methods on cocomo dataset. 

 

 
Figure 9. Comparing methods on Desharnise dataset. 

 
Figure 10. Comparing methods on Maxwell dataset.  
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Figure 11. Comparison of MAE criterion in datasets. 

10. Conclusion 
According to the literature, the use of data 

processing methods, identification methods of 

effective features, and identification of types of 

relationships between the project features on the 

software project effort or data modeling increase 

the estimation accuracy. Moreover, the correct 

application of heuristic algorithms for the 

configuring methods and tools plays a key role in 

the increased efficiency. A novelty of this work is 

to present the sub-models with the above 

objectives for identifying the features and their 

effective relationships, exactly configuring the 

data modeling techniques, and estimating by the 

LSA algorithm based on the feature similarity. 

The other novelty is to propose a model consisting 

of three layers in which the sub-models are 

organized in their layers in order to improve their 

accuracy. The first layer of the proposed model 

acts on the project features. In the second layer, 

the ABE method, an estimation method based on 

the feature similarity, is configured using the LSA 

algorithm. The accuracy of the second layer is 

increased using the analysis results of the first 

layer on the project features. Combining the 

neural network and LSA, an estimator model of 

the first and second layers is developed in the 

third layer based on its outputs and inputs in order 

to increase the final estimation accuracy. Testing 

each layer slightly increased the estimation 

accuracy but properly organizing all these layers 

significantly increased the final estimation 

accuracy. Using the heuristic algorithm in this 

model improved the flexibility of the layers and 

their consistency with the project conditions. This 

model was tested, and its precise results were 

displayed. Precision of the results here suggests 

that many models presented by the researchers so 

far can become more precise if re-designed based 

on the procedures presented here. Here, a new 

method was applied to increase the accuracy of 

the estimation model. In addition to data modeling 

to estimate the effort, a separate modeling was 

performed to estimate the model error. The error 

modeling was made in layer 3. The result of this 

model indicates the final value of the estimation. 

A separate error modeling is contributive in 

reducing the error estimation. The approaches 

proposed in this work can enhance the precision 

and effectiveness of the future methods. 
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 چکیده:

توس هه   یب را  ازی  تلاش مورد ن زانیم ینیشبیدر حوزه پ یفراوان یهانرم افزار همواره با چالش دیتول یهاپروژه تیریناملموس نرم افزار، مد تیماه لیبدل

ش ده اس ت. ب ر     انج ام توسهه نرم اف زار   یبرا ازیتلاش مورد ن نیتخم یبرا قیدق یهادر جهت توسهه ابزار یفراوان یهارو پژوهش نیآن مواجه است. از ا

 نیاس ت. همنن    شیقاب ل اف زا   ،یژگ  یو یوزنده ایداده  شیپالا یهاوهیش حیصح یریبا بکارگ نگریتخم یهامدل ایها دقت روش ق،یتحق اتیاساس ادب

س ه   مقال ه متش کل از   نیا دراند. مدل ارائه شده داده استفاده کرده یارائه شده است که از مدل ساز نیماش یریادگی یهاروش یبرمبنا یادیز یهامدل

ه ا را ب ا   یژگ  یو یها و وزن ده  یژگیو نیداده شده است که کار انتخاب موثرتر شنهادیپ ییکهایمدل، ابزارها و تکن نیاول و دوم ا یهاهیاست. در لا هیلا

 نگ ر یم دل از تخم  کی   ،یعص ب  بکهو شLSA بیمدل با استفاده از ترک نیسوم ا هیدر لا نیدهد. همننیانجام م (LSA)نور  یجستجو تمیکمک الگور

س ه   از ،یشنهادیپ یهادقت مدل یابیارز یاست. برا افتهی شیافزا یریگبه شکل چشم یینها نیساخته شده است و با کمک آن دقت تخمدو  ویک  هیلا

  شده است.   سهیمختلف مقا یروشها جیبدست آمده با نتا جیاستفاده شده است و نتا یواقه یهامجموعه داده از پروژه

 .یعصب یهاتلاش توسهه, شبکه نی, تخم, پروژه نرم افزارنور یجستجو تمیالگور :کلمات کلیدی

 


