
1

Journal of Artificial Intelligence and Data Mining (JAIDM), Vol. 11, No. 1, 2023, 39-51.

Shahrood University of

Technology

Journal of Artificial Intelligence and Data Mining (JAIDM)
Journal homepage: http://jad.shahroodut.ac.ir

 Research paper

FEEM: A Flexible Model based on Artificial Intelligence for Software

Effort Estimation

Amin Moradbeiky
*

Department of Computer Engineering, Zabol Branch, Islamic Azad University, Zabol, Iran.

Article Info Abstract

Article History:
Received 13 September 2021

Revised 24 October 2021
Accepted 04 January 2022

DOI:10.22044/jadm.2022.11161.2265

 Managing software projects due to its intangible nature is full of

challenges when predicting the effort required for development.

Accordingly, there exist many studies with the attempt to devise the

models to estimate the efforts necessary in developing software.

According to the literature, the accuracy of the estimator models or

methods can be improved by the correct application of data filtering or

feature weighting techniques. Numerous models have also been

proposed based on the machine learning methods for data modeling. In

this work, we propose a new model consisting of the data filtering and

feature weighting techniques in order to improve the estimation

accuracy in the final step of data modeling. The model proposed in this

work consists of three layers. The tools and techniques in the first and

second layers of the proposed model select the most effective features,

and weight the features with the help of LSA (Lightning Search

Algorithm). By combining LSA and an artificial neural network in the

third layer of the model, an estimator model is developed from the first

and second layers, significantly improving the final estimation

accuracy. The upper layers of this model filter out and analyze the data

of the lower layers. This arrangement significantly increases the

accuracy of the final estimation. Three datasets of real projects are

used in order to evaluate the accuracy of the proposed model, and the

results obtained are compared with those obtained from different

methods. The results are compared based on the performance criteria,

indicating that the proposed model effectively improves the estimation

accuracy.

Keywords:
Development Effort Estimation,

Lightning Search Algorithm,

Neural Networks, Software

Project.

*Corresponding author:
ampayam@yahoo.com (A.

Moradbeiky).

1. Introduction

The required time and effort for software

development are two important parameters in any

software project. Prediction of the required effort,

to achieve the schedule and other objectives of the

project, is one of the important duties of the

project managers. Therefore, the right decisions of

the software project managers and the accurate

effort estimation play an important role in the

success of these projects. To this end, the project

managers must be able to identify the effective

parameters on the effort of the project, the

relationship between them, and their relation

effect on effort. Usually the project managers use

their own experience to estimate the effort of the

projects. However, the extreme dynamics of the

software project environment make unreliable the

obtained estimates from this method. Therefore,

the project managers require tools and methods to

enable them to estimate the required effort of

project development accurately. Consequently,

this issue is considered as a major challenge for

the researchers and the practitioners in the

software industry. The estimation methods are

divided to the algorithmic and non-algorithmic

categories [1], the first is based on the

Moradbeiky/ Journal of AI and Data Mining, Vol. 11, No. 1, 2023

40

mathematical and the second on the heuristic and

metaheuristic methods.

In both methods, usually a model is devised for a

number of tools and algorithms proposed to

estimate the software development effort. In each

one of these models, the tools and algorithms are

combined in their unique sense to provide a

precise estimate of the software development

effort. Some of these tools or algorithms are

applied as an intermediate tool to increase the

accuracy of the method. The following studies

support this claim in increasing the accuracy of

the neural network:

 The neural networks are one of the most

commonly adopted methods in AI; The

Elman’s neural network has been applied in

[2] for the software development effort

estimation.

 Rankovic et al. [3] have proposed four new

models based on the artificial neural network,

utilizing five datasets to test them.

 Kumar et al. [4] have used neural networks to

deep learning in software effort estimation.

 The dilation-erosion-linear perceptron was

introduced in 2012. This method is applied in

many articles for prediction. This method

will not be sufficient if there exists

complexity of input/output. Araujo et al. [5]

have optimized the structure of this

perceptron using the descending gradient in

the learning process, and have used it in

software effort estimation.

 A combination of satin bowerbird

optimization algorithm (SBO) and the neuro-

fuzzy (ANFIS) has been applied to increase

the accuracy in predicting the software error

[6].

A number of researchers seek to increase the

accuracy of the Analogy-Based Estimation (ABE)

method through different tools or use ABE as a

tool to increase the accuracy of the other tools.

 The ABE method has been commonly used

for software effort estimation by the

researchers. The differential equation (DE)

algorithm has been applied in the similarity

function to weight the features, named

Differential evolution in Analogy-Based

Estimation (DABE) [7], in order to improve

the efficiency of this method.

 There exists no exact definition on the project

similarity. A similarity region has been

identified by [8] for feature selection in

similar projects through the Case-Based

Reasoning (CBR) concept.

 One of the algorithms combined through the

ABE methods is the genetic algorithm [9].

 Application of the particle swarm

optimization (PSO) algorithm to increase

ABE precision [10] and a hybrid model from

PSO and simulated annealing algorithm to

improve ABE performance [11] has been

proposed.
The fuzzy logic-based tools and technique

combination with other methods have been

used in some studies for performance and

accuracy improvement.

 The estimation model (EM) proposed by [12]

is to divide the projects into the categories

with similar distribution parameters, followed

by adopting the fuzzy method used in

estimation and applied from the firefly

algorithm in the rule-base system for

selection.

 The effective parameters on the estimation

have been proposed by [13], where an

attempt has been made to increase precision

through the fuzzy method.

 A combination of two algorithmic and non-

algorithmic methods COCOMO and

NEURO-Fuzzy has been applied in [14],

where the accuracy of the estimation

increased by sending the outputs of NEURO-

Fuzzy to the COCOMOII.

 Idri et al. have assessed the effect of the

missing data (MD) techniques on ABE and

fuzzy-analogy [15].

 Usually the fuzzy logic is applied in solving

the error prediction problem since it can

perform with incomplete data, while the main

problem is the great volume of rules that

slows the decision-making process. An

attempt has been made by [16] to reduce this

volume by applying the fuzzy controllers

instead of the fuzzy logic.

 Karimi and Gandomani have used a

combination of differential evolution

algorithm and fuzzy-neural network for

software development effort estimation

modeling [17].

 Chhabra and Singh have used the optimizing

design of fuzzy model for software effort

estimation using the PSO algorithm [18].

Some researchers only use the tools based on the

algorithmic methods.

 COCOMO has been proposed by [19],

COCOMOII has been proposed by [20],

SLIM has been proposed by [21], function

point analysis has been proposed by [22], and

the Dotti model has been proposed by [23].

FEEM: A flexible model based on artificial intelligence for software effort estimation

41

 The regression-based methods are the linear

regression methods [24, 25], non-linear

regression methods [25], and tree regression

methods [26, 27].
The artificial intelligence algorithms can improve

the efficiency of the formulated methods by

searching for the appropriate configuration for

these methods. This approach has been followed

in some articles.

 The updated K-modes clustering basic

algorithms have been applied in effort

prediction. In the model proposed by [28],

the Beysian belief network is constructed

from of the COCOMO model, where the

intervals are of fuzzy numbers, and then the

PSO algorithm and genetic algorithm (GA)

are combined to improve the software effort

estimation.

 The machine learning algorithms are

commonly applied in problem estimation.

Two different types of Support Vector

Machine (SVMs) have been applied by [29]

to predict effort and compare with the other

methods like neural networks and decision

tree. Various feature selection methods have

also been used for performance optimization

of the machine learning-based methods [30].

 The meta-heuristic algorithms are commonly

applied by the researchers in many cases. A

hybrid meta-heuristic algorithm consisting of

Cuckoo Optimization Algorithm (COA),

harmonic Search [31], and DE algorithm has

been applied to optimize the COCOMO

parameters [32], and to improve the software

effort estimation.
Some studies emphasize identifying the key

project features and their relationship with the

software development effort. There has been an

emphasis on identifying the interrelated features

influencing the software development effort [33].

The features influencing effort have been

identified by a neural network [34]. The PSO

algorithm [35] and the Bayesian technique [36]

have been used to identify the features influencing

the software development effort.

Table 1. Various methods in software effort estimation.
Study Year Dataset Evaluation method Method Ref. No.

1 2019 21 Projects (1 dataset) MMRE, Pred, MSE ANN 2

2 2021 COCOMO, NASA, Kemerer MAE, Pred, MMRE ANN 3
3 2017 ISBSG, Albrecht, Kemerer MMRE, Pred ANFIS 6

4 2007 CF, DPS MMRE, Pred, MdMRE ABE 9

5 2012 CF, DPS, ISBSG MMRE, Pred PSO, ABE 10
6 2019 Desharnais, COCOMO MMRE, Pred Firefly algorithm 12

7 2019 4 Projects (1 dataset) MMRE, VAF Fuzzy 13

8 2018 COCOMO MMRE Neuro fuzzy 14
9 2021 Kemerer, Albrecht MMRE, Pred ANFIS 17

10 2020 COCOMO MMRE, Pred PSO, Fuzzy 18

11 2016 COCOMO MMRE Bayesian network 28
12 2018 ISBSG MAE SVR 29

13 2017 COCOMO MMRE Cuckoo search 31

14 2018 COCOMO MMRE, Pred, MAE DE 32
15 2020 ISBSG, Desharnais MMRE, Pred ACO, ABE 44

A novel model is proposed in this work by

analyzing the models previously presented in the

literature. The data preparation tools have been

proposed in some studies in order to improve the

estimation accuracy. Some studies have

emphasized on the different effectiveness of

various project features on the software

development effort, and attempts have made to

propose a model to exactly estimate the effort

considering the project features and the

effectiveness of different features. The

effectiveness has been defined as a coefficient in

the literature. Data modeling by the machine

learning methods has also been performed in

some studies. Accordingly, in the proposed

model, various separately used techniques and

tools in the literature for improving the estimation

accuracy were adopted in a model with separate

layers. Each layer in this model increases the

accuracy of the next layer. Simply speaking, the

output of each layer in this model is the input to

the next layer, improving the final performance of

the proposed model.

Section 2 discusses the ABE method used for

estimating the software development effort.

Section 3 introduces the criteria for calculating the

accuracy of the proposed model. Section 4

introduces the proposed model. Section 5

discusses a cross-validation method for evaluating

the stability of the proposed model results. Section

6 introduces three datasets of real projects used

for testing the proposed model. Section 7

introduces the techniques compared with the

proposed model. Section 8 presents the test results

of the proposed model. The model results are

analyzed in Section 9.

Moradbeiky/ Journal of AI and Data Mining, Vol. 11, No. 1, 2023

42

2. Analogy-based Estimation (ABE) Method

The estimation methods are of the two algorithms

and non-algorithm. Since the first methods are not

appropriate to be adopted in the dynamic

environment of software projects, the second

methods are applied in this context, making ABE

one of the most applicable methods. The ABE

method is adopted in the unspecified value

estimation of single feature (i.e. effort or cost) of

one project. The steps of this method are

described in the following sub-sections.

2.1. Similarity function
The similarity of projects through studying the

features with certain value(s) is determined

through this function. For this purpose, the

following Euclidean, Eq. 3 and Manhattan Eq. 4

similarity determination methods, are applied. The

project features include both the digit and non-

digit groups. With respect to the digit features, in

both the methods, the space of digit features is

estimated for the project’s difference estimation.

With respect to the non-digit features, the level of

difference is set at 0 or 1. These methods differ in

the digit feature value space estimation context,

where the P and P
'
 statements constitute the study

projects and fi and f
'
i constitute the i

th
 feature of

the P and P
'
 projects, respectively. The result

obtained reveals the similarity level between the

two projects.

(1)

0.0001 

1

1
(,)

(,)
n

i i i
i

sim p p

w Dis f f 


 
 

   


 

2

i i

i i i

i i i

if f and f arenumericalor ordinal

(,) 0 if f and f arenominaland f =f

1 if f and f arenominaland f f

i i

i i i

i

f f

Dis f f

  


   
  


(2)

0.0001 

1

1
(,)

(,)
n

i i i
i

sim p p
w Dis f f 



 
  
  


i i

i i i

i i i

if f and f arenumericalor ordinal

(,) 0 if f and f arenominaland f =f

1 if f and f arenominaland f f

i i

i i i

i

f f

Dis f f

  


   
  


2.2. Solution function

This function is applied in the effort estimation of

one project according to the effort of k projects

with more similarities.

(3)
1

1

(,)

(,)
k

K
k

p pK
k

i

i

Sim p p
C C

Sim p p






where P is the project, the effort value of which is

intended to be estimated. Symbol Pi is the i
th

project of K more similar project. The symbol CPi

is a certain value to be estimated from the j
th
 more

similar project.

2.3. Best value of K
The K value is applied in the effort estimations

with a high accuracy. An appropriate K value

mostly depends on the studied projects. If the

difference in the studied projects is slightly high,

the K value accuracy reduces because the

effective projects manifest more differences at the

final stage of estimation. If the studied projects

are too close to one another, the low value of K

results prevents the study of similar projects. The

existence of these projects in the final stage is of a

positive influence on the results’ accuracy. This

accuracy is due to a reduction in the noise rate

during the estimation process. Consequently, no

constant value of K can be considered, and thus it

is better for K to be determined in its dynamic

sense.

According to the above-mentioned points, no

constant value of K can be considered. Therefore,

it is better for K to be determined in its dynamic

sense.

3. Equations for Estimation Error Calculation

In this section, the utilized equations are evaluated

for the accuracy of the proposed model, and

comparison with the other methods is made.

These equations are commonly used for the

accuracy evaluation by the researchers in the field.

The results of equations are displayed as diagrams

for a better accuracy evaluation and comparison.

The utilized equations are presented in Eqs. (4 to

8), relative error (RE), magnitude of relative error

(MRE), median magnitude of relative error

(MdMRE), prediction percentage (PRED), and

mean of absolute error (MAE).

(4)
Estimate Actual

RE
Actual




(5)

Estimate Actual
MRE

Actual




(6) ()MdMRE Median MRE

(7) ()
A

PRED X
N



(8)
1

1
| |

n
MAE Estimate Actual

N
 

4. Proposed Model

This paper presents a new model called Flexible

Effort Estimation Model (FEEM). FEEM is

composed of two sections: training and test. The

training section of this model consists of three

layers, each responsible to refine the data and

FEEM: A flexible model based on artificial intelligence for software effort estimation

43

enhance the precision of estimation. The model of

layer 1 is shown in Figure 1, where the best

features are selected based on the feature selection

and ABE method with several iteration. At every

one of the iterations, a subset of features is

selected, and the MdMRE error value is calculated

for that set of feature. The iteration continues until

the whole set of selected features end. What is

obtained here is a set of the best features with the

highest effect on software development effort

estimation, which is applied to send as an input to

the next layer.

Figure 1. A flowchart of training section model, layer 1.

The layer 2 model is shown in Figure 2, which

undergoes training through the selected features as

its input. This model is iterated for many times

through the LSA algorithm, and at each iteration,

the LSA algorithm suggests an appropriate setting

for ABE. The ABE method processes the projects

and estimates them based on the settings

suggested by the LSA algorithm. This process

runs until the estimation error reaches a specific

threshold or the iterations are ended. Finally, the

best setting for ABE is the result obtained through

implementing the model of this layer. The

obtained settings are applied as the input for layer

3.

The second layer of the proposed model includes

a hybrid model of the ABE and LSA methods.

The ABE method searches for the most similar

projects with the target project to estimate

software development effort based on the features

adaptation. The ABE method uses the LSA

algorithm to increase the estimation accuracy. The

LSA algorithm tries to propose the most

appropriate configuration for the ABE method,

and helps it to provide a more accurate estimation.

The configuration proposed by the LSA algorithm

differs based on the project conditions and its

features. On the other hand, the first layer helps

increase the second layer's accuracy by processing

the input data to the first layer. Simply speaking, a

higher quality data enters the second layer with

the help of the first layer. The estimate obtained

from the second layer is not the final estimation.

In the third layer, a model is developed for the

estimator of first and second layers and based on

their input and output. This layer leads to an

improved final estimated accuracy.

Figure 2. A flowchart of training section model, layer 2.

The layer 3 model is shown in Figure 3 that

undergoes the predicting proper estimation error

based on a project's data. In order to estimate the

prediction error, the Artificial Neural Network

(ANN) is applied. The proper configuration of

ABE obtained in layer 2 is received as its input,

and the best features are obtained in layer 1. This

layer's model is iterated through the LSA

algorithm, where at each iteration, the LSA

algorithm proposes proper values for b and w of

ANN. Here, ANN predicts the estimation error for

each project, and ABE estimates the effort. The

resulting values are applied in Eq. 9 for

estimation.

(9) [] [] ([])Final ABEE i E i Error i Th  

where i is the number of projects, EABE is the

estimation from the ABE method, Error is the

error proposed by ANN, and the Th coefficient is

the percentage of effect of suggested error on the

value of estimation. The result of this equation is

the value of the final estimation.

After the final estimation of each project is run,

the resulting value is applied in Eqs. 5, 6, 7, and 8.

Consequently, the estimation error is calculated

based on the settings suggested by the LSA

algorithm. The obtained estimation error is

returned to the LSA algorithm as a feedback, and

this process goes on until the error resulting from

estimation does not reach a specific threshold or

iteration of the LSA algorithm ends. This layer

will provide the best settings for estimation of the

prediction error through ANN. These proposed

settings reduce the final estimation error.

Moradbeiky/ Journal of AI and Data Mining, Vol. 11, No. 1, 2023

44

Figure 3. A flowchart of training section model, layer 3.

The test section flowchart is shown in Figure 4,

where the set of test projects is estimated through

the settings proposed in layer 2 for ABE and the

features specified in layer 1 based on the

estimation error predicted by layer 3. The

MdMRE and PRED values resulting from running

this stage are considered as the estimation errors.

Figure 4. Test section model flowchart.

5. Validation Method

Based on the proposed model, the projects must

be divided into the two groups of training and test.

The arrangement of projects in dividing process

effects on the accuracy of the proposed model

[37]. For sustainability provement of the models,

different evaluation methods including 3 fold, 10

fold, etc. can be used. Each one of these methods

provides a specific arrangement for the projects.

Based on the performed study [37], leave-one-out

(LOO) is the best method for evaluation, and its

achieved accuracy is independent from

arrangement of projects. In this work, the LOO

method is adopted.

6. Introducing Datasets
In the testing stage of the proposed model, the

dataset of real projects are utilized. These datasets

have been applied by many researchers. The

details of the data analysis of these datasets are

tabulated in Table 2.

Table 2. Datasets

Name Number of sample Number of features Mean (effort)

COCOMO 63 17 683

Desharnais 77 10 4795

Maxwell 62 26 8223

The desharnais dataset consists of 81 real software

projects. This dataset has been collected from the

Canadian software houses. The projects in the

FEEM: A flexible model based on artificial intelligence for software effort estimation

45

desharnais dataset are described by 11 features. In

this dataset, one of the features named 'Cost' is

dependent and ten other features named

‘TeamExp’, ‘ManagerExp’, ‘YearEnd’,

‘Duration’, ‘Transactions’, ‘Entities’, ‘AdjFP’,

‘AdjFactor’, ‘RawFP’, and ‘Dev.Env’, which are

independent. In this work, only 77 projects of this

dataset are used for tests since the other 4 projects

have defective data.

The Maxwell dataset contains data on 62 real

software projects. There is one dependent feature

called 'effort' and 25 independent features indexed

from 1 to 25 in this dataset.

The cocomo dataset contains data on 63 real

software projects. The independent features are

'rely', 'data', 'cplx', 'time', 'stor', 'virt', 'turn', 'acap',

'aexp', 'pcap', 'vexp', 'lexp', 'modp', 'tool', 'sced',

and 'loc', also 'actual' is the only dependent feature

in this dataset.

7. Techniques
This proposed model is compared with the

following methods for evaluating the accuracy:

 Ordinary Least Squares (OLS): this method

is based on the regression and the best line of

regression.

 Robust Regression (ROR): ROR uses

regression for estimation. This method

utilizes weighting to increase the estimation

accuracy in the unusual data [38].

 Multivariate Adaptive Regression Splines

(MARS): MARS is a non-linear and non-

parametric regression method, indicative of

some interesting features like the ease in

interpretation and the ability to model

complex non-linear correlations with a rapid

output [39].

 Classification and Regression Tree (CART):

One of the commonly used methods for data

classification is the CART method. The

CART method adopts decision tree for data

classification [40].

 M5: The M5 method utilizes the modeling

technique for data estimation, and the

developed model has a tree structure. This

method separately computes a linear

regression for each leaf in the developed tree

model [41].

 Multi-Layered Perceptron (MLP): Neural

network is a non-linear modeling technique.

MLP-based neural network has been applied

by many researches. This method is based on

a network of neurons in an input layer, one or

more hidden layers, and an output layer [42].

 Case-Based learning reasoning (CBR): The

CBR operator searches for the most similar

sample to the sample we intend to estimate.

The similarity of the samples is calculated

through this method. In this method, K

determines the number of most similar

samples that must be used for data estimation

[43].

8. Testing Datasets
The objective of testing this model is to evaluate

the degree of its precision. The tests are run on the

introduced datasets. The results here are displayed

and analyzed through separate datasets. The

precision of this model in these tests is calculated

and displayed through the criteria, and the

equations are introduced in Section 3.

8.1. Desharnais dataset test

Tde desharnais dataset test is selected as the first,

the specifications of which are presented in

Section 6-2. The MRE value obtained from

implementing this proposed model is expressed in

Figure 5. The MdMRE value for this test is 0.22,

and the PRED value is 0.51.

Figure 5. MRE error frequency distribution with FEEM

model for desharnais dataset.

The frequency distribution diagram of the MRE

error is graphed in Figure 5, where the

percentages of distribution of different values of

MRE error are exposed. The horizontal axis of

this graph indicates the MRE quantity. The

vertical axis of this graph represents the

percentage of the projects with a specific MRE

quantity.

As observed in Figure 5, a high percentage of

errors falls within a range less than 0.5. The

higher slope of this diagram in one area signifies a

higher percentage of error distribution within that

specified range. As the graph moves toward

bigger errors, its slope becomes less, even reaches

zero, indicating fewer projects with low

estimation accuracy.

Moradbeiky/ Journal of AI and Data Mining, Vol. 11, No. 1, 2023

46

8.2. COCOMO dataset test
The specifications of this dataset are presented in

Section 6-1. The MRE value obtained from

implementing this proposed model is expressed in

Figure 6. The MdMRE value for this test is 0.53,

and the PRED value is 0.19.

Figure 6. MRE error frequency distribution with FEEM

model for COCOMO dataset.

The frequency distribution diagram of the MRE

error for the COCOMO dataset is shown in Figure

6, where the horizontal axis represents the MRE

quantity, and the vertical axis represents the

percentage of the projects with a specific MRE

quantity. As observed here, a high percentage of

errors falls within a range less than 1. This is

obvious from Figure 6. The higher slope areas of

the diagram contain small errors, and as the

diagram moves towards bigger errors, its slope

becomes less, and even reaches zero, indicating

fewer projects with a low estimation accuracy.

8.3. Maxwell dataset test

The next test is run on the Maxwell dataset,

specifications of which are given in Section 6-3.

The MRE value obtained from implementing this

proposed model is expressed in Figure 7.

Figure 7. MRE error frequency distribution with FEEM

model for Maxwell dataset.

The MdMRE value for this test is 0.24, and the

PRED value is 0.5. The frequency distribution

diagram of the MRE error for the Maxwell dataset

is drawn in Figure 7, where the horizontal axis

represents the MRE quantity, and the vertical axis

represents the percentage of the projects with a

specific MRE quantity. As observed here, about

70% of the projects are estimated with less than

0.5 error, and the big errors are of a small

distribution.

9. Analysis and Comparison of Results
For an accuracy comparison of the proposed

model with the other methods, numerous tests are

performed. These tests are performed on the same

test conditions with the proposed model. The

results of the tests for comparison are shown in

Tables 3 and 4. In these tables, the results of the

tests are comparable with each other. The results

obtained indicate the high precision of the FEEM

model. Moreover, the PRED value of the FEEM

model reveals a high precision estimation rate in

this model.

This precision is due to the fact that the refining

filters are separated, which, in turn, increase the

data precision. In the estimation research works,

in the cases where the data refining methods are

applied, they join the estimation process, which

leads to many problems. Combining the

refinement and estimation processes lead to

problems for the model leading to a less precision

in the results. In the early tests run, the refinement

and estimation are run in a simultaneous manner,

making the results hardly precise. However, when

the stages are defined and implemented in

separate layers, the precision of the results faces

drastic changes.

Another reason for the high precision of the

results here is the predictive contribution of the

estimation error obtained through Eq. 9. This

method is very effective in normalizing and

reducing MRE for the projects with a high

estimation error percentage. Applying Eq. 9 and

layer 3 leads to a considerable decline in the upper

limit of MRE with a drastic decline in an

acceptable range.

In the running tests on the FEEM model,

identifying the proper sequence of layer

placement is one of the most important items to be

tested. The proposed sequence of layers is

obtained as a result of running different tests and

the layers’ movement. The results of various tests

confirm the sequence of layers.

FEEM: A flexible model based on artificial intelligence for software effort estimation

47

The MdMRE and PRED criteria of the proposed

model are compared with the other methods, as

shown in Figsures 8, 9, and 10, respectively.

Table 3. Comparison of MdMRE criterion in datasets.

Method Desharnais Maxwell COCOMO

CART 0.35 0.45 0.77

CBR K = 1 0.45 0.59 0.85

CBR K = 2 0.42 0.55 0.76
CBR K = 3 0.42 0.44 0.78

CBR K = 4 0.38 0.52 0.78

LSSVM 0.41 0.45 1.33
M5' 0.39 0.49 0.71

MARS 0.57 0.48 3.70

MLP 0.54 0.56 0.87
OLS 0.53 0.48 4.06

ROR 0.49 0.59 0.98

PSO + ABE [10] 0.40 0.47 0.75
ACO + ABE [44] 0.36 0.48 0.75

RF [45] 0.39 0.32 1.86

FEEM 0.22 0.24 0.53

Table 4. Comparison of Pred (0.25) criterion in datasets.

Method Desharnais Maxwell COCOMO

CART 0.27 0.32 0.12

CBR K = 1 0.25 0.25 0.07

CBR K = 2 0.29 0.22 0.17
CBR K = 3 0.29 0.29 0.07

CBR K = 4 0.31 0.24 0.06

LSSVM 0.24 0.29 0.09
M5' 0.29 0.22 0.17

MARS 0.23 0.29 0.07

MLP 0.24 0.20 0.19
OLS 0.27 0.24 0.12

ROR 0.36 0.29 0.19

PSO + ABE [10] 0.40 0.29 0.09

ACO + ABE [44] 0.36 0.32 0.09

RF [45] 0.36 0.40 0.12

FEEM 0.51 0.5 0.19

The results of this comparison for the COCOMO

dataset are shown in Fig. 8, where the MdMRE

value of this proposed model is lower than that of

the MdMRE value of all methods. The PRED

value of this proposed model is greater than that

of the PRED values of all methods. The

Desharnais dataset is assessed in Figure 9, where

the PRED value of this proposed model is greater

than that of its MdMRE value. This difference

reflects the high accuracy of the estimates

provided by this model. The results of this

comparison are shown for the Maxwell dataset,

Figure 10, where the PRED value of this proposed

model is greater than its MdMRE value. This

difference reflects the high accuracy of the

estimates provided by this model. The difference

in the accuracy of this model with the other

methods is based on the PRED and MdMRE

criteria, Figure 10.

Another comparison is made based on the MAE

benchmark in order to better assess the accuracy

of this proposed model. This criterion represents

the mean error of estimation in the projects,

Figure 11, whereas the observed FEEM model is

more accurate than all its counterparts. The

accuracy of this model, according to the MAE

criterion, is about 70% higher than its

counterparts. The other methods, even close to

this model, in one of the datasets, are not able to

repeat their own estimation accuracy in other

datasets. This point reflects the ability of this

model to be adaptive in the project conditions.

In order to determine the FEEM overall

performance, Wilcoxon, a statistical test, is

executed, which would confirm the superiority of

this model. The Wilcoxon test specifies the

difference between two data samples, and the

difference is determined by the P-value parameter.

Based on this method, two samples of data are

statistically different when the p-value quantity is

less than 0.05. In this article, the P-value quantity

of different methods is compared with the FEEM

method. The P-value of each one of the assessed

methods in comparison to the FEEM model is

tabulated in Table 5. The P-value quantity of the

Wilcoxon test in all methods and all datasets is

less than 0.05. The results of this test confirm the

statistical significance of this model.

Table 5. P-values obtained from Wilcoxon test.

Method Desharnais Maxwell COCOMO

CART 0.0381 0.0347 0.0356

CBR K = 1 0.0215 0.0012 0.0015

CBR K = 2 0.0461 0.0119 0.0473
CBR K = 3 0.0283 0.0303 0.0125

CBR K = 4 0.0493 0.0071 0.0088

LS-SVM 0.0434 0.0138 0.00076

M5' 0.026 0.01 0.0338

MARS 0.0039 4.80E-05 4.38E-08
MLP 0.00078 0.00037 0.0342

OLS 0.0017 0.0219 3,51E-04

ROR 0.0313 0.000964 0.0166
PSO + ABE [10] 0.0391 0.0383 0.0368

ACO + ABE [44] 0.041 0.0389 0.037

RF [45] 0.048 0.05 2.3853e-005

Moradbeiky/ Journal of AI and Data Mining, Vol. 11, No. 1, 2023

48

Figure 8. Comparing methods on cocomo dataset.

Figure 9. Comparing methods on Desharnise dataset.

Figure 10. Comparing methods on Maxwell dataset.

FEEM: A flexible model based on artificial intelligence for software effort estimation

49

Figure 11. Comparison of MAE criterion in datasets.

10. Conclusion
According to the literature, the use of data

processing methods, identification methods of

effective features, and identification of types of

relationships between the project features on the

software project effort or data modeling increase

the estimation accuracy. Moreover, the correct

application of heuristic algorithms for the

configuring methods and tools plays a key role in

the increased efficiency. A novelty of this work is

to present the sub-models with the above

objectives for identifying the features and their

effective relationships, exactly configuring the

data modeling techniques, and estimating by the

LSA algorithm based on the feature similarity.

The other novelty is to propose a model consisting

of three layers in which the sub-models are

organized in their layers in order to improve their

accuracy. The first layer of the proposed model

acts on the project features. In the second layer,

the ABE method, an estimation method based on

the feature similarity, is configured using the LSA

algorithm. The accuracy of the second layer is

increased using the analysis results of the first

layer on the project features. Combining the

neural network and LSA, an estimator model of

the first and second layers is developed in the

third layer based on its outputs and inputs in order

to increase the final estimation accuracy. Testing

each layer slightly increased the estimation

accuracy but properly organizing all these layers

significantly increased the final estimation

accuracy. Using the heuristic algorithm in this

model improved the flexibility of the layers and

their consistency with the project conditions. This

model was tested, and its precise results were

displayed. Precision of the results here suggests

that many models presented by the researchers so

far can become more precise if re-designed based

on the procedures presented here. Here, a new

method was applied to increase the accuracy of

the estimation model. In addition to data modeling

to estimate the effort, a separate modeling was

performed to estimate the model error. The error

modeling was made in layer 3. The result of this

model indicates the final value of the estimation.

A separate error modeling is contributive in

reducing the error estimation. The approaches

proposed in this work can enhance the precision

and effectiveness of the future methods.

References
[1] A. K. Bardsiri and S. M. Hashemi, "Software effort

estimation: a survey of well-known approaches,"

International Journal of Computer Science

Engineering (IJCSE), vol. 3, pp. 46-50, 2014.

[2] S. Bilgaiyan, S. Mishra, and M. Das, "Effort

estimation in agile software development using

experimental validation of neural network models,"

International Journal of Information Technology, vol.

11, pp. 569-573, 2019.

[3] D. Rankovic, N. Rankovic, M. Ivanovic, and L.

Lazic, "Convergence rate of Artificial Neural Networks

for estimation in software development projects,"

Information and Software Technology, p. 106627,

2021.

[4] P. S. Kumar, H. S. Behera, A. Kumari, J. Nayak,

and B. Naik, "Advancement from neural networks to

deep learning in software effort estimation: Perspective

of two decades," Computer Science Review, vol. 38, p.

100288, 2020.

[5] R. D. A. Araujo, A. L. Oliveira, and S. Meira, "A

class of hybrid multi-layer perceptrons for software

development effort estimation problems," Expert

Systems with Applications, vol. 90, pp. 1-12, 2017.

[6] S. H. S. Moosavi and V. K. Bardsiri, "Satin

bowerbird optimizer: A new optimization algorithm to

optimize ANFIS for software development effort

Moradbeiky/ Journal of AI and Data Mining, Vol. 11, No. 1, 2023

50

estimation," Engineering Applications of Artificial

Intelligence, vol. 60, pp. 1-15, 2017.

[7] T. R. Benala and R. Mall, "DABE: differential

evolution in analogy-based software development

effort estimation," Swarm and Evolutionary

Computation, vol. 38, pp. 158-172, 2018.

[8] Q. Liu, J. Xiao, and H. Zhu, "Feature selection for

software effort estimation with localized neighborhood

mutual information," Cluster computing, vol. 22, pp.

6953-6961, 2019.

[9] N.-H. Chiu and S.-J. Huang, "The adjusted analogy-

based software effort estimation based on similarity

distances," Journal of Systems and Software, vol. 80,

pp. 628-640, 2007.

[10] V. K. Bardsiri, D. N. A. Jawawi, S. Z. M. Hashim,

and E. Khatibi, "A PSO-based model to increase the

accuracy of software development effort estimation,"

Software Quality Journal, vol. 21, pp. 501-526, 2013.

[11] Z. Shahpar, V. Khatibi, and A. Khatibi Bardsiri,

"Hybrid PSO-SA approach for feature weighting in

analogy-based software project effort estimation,"

Journal of AI and Data Mining, 2021.

[12] V. Resmi, S. Vijayalakshmi, and R. S.

Chandrabose, "An effective software project effort

estimation system using optimal firefly algorithm,"

Cluster Computing, vol. 22, pp. 11329-11338, 2019.

[13] J. F. Vijay, "Enrichment of accurate software

effort estimation using fuzzy-based function point

analysis in business data analytics," Neural Computing

and Applications, vol. 31, pp. 1633-1639, 2019.

[14] I. Kaur, G. S. Narula, R. Wason, V. Jain, and A.

Baliyan, "Neuro fuzzy—COCOMO II model for

software cost estimation," International Journal of

Information Technology, vol. 10, pp. 181-187, 2018.

[15] A. Idri, I. Abnane, and A. Abran, "Missing data

techniques in analogy-based software development

effort estimation," Journal of Systems and Software,

vol. 117, pp. 595-611, 2016.

[16] P. R. Sree and R. SNSVSC, "Improving efficiency

of fuzzy models for effort estimation by cascading and

clustering techniques," Procedia Computer Science,

vol. 85, pp. 278-285, 2016.

[17] A. Karimi and T. J. Gandomani, "Software

development effort estimation modeling using a

combination of fuzzy-neural network and differential

evolution algorithm," International Journal of

Electrical and Computer Engineering (2088-8708),

vol. 11, 2021.

[18] S. Chhabra and H. Singh, "Optimizing design of

fuzzy model for software cost estimation using particle

swarm optimization algorithm," International Journal

of Computational Intelligence and Applications, vol.

19, p. 2050005, 2020.

[19] B. Barry, "Software engineering economics," New

York, vol. 197, 1981.

[20] B. Boehm, C. Abts, A. Brown, S. Chulani, B.

Clark, E. Horowitz et al., "Software cost estimation

with COCOMO II. Prentice Hall PTR," Upper Saddle

River, NJ, 2000.

[21] L. H. Putnam, "A general empirical solution to the

macro software sizing and estimating problem," IEEE

transactions on Software Engineering, pp. 345-361,

1978.

[22] A. J. Albrecht and J. E. Gaffney, "Software

function, source lines of code, and development effort

prediction: a software science validation," IEEE

transactions on software engineering, pp. 639-648,

1983.

[23] S. A. Abbas, X. Liao, A. U. Rehman, A. Azam,

and M. Abdullah, "Cost estimation: A survey of well-

known historic cost estimation techniques," Journal of

Emerging Trends in Computing and Information

Sciences, vol. 3, pp. 612-636, 2012.

[24] G. R. Finnie, G. E. Wittig, and J.-M. Desharnais,

"A comparison of software effort estimation

techniques: Using function points with neural

networks, case-based reasoning and regression

models," Journal of systems and software, vol. 39, pp.

281-289, 1997.

[25] P. Sentas, L. Angelis, I. Stamelos, and G. Bleris,

"Software productivity and effort prediction with

ordinal regression," Information and software

technology, vol. 47, pp. 17-29, 2005.

[26] L. C. Briand, K. El Emam, D. Surmann, I.

Wieczorek, and K. D. Maxwell, "An assessment and

comparison of common software cost estimation

modeling techniques," in Proceedings of the 1999

International Conference on Software Engineering

(IEEE Cat. No. 99CB37002), 1999, pp. 313-323.

[27] L. C. Briand, T. Langley, and I. Wieczorek, "A

replicated assessment and comparison of common

software cost modeling techniques," in Proceedings of

the 22nd international conference on Software

engineering, 2000, pp. 377-386.

[28] F. Zare, H. K. Zare, and M. S. Fallahnezhad,

"Software effort estimation based on the optimal

Bayesian belief network," Applied Soft Computing, vol.

49, pp. 968-980, 2016.

[29] A. García-Floriano, C. López-Martín, C. Yáñez-

Márquez, and A. Abran, "Support vector regression for

predicting software enhancement effort," Information

and Software Technology, vol. 97, pp. 99-109, 2018.

[30] S. Beiranvand and Z. Chahooki, "Bridging the

semantic gap for software effort estimation by

hierarchical feature selection techniques," Journal of AI

and Data Mining, vol. 4, pp. 157-168, 2016.

[31] A. Puspaningrum and R. Sarno, "A hybrid cuckoo

optimization and harmony search algorithm for

software cost estimation," Procedia Computer Science,

vol. 124, pp. 461-469, 2017.

FEEM: A flexible model based on artificial intelligence for software effort estimation

51

[32] S. P. Singh, V. P. Singh, and A. K. Mehta,

"Differential evolution using homeostasis adaption

based mutation operator and its application for

software cost estimation," Journal of King Saud

University-Computer and Information Sciences, 2018.

[33] A. Ali and C. Gravino, "Improving software effort

estimation using bio-inspired algorithms to select

relevant features: An empirical study," Science of

Computer Programming, vol. 205, p. 102621, 2021.

[34] S. Goyal and P. K. Bhatia, "Feature selection

technique for effective software effort estimation using

multi-layer perceptrons," in Proceedings of ICETIT

2019, ed: Springer, 2020, pp. 183-194.

[35] A. Setiadi, W. F. Hidayat, A. Sinnun, A. Setiawan,

M. Faisal, and D. P. Alamsyah, "Analyze the Datasets

of Software Effort Estimation With Particle Swarm

Optimization," in 2021 International Seminar on

Intelligent Technology and its Applications (ISITIA),

2021, pp. 197-201.

[36] P. Phannachitta, "On an optimal analogy-based

software effort estimation," Information and Software

Technology, vol. 125, p. 106330, 2020.

[37] E. Kocaguneli and T. Menzies, "Software effort

models should be assessed via leave-one-out

validation," Journal of Systems and Software, vol. 86,

pp. 1879-1890, 2013.

[38] P. W. Holland and R. E. Welsch, "Robust

regression using iteratively reweighted least-squares,"

Communications in Statistics-theory and Methods, vol.

6, pp. 813-827, 1977.

[39] J. H. Friedman, "Multivariate adaptive regression

splines," The annals of statistics, pp. 1-67, 1991.

[40] J. R. Quinlan, C4. 5: programs for machine

learning: Elsevier, 2014.

[41] Y. Wang and I. H. Witten, "Induction of model

trees for predicting continuous classes," 1996.

[42] K. Hornik, M. Stinchcombe, and H. White,

"Multilayer feedforward networks are universal

approximators," Neural networks, vol. 2, pp. 359-366,

1989.

[43] J. Li, G. Ruhe, A. Al-Emran, and M. M. Richter,

"A flexible method for software effort estimation by

analogy," Empirical Software Engineering, vol. 12, pp.

65-106, 2007.

[44] S. Ranichandra, "Optimizing non‐orthogonal

space distance using ACO in software cost estimation,"

Mukt Shabd J, vol. 9, pp. 1592-1604, 2020.

[45] H. Mustapha and N. Abdelwahed, "Investigating

the use of random forest in software effort estimation,"

Procedia computer science, vol. 148, pp. 343-352,

2019.

 .2041سال ،اول شماره هم،دوره یازد ،کاویمجله هوش مصنوعی و داده یکیمرادب

FEEM :تلاش نرم افزار نیتخم یبرا یبر هوش مصنوع یمبتن ریمدل انعطاف پذ کی

 *امین مرادبیکی

 .رانی، ازابل، زابلواحد یدانشگاه آزاد اسلام وتر،یکامپ یگروه مهندس

 40/42/1411 پذیرش؛ 10/24/1412 بازنگری؛ 21/40/1412 ارسال

 چکیده:

توس هه یب را ازی تلاش مورد ن زانیم ینیشبیدر حوزه پ یفراوان یهانرم افزار همواره با چالش دیتول یهاپروژه تیریناملموس نرم افزار، مد تیماه لیبدل

ش ده اس ت. ب ر انج ام توسهه نرم اف زار یبرا ازیتلاش مورد ن نیتخم یبرا قیدق یهادر جهت توسهه ابزار یفراوان یهارو پژوهش نیآن مواجه است. از ا

 نیاس ت. همنن شیقاب ل اف زا ،یژگ یو یوزنده ایداده شیپالا یهاوهیش حیصح یریبا بکارگ نگریتخم یهامدل ایها دقت روش ق،یتحق اتیاساس ادب

س ه مقال ه متش کل از نیا دراند. مدل ارائه شده داده استفاده کرده یارائه شده است که از مدل ساز نیماش یریادگی یهاروش یبرمبنا یادیز یهامدل

ه ا را ب ا یژگ یو یها و وزن ده یژگیو نیداده شده است که کار انتخاب موثرتر شنهادیپ ییکهایمدل، ابزارها و تکن نیاول و دوم ا یهاهیاست. در لا هیلا

 نگ ر یم دل از تخم کی ،یعص ب بکهو شLSA بیمدل با استفاده از ترک نیسوم ا هیدر لا نیدهد. همننیانجام م (LSA)نور یجستجو تمیکمک الگور

س ه از ،یشنهادیپ یهادقت مدل یابیارز یاست. برا افتهی شیافزا یریگبه شکل چشم یینها نیساخته شده است و با کمک آن دقت تخمدو ویک هیلا

 شده است. سهیمختلف مقا یروشها جیبدست آمده با نتا جیاستفاده شده است و نتا یواقه یهامجموعه داده از پروژه

 .یعصب یهاتلاش توسهه, شبکه نی, تخم, پروژه نرم افزارنور یجستجو تمیالگور :کلمات کلیدی

